Merge tag 'dma-mapping-4.19-2' of git://git.infradead.org/users/hch/dma-mapping
[linux-block.git] / arch / x86 / entry / entry_64.S
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2/*
3 * linux/arch/x86_64/entry.S
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
4d732138 8 *
1da177e4
LT
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
8b4777a4
AL
11 * Some of this is documented in Documentation/x86/entry_64.txt
12 *
0bd7b798 13 * A note on terminology:
4d732138
IM
14 * - iret frame: Architecture defined interrupt frame from SS to RIP
15 * at the top of the kernel process stack.
2e91a17b
AK
16 *
17 * Some macro usage:
4d732138
IM
18 * - ENTRY/END: Define functions in the symbol table.
19 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
20 * - idtentry: Define exception entry points.
1da177e4 21 */
1da177e4
LT
22#include <linux/linkage.h>
23#include <asm/segment.h>
1da177e4
LT
24#include <asm/cache.h>
25#include <asm/errno.h>
e2d5df93 26#include <asm/asm-offsets.h>
1da177e4
LT
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
0341c14d 31#include <asm/page_types.h>
2601e64d 32#include <asm/irqflags.h>
72fe4858 33#include <asm/paravirt.h>
9939ddaf 34#include <asm/percpu.h>
d7abc0fa 35#include <asm/asm.h>
63bcff2a 36#include <asm/smap.h>
3891a04a 37#include <asm/pgtable_types.h>
784d5699 38#include <asm/export.h>
8c1f7558 39#include <asm/frame.h>
2641f08b 40#include <asm/nospec-branch.h>
d7e7528b 41#include <linux/err.h>
1da177e4 42
6fd166aa
PZ
43#include "calling.h"
44
4d732138
IM
45.code64
46.section .entry.text, "ax"
16444a8a 47
72fe4858 48#ifdef CONFIG_PARAVIRT
2be29982 49ENTRY(native_usergs_sysret64)
8c1f7558 50 UNWIND_HINT_EMPTY
72fe4858
GOC
51 swapgs
52 sysretq
8c1f7558 53END(native_usergs_sysret64)
72fe4858
GOC
54#endif /* CONFIG_PARAVIRT */
55
ca37e57b 56.macro TRACE_IRQS_FLAGS flags:req
2601e64d 57#ifdef CONFIG_TRACE_IRQFLAGS
a368d7fd 58 btl $9, \flags /* interrupts off? */
4d732138 59 jnc 1f
2601e64d
IM
60 TRACE_IRQS_ON
611:
62#endif
63.endm
64
ca37e57b
AL
65.macro TRACE_IRQS_IRETQ
66 TRACE_IRQS_FLAGS EFLAGS(%rsp)
67.endm
68
5963e317
SR
69/*
70 * When dynamic function tracer is enabled it will add a breakpoint
71 * to all locations that it is about to modify, sync CPUs, update
72 * all the code, sync CPUs, then remove the breakpoints. In this time
73 * if lockdep is enabled, it might jump back into the debug handler
74 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
75 *
76 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
77 * make sure the stack pointer does not get reset back to the top
78 * of the debug stack, and instead just reuses the current stack.
79 */
80#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
81
82.macro TRACE_IRQS_OFF_DEBUG
4d732138 83 call debug_stack_set_zero
5963e317 84 TRACE_IRQS_OFF
4d732138 85 call debug_stack_reset
5963e317
SR
86.endm
87
88.macro TRACE_IRQS_ON_DEBUG
4d732138 89 call debug_stack_set_zero
5963e317 90 TRACE_IRQS_ON
4d732138 91 call debug_stack_reset
5963e317
SR
92.endm
93
f2db9382 94.macro TRACE_IRQS_IRETQ_DEBUG
6709812f 95 btl $9, EFLAGS(%rsp) /* interrupts off? */
4d732138 96 jnc 1f
5963e317
SR
97 TRACE_IRQS_ON_DEBUG
981:
99.endm
100
101#else
4d732138
IM
102# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
103# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
104# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
5963e317
SR
105#endif
106
1da177e4 107/*
4d732138 108 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
1da177e4 109 *
fda57b22
AL
110 * This is the only entry point used for 64-bit system calls. The
111 * hardware interface is reasonably well designed and the register to
112 * argument mapping Linux uses fits well with the registers that are
113 * available when SYSCALL is used.
114 *
115 * SYSCALL instructions can be found inlined in libc implementations as
116 * well as some other programs and libraries. There are also a handful
117 * of SYSCALL instructions in the vDSO used, for example, as a
118 * clock_gettimeofday fallback.
119 *
4d732138 120 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
b87cf63e
DV
121 * then loads new ss, cs, and rip from previously programmed MSRs.
122 * rflags gets masked by a value from another MSR (so CLD and CLAC
123 * are not needed). SYSCALL does not save anything on the stack
124 * and does not change rsp.
125 *
126 * Registers on entry:
1da177e4 127 * rax system call number
b87cf63e
DV
128 * rcx return address
129 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
1da177e4 130 * rdi arg0
1da177e4 131 * rsi arg1
0bd7b798 132 * rdx arg2
b87cf63e 133 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
1da177e4
LT
134 * r8 arg4
135 * r9 arg5
4d732138 136 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
0bd7b798 137 *
1da177e4
LT
138 * Only called from user space.
139 *
7fcb3bc3 140 * When user can change pt_regs->foo always force IRET. That is because
7bf36bbc
AK
141 * it deals with uncanonical addresses better. SYSRET has trouble
142 * with them due to bugs in both AMD and Intel CPUs.
0bd7b798 143 */
1da177e4 144
3386bc8a
AL
145 .pushsection .entry_trampoline, "ax"
146
147/*
148 * The code in here gets remapped into cpu_entry_area's trampoline. This means
149 * that the assembler and linker have the wrong idea as to where this code
150 * lives (and, in fact, it's mapped more than once, so it's not even at a
151 * fixed address). So we can't reference any symbols outside the entry
152 * trampoline and expect it to work.
153 *
154 * Instead, we carefully abuse %rip-relative addressing.
155 * _entry_trampoline(%rip) refers to the start of the remapped) entry
156 * trampoline. We can thus find cpu_entry_area with this macro:
157 */
158
159#define CPU_ENTRY_AREA \
160 _entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)
161
162/* The top word of the SYSENTER stack is hot and is usable as scratch space. */
4fe2d8b1
DH
163#define RSP_SCRATCH CPU_ENTRY_AREA_entry_stack + \
164 SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
3386bc8a
AL
165
166ENTRY(entry_SYSCALL_64_trampoline)
167 UNWIND_HINT_EMPTY
168 swapgs
169
170 /* Stash the user RSP. */
171 movq %rsp, RSP_SCRATCH
172
8a09317b
DH
173 /* Note: using %rsp as a scratch reg. */
174 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
175
3386bc8a
AL
176 /* Load the top of the task stack into RSP */
177 movq CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp
178
179 /* Start building the simulated IRET frame. */
180 pushq $__USER_DS /* pt_regs->ss */
181 pushq RSP_SCRATCH /* pt_regs->sp */
182 pushq %r11 /* pt_regs->flags */
183 pushq $__USER_CS /* pt_regs->cs */
184 pushq %rcx /* pt_regs->ip */
185
186 /*
187 * x86 lacks a near absolute jump, and we can't jump to the real
188 * entry text with a relative jump. We could push the target
189 * address and then use retq, but this destroys the pipeline on
190 * many CPUs (wasting over 20 cycles on Sandy Bridge). Instead,
191 * spill RDI and restore it in a second-stage trampoline.
192 */
193 pushq %rdi
194 movq $entry_SYSCALL_64_stage2, %rdi
2641f08b 195 JMP_NOSPEC %rdi
3386bc8a
AL
196END(entry_SYSCALL_64_trampoline)
197
198 .popsection
199
200ENTRY(entry_SYSCALL_64_stage2)
201 UNWIND_HINT_EMPTY
202 popq %rdi
203 jmp entry_SYSCALL_64_after_hwframe
204END(entry_SYSCALL_64_stage2)
205
b2502b41 206ENTRY(entry_SYSCALL_64)
8c1f7558 207 UNWIND_HINT_EMPTY
9ed8e7d8
DV
208 /*
209 * Interrupts are off on entry.
210 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
211 * it is too small to ever cause noticeable irq latency.
212 */
72fe4858 213
8a9949bc 214 swapgs
8a09317b 215 /*
14b1fcc6 216 * This path is only taken when PAGE_TABLE_ISOLATION is disabled so it
8a09317b
DH
217 * is not required to switch CR3.
218 */
4d732138
IM
219 movq %rsp, PER_CPU_VAR(rsp_scratch)
220 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
9ed8e7d8
DV
221
222 /* Construct struct pt_regs on stack */
4d732138
IM
223 pushq $__USER_DS /* pt_regs->ss */
224 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
4d732138
IM
225 pushq %r11 /* pt_regs->flags */
226 pushq $__USER_CS /* pt_regs->cs */
227 pushq %rcx /* pt_regs->ip */
8a9949bc 228GLOBAL(entry_SYSCALL_64_after_hwframe)
4d732138 229 pushq %rax /* pt_regs->orig_ax */
30907fd1
DB
230
231 PUSH_AND_CLEAR_REGS rax=$-ENOSYS
4d732138 232
548c3050
AL
233 TRACE_IRQS_OFF
234
1e423bff 235 /* IRQs are off. */
dfe64506
LT
236 movq %rax, %rdi
237 movq %rsp, %rsi
1e423bff
AL
238 call do_syscall_64 /* returns with IRQs disabled */
239
29ea1b25 240 TRACE_IRQS_IRETQ /* we're about to change IF */
fffbb5dc
DV
241
242 /*
243 * Try to use SYSRET instead of IRET if we're returning to
8a055d7f
AL
244 * a completely clean 64-bit userspace context. If we're not,
245 * go to the slow exit path.
fffbb5dc 246 */
4d732138
IM
247 movq RCX(%rsp), %rcx
248 movq RIP(%rsp), %r11
8a055d7f
AL
249
250 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
251 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
252
253 /*
254 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
255 * in kernel space. This essentially lets the user take over
17be0aec 256 * the kernel, since userspace controls RSP.
fffbb5dc 257 *
17be0aec 258 * If width of "canonical tail" ever becomes variable, this will need
fffbb5dc 259 * to be updated to remain correct on both old and new CPUs.
361b4b58 260 *
cbe0317b
KS
261 * Change top bits to match most significant bit (47th or 56th bit
262 * depending on paging mode) in the address.
fffbb5dc 263 */
09e61a77 264#ifdef CONFIG_X86_5LEVEL
39b95522
KS
265 ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
266 "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
09e61a77 267#else
17be0aec
DV
268 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
269 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
09e61a77 270#endif
4d732138 271
17be0aec
DV
272 /* If this changed %rcx, it was not canonical */
273 cmpq %rcx, %r11
8a055d7f 274 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc 275
4d732138 276 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
8a055d7f 277 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc 278
4d732138
IM
279 movq R11(%rsp), %r11
280 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
8a055d7f 281 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
282
283 /*
3e035305
BP
284 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
285 * restore RF properly. If the slowpath sets it for whatever reason, we
286 * need to restore it correctly.
287 *
288 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
289 * trap from userspace immediately after SYSRET. This would cause an
290 * infinite loop whenever #DB happens with register state that satisfies
291 * the opportunistic SYSRET conditions. For example, single-stepping
292 * this user code:
fffbb5dc 293 *
4d732138 294 * movq $stuck_here, %rcx
fffbb5dc
DV
295 * pushfq
296 * popq %r11
297 * stuck_here:
298 *
299 * would never get past 'stuck_here'.
300 */
4d732138 301 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
8a055d7f 302 jnz swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
303
304 /* nothing to check for RSP */
305
4d732138 306 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
8a055d7f 307 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
308
309 /*
4d732138
IM
310 * We win! This label is here just for ease of understanding
311 * perf profiles. Nothing jumps here.
fffbb5dc
DV
312 */
313syscall_return_via_sysret:
17be0aec 314 /* rcx and r11 are already restored (see code above) */
8c1f7558 315 UNWIND_HINT_EMPTY
502af0d7 316 POP_REGS pop_rdi=0 skip_r11rcx=1
3e3b9293
AL
317
318 /*
319 * Now all regs are restored except RSP and RDI.
320 * Save old stack pointer and switch to trampoline stack.
321 */
322 movq %rsp, %rdi
c482feef 323 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
3e3b9293
AL
324
325 pushq RSP-RDI(%rdi) /* RSP */
326 pushq (%rdi) /* RDI */
327
328 /*
329 * We are on the trampoline stack. All regs except RDI are live.
330 * We can do future final exit work right here.
331 */
6fd166aa 332 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
3e3b9293 333
4fbb3910 334 popq %rdi
3e3b9293 335 popq %rsp
fffbb5dc 336 USERGS_SYSRET64
b2502b41 337END(entry_SYSCALL_64)
0bd7b798 338
0100301b
BG
339/*
340 * %rdi: prev task
341 * %rsi: next task
342 */
343ENTRY(__switch_to_asm)
8c1f7558 344 UNWIND_HINT_FUNC
0100301b
BG
345 /*
346 * Save callee-saved registers
347 * This must match the order in inactive_task_frame
348 */
349 pushq %rbp
350 pushq %rbx
351 pushq %r12
352 pushq %r13
353 pushq %r14
354 pushq %r15
355
356 /* switch stack */
357 movq %rsp, TASK_threadsp(%rdi)
358 movq TASK_threadsp(%rsi), %rsp
359
050e9baa 360#ifdef CONFIG_STACKPROTECTOR
0100301b
BG
361 movq TASK_stack_canary(%rsi), %rbx
362 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
363#endif
364
c995efd5
DW
365#ifdef CONFIG_RETPOLINE
366 /*
367 * When switching from a shallower to a deeper call stack
368 * the RSB may either underflow or use entries populated
369 * with userspace addresses. On CPUs where those concerns
370 * exist, overwrite the RSB with entries which capture
371 * speculative execution to prevent attack.
372 */
d1c99108 373 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
c995efd5
DW
374#endif
375
0100301b
BG
376 /* restore callee-saved registers */
377 popq %r15
378 popq %r14
379 popq %r13
380 popq %r12
381 popq %rbx
382 popq %rbp
383
384 jmp __switch_to
385END(__switch_to_asm)
386
1eeb207f
DV
387/*
388 * A newly forked process directly context switches into this address.
389 *
0100301b 390 * rax: prev task we switched from
616d2483
BG
391 * rbx: kernel thread func (NULL for user thread)
392 * r12: kernel thread arg
1eeb207f
DV
393 */
394ENTRY(ret_from_fork)
8c1f7558 395 UNWIND_HINT_EMPTY
0100301b 396 movq %rax, %rdi
ebd57499 397 call schedule_tail /* rdi: 'prev' task parameter */
1eeb207f 398
ebd57499
JP
399 testq %rbx, %rbx /* from kernel_thread? */
400 jnz 1f /* kernel threads are uncommon */
24d978b7 401
616d2483 4022:
8c1f7558 403 UNWIND_HINT_REGS
ebd57499 404 movq %rsp, %rdi
24d978b7
AL
405 call syscall_return_slowpath /* returns with IRQs disabled */
406 TRACE_IRQS_ON /* user mode is traced as IRQS on */
8a055d7f 407 jmp swapgs_restore_regs_and_return_to_usermode
616d2483
BG
408
4091:
410 /* kernel thread */
d31a5802 411 UNWIND_HINT_EMPTY
616d2483 412 movq %r12, %rdi
2641f08b 413 CALL_NOSPEC %rbx
616d2483
BG
414 /*
415 * A kernel thread is allowed to return here after successfully
416 * calling do_execve(). Exit to userspace to complete the execve()
417 * syscall.
418 */
419 movq $0, RAX(%rsp)
420 jmp 2b
1eeb207f
DV
421END(ret_from_fork)
422
939b7871 423/*
3304c9c3
DV
424 * Build the entry stubs with some assembler magic.
425 * We pack 1 stub into every 8-byte block.
939b7871 426 */
3304c9c3 427 .align 8
939b7871 428ENTRY(irq_entries_start)
3304c9c3
DV
429 vector=FIRST_EXTERNAL_VECTOR
430 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
8c1f7558 431 UNWIND_HINT_IRET_REGS
4d732138 432 pushq $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3 433 jmp common_interrupt
3304c9c3 434 .align 8
8c1f7558 435 vector=vector+1
3304c9c3 436 .endr
939b7871
PA
437END(irq_entries_start)
438
1d3e53e8
AL
439.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
440#ifdef CONFIG_DEBUG_ENTRY
e17f8234
BO
441 pushq %rax
442 SAVE_FLAGS(CLBR_RAX)
443 testl $X86_EFLAGS_IF, %eax
1d3e53e8
AL
444 jz .Lokay_\@
445 ud2
446.Lokay_\@:
e17f8234 447 popq %rax
1d3e53e8
AL
448#endif
449.endm
450
451/*
452 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
453 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
454 * Requires kernel GSBASE.
455 *
456 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
457 */
2ba64741 458.macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
1d3e53e8 459 DEBUG_ENTRY_ASSERT_IRQS_OFF
2ba64741
DB
460
461 .if \save_ret
462 /*
463 * If save_ret is set, the original stack contains one additional
464 * entry -- the return address. Therefore, move the address one
465 * entry below %rsp to \old_rsp.
466 */
467 leaq 8(%rsp), \old_rsp
468 .else
1d3e53e8 469 movq %rsp, \old_rsp
2ba64741 470 .endif
8c1f7558
JP
471
472 .if \regs
473 UNWIND_HINT_REGS base=\old_rsp
474 .endif
475
1d3e53e8 476 incl PER_CPU_VAR(irq_count)
29955909 477 jnz .Lirq_stack_push_old_rsp_\@
1d3e53e8
AL
478
479 /*
480 * Right now, if we just incremented irq_count to zero, we've
481 * claimed the IRQ stack but we haven't switched to it yet.
482 *
483 * If anything is added that can interrupt us here without using IST,
484 * it must be *extremely* careful to limit its stack usage. This
485 * could include kprobes and a hypothetical future IST-less #DB
486 * handler.
29955909
AL
487 *
488 * The OOPS unwinder relies on the word at the top of the IRQ
489 * stack linking back to the previous RSP for the entire time we're
490 * on the IRQ stack. For this to work reliably, we need to write
491 * it before we actually move ourselves to the IRQ stack.
492 */
493
494 movq \old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
495 movq PER_CPU_VAR(irq_stack_ptr), %rsp
496
497#ifdef CONFIG_DEBUG_ENTRY
498 /*
499 * If the first movq above becomes wrong due to IRQ stack layout
500 * changes, the only way we'll notice is if we try to unwind right
501 * here. Assert that we set up the stack right to catch this type
502 * of bug quickly.
1d3e53e8 503 */
29955909
AL
504 cmpq -8(%rsp), \old_rsp
505 je .Lirq_stack_okay\@
506 ud2
507 .Lirq_stack_okay\@:
508#endif
1d3e53e8 509
29955909 510.Lirq_stack_push_old_rsp_\@:
1d3e53e8 511 pushq \old_rsp
8c1f7558
JP
512
513 .if \regs
514 UNWIND_HINT_REGS indirect=1
515 .endif
2ba64741
DB
516
517 .if \save_ret
518 /*
519 * Push the return address to the stack. This return address can
520 * be found at the "real" original RSP, which was offset by 8 at
521 * the beginning of this macro.
522 */
523 pushq -8(\old_rsp)
524 .endif
1d3e53e8
AL
525.endm
526
527/*
528 * Undoes ENTER_IRQ_STACK.
529 */
8c1f7558 530.macro LEAVE_IRQ_STACK regs=1
1d3e53e8
AL
531 DEBUG_ENTRY_ASSERT_IRQS_OFF
532 /* We need to be off the IRQ stack before decrementing irq_count. */
533 popq %rsp
534
8c1f7558
JP
535 .if \regs
536 UNWIND_HINT_REGS
537 .endif
538
1d3e53e8
AL
539 /*
540 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
541 * the irq stack but we're not on it.
542 */
543
544 decl PER_CPU_VAR(irq_count)
545.endm
546
d99015b1 547/*
f3d415ea 548 * Interrupt entry helper function.
d99015b1 549 *
f3d415ea
DB
550 * Entry runs with interrupts off. Stack layout at entry:
551 * +----------------------------------------------------+
552 * | regs->ss |
553 * | regs->rsp |
554 * | regs->eflags |
555 * | regs->cs |
556 * | regs->ip |
557 * +----------------------------------------------------+
558 * | regs->orig_ax = ~(interrupt number) |
559 * +----------------------------------------------------+
560 * | return address |
561 * +----------------------------------------------------+
d99015b1 562 */
f3d415ea
DB
563ENTRY(interrupt_entry)
564 UNWIND_HINT_FUNC
565 ASM_CLAC
f6f64681 566 cld
7f2590a1 567
f3d415ea 568 testb $3, CS-ORIG_RAX+8(%rsp)
7f2590a1
AL
569 jz 1f
570 SWAPGS
f3d415ea
DB
571
572 /*
573 * Switch to the thread stack. The IRET frame and orig_ax are
574 * on the stack, as well as the return address. RDI..R12 are
575 * not (yet) on the stack and space has not (yet) been
576 * allocated for them.
577 */
90a6acc4 578 pushq %rdi
f3d415ea 579
90a6acc4
DB
580 /* Need to switch before accessing the thread stack. */
581 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
582 movq %rsp, %rdi
583 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
f3d415ea
DB
584
585 /*
586 * We have RDI, return address, and orig_ax on the stack on
587 * top of the IRET frame. That means offset=24
588 */
589 UNWIND_HINT_IRET_REGS base=%rdi offset=24
90a6acc4
DB
590
591 pushq 7*8(%rdi) /* regs->ss */
592 pushq 6*8(%rdi) /* regs->rsp */
593 pushq 5*8(%rdi) /* regs->eflags */
594 pushq 4*8(%rdi) /* regs->cs */
595 pushq 3*8(%rdi) /* regs->ip */
596 pushq 2*8(%rdi) /* regs->orig_ax */
597 pushq 8(%rdi) /* return address */
598 UNWIND_HINT_FUNC
599
600 movq (%rdi), %rdi
7f2590a1
AL
6011:
602
0e34d226
DB
603 PUSH_AND_CLEAR_REGS save_ret=1
604 ENCODE_FRAME_POINTER 8
76f5df43 605
2ba64741 606 testb $3, CS+8(%rsp)
dde74f2e 607 jz 1f
02bc7768
AL
608
609 /*
7f2590a1
AL
610 * IRQ from user mode.
611 *
f1075053
AL
612 * We need to tell lockdep that IRQs are off. We can't do this until
613 * we fix gsbase, and we should do it before enter_from_user_mode
f3d415ea 614 * (which can take locks). Since TRACE_IRQS_OFF is idempotent,
f1075053
AL
615 * the simplest way to handle it is to just call it twice if
616 * we enter from user mode. There's no reason to optimize this since
617 * TRACE_IRQS_OFF is a no-op if lockdep is off.
618 */
619 TRACE_IRQS_OFF
620
478dc89c 621 CALL_enter_from_user_mode
02bc7768 622
76f5df43 6231:
2ba64741 624 ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
f6f64681
DV
625 /* We entered an interrupt context - irqs are off: */
626 TRACE_IRQS_OFF
627
2ba64741
DB
628 ret
629END(interrupt_entry)
630
f3d415ea
DB
631
632/* Interrupt entry/exit. */
1da177e4 633
722024db
AH
634 /*
635 * The interrupt stubs push (~vector+0x80) onto the stack and
636 * then jump to common_interrupt.
637 */
939b7871
PA
638 .p2align CONFIG_X86_L1_CACHE_SHIFT
639common_interrupt:
4d732138 640 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
3aa99fc3
DB
641 call interrupt_entry
642 UNWIND_HINT_REGS indirect=1
643 call do_IRQ /* rdi points to pt_regs */
34061f13 644 /* 0(%rsp): old RSP */
7effaa88 645ret_from_intr:
2140a994 646 DISABLE_INTERRUPTS(CLBR_ANY)
2601e64d 647 TRACE_IRQS_OFF
625dbc3b 648
1d3e53e8 649 LEAVE_IRQ_STACK
625dbc3b 650
03335e95 651 testb $3, CS(%rsp)
dde74f2e 652 jz retint_kernel
4d732138 653
02bc7768 654 /* Interrupt came from user space */
02bc7768
AL
655GLOBAL(retint_user)
656 mov %rsp,%rdi
657 call prepare_exit_to_usermode
2601e64d 658 TRACE_IRQS_IRETQ
26c4ef9c 659
8a055d7f 660GLOBAL(swapgs_restore_regs_and_return_to_usermode)
26c4ef9c
AL
661#ifdef CONFIG_DEBUG_ENTRY
662 /* Assert that pt_regs indicates user mode. */
1e4c4f61 663 testb $3, CS(%rsp)
26c4ef9c
AL
664 jnz 1f
665 ud2
6661:
667#endif
502af0d7 668 POP_REGS pop_rdi=0
3e3b9293
AL
669
670 /*
671 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
672 * Save old stack pointer and switch to trampoline stack.
673 */
674 movq %rsp, %rdi
c482feef 675 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
3e3b9293
AL
676
677 /* Copy the IRET frame to the trampoline stack. */
678 pushq 6*8(%rdi) /* SS */
679 pushq 5*8(%rdi) /* RSP */
680 pushq 4*8(%rdi) /* EFLAGS */
681 pushq 3*8(%rdi) /* CS */
682 pushq 2*8(%rdi) /* RIP */
683
684 /* Push user RDI on the trampoline stack. */
685 pushq (%rdi)
686
687 /*
688 * We are on the trampoline stack. All regs except RDI are live.
689 * We can do future final exit work right here.
690 */
691
6fd166aa 692 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
8a09317b 693
3e3b9293
AL
694 /* Restore RDI. */
695 popq %rdi
696 SWAPGS
26c4ef9c
AL
697 INTERRUPT_RETURN
698
2601e64d 699
627276cb 700/* Returning to kernel space */
6ba71b76 701retint_kernel:
627276cb
DV
702#ifdef CONFIG_PREEMPT
703 /* Interrupts are off */
704 /* Check if we need preemption */
6709812f 705 btl $9, EFLAGS(%rsp) /* were interrupts off? */
6ba71b76 706 jnc 1f
4d732138 7070: cmpl $0, PER_CPU_VAR(__preempt_count)
36acef25 708 jnz 1f
627276cb 709 call preempt_schedule_irq
36acef25 710 jmp 0b
6ba71b76 7111:
627276cb 712#endif
2601e64d
IM
713 /*
714 * The iretq could re-enable interrupts:
715 */
716 TRACE_IRQS_IRETQ
fffbb5dc 717
26c4ef9c
AL
718GLOBAL(restore_regs_and_return_to_kernel)
719#ifdef CONFIG_DEBUG_ENTRY
720 /* Assert that pt_regs indicates kernel mode. */
1e4c4f61 721 testb $3, CS(%rsp)
26c4ef9c
AL
722 jz 1f
723 ud2
7241:
725#endif
502af0d7 726 POP_REGS
e872045b 727 addq $8, %rsp /* skip regs->orig_ax */
10bcc80e
MD
728 /*
729 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
730 * when returning from IPI handler.
731 */
7209a75d
AL
732 INTERRUPT_RETURN
733
734ENTRY(native_iret)
8c1f7558 735 UNWIND_HINT_IRET_REGS
3891a04a
PA
736 /*
737 * Are we returning to a stack segment from the LDT? Note: in
738 * 64-bit mode SS:RSP on the exception stack is always valid.
739 */
34273f41 740#ifdef CONFIG_X86_ESPFIX64
4d732138
IM
741 testb $4, (SS-RIP)(%rsp)
742 jnz native_irq_return_ldt
34273f41 743#endif
3891a04a 744
af726f21 745.global native_irq_return_iret
7209a75d 746native_irq_return_iret:
b645af2d
AL
747 /*
748 * This may fault. Non-paranoid faults on return to userspace are
749 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
750 * Double-faults due to espfix64 are handled in do_double_fault.
751 * Other faults here are fatal.
752 */
1da177e4 753 iretq
3701d863 754
34273f41 755#ifdef CONFIG_X86_ESPFIX64
7209a75d 756native_irq_return_ldt:
85063fac
AL
757 /*
758 * We are running with user GSBASE. All GPRs contain their user
759 * values. We have a percpu ESPFIX stack that is eight slots
760 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
761 * of the ESPFIX stack.
762 *
763 * We clobber RAX and RDI in this code. We stash RDI on the
764 * normal stack and RAX on the ESPFIX stack.
765 *
766 * The ESPFIX stack layout we set up looks like this:
767 *
768 * --- top of ESPFIX stack ---
769 * SS
770 * RSP
771 * RFLAGS
772 * CS
773 * RIP <-- RSP points here when we're done
774 * RAX <-- espfix_waddr points here
775 * --- bottom of ESPFIX stack ---
776 */
777
778 pushq %rdi /* Stash user RDI */
8a09317b
DH
779 SWAPGS /* to kernel GS */
780 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */
781
4d732138 782 movq PER_CPU_VAR(espfix_waddr), %rdi
85063fac
AL
783 movq %rax, (0*8)(%rdi) /* user RAX */
784 movq (1*8)(%rsp), %rax /* user RIP */
4d732138 785 movq %rax, (1*8)(%rdi)
85063fac 786 movq (2*8)(%rsp), %rax /* user CS */
4d732138 787 movq %rax, (2*8)(%rdi)
85063fac 788 movq (3*8)(%rsp), %rax /* user RFLAGS */
4d732138 789 movq %rax, (3*8)(%rdi)
85063fac 790 movq (5*8)(%rsp), %rax /* user SS */
4d732138 791 movq %rax, (5*8)(%rdi)
85063fac 792 movq (4*8)(%rsp), %rax /* user RSP */
4d732138 793 movq %rax, (4*8)(%rdi)
85063fac
AL
794 /* Now RAX == RSP. */
795
796 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
85063fac
AL
797
798 /*
799 * espfix_stack[31:16] == 0. The page tables are set up such that
800 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
801 * espfix_waddr for any X. That is, there are 65536 RO aliases of
802 * the same page. Set up RSP so that RSP[31:16] contains the
803 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
804 * still points to an RO alias of the ESPFIX stack.
805 */
4d732138 806 orq PER_CPU_VAR(espfix_stack), %rax
8a09317b 807
6fd166aa 808 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
8a09317b
DH
809 SWAPGS /* to user GS */
810 popq %rdi /* Restore user RDI */
811
4d732138 812 movq %rax, %rsp
8c1f7558 813 UNWIND_HINT_IRET_REGS offset=8
85063fac
AL
814
815 /*
816 * At this point, we cannot write to the stack any more, but we can
817 * still read.
818 */
819 popq %rax /* Restore user RAX */
820
821 /*
822 * RSP now points to an ordinary IRET frame, except that the page
823 * is read-only and RSP[31:16] are preloaded with the userspace
824 * values. We can now IRET back to userspace.
825 */
4d732138 826 jmp native_irq_return_iret
34273f41 827#endif
4b787e0b 828END(common_interrupt)
3891a04a 829
1da177e4
LT
830/*
831 * APIC interrupts.
0bd7b798 832 */
cf910e83 833.macro apicinterrupt3 num sym do_sym
322648d1 834ENTRY(\sym)
8c1f7558 835 UNWIND_HINT_IRET_REGS
4d732138 836 pushq $~(\num)
39e95433 837.Lcommon_\sym:
3aa99fc3
DB
838 call interrupt_entry
839 UNWIND_HINT_REGS indirect=1
840 call \do_sym /* rdi points to pt_regs */
4d732138 841 jmp ret_from_intr
322648d1
AH
842END(\sym)
843.endm
1da177e4 844
469f0023 845/* Make sure APIC interrupt handlers end up in the irqentry section: */
229a7186
MH
846#define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
847#define POP_SECTION_IRQENTRY .popsection
469f0023 848
cf910e83 849.macro apicinterrupt num sym do_sym
469f0023 850PUSH_SECTION_IRQENTRY
cf910e83 851apicinterrupt3 \num \sym \do_sym
469f0023 852POP_SECTION_IRQENTRY
cf910e83
SA
853.endm
854
322648d1 855#ifdef CONFIG_SMP
4d732138
IM
856apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
857apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
322648d1 858#endif
1da177e4 859
03b48632 860#ifdef CONFIG_X86_UV
4d732138 861apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
03b48632 862#endif
4d732138
IM
863
864apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
865apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
89b831ef 866
d78f2664 867#ifdef CONFIG_HAVE_KVM
4d732138
IM
868apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
869apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
210f84b0 870apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
d78f2664
YZ
871#endif
872
33e5ff63 873#ifdef CONFIG_X86_MCE_THRESHOLD
4d732138 874apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
33e5ff63
SA
875#endif
876
24fd78a8 877#ifdef CONFIG_X86_MCE_AMD
4d732138 878apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
24fd78a8
AG
879#endif
880
33e5ff63 881#ifdef CONFIG_X86_THERMAL_VECTOR
4d732138 882apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
33e5ff63 883#endif
1812924b 884
322648d1 885#ifdef CONFIG_SMP
4d732138
IM
886apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
887apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
888apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
322648d1 889#endif
1da177e4 890
4d732138
IM
891apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
892apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
0bd7b798 893
e360adbe 894#ifdef CONFIG_IRQ_WORK
4d732138 895apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
241771ef
IM
896#endif
897
1da177e4
LT
898/*
899 * Exception entry points.
0bd7b798 900 */
c482feef 901#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
577ed45e
AL
902
903.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
322648d1 904ENTRY(\sym)
98990a33 905 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
8c1f7558 906
577ed45e
AL
907 /* Sanity check */
908 .if \shift_ist != -1 && \paranoid == 0
909 .error "using shift_ist requires paranoid=1"
910 .endif
911
ee4eb87b 912 ASM_CLAC
cb5dd2c5 913
82c62fa0 914 .if \has_error_code == 0
4d732138 915 pushq $-1 /* ORIG_RAX: no syscall to restart */
cb5dd2c5
AL
916 .endif
917
071ccc96 918 .if \paranoid == 1
9e809d15 919 testb $3, CS-ORIG_RAX(%rsp) /* If coming from userspace, switch stacks */
7f2590a1 920 jnz .Lfrom_usermode_switch_stack_\@
48e08d0f 921 .endif
7f2590a1
AL
922
923 .if \paranoid
4d732138 924 call paranoid_entry
cb5dd2c5 925 .else
4d732138 926 call error_entry
cb5dd2c5 927 .endif
8c1f7558 928 UNWIND_HINT_REGS
ebfc453e 929 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
cb5dd2c5 930
cb5dd2c5 931 .if \paranoid
577ed45e 932 .if \shift_ist != -1
4d732138 933 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
577ed45e 934 .else
b8b1d08b 935 TRACE_IRQS_OFF
cb5dd2c5 936 .endif
577ed45e 937 .endif
cb5dd2c5 938
4d732138 939 movq %rsp, %rdi /* pt_regs pointer */
cb5dd2c5
AL
940
941 .if \has_error_code
4d732138
IM
942 movq ORIG_RAX(%rsp), %rsi /* get error code */
943 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
cb5dd2c5 944 .else
4d732138 945 xorl %esi, %esi /* no error code */
cb5dd2c5
AL
946 .endif
947
577ed45e 948 .if \shift_ist != -1
4d732138 949 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
950 .endif
951
4d732138 952 call \do_sym
cb5dd2c5 953
577ed45e 954 .if \shift_ist != -1
4d732138 955 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
956 .endif
957
ebfc453e 958 /* these procedures expect "no swapgs" flag in ebx */
cb5dd2c5 959 .if \paranoid
4d732138 960 jmp paranoid_exit
cb5dd2c5 961 .else
4d732138 962 jmp error_exit
cb5dd2c5
AL
963 .endif
964
071ccc96 965 .if \paranoid == 1
48e08d0f 966 /*
7f2590a1 967 * Entry from userspace. Switch stacks and treat it
48e08d0f
AL
968 * as a normal entry. This means that paranoid handlers
969 * run in real process context if user_mode(regs).
970 */
7f2590a1 971.Lfrom_usermode_switch_stack_\@:
4d732138 972 call error_entry
48e08d0f 973
4d732138 974 movq %rsp, %rdi /* pt_regs pointer */
48e08d0f
AL
975
976 .if \has_error_code
4d732138
IM
977 movq ORIG_RAX(%rsp), %rsi /* get error code */
978 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
48e08d0f 979 .else
4d732138 980 xorl %esi, %esi /* no error code */
48e08d0f
AL
981 .endif
982
4d732138 983 call \do_sym
48e08d0f 984
b3681dd5 985 jmp error_exit
48e08d0f 986 .endif
ddeb8f21 987END(\sym)
322648d1 988.endm
b8b1d08b 989
4d732138
IM
990idtentry divide_error do_divide_error has_error_code=0
991idtentry overflow do_overflow has_error_code=0
992idtentry bounds do_bounds has_error_code=0
993idtentry invalid_op do_invalid_op has_error_code=0
994idtentry device_not_available do_device_not_available has_error_code=0
995idtentry double_fault do_double_fault has_error_code=1 paranoid=2
996idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
997idtentry invalid_TSS do_invalid_TSS has_error_code=1
998idtentry segment_not_present do_segment_not_present has_error_code=1
999idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
1000idtentry coprocessor_error do_coprocessor_error has_error_code=0
1001idtentry alignment_check do_alignment_check has_error_code=1
1002idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
1003
1004
1005 /*
1006 * Reload gs selector with exception handling
1007 * edi: new selector
1008 */
9f9d489a 1009ENTRY(native_load_gs_index)
8c1f7558 1010 FRAME_BEGIN
131484c8 1011 pushfq
b8aa287f 1012 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
ca37e57b 1013 TRACE_IRQS_OFF
9f1e87ea 1014 SWAPGS
42c748bb 1015.Lgs_change:
4d732138 1016 movl %edi, %gs
96e5d28a 10172: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
72fe4858 1018 SWAPGS
ca37e57b 1019 TRACE_IRQS_FLAGS (%rsp)
131484c8 1020 popfq
8c1f7558 1021 FRAME_END
9f1e87ea 1022 ret
8c1f7558 1023ENDPROC(native_load_gs_index)
784d5699 1024EXPORT_SYMBOL(native_load_gs_index)
0bd7b798 1025
42c748bb 1026 _ASM_EXTABLE(.Lgs_change, bad_gs)
4d732138 1027 .section .fixup, "ax"
1da177e4 1028 /* running with kernelgs */
0bd7b798 1029bad_gs:
4d732138 1030 SWAPGS /* switch back to user gs */
b038c842
AL
1031.macro ZAP_GS
1032 /* This can't be a string because the preprocessor needs to see it. */
1033 movl $__USER_DS, %eax
1034 movl %eax, %gs
1035.endm
1036 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
4d732138
IM
1037 xorl %eax, %eax
1038 movl %eax, %gs
1039 jmp 2b
9f1e87ea 1040 .previous
0bd7b798 1041
2699500b 1042/* Call softirq on interrupt stack. Interrupts are off. */
7d65f4a6 1043ENTRY(do_softirq_own_stack)
4d732138
IM
1044 pushq %rbp
1045 mov %rsp, %rbp
8c1f7558 1046 ENTER_IRQ_STACK regs=0 old_rsp=%r11
4d732138 1047 call __do_softirq
8c1f7558 1048 LEAVE_IRQ_STACK regs=0
2699500b 1049 leaveq
ed6b676c 1050 ret
8c1f7558 1051ENDPROC(do_softirq_own_stack)
75154f40 1052
3d75e1b8 1053#ifdef CONFIG_XEN
5878d5d6 1054idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
3d75e1b8
JF
1055
1056/*
9f1e87ea
CG
1057 * A note on the "critical region" in our callback handler.
1058 * We want to avoid stacking callback handlers due to events occurring
1059 * during handling of the last event. To do this, we keep events disabled
1060 * until we've done all processing. HOWEVER, we must enable events before
1061 * popping the stack frame (can't be done atomically) and so it would still
1062 * be possible to get enough handler activations to overflow the stack.
1063 * Although unlikely, bugs of that kind are hard to track down, so we'd
1064 * like to avoid the possibility.
1065 * So, on entry to the handler we detect whether we interrupted an
1066 * existing activation in its critical region -- if so, we pop the current
1067 * activation and restart the handler using the previous one.
1068 */
4d732138
IM
1069ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
1070
9f1e87ea
CG
1071/*
1072 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1073 * see the correct pointer to the pt_regs
1074 */
8c1f7558 1075 UNWIND_HINT_FUNC
4d732138 1076 movq %rdi, %rsp /* we don't return, adjust the stack frame */
8c1f7558 1077 UNWIND_HINT_REGS
1d3e53e8
AL
1078
1079 ENTER_IRQ_STACK old_rsp=%r10
4d732138 1080 call xen_evtchn_do_upcall
1d3e53e8
AL
1081 LEAVE_IRQ_STACK
1082
fdfd811d 1083#ifndef CONFIG_PREEMPT
4d732138 1084 call xen_maybe_preempt_hcall
fdfd811d 1085#endif
4d732138 1086 jmp error_exit
371c394a 1087END(xen_do_hypervisor_callback)
3d75e1b8
JF
1088
1089/*
9f1e87ea
CG
1090 * Hypervisor uses this for application faults while it executes.
1091 * We get here for two reasons:
1092 * 1. Fault while reloading DS, ES, FS or GS
1093 * 2. Fault while executing IRET
1094 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1095 * registers that could be reloaded and zeroed the others.
1096 * Category 2 we fix up by killing the current process. We cannot use the
1097 * normal Linux return path in this case because if we use the IRET hypercall
1098 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1099 * We distinguish between categories by comparing each saved segment register
1100 * with its current contents: any discrepancy means we in category 1.
1101 */
3d75e1b8 1102ENTRY(xen_failsafe_callback)
8c1f7558 1103 UNWIND_HINT_EMPTY
4d732138
IM
1104 movl %ds, %ecx
1105 cmpw %cx, 0x10(%rsp)
1106 jne 1f
1107 movl %es, %ecx
1108 cmpw %cx, 0x18(%rsp)
1109 jne 1f
1110 movl %fs, %ecx
1111 cmpw %cx, 0x20(%rsp)
1112 jne 1f
1113 movl %gs, %ecx
1114 cmpw %cx, 0x28(%rsp)
1115 jne 1f
3d75e1b8 1116 /* All segments match their saved values => Category 2 (Bad IRET). */
4d732138
IM
1117 movq (%rsp), %rcx
1118 movq 8(%rsp), %r11
1119 addq $0x30, %rsp
1120 pushq $0 /* RIP */
8c1f7558 1121 UNWIND_HINT_IRET_REGS offset=8
4d732138 1122 jmp general_protection
3d75e1b8 11231: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
4d732138
IM
1124 movq (%rsp), %rcx
1125 movq 8(%rsp), %r11
1126 addq $0x30, %rsp
8c1f7558 1127 UNWIND_HINT_IRET_REGS
4d732138 1128 pushq $-1 /* orig_ax = -1 => not a system call */
3f01daec 1129 PUSH_AND_CLEAR_REGS
946c1911 1130 ENCODE_FRAME_POINTER
4d732138 1131 jmp error_exit
3d75e1b8
JF
1132END(xen_failsafe_callback)
1133
cf910e83 1134apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
38e20b07
SY
1135 xen_hvm_callback_vector xen_evtchn_do_upcall
1136
3d75e1b8 1137#endif /* CONFIG_XEN */
ddeb8f21 1138
bc2b0331 1139#if IS_ENABLED(CONFIG_HYPERV)
cf910e83 1140apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
bc2b0331 1141 hyperv_callback_vector hyperv_vector_handler
93286261
VK
1142
1143apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
1144 hyperv_reenlightenment_vector hyperv_reenlightenment_intr
248e742a
MK
1145
1146apicinterrupt3 HYPERV_STIMER0_VECTOR \
1147 hv_stimer0_callback_vector hv_stimer0_vector_handler
bc2b0331
S
1148#endif /* CONFIG_HYPERV */
1149
4d732138 1150idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
d8ba61ba 1151idtentry int3 do_int3 has_error_code=0
4d732138
IM
1152idtentry stack_segment do_stack_segment has_error_code=1
1153
6cac5a92 1154#ifdef CONFIG_XEN
43e41110 1155idtentry xennmi do_nmi has_error_code=0
5878d5d6
JG
1156idtentry xendebug do_debug has_error_code=0
1157idtentry xenint3 do_int3 has_error_code=0
6cac5a92 1158#endif
4d732138
IM
1159
1160idtentry general_protection do_general_protection has_error_code=1
11a7ffb0 1161idtentry page_fault do_page_fault has_error_code=1
4d732138 1162
631bc487 1163#ifdef CONFIG_KVM_GUEST
4d732138 1164idtentry async_page_fault do_async_page_fault has_error_code=1
631bc487 1165#endif
4d732138 1166
ddeb8f21 1167#ifdef CONFIG_X86_MCE
6f41c34d 1168idtentry machine_check do_mce has_error_code=0 paranoid=1
ddeb8f21
AH
1169#endif
1170
ebfc453e 1171/*
9e809d15 1172 * Save all registers in pt_regs, and switch gs if needed.
ebfc453e
DV
1173 * Use slow, but surefire "are we in kernel?" check.
1174 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1175 */
1176ENTRY(paranoid_entry)
8c1f7558 1177 UNWIND_HINT_FUNC
1eeb207f 1178 cld
9e809d15
DB
1179 PUSH_AND_CLEAR_REGS save_ret=1
1180 ENCODE_FRAME_POINTER 8
4d732138
IM
1181 movl $1, %ebx
1182 movl $MSR_GS_BASE, %ecx
1eeb207f 1183 rdmsr
4d732138
IM
1184 testl %edx, %edx
1185 js 1f /* negative -> in kernel */
1eeb207f 1186 SWAPGS
4d732138 1187 xorl %ebx, %ebx
8a09317b
DH
1188
11891:
1190 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
1191
1192 ret
ebfc453e 1193END(paranoid_entry)
ddeb8f21 1194
ebfc453e
DV
1195/*
1196 * "Paranoid" exit path from exception stack. This is invoked
1197 * only on return from non-NMI IST interrupts that came
1198 * from kernel space.
1199 *
1200 * We may be returning to very strange contexts (e.g. very early
1201 * in syscall entry), so checking for preemption here would
1202 * be complicated. Fortunately, we there's no good reason
1203 * to try to handle preemption here.
4d732138
IM
1204 *
1205 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
ebfc453e 1206 */
ddeb8f21 1207ENTRY(paranoid_exit)
8c1f7558 1208 UNWIND_HINT_REGS
2140a994 1209 DISABLE_INTERRUPTS(CLBR_ANY)
5963e317 1210 TRACE_IRQS_OFF_DEBUG
4d732138 1211 testl %ebx, %ebx /* swapgs needed? */
e5317832 1212 jnz .Lparanoid_exit_no_swapgs
f2db9382 1213 TRACE_IRQS_IRETQ
21e94459 1214 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
ddeb8f21 1215 SWAPGS_UNSAFE_STACK
e5317832
AL
1216 jmp .Lparanoid_exit_restore
1217.Lparanoid_exit_no_swapgs:
f2db9382 1218 TRACE_IRQS_IRETQ_DEBUG
e4865757 1219 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
e5317832
AL
1220.Lparanoid_exit_restore:
1221 jmp restore_regs_and_return_to_kernel
ddeb8f21
AH
1222END(paranoid_exit)
1223
1224/*
9e809d15 1225 * Save all registers in pt_regs, and switch GS if needed.
ddeb8f21
AH
1226 */
1227ENTRY(error_entry)
9e809d15 1228 UNWIND_HINT_FUNC
ddeb8f21 1229 cld
9e809d15
DB
1230 PUSH_AND_CLEAR_REGS save_ret=1
1231 ENCODE_FRAME_POINTER 8
03335e95 1232 testb $3, CS+8(%rsp)
cb6f64ed 1233 jz .Lerror_kernelspace
539f5113 1234
cb6f64ed
AL
1235 /*
1236 * We entered from user mode or we're pretending to have entered
1237 * from user mode due to an IRET fault.
1238 */
ddeb8f21 1239 SWAPGS
8a09317b
DH
1240 /* We have user CR3. Change to kernel CR3. */
1241 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
539f5113 1242
cb6f64ed 1243.Lerror_entry_from_usermode_after_swapgs:
7f2590a1
AL
1244 /* Put us onto the real thread stack. */
1245 popq %r12 /* save return addr in %12 */
1246 movq %rsp, %rdi /* arg0 = pt_regs pointer */
1247 call sync_regs
1248 movq %rax, %rsp /* switch stack */
1249 ENCODE_FRAME_POINTER
1250 pushq %r12
1251
f1075053
AL
1252 /*
1253 * We need to tell lockdep that IRQs are off. We can't do this until
1254 * we fix gsbase, and we should do it before enter_from_user_mode
1255 * (which can take locks).
1256 */
1257 TRACE_IRQS_OFF
478dc89c 1258 CALL_enter_from_user_mode
f1075053 1259 ret
02bc7768 1260
cb6f64ed 1261.Lerror_entry_done:
ddeb8f21
AH
1262 TRACE_IRQS_OFF
1263 ret
ddeb8f21 1264
ebfc453e
DV
1265 /*
1266 * There are two places in the kernel that can potentially fault with
1267 * usergs. Handle them here. B stepping K8s sometimes report a
1268 * truncated RIP for IRET exceptions returning to compat mode. Check
1269 * for these here too.
1270 */
cb6f64ed 1271.Lerror_kernelspace:
4d732138
IM
1272 leaq native_irq_return_iret(%rip), %rcx
1273 cmpq %rcx, RIP+8(%rsp)
cb6f64ed 1274 je .Lerror_bad_iret
4d732138
IM
1275 movl %ecx, %eax /* zero extend */
1276 cmpq %rax, RIP+8(%rsp)
cb6f64ed 1277 je .Lbstep_iret
42c748bb 1278 cmpq $.Lgs_change, RIP+8(%rsp)
cb6f64ed 1279 jne .Lerror_entry_done
539f5113
AL
1280
1281 /*
42c748bb 1282 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
539f5113 1283 * gsbase and proceed. We'll fix up the exception and land in
42c748bb 1284 * .Lgs_change's error handler with kernel gsbase.
539f5113 1285 */
2fa5f04f 1286 SWAPGS
8a09317b 1287 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
2fa5f04f 1288 jmp .Lerror_entry_done
ae24ffe5 1289
cb6f64ed 1290.Lbstep_iret:
ae24ffe5 1291 /* Fix truncated RIP */
4d732138 1292 movq %rcx, RIP+8(%rsp)
b645af2d
AL
1293 /* fall through */
1294
cb6f64ed 1295.Lerror_bad_iret:
539f5113 1296 /*
8a09317b
DH
1297 * We came from an IRET to user mode, so we have user
1298 * gsbase and CR3. Switch to kernel gsbase and CR3:
539f5113 1299 */
b645af2d 1300 SWAPGS
8a09317b 1301 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
539f5113
AL
1302
1303 /*
1304 * Pretend that the exception came from user mode: set up pt_regs
b3681dd5 1305 * as if we faulted immediately after IRET.
539f5113 1306 */
4d732138
IM
1307 mov %rsp, %rdi
1308 call fixup_bad_iret
1309 mov %rax, %rsp
cb6f64ed 1310 jmp .Lerror_entry_from_usermode_after_swapgs
ddeb8f21
AH
1311END(error_entry)
1312
ddeb8f21 1313ENTRY(error_exit)
8c1f7558 1314 UNWIND_HINT_REGS
2140a994 1315 DISABLE_INTERRUPTS(CLBR_ANY)
ddeb8f21 1316 TRACE_IRQS_OFF
b3681dd5
AL
1317 testb $3, CS(%rsp)
1318 jz retint_kernel
4d732138 1319 jmp retint_user
ddeb8f21
AH
1320END(error_exit)
1321
929bacec
AL
1322/*
1323 * Runs on exception stack. Xen PV does not go through this path at all,
1324 * so we can use real assembly here.
8a09317b
DH
1325 *
1326 * Registers:
1327 * %r14: Used to save/restore the CR3 of the interrupted context
1328 * when PAGE_TABLE_ISOLATION is in use. Do not clobber.
929bacec 1329 */
ddeb8f21 1330ENTRY(nmi)
8c1f7558 1331 UNWIND_HINT_IRET_REGS
929bacec 1332
3f3c8b8c
SR
1333 /*
1334 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1335 * the iretq it performs will take us out of NMI context.
1336 * This means that we can have nested NMIs where the next
1337 * NMI is using the top of the stack of the previous NMI. We
1338 * can't let it execute because the nested NMI will corrupt the
1339 * stack of the previous NMI. NMI handlers are not re-entrant
1340 * anyway.
1341 *
1342 * To handle this case we do the following:
1343 * Check the a special location on the stack that contains
1344 * a variable that is set when NMIs are executing.
1345 * The interrupted task's stack is also checked to see if it
1346 * is an NMI stack.
1347 * If the variable is not set and the stack is not the NMI
1348 * stack then:
1349 * o Set the special variable on the stack
0b22930e
AL
1350 * o Copy the interrupt frame into an "outermost" location on the
1351 * stack
1352 * o Copy the interrupt frame into an "iret" location on the stack
3f3c8b8c
SR
1353 * o Continue processing the NMI
1354 * If the variable is set or the previous stack is the NMI stack:
0b22930e 1355 * o Modify the "iret" location to jump to the repeat_nmi
3f3c8b8c
SR
1356 * o return back to the first NMI
1357 *
1358 * Now on exit of the first NMI, we first clear the stack variable
1359 * The NMI stack will tell any nested NMIs at that point that it is
1360 * nested. Then we pop the stack normally with iret, and if there was
1361 * a nested NMI that updated the copy interrupt stack frame, a
1362 * jump will be made to the repeat_nmi code that will handle the second
1363 * NMI.
9b6e6a83
AL
1364 *
1365 * However, espfix prevents us from directly returning to userspace
1366 * with a single IRET instruction. Similarly, IRET to user mode
1367 * can fault. We therefore handle NMIs from user space like
1368 * other IST entries.
3f3c8b8c
SR
1369 */
1370
e93c1730
AL
1371 ASM_CLAC
1372
146b2b09 1373 /* Use %rdx as our temp variable throughout */
4d732138 1374 pushq %rdx
3f3c8b8c 1375
9b6e6a83
AL
1376 testb $3, CS-RIP+8(%rsp)
1377 jz .Lnmi_from_kernel
1378
1379 /*
1380 * NMI from user mode. We need to run on the thread stack, but we
1381 * can't go through the normal entry paths: NMIs are masked, and
1382 * we don't want to enable interrupts, because then we'll end
1383 * up in an awkward situation in which IRQs are on but NMIs
1384 * are off.
83c133cf
AL
1385 *
1386 * We also must not push anything to the stack before switching
1387 * stacks lest we corrupt the "NMI executing" variable.
9b6e6a83
AL
1388 */
1389
929bacec 1390 swapgs
9b6e6a83 1391 cld
8a09317b 1392 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
9b6e6a83
AL
1393 movq %rsp, %rdx
1394 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
8c1f7558 1395 UNWIND_HINT_IRET_REGS base=%rdx offset=8
9b6e6a83
AL
1396 pushq 5*8(%rdx) /* pt_regs->ss */
1397 pushq 4*8(%rdx) /* pt_regs->rsp */
1398 pushq 3*8(%rdx) /* pt_regs->flags */
1399 pushq 2*8(%rdx) /* pt_regs->cs */
1400 pushq 1*8(%rdx) /* pt_regs->rip */
8c1f7558 1401 UNWIND_HINT_IRET_REGS
9b6e6a83 1402 pushq $-1 /* pt_regs->orig_ax */
30907fd1 1403 PUSH_AND_CLEAR_REGS rdx=(%rdx)
946c1911 1404 ENCODE_FRAME_POINTER
9b6e6a83
AL
1405
1406 /*
1407 * At this point we no longer need to worry about stack damage
1408 * due to nesting -- we're on the normal thread stack and we're
1409 * done with the NMI stack.
1410 */
1411
1412 movq %rsp, %rdi
1413 movq $-1, %rsi
1414 call do_nmi
1415
45d5a168 1416 /*
9b6e6a83 1417 * Return back to user mode. We must *not* do the normal exit
946c1911 1418 * work, because we don't want to enable interrupts.
45d5a168 1419 */
8a055d7f 1420 jmp swapgs_restore_regs_and_return_to_usermode
45d5a168 1421
9b6e6a83 1422.Lnmi_from_kernel:
3f3c8b8c 1423 /*
0b22930e
AL
1424 * Here's what our stack frame will look like:
1425 * +---------------------------------------------------------+
1426 * | original SS |
1427 * | original Return RSP |
1428 * | original RFLAGS |
1429 * | original CS |
1430 * | original RIP |
1431 * +---------------------------------------------------------+
1432 * | temp storage for rdx |
1433 * +---------------------------------------------------------+
1434 * | "NMI executing" variable |
1435 * +---------------------------------------------------------+
1436 * | iret SS } Copied from "outermost" frame |
1437 * | iret Return RSP } on each loop iteration; overwritten |
1438 * | iret RFLAGS } by a nested NMI to force another |
1439 * | iret CS } iteration if needed. |
1440 * | iret RIP } |
1441 * +---------------------------------------------------------+
1442 * | outermost SS } initialized in first_nmi; |
1443 * | outermost Return RSP } will not be changed before |
1444 * | outermost RFLAGS } NMI processing is done. |
1445 * | outermost CS } Copied to "iret" frame on each |
1446 * | outermost RIP } iteration. |
1447 * +---------------------------------------------------------+
1448 * | pt_regs |
1449 * +---------------------------------------------------------+
1450 *
1451 * The "original" frame is used by hardware. Before re-enabling
1452 * NMIs, we need to be done with it, and we need to leave enough
1453 * space for the asm code here.
1454 *
1455 * We return by executing IRET while RSP points to the "iret" frame.
1456 * That will either return for real or it will loop back into NMI
1457 * processing.
1458 *
1459 * The "outermost" frame is copied to the "iret" frame on each
1460 * iteration of the loop, so each iteration starts with the "iret"
1461 * frame pointing to the final return target.
1462 */
1463
45d5a168 1464 /*
0b22930e
AL
1465 * Determine whether we're a nested NMI.
1466 *
a27507ca
AL
1467 * If we interrupted kernel code between repeat_nmi and
1468 * end_repeat_nmi, then we are a nested NMI. We must not
1469 * modify the "iret" frame because it's being written by
1470 * the outer NMI. That's okay; the outer NMI handler is
1471 * about to about to call do_nmi anyway, so we can just
1472 * resume the outer NMI.
45d5a168 1473 */
a27507ca
AL
1474
1475 movq $repeat_nmi, %rdx
1476 cmpq 8(%rsp), %rdx
1477 ja 1f
1478 movq $end_repeat_nmi, %rdx
1479 cmpq 8(%rsp), %rdx
1480 ja nested_nmi_out
14811:
45d5a168 1482
3f3c8b8c 1483 /*
a27507ca 1484 * Now check "NMI executing". If it's set, then we're nested.
0b22930e
AL
1485 * This will not detect if we interrupted an outer NMI just
1486 * before IRET.
3f3c8b8c 1487 */
4d732138
IM
1488 cmpl $1, -8(%rsp)
1489 je nested_nmi
3f3c8b8c
SR
1490
1491 /*
0b22930e
AL
1492 * Now test if the previous stack was an NMI stack. This covers
1493 * the case where we interrupt an outer NMI after it clears
810bc075
AL
1494 * "NMI executing" but before IRET. We need to be careful, though:
1495 * there is one case in which RSP could point to the NMI stack
1496 * despite there being no NMI active: naughty userspace controls
1497 * RSP at the very beginning of the SYSCALL targets. We can
1498 * pull a fast one on naughty userspace, though: we program
1499 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1500 * if it controls the kernel's RSP. We set DF before we clear
1501 * "NMI executing".
3f3c8b8c 1502 */
0784b364
DV
1503 lea 6*8(%rsp), %rdx
1504 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1505 cmpq %rdx, 4*8(%rsp)
1506 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1507 ja first_nmi
4d732138 1508
0784b364
DV
1509 subq $EXCEPTION_STKSZ, %rdx
1510 cmpq %rdx, 4*8(%rsp)
1511 /* If it is below the NMI stack, it is a normal NMI */
1512 jb first_nmi
810bc075
AL
1513
1514 /* Ah, it is within the NMI stack. */
1515
1516 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1517 jz first_nmi /* RSP was user controlled. */
1518
1519 /* This is a nested NMI. */
0784b364 1520
3f3c8b8c
SR
1521nested_nmi:
1522 /*
0b22930e
AL
1523 * Modify the "iret" frame to point to repeat_nmi, forcing another
1524 * iteration of NMI handling.
3f3c8b8c 1525 */
23a781e9 1526 subq $8, %rsp
4d732138
IM
1527 leaq -10*8(%rsp), %rdx
1528 pushq $__KERNEL_DS
1529 pushq %rdx
131484c8 1530 pushfq
4d732138
IM
1531 pushq $__KERNEL_CS
1532 pushq $repeat_nmi
3f3c8b8c
SR
1533
1534 /* Put stack back */
4d732138 1535 addq $(6*8), %rsp
3f3c8b8c
SR
1536
1537nested_nmi_out:
4d732138 1538 popq %rdx
3f3c8b8c 1539
0b22930e 1540 /* We are returning to kernel mode, so this cannot result in a fault. */
929bacec 1541 iretq
3f3c8b8c
SR
1542
1543first_nmi:
0b22930e 1544 /* Restore rdx. */
4d732138 1545 movq (%rsp), %rdx
62610913 1546
36f1a77b
AL
1547 /* Make room for "NMI executing". */
1548 pushq $0
3f3c8b8c 1549
0b22930e 1550 /* Leave room for the "iret" frame */
4d732138 1551 subq $(5*8), %rsp
28696f43 1552
0b22930e 1553 /* Copy the "original" frame to the "outermost" frame */
3f3c8b8c 1554 .rept 5
4d732138 1555 pushq 11*8(%rsp)
3f3c8b8c 1556 .endr
8c1f7558 1557 UNWIND_HINT_IRET_REGS
62610913 1558
79fb4ad6
SR
1559 /* Everything up to here is safe from nested NMIs */
1560
a97439aa
AL
1561#ifdef CONFIG_DEBUG_ENTRY
1562 /*
1563 * For ease of testing, unmask NMIs right away. Disabled by
1564 * default because IRET is very expensive.
1565 */
1566 pushq $0 /* SS */
1567 pushq %rsp /* RSP (minus 8 because of the previous push) */
1568 addq $8, (%rsp) /* Fix up RSP */
1569 pushfq /* RFLAGS */
1570 pushq $__KERNEL_CS /* CS */
1571 pushq $1f /* RIP */
929bacec 1572 iretq /* continues at repeat_nmi below */
8c1f7558 1573 UNWIND_HINT_IRET_REGS
a97439aa
AL
15741:
1575#endif
1576
0b22930e 1577repeat_nmi:
62610913
JB
1578 /*
1579 * If there was a nested NMI, the first NMI's iret will return
1580 * here. But NMIs are still enabled and we can take another
1581 * nested NMI. The nested NMI checks the interrupted RIP to see
1582 * if it is between repeat_nmi and end_repeat_nmi, and if so
1583 * it will just return, as we are about to repeat an NMI anyway.
1584 * This makes it safe to copy to the stack frame that a nested
1585 * NMI will update.
0b22930e
AL
1586 *
1587 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1588 * we're repeating an NMI, gsbase has the same value that it had on
1589 * the first iteration. paranoid_entry will load the kernel
36f1a77b
AL
1590 * gsbase if needed before we call do_nmi. "NMI executing"
1591 * is zero.
62610913 1592 */
36f1a77b 1593 movq $1, 10*8(%rsp) /* Set "NMI executing". */
3f3c8b8c 1594
62610913 1595 /*
0b22930e
AL
1596 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1597 * here must not modify the "iret" frame while we're writing to
1598 * it or it will end up containing garbage.
62610913 1599 */
4d732138 1600 addq $(10*8), %rsp
3f3c8b8c 1601 .rept 5
4d732138 1602 pushq -6*8(%rsp)
3f3c8b8c 1603 .endr
4d732138 1604 subq $(5*8), %rsp
62610913 1605end_repeat_nmi:
3f3c8b8c
SR
1606
1607 /*
0b22930e
AL
1608 * Everything below this point can be preempted by a nested NMI.
1609 * If this happens, then the inner NMI will change the "iret"
1610 * frame to point back to repeat_nmi.
3f3c8b8c 1611 */
4d732138 1612 pushq $-1 /* ORIG_RAX: no syscall to restart */
76f5df43 1613
1fd466ef 1614 /*
ebfc453e 1615 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1fd466ef
SR
1616 * as we should not be calling schedule in NMI context.
1617 * Even with normal interrupts enabled. An NMI should not be
1618 * setting NEED_RESCHED or anything that normal interrupts and
1619 * exceptions might do.
1620 */
4d732138 1621 call paranoid_entry
8c1f7558 1622 UNWIND_HINT_REGS
7fbb98c5 1623
ddeb8f21 1624 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
4d732138
IM
1625 movq %rsp, %rdi
1626 movq $-1, %rsi
1627 call do_nmi
7fbb98c5 1628
21e94459 1629 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
8a09317b 1630
4d732138
IM
1631 testl %ebx, %ebx /* swapgs needed? */
1632 jnz nmi_restore
ddeb8f21
AH
1633nmi_swapgs:
1634 SWAPGS_UNSAFE_STACK
1635nmi_restore:
502af0d7 1636 POP_REGS
0b22930e 1637
471ee483
AL
1638 /*
1639 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1640 * at the "iret" frame.
1641 */
1642 addq $6*8, %rsp
28696f43 1643
810bc075
AL
1644 /*
1645 * Clear "NMI executing". Set DF first so that we can easily
1646 * distinguish the remaining code between here and IRET from
929bacec
AL
1647 * the SYSCALL entry and exit paths.
1648 *
1649 * We arguably should just inspect RIP instead, but I (Andy) wrote
1650 * this code when I had the misapprehension that Xen PV supported
1651 * NMIs, and Xen PV would break that approach.
810bc075
AL
1652 */
1653 std
1654 movq $0, 5*8(%rsp) /* clear "NMI executing" */
0b22930e
AL
1655
1656 /*
929bacec
AL
1657 * iretq reads the "iret" frame and exits the NMI stack in a
1658 * single instruction. We are returning to kernel mode, so this
1659 * cannot result in a fault. Similarly, we don't need to worry
1660 * about espfix64 on the way back to kernel mode.
0b22930e 1661 */
929bacec 1662 iretq
ddeb8f21
AH
1663END(nmi)
1664
1665ENTRY(ignore_sysret)
8c1f7558 1666 UNWIND_HINT_EMPTY
4d732138 1667 mov $-ENOSYS, %eax
ddeb8f21 1668 sysret
ddeb8f21 1669END(ignore_sysret)
2deb4be2
AL
1670
1671ENTRY(rewind_stack_do_exit)
8c1f7558 1672 UNWIND_HINT_FUNC
2deb4be2
AL
1673 /* Prevent any naive code from trying to unwind to our caller. */
1674 xorl %ebp, %ebp
1675
1676 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
8c1f7558
JP
1677 leaq -PTREGS_SIZE(%rax), %rsp
1678 UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
2deb4be2
AL
1679
1680 call do_exit
2deb4be2 1681END(rewind_stack_do_exit)