x86/entry/64: Introduce the PUSH_AND_CLEAN_REGS macro
[linux-block.git] / arch / x86 / entry / entry_64.S
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2/*
3 * linux/arch/x86_64/entry.S
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
4d732138 8 *
1da177e4
LT
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
8b4777a4
AL
11 * Some of this is documented in Documentation/x86/entry_64.txt
12 *
0bd7b798 13 * A note on terminology:
4d732138
IM
14 * - iret frame: Architecture defined interrupt frame from SS to RIP
15 * at the top of the kernel process stack.
2e91a17b
AK
16 *
17 * Some macro usage:
4d732138
IM
18 * - ENTRY/END: Define functions in the symbol table.
19 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
20 * - idtentry: Define exception entry points.
1da177e4 21 */
1da177e4
LT
22#include <linux/linkage.h>
23#include <asm/segment.h>
1da177e4
LT
24#include <asm/cache.h>
25#include <asm/errno.h>
e2d5df93 26#include <asm/asm-offsets.h>
1da177e4
LT
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
0341c14d 31#include <asm/page_types.h>
2601e64d 32#include <asm/irqflags.h>
72fe4858 33#include <asm/paravirt.h>
9939ddaf 34#include <asm/percpu.h>
d7abc0fa 35#include <asm/asm.h>
63bcff2a 36#include <asm/smap.h>
3891a04a 37#include <asm/pgtable_types.h>
784d5699 38#include <asm/export.h>
8c1f7558 39#include <asm/frame.h>
2641f08b 40#include <asm/nospec-branch.h>
d7e7528b 41#include <linux/err.h>
1da177e4 42
6fd166aa
PZ
43#include "calling.h"
44
4d732138
IM
45.code64
46.section .entry.text, "ax"
16444a8a 47
72fe4858 48#ifdef CONFIG_PARAVIRT
2be29982 49ENTRY(native_usergs_sysret64)
8c1f7558 50 UNWIND_HINT_EMPTY
72fe4858
GOC
51 swapgs
52 sysretq
8c1f7558 53END(native_usergs_sysret64)
72fe4858
GOC
54#endif /* CONFIG_PARAVIRT */
55
ca37e57b 56.macro TRACE_IRQS_FLAGS flags:req
2601e64d 57#ifdef CONFIG_TRACE_IRQFLAGS
ca37e57b 58 bt $9, \flags /* interrupts off? */
4d732138 59 jnc 1f
2601e64d
IM
60 TRACE_IRQS_ON
611:
62#endif
63.endm
64
ca37e57b
AL
65.macro TRACE_IRQS_IRETQ
66 TRACE_IRQS_FLAGS EFLAGS(%rsp)
67.endm
68
5963e317
SR
69/*
70 * When dynamic function tracer is enabled it will add a breakpoint
71 * to all locations that it is about to modify, sync CPUs, update
72 * all the code, sync CPUs, then remove the breakpoints. In this time
73 * if lockdep is enabled, it might jump back into the debug handler
74 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
75 *
76 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
77 * make sure the stack pointer does not get reset back to the top
78 * of the debug stack, and instead just reuses the current stack.
79 */
80#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
81
82.macro TRACE_IRQS_OFF_DEBUG
4d732138 83 call debug_stack_set_zero
5963e317 84 TRACE_IRQS_OFF
4d732138 85 call debug_stack_reset
5963e317
SR
86.endm
87
88.macro TRACE_IRQS_ON_DEBUG
4d732138 89 call debug_stack_set_zero
5963e317 90 TRACE_IRQS_ON
4d732138 91 call debug_stack_reset
5963e317
SR
92.endm
93
f2db9382 94.macro TRACE_IRQS_IRETQ_DEBUG
4d732138
IM
95 bt $9, EFLAGS(%rsp) /* interrupts off? */
96 jnc 1f
5963e317
SR
97 TRACE_IRQS_ON_DEBUG
981:
99.endm
100
101#else
4d732138
IM
102# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
103# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
104# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
5963e317
SR
105#endif
106
1da177e4 107/*
4d732138 108 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
1da177e4 109 *
fda57b22
AL
110 * This is the only entry point used for 64-bit system calls. The
111 * hardware interface is reasonably well designed and the register to
112 * argument mapping Linux uses fits well with the registers that are
113 * available when SYSCALL is used.
114 *
115 * SYSCALL instructions can be found inlined in libc implementations as
116 * well as some other programs and libraries. There are also a handful
117 * of SYSCALL instructions in the vDSO used, for example, as a
118 * clock_gettimeofday fallback.
119 *
4d732138 120 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
b87cf63e
DV
121 * then loads new ss, cs, and rip from previously programmed MSRs.
122 * rflags gets masked by a value from another MSR (so CLD and CLAC
123 * are not needed). SYSCALL does not save anything on the stack
124 * and does not change rsp.
125 *
126 * Registers on entry:
1da177e4 127 * rax system call number
b87cf63e
DV
128 * rcx return address
129 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
1da177e4 130 * rdi arg0
1da177e4 131 * rsi arg1
0bd7b798 132 * rdx arg2
b87cf63e 133 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
1da177e4
LT
134 * r8 arg4
135 * r9 arg5
4d732138 136 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
0bd7b798 137 *
1da177e4
LT
138 * Only called from user space.
139 *
7fcb3bc3 140 * When user can change pt_regs->foo always force IRET. That is because
7bf36bbc
AK
141 * it deals with uncanonical addresses better. SYSRET has trouble
142 * with them due to bugs in both AMD and Intel CPUs.
0bd7b798 143 */
1da177e4 144
3386bc8a
AL
145 .pushsection .entry_trampoline, "ax"
146
147/*
148 * The code in here gets remapped into cpu_entry_area's trampoline. This means
149 * that the assembler and linker have the wrong idea as to where this code
150 * lives (and, in fact, it's mapped more than once, so it's not even at a
151 * fixed address). So we can't reference any symbols outside the entry
152 * trampoline and expect it to work.
153 *
154 * Instead, we carefully abuse %rip-relative addressing.
155 * _entry_trampoline(%rip) refers to the start of the remapped) entry
156 * trampoline. We can thus find cpu_entry_area with this macro:
157 */
158
159#define CPU_ENTRY_AREA \
160 _entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)
161
162/* The top word of the SYSENTER stack is hot and is usable as scratch space. */
4fe2d8b1
DH
163#define RSP_SCRATCH CPU_ENTRY_AREA_entry_stack + \
164 SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
3386bc8a
AL
165
166ENTRY(entry_SYSCALL_64_trampoline)
167 UNWIND_HINT_EMPTY
168 swapgs
169
170 /* Stash the user RSP. */
171 movq %rsp, RSP_SCRATCH
172
8a09317b
DH
173 /* Note: using %rsp as a scratch reg. */
174 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
175
3386bc8a
AL
176 /* Load the top of the task stack into RSP */
177 movq CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp
178
179 /* Start building the simulated IRET frame. */
180 pushq $__USER_DS /* pt_regs->ss */
181 pushq RSP_SCRATCH /* pt_regs->sp */
182 pushq %r11 /* pt_regs->flags */
183 pushq $__USER_CS /* pt_regs->cs */
184 pushq %rcx /* pt_regs->ip */
185
186 /*
187 * x86 lacks a near absolute jump, and we can't jump to the real
188 * entry text with a relative jump. We could push the target
189 * address and then use retq, but this destroys the pipeline on
190 * many CPUs (wasting over 20 cycles on Sandy Bridge). Instead,
191 * spill RDI and restore it in a second-stage trampoline.
192 */
193 pushq %rdi
194 movq $entry_SYSCALL_64_stage2, %rdi
2641f08b 195 JMP_NOSPEC %rdi
3386bc8a
AL
196END(entry_SYSCALL_64_trampoline)
197
198 .popsection
199
200ENTRY(entry_SYSCALL_64_stage2)
201 UNWIND_HINT_EMPTY
202 popq %rdi
203 jmp entry_SYSCALL_64_after_hwframe
204END(entry_SYSCALL_64_stage2)
205
b2502b41 206ENTRY(entry_SYSCALL_64)
8c1f7558 207 UNWIND_HINT_EMPTY
9ed8e7d8
DV
208 /*
209 * Interrupts are off on entry.
210 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
211 * it is too small to ever cause noticeable irq latency.
212 */
72fe4858 213
8a9949bc 214 swapgs
8a09317b 215 /*
14b1fcc6 216 * This path is only taken when PAGE_TABLE_ISOLATION is disabled so it
8a09317b
DH
217 * is not required to switch CR3.
218 */
4d732138
IM
219 movq %rsp, PER_CPU_VAR(rsp_scratch)
220 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
9ed8e7d8
DV
221
222 /* Construct struct pt_regs on stack */
4d732138
IM
223 pushq $__USER_DS /* pt_regs->ss */
224 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
4d732138
IM
225 pushq %r11 /* pt_regs->flags */
226 pushq $__USER_CS /* pt_regs->cs */
227 pushq %rcx /* pt_regs->ip */
8a9949bc 228GLOBAL(entry_SYSCALL_64_after_hwframe)
4d732138
IM
229 pushq %rax /* pt_regs->orig_ax */
230 pushq %rdi /* pt_regs->di */
231 pushq %rsi /* pt_regs->si */
232 pushq %rdx /* pt_regs->dx */
233 pushq %rcx /* pt_regs->cx */
234 pushq $-ENOSYS /* pt_regs->ax */
235 pushq %r8 /* pt_regs->r8 */
236 pushq %r9 /* pt_regs->r9 */
237 pushq %r10 /* pt_regs->r10 */
8e1eb3fa
DW
238 /*
239 * Clear extra registers that a speculation attack might
240 * otherwise want to exploit. Interleave XOR with PUSH
241 * for better uop scheduling:
242 */
243 xorq %r10, %r10 /* nospec r10 */
4d732138 244 pushq %r11 /* pt_regs->r11 */
8e1eb3fa 245 xorq %r11, %r11 /* nospec r11 */
d1f77320 246 pushq %rbx /* pt_regs->rbx */
8e1eb3fa 247 xorl %ebx, %ebx /* nospec rbx */
d1f77320 248 pushq %rbp /* pt_regs->rbp */
8e1eb3fa 249 xorl %ebp, %ebp /* nospec rbp */
d1f77320 250 pushq %r12 /* pt_regs->r12 */
8e1eb3fa 251 xorq %r12, %r12 /* nospec r12 */
d1f77320 252 pushq %r13 /* pt_regs->r13 */
8e1eb3fa 253 xorq %r13, %r13 /* nospec r13 */
d1f77320 254 pushq %r14 /* pt_regs->r14 */
8e1eb3fa 255 xorq %r14, %r14 /* nospec r14 */
d1f77320 256 pushq %r15 /* pt_regs->r15 */
8e1eb3fa 257 xorq %r15, %r15 /* nospec r15 */
d1f77320 258 UNWIND_HINT_REGS
4d732138 259
548c3050
AL
260 TRACE_IRQS_OFF
261
1e423bff 262 /* IRQs are off. */
29ea1b25 263 movq %rsp, %rdi
1e423bff
AL
264 call do_syscall_64 /* returns with IRQs disabled */
265
29ea1b25 266 TRACE_IRQS_IRETQ /* we're about to change IF */
fffbb5dc
DV
267
268 /*
269 * Try to use SYSRET instead of IRET if we're returning to
8a055d7f
AL
270 * a completely clean 64-bit userspace context. If we're not,
271 * go to the slow exit path.
fffbb5dc 272 */
4d732138
IM
273 movq RCX(%rsp), %rcx
274 movq RIP(%rsp), %r11
8a055d7f
AL
275
276 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
277 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
278
279 /*
280 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
281 * in kernel space. This essentially lets the user take over
17be0aec 282 * the kernel, since userspace controls RSP.
fffbb5dc 283 *
17be0aec 284 * If width of "canonical tail" ever becomes variable, this will need
fffbb5dc 285 * to be updated to remain correct on both old and new CPUs.
361b4b58 286 *
cbe0317b
KS
287 * Change top bits to match most significant bit (47th or 56th bit
288 * depending on paging mode) in the address.
fffbb5dc 289 */
17be0aec
DV
290 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
291 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
4d732138 292
17be0aec
DV
293 /* If this changed %rcx, it was not canonical */
294 cmpq %rcx, %r11
8a055d7f 295 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc 296
4d732138 297 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
8a055d7f 298 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc 299
4d732138
IM
300 movq R11(%rsp), %r11
301 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
8a055d7f 302 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
303
304 /*
3e035305
BP
305 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
306 * restore RF properly. If the slowpath sets it for whatever reason, we
307 * need to restore it correctly.
308 *
309 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
310 * trap from userspace immediately after SYSRET. This would cause an
311 * infinite loop whenever #DB happens with register state that satisfies
312 * the opportunistic SYSRET conditions. For example, single-stepping
313 * this user code:
fffbb5dc 314 *
4d732138 315 * movq $stuck_here, %rcx
fffbb5dc
DV
316 * pushfq
317 * popq %r11
318 * stuck_here:
319 *
320 * would never get past 'stuck_here'.
321 */
4d732138 322 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
8a055d7f 323 jnz swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
324
325 /* nothing to check for RSP */
326
4d732138 327 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
8a055d7f 328 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
329
330 /*
4d732138
IM
331 * We win! This label is here just for ease of understanding
332 * perf profiles. Nothing jumps here.
fffbb5dc
DV
333 */
334syscall_return_via_sysret:
17be0aec 335 /* rcx and r11 are already restored (see code above) */
8c1f7558 336 UNWIND_HINT_EMPTY
502af0d7 337 POP_REGS pop_rdi=0 skip_r11rcx=1
3e3b9293
AL
338
339 /*
340 * Now all regs are restored except RSP and RDI.
341 * Save old stack pointer and switch to trampoline stack.
342 */
343 movq %rsp, %rdi
c482feef 344 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
3e3b9293
AL
345
346 pushq RSP-RDI(%rdi) /* RSP */
347 pushq (%rdi) /* RDI */
348
349 /*
350 * We are on the trampoline stack. All regs except RDI are live.
351 * We can do future final exit work right here.
352 */
6fd166aa 353 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
3e3b9293 354
4fbb3910 355 popq %rdi
3e3b9293 356 popq %rsp
fffbb5dc 357 USERGS_SYSRET64
b2502b41 358END(entry_SYSCALL_64)
0bd7b798 359
0100301b
BG
360/*
361 * %rdi: prev task
362 * %rsi: next task
363 */
364ENTRY(__switch_to_asm)
8c1f7558 365 UNWIND_HINT_FUNC
0100301b
BG
366 /*
367 * Save callee-saved registers
368 * This must match the order in inactive_task_frame
369 */
370 pushq %rbp
371 pushq %rbx
372 pushq %r12
373 pushq %r13
374 pushq %r14
375 pushq %r15
376
377 /* switch stack */
378 movq %rsp, TASK_threadsp(%rdi)
379 movq TASK_threadsp(%rsi), %rsp
380
381#ifdef CONFIG_CC_STACKPROTECTOR
382 movq TASK_stack_canary(%rsi), %rbx
383 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
384#endif
385
c995efd5
DW
386#ifdef CONFIG_RETPOLINE
387 /*
388 * When switching from a shallower to a deeper call stack
389 * the RSB may either underflow or use entries populated
390 * with userspace addresses. On CPUs where those concerns
391 * exist, overwrite the RSB with entries which capture
392 * speculative execution to prevent attack.
393 */
1dde7415
BP
394 /* Clobbers %rbx */
395 FILL_RETURN_BUFFER RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
c995efd5
DW
396#endif
397
0100301b
BG
398 /* restore callee-saved registers */
399 popq %r15
400 popq %r14
401 popq %r13
402 popq %r12
403 popq %rbx
404 popq %rbp
405
406 jmp __switch_to
407END(__switch_to_asm)
408
1eeb207f
DV
409/*
410 * A newly forked process directly context switches into this address.
411 *
0100301b 412 * rax: prev task we switched from
616d2483
BG
413 * rbx: kernel thread func (NULL for user thread)
414 * r12: kernel thread arg
1eeb207f
DV
415 */
416ENTRY(ret_from_fork)
8c1f7558 417 UNWIND_HINT_EMPTY
0100301b 418 movq %rax, %rdi
ebd57499 419 call schedule_tail /* rdi: 'prev' task parameter */
1eeb207f 420
ebd57499
JP
421 testq %rbx, %rbx /* from kernel_thread? */
422 jnz 1f /* kernel threads are uncommon */
24d978b7 423
616d2483 4242:
8c1f7558 425 UNWIND_HINT_REGS
ebd57499 426 movq %rsp, %rdi
24d978b7
AL
427 call syscall_return_slowpath /* returns with IRQs disabled */
428 TRACE_IRQS_ON /* user mode is traced as IRQS on */
8a055d7f 429 jmp swapgs_restore_regs_and_return_to_usermode
616d2483
BG
430
4311:
432 /* kernel thread */
433 movq %r12, %rdi
2641f08b 434 CALL_NOSPEC %rbx
616d2483
BG
435 /*
436 * A kernel thread is allowed to return here after successfully
437 * calling do_execve(). Exit to userspace to complete the execve()
438 * syscall.
439 */
440 movq $0, RAX(%rsp)
441 jmp 2b
1eeb207f
DV
442END(ret_from_fork)
443
939b7871 444/*
3304c9c3
DV
445 * Build the entry stubs with some assembler magic.
446 * We pack 1 stub into every 8-byte block.
939b7871 447 */
3304c9c3 448 .align 8
939b7871 449ENTRY(irq_entries_start)
3304c9c3
DV
450 vector=FIRST_EXTERNAL_VECTOR
451 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
8c1f7558 452 UNWIND_HINT_IRET_REGS
4d732138 453 pushq $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3 454 jmp common_interrupt
3304c9c3 455 .align 8
8c1f7558 456 vector=vector+1
3304c9c3 457 .endr
939b7871
PA
458END(irq_entries_start)
459
1d3e53e8
AL
460.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
461#ifdef CONFIG_DEBUG_ENTRY
e17f8234
BO
462 pushq %rax
463 SAVE_FLAGS(CLBR_RAX)
464 testl $X86_EFLAGS_IF, %eax
1d3e53e8
AL
465 jz .Lokay_\@
466 ud2
467.Lokay_\@:
e17f8234 468 popq %rax
1d3e53e8
AL
469#endif
470.endm
471
472/*
473 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
474 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
475 * Requires kernel GSBASE.
476 *
477 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
478 */
8c1f7558 479.macro ENTER_IRQ_STACK regs=1 old_rsp
1d3e53e8
AL
480 DEBUG_ENTRY_ASSERT_IRQS_OFF
481 movq %rsp, \old_rsp
8c1f7558
JP
482
483 .if \regs
484 UNWIND_HINT_REGS base=\old_rsp
485 .endif
486
1d3e53e8 487 incl PER_CPU_VAR(irq_count)
29955909 488 jnz .Lirq_stack_push_old_rsp_\@
1d3e53e8
AL
489
490 /*
491 * Right now, if we just incremented irq_count to zero, we've
492 * claimed the IRQ stack but we haven't switched to it yet.
493 *
494 * If anything is added that can interrupt us here without using IST,
495 * it must be *extremely* careful to limit its stack usage. This
496 * could include kprobes and a hypothetical future IST-less #DB
497 * handler.
29955909
AL
498 *
499 * The OOPS unwinder relies on the word at the top of the IRQ
500 * stack linking back to the previous RSP for the entire time we're
501 * on the IRQ stack. For this to work reliably, we need to write
502 * it before we actually move ourselves to the IRQ stack.
503 */
504
505 movq \old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
506 movq PER_CPU_VAR(irq_stack_ptr), %rsp
507
508#ifdef CONFIG_DEBUG_ENTRY
509 /*
510 * If the first movq above becomes wrong due to IRQ stack layout
511 * changes, the only way we'll notice is if we try to unwind right
512 * here. Assert that we set up the stack right to catch this type
513 * of bug quickly.
1d3e53e8 514 */
29955909
AL
515 cmpq -8(%rsp), \old_rsp
516 je .Lirq_stack_okay\@
517 ud2
518 .Lirq_stack_okay\@:
519#endif
1d3e53e8 520
29955909 521.Lirq_stack_push_old_rsp_\@:
1d3e53e8 522 pushq \old_rsp
8c1f7558
JP
523
524 .if \regs
525 UNWIND_HINT_REGS indirect=1
526 .endif
1d3e53e8
AL
527.endm
528
529/*
530 * Undoes ENTER_IRQ_STACK.
531 */
8c1f7558 532.macro LEAVE_IRQ_STACK regs=1
1d3e53e8
AL
533 DEBUG_ENTRY_ASSERT_IRQS_OFF
534 /* We need to be off the IRQ stack before decrementing irq_count. */
535 popq %rsp
536
8c1f7558
JP
537 .if \regs
538 UNWIND_HINT_REGS
539 .endif
540
1d3e53e8
AL
541 /*
542 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
543 * the irq stack but we're not on it.
544 */
545
546 decl PER_CPU_VAR(irq_count)
547.endm
548
d99015b1 549/*
1da177e4
LT
550 * Interrupt entry/exit.
551 *
552 * Interrupt entry points save only callee clobbered registers in fast path.
d99015b1
AH
553 *
554 * Entry runs with interrupts off.
555 */
1da177e4 556
722024db 557/* 0(%rsp): ~(interrupt number) */
1da177e4 558 .macro interrupt func
f6f64681 559 cld
7f2590a1
AL
560
561 testb $3, CS-ORIG_RAX(%rsp)
562 jz 1f
563 SWAPGS
564 call switch_to_thread_stack
5651:
566
3f01daec 567 PUSH_AND_CLEAR_REGS
946c1911 568 ENCODE_FRAME_POINTER
76f5df43 569
ff467594 570 testb $3, CS(%rsp)
dde74f2e 571 jz 1f
02bc7768
AL
572
573 /*
7f2590a1
AL
574 * IRQ from user mode.
575 *
f1075053
AL
576 * We need to tell lockdep that IRQs are off. We can't do this until
577 * we fix gsbase, and we should do it before enter_from_user_mode
578 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
579 * the simplest way to handle it is to just call it twice if
580 * we enter from user mode. There's no reason to optimize this since
581 * TRACE_IRQS_OFF is a no-op if lockdep is off.
582 */
583 TRACE_IRQS_OFF
584
478dc89c 585 CALL_enter_from_user_mode
02bc7768 586
76f5df43 5871:
1d3e53e8 588 ENTER_IRQ_STACK old_rsp=%rdi
f6f64681
DV
589 /* We entered an interrupt context - irqs are off: */
590 TRACE_IRQS_OFF
591
a586f98e 592 call \func /* rdi points to pt_regs */
1da177e4
LT
593 .endm
594
722024db
AH
595 /*
596 * The interrupt stubs push (~vector+0x80) onto the stack and
597 * then jump to common_interrupt.
598 */
939b7871
PA
599 .p2align CONFIG_X86_L1_CACHE_SHIFT
600common_interrupt:
ee4eb87b 601 ASM_CLAC
4d732138 602 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
1da177e4 603 interrupt do_IRQ
34061f13 604 /* 0(%rsp): old RSP */
7effaa88 605ret_from_intr:
2140a994 606 DISABLE_INTERRUPTS(CLBR_ANY)
2601e64d 607 TRACE_IRQS_OFF
625dbc3b 608
1d3e53e8 609 LEAVE_IRQ_STACK
625dbc3b 610
03335e95 611 testb $3, CS(%rsp)
dde74f2e 612 jz retint_kernel
4d732138 613
02bc7768 614 /* Interrupt came from user space */
02bc7768
AL
615GLOBAL(retint_user)
616 mov %rsp,%rdi
617 call prepare_exit_to_usermode
2601e64d 618 TRACE_IRQS_IRETQ
26c4ef9c 619
8a055d7f 620GLOBAL(swapgs_restore_regs_and_return_to_usermode)
26c4ef9c
AL
621#ifdef CONFIG_DEBUG_ENTRY
622 /* Assert that pt_regs indicates user mode. */
1e4c4f61 623 testb $3, CS(%rsp)
26c4ef9c
AL
624 jnz 1f
625 ud2
6261:
627#endif
502af0d7 628 POP_REGS pop_rdi=0
3e3b9293
AL
629
630 /*
631 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
632 * Save old stack pointer and switch to trampoline stack.
633 */
634 movq %rsp, %rdi
c482feef 635 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
3e3b9293
AL
636
637 /* Copy the IRET frame to the trampoline stack. */
638 pushq 6*8(%rdi) /* SS */
639 pushq 5*8(%rdi) /* RSP */
640 pushq 4*8(%rdi) /* EFLAGS */
641 pushq 3*8(%rdi) /* CS */
642 pushq 2*8(%rdi) /* RIP */
643
644 /* Push user RDI on the trampoline stack. */
645 pushq (%rdi)
646
647 /*
648 * We are on the trampoline stack. All regs except RDI are live.
649 * We can do future final exit work right here.
650 */
651
6fd166aa 652 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
8a09317b 653
3e3b9293
AL
654 /* Restore RDI. */
655 popq %rdi
656 SWAPGS
26c4ef9c
AL
657 INTERRUPT_RETURN
658
2601e64d 659
627276cb 660/* Returning to kernel space */
6ba71b76 661retint_kernel:
627276cb
DV
662#ifdef CONFIG_PREEMPT
663 /* Interrupts are off */
664 /* Check if we need preemption */
4d732138 665 bt $9, EFLAGS(%rsp) /* were interrupts off? */
6ba71b76 666 jnc 1f
4d732138 6670: cmpl $0, PER_CPU_VAR(__preempt_count)
36acef25 668 jnz 1f
627276cb 669 call preempt_schedule_irq
36acef25 670 jmp 0b
6ba71b76 6711:
627276cb 672#endif
2601e64d
IM
673 /*
674 * The iretq could re-enable interrupts:
675 */
676 TRACE_IRQS_IRETQ
fffbb5dc 677
26c4ef9c
AL
678GLOBAL(restore_regs_and_return_to_kernel)
679#ifdef CONFIG_DEBUG_ENTRY
680 /* Assert that pt_regs indicates kernel mode. */
1e4c4f61 681 testb $3, CS(%rsp)
26c4ef9c
AL
682 jz 1f
683 ud2
6841:
685#endif
502af0d7 686 POP_REGS
e872045b 687 addq $8, %rsp /* skip regs->orig_ax */
7209a75d
AL
688 INTERRUPT_RETURN
689
690ENTRY(native_iret)
8c1f7558 691 UNWIND_HINT_IRET_REGS
3891a04a
PA
692 /*
693 * Are we returning to a stack segment from the LDT? Note: in
694 * 64-bit mode SS:RSP on the exception stack is always valid.
695 */
34273f41 696#ifdef CONFIG_X86_ESPFIX64
4d732138
IM
697 testb $4, (SS-RIP)(%rsp)
698 jnz native_irq_return_ldt
34273f41 699#endif
3891a04a 700
af726f21 701.global native_irq_return_iret
7209a75d 702native_irq_return_iret:
b645af2d
AL
703 /*
704 * This may fault. Non-paranoid faults on return to userspace are
705 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
706 * Double-faults due to espfix64 are handled in do_double_fault.
707 * Other faults here are fatal.
708 */
1da177e4 709 iretq
3701d863 710
34273f41 711#ifdef CONFIG_X86_ESPFIX64
7209a75d 712native_irq_return_ldt:
85063fac
AL
713 /*
714 * We are running with user GSBASE. All GPRs contain their user
715 * values. We have a percpu ESPFIX stack that is eight slots
716 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
717 * of the ESPFIX stack.
718 *
719 * We clobber RAX and RDI in this code. We stash RDI on the
720 * normal stack and RAX on the ESPFIX stack.
721 *
722 * The ESPFIX stack layout we set up looks like this:
723 *
724 * --- top of ESPFIX stack ---
725 * SS
726 * RSP
727 * RFLAGS
728 * CS
729 * RIP <-- RSP points here when we're done
730 * RAX <-- espfix_waddr points here
731 * --- bottom of ESPFIX stack ---
732 */
733
734 pushq %rdi /* Stash user RDI */
8a09317b
DH
735 SWAPGS /* to kernel GS */
736 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */
737
4d732138 738 movq PER_CPU_VAR(espfix_waddr), %rdi
85063fac
AL
739 movq %rax, (0*8)(%rdi) /* user RAX */
740 movq (1*8)(%rsp), %rax /* user RIP */
4d732138 741 movq %rax, (1*8)(%rdi)
85063fac 742 movq (2*8)(%rsp), %rax /* user CS */
4d732138 743 movq %rax, (2*8)(%rdi)
85063fac 744 movq (3*8)(%rsp), %rax /* user RFLAGS */
4d732138 745 movq %rax, (3*8)(%rdi)
85063fac 746 movq (5*8)(%rsp), %rax /* user SS */
4d732138 747 movq %rax, (5*8)(%rdi)
85063fac 748 movq (4*8)(%rsp), %rax /* user RSP */
4d732138 749 movq %rax, (4*8)(%rdi)
85063fac
AL
750 /* Now RAX == RSP. */
751
752 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
85063fac
AL
753
754 /*
755 * espfix_stack[31:16] == 0. The page tables are set up such that
756 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
757 * espfix_waddr for any X. That is, there are 65536 RO aliases of
758 * the same page. Set up RSP so that RSP[31:16] contains the
759 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
760 * still points to an RO alias of the ESPFIX stack.
761 */
4d732138 762 orq PER_CPU_VAR(espfix_stack), %rax
8a09317b 763
6fd166aa 764 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
8a09317b
DH
765 SWAPGS /* to user GS */
766 popq %rdi /* Restore user RDI */
767
4d732138 768 movq %rax, %rsp
8c1f7558 769 UNWIND_HINT_IRET_REGS offset=8
85063fac
AL
770
771 /*
772 * At this point, we cannot write to the stack any more, but we can
773 * still read.
774 */
775 popq %rax /* Restore user RAX */
776
777 /*
778 * RSP now points to an ordinary IRET frame, except that the page
779 * is read-only and RSP[31:16] are preloaded with the userspace
780 * values. We can now IRET back to userspace.
781 */
4d732138 782 jmp native_irq_return_iret
34273f41 783#endif
4b787e0b 784END(common_interrupt)
3891a04a 785
1da177e4
LT
786/*
787 * APIC interrupts.
0bd7b798 788 */
cf910e83 789.macro apicinterrupt3 num sym do_sym
322648d1 790ENTRY(\sym)
8c1f7558 791 UNWIND_HINT_IRET_REGS
ee4eb87b 792 ASM_CLAC
4d732138 793 pushq $~(\num)
39e95433 794.Lcommon_\sym:
322648d1 795 interrupt \do_sym
4d732138 796 jmp ret_from_intr
322648d1
AH
797END(\sym)
798.endm
1da177e4 799
469f0023 800/* Make sure APIC interrupt handlers end up in the irqentry section: */
229a7186
MH
801#define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
802#define POP_SECTION_IRQENTRY .popsection
469f0023 803
cf910e83 804.macro apicinterrupt num sym do_sym
469f0023 805PUSH_SECTION_IRQENTRY
cf910e83 806apicinterrupt3 \num \sym \do_sym
469f0023 807POP_SECTION_IRQENTRY
cf910e83
SA
808.endm
809
322648d1 810#ifdef CONFIG_SMP
4d732138
IM
811apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
812apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
322648d1 813#endif
1da177e4 814
03b48632 815#ifdef CONFIG_X86_UV
4d732138 816apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
03b48632 817#endif
4d732138
IM
818
819apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
820apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
89b831ef 821
d78f2664 822#ifdef CONFIG_HAVE_KVM
4d732138
IM
823apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
824apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
210f84b0 825apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
d78f2664
YZ
826#endif
827
33e5ff63 828#ifdef CONFIG_X86_MCE_THRESHOLD
4d732138 829apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
33e5ff63
SA
830#endif
831
24fd78a8 832#ifdef CONFIG_X86_MCE_AMD
4d732138 833apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
24fd78a8
AG
834#endif
835
33e5ff63 836#ifdef CONFIG_X86_THERMAL_VECTOR
4d732138 837apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
33e5ff63 838#endif
1812924b 839
322648d1 840#ifdef CONFIG_SMP
4d732138
IM
841apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
842apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
843apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
322648d1 844#endif
1da177e4 845
4d732138
IM
846apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
847apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
0bd7b798 848
e360adbe 849#ifdef CONFIG_IRQ_WORK
4d732138 850apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
241771ef
IM
851#endif
852
1da177e4
LT
853/*
854 * Exception entry points.
0bd7b798 855 */
c482feef 856#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
577ed45e 857
7f2590a1
AL
858/*
859 * Switch to the thread stack. This is called with the IRET frame and
860 * orig_ax on the stack. (That is, RDI..R12 are not on the stack and
861 * space has not been allocated for them.)
862 */
863ENTRY(switch_to_thread_stack)
864 UNWIND_HINT_FUNC
865
866 pushq %rdi
8a09317b
DH
867 /* Need to switch before accessing the thread stack. */
868 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
7f2590a1
AL
869 movq %rsp, %rdi
870 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
871 UNWIND_HINT sp_offset=16 sp_reg=ORC_REG_DI
872
873 pushq 7*8(%rdi) /* regs->ss */
874 pushq 6*8(%rdi) /* regs->rsp */
875 pushq 5*8(%rdi) /* regs->eflags */
876 pushq 4*8(%rdi) /* regs->cs */
877 pushq 3*8(%rdi) /* regs->ip */
878 pushq 2*8(%rdi) /* regs->orig_ax */
879 pushq 8(%rdi) /* return address */
880 UNWIND_HINT_FUNC
881
882 movq (%rdi), %rdi
883 ret
884END(switch_to_thread_stack)
885
577ed45e 886.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
322648d1 887ENTRY(\sym)
98990a33 888 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
8c1f7558 889
577ed45e
AL
890 /* Sanity check */
891 .if \shift_ist != -1 && \paranoid == 0
892 .error "using shift_ist requires paranoid=1"
893 .endif
894
ee4eb87b 895 ASM_CLAC
cb5dd2c5 896
82c62fa0 897 .if \has_error_code == 0
4d732138 898 pushq $-1 /* ORIG_RAX: no syscall to restart */
cb5dd2c5
AL
899 .endif
900
76f5df43 901 ALLOC_PT_GPREGS_ON_STACK
cb5dd2c5 902
7f2590a1 903 .if \paranoid < 2
4d732138 904 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
7f2590a1 905 jnz .Lfrom_usermode_switch_stack_\@
48e08d0f 906 .endif
7f2590a1
AL
907
908 .if \paranoid
4d732138 909 call paranoid_entry
cb5dd2c5 910 .else
4d732138 911 call error_entry
cb5dd2c5 912 .endif
8c1f7558 913 UNWIND_HINT_REGS
ebfc453e 914 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
cb5dd2c5 915
cb5dd2c5 916 .if \paranoid
577ed45e 917 .if \shift_ist != -1
4d732138 918 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
577ed45e 919 .else
b8b1d08b 920 TRACE_IRQS_OFF
cb5dd2c5 921 .endif
577ed45e 922 .endif
cb5dd2c5 923
4d732138 924 movq %rsp, %rdi /* pt_regs pointer */
cb5dd2c5
AL
925
926 .if \has_error_code
4d732138
IM
927 movq ORIG_RAX(%rsp), %rsi /* get error code */
928 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
cb5dd2c5 929 .else
4d732138 930 xorl %esi, %esi /* no error code */
cb5dd2c5
AL
931 .endif
932
577ed45e 933 .if \shift_ist != -1
4d732138 934 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
935 .endif
936
4d732138 937 call \do_sym
cb5dd2c5 938
577ed45e 939 .if \shift_ist != -1
4d732138 940 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
941 .endif
942
ebfc453e 943 /* these procedures expect "no swapgs" flag in ebx */
cb5dd2c5 944 .if \paranoid
4d732138 945 jmp paranoid_exit
cb5dd2c5 946 .else
4d732138 947 jmp error_exit
cb5dd2c5
AL
948 .endif
949
7f2590a1 950 .if \paranoid < 2
48e08d0f 951 /*
7f2590a1 952 * Entry from userspace. Switch stacks and treat it
48e08d0f
AL
953 * as a normal entry. This means that paranoid handlers
954 * run in real process context if user_mode(regs).
955 */
7f2590a1 956.Lfrom_usermode_switch_stack_\@:
4d732138 957 call error_entry
48e08d0f 958
4d732138 959 movq %rsp, %rdi /* pt_regs pointer */
48e08d0f
AL
960
961 .if \has_error_code
4d732138
IM
962 movq ORIG_RAX(%rsp), %rsi /* get error code */
963 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
48e08d0f 964 .else
4d732138 965 xorl %esi, %esi /* no error code */
48e08d0f
AL
966 .endif
967
4d732138 968 call \do_sym
48e08d0f 969
4d732138 970 jmp error_exit /* %ebx: no swapgs flag */
48e08d0f 971 .endif
ddeb8f21 972END(\sym)
322648d1 973.endm
b8b1d08b 974
4d732138
IM
975idtentry divide_error do_divide_error has_error_code=0
976idtentry overflow do_overflow has_error_code=0
977idtentry bounds do_bounds has_error_code=0
978idtentry invalid_op do_invalid_op has_error_code=0
979idtentry device_not_available do_device_not_available has_error_code=0
980idtentry double_fault do_double_fault has_error_code=1 paranoid=2
981idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
982idtentry invalid_TSS do_invalid_TSS has_error_code=1
983idtentry segment_not_present do_segment_not_present has_error_code=1
984idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
985idtentry coprocessor_error do_coprocessor_error has_error_code=0
986idtentry alignment_check do_alignment_check has_error_code=1
987idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
988
989
990 /*
991 * Reload gs selector with exception handling
992 * edi: new selector
993 */
9f9d489a 994ENTRY(native_load_gs_index)
8c1f7558 995 FRAME_BEGIN
131484c8 996 pushfq
b8aa287f 997 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
ca37e57b 998 TRACE_IRQS_OFF
9f1e87ea 999 SWAPGS
42c748bb 1000.Lgs_change:
4d732138 1001 movl %edi, %gs
96e5d28a 10022: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
72fe4858 1003 SWAPGS
ca37e57b 1004 TRACE_IRQS_FLAGS (%rsp)
131484c8 1005 popfq
8c1f7558 1006 FRAME_END
9f1e87ea 1007 ret
8c1f7558 1008ENDPROC(native_load_gs_index)
784d5699 1009EXPORT_SYMBOL(native_load_gs_index)
0bd7b798 1010
42c748bb 1011 _ASM_EXTABLE(.Lgs_change, bad_gs)
4d732138 1012 .section .fixup, "ax"
1da177e4 1013 /* running with kernelgs */
0bd7b798 1014bad_gs:
4d732138 1015 SWAPGS /* switch back to user gs */
b038c842
AL
1016.macro ZAP_GS
1017 /* This can't be a string because the preprocessor needs to see it. */
1018 movl $__USER_DS, %eax
1019 movl %eax, %gs
1020.endm
1021 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
4d732138
IM
1022 xorl %eax, %eax
1023 movl %eax, %gs
1024 jmp 2b
9f1e87ea 1025 .previous
0bd7b798 1026
2699500b 1027/* Call softirq on interrupt stack. Interrupts are off. */
7d65f4a6 1028ENTRY(do_softirq_own_stack)
4d732138
IM
1029 pushq %rbp
1030 mov %rsp, %rbp
8c1f7558 1031 ENTER_IRQ_STACK regs=0 old_rsp=%r11
4d732138 1032 call __do_softirq
8c1f7558 1033 LEAVE_IRQ_STACK regs=0
2699500b 1034 leaveq
ed6b676c 1035 ret
8c1f7558 1036ENDPROC(do_softirq_own_stack)
75154f40 1037
3d75e1b8 1038#ifdef CONFIG_XEN
5878d5d6 1039idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
3d75e1b8
JF
1040
1041/*
9f1e87ea
CG
1042 * A note on the "critical region" in our callback handler.
1043 * We want to avoid stacking callback handlers due to events occurring
1044 * during handling of the last event. To do this, we keep events disabled
1045 * until we've done all processing. HOWEVER, we must enable events before
1046 * popping the stack frame (can't be done atomically) and so it would still
1047 * be possible to get enough handler activations to overflow the stack.
1048 * Although unlikely, bugs of that kind are hard to track down, so we'd
1049 * like to avoid the possibility.
1050 * So, on entry to the handler we detect whether we interrupted an
1051 * existing activation in its critical region -- if so, we pop the current
1052 * activation and restart the handler using the previous one.
1053 */
4d732138
IM
1054ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
1055
9f1e87ea
CG
1056/*
1057 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1058 * see the correct pointer to the pt_regs
1059 */
8c1f7558 1060 UNWIND_HINT_FUNC
4d732138 1061 movq %rdi, %rsp /* we don't return, adjust the stack frame */
8c1f7558 1062 UNWIND_HINT_REGS
1d3e53e8
AL
1063
1064 ENTER_IRQ_STACK old_rsp=%r10
4d732138 1065 call xen_evtchn_do_upcall
1d3e53e8
AL
1066 LEAVE_IRQ_STACK
1067
fdfd811d 1068#ifndef CONFIG_PREEMPT
4d732138 1069 call xen_maybe_preempt_hcall
fdfd811d 1070#endif
4d732138 1071 jmp error_exit
371c394a 1072END(xen_do_hypervisor_callback)
3d75e1b8
JF
1073
1074/*
9f1e87ea
CG
1075 * Hypervisor uses this for application faults while it executes.
1076 * We get here for two reasons:
1077 * 1. Fault while reloading DS, ES, FS or GS
1078 * 2. Fault while executing IRET
1079 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1080 * registers that could be reloaded and zeroed the others.
1081 * Category 2 we fix up by killing the current process. We cannot use the
1082 * normal Linux return path in this case because if we use the IRET hypercall
1083 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1084 * We distinguish between categories by comparing each saved segment register
1085 * with its current contents: any discrepancy means we in category 1.
1086 */
3d75e1b8 1087ENTRY(xen_failsafe_callback)
8c1f7558 1088 UNWIND_HINT_EMPTY
4d732138
IM
1089 movl %ds, %ecx
1090 cmpw %cx, 0x10(%rsp)
1091 jne 1f
1092 movl %es, %ecx
1093 cmpw %cx, 0x18(%rsp)
1094 jne 1f
1095 movl %fs, %ecx
1096 cmpw %cx, 0x20(%rsp)
1097 jne 1f
1098 movl %gs, %ecx
1099 cmpw %cx, 0x28(%rsp)
1100 jne 1f
3d75e1b8 1101 /* All segments match their saved values => Category 2 (Bad IRET). */
4d732138
IM
1102 movq (%rsp), %rcx
1103 movq 8(%rsp), %r11
1104 addq $0x30, %rsp
1105 pushq $0 /* RIP */
8c1f7558 1106 UNWIND_HINT_IRET_REGS offset=8
4d732138 1107 jmp general_protection
3d75e1b8 11081: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
4d732138
IM
1109 movq (%rsp), %rcx
1110 movq 8(%rsp), %r11
1111 addq $0x30, %rsp
8c1f7558 1112 UNWIND_HINT_IRET_REGS
4d732138 1113 pushq $-1 /* orig_ax = -1 => not a system call */
3f01daec 1114 PUSH_AND_CLEAR_REGS
946c1911 1115 ENCODE_FRAME_POINTER
4d732138 1116 jmp error_exit
3d75e1b8
JF
1117END(xen_failsafe_callback)
1118
cf910e83 1119apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
38e20b07
SY
1120 xen_hvm_callback_vector xen_evtchn_do_upcall
1121
3d75e1b8 1122#endif /* CONFIG_XEN */
ddeb8f21 1123
bc2b0331 1124#if IS_ENABLED(CONFIG_HYPERV)
cf910e83 1125apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
bc2b0331
S
1126 hyperv_callback_vector hyperv_vector_handler
1127#endif /* CONFIG_HYPERV */
1128
4d732138
IM
1129idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1130idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1131idtentry stack_segment do_stack_segment has_error_code=1
1132
6cac5a92 1133#ifdef CONFIG_XEN
43e41110 1134idtentry xennmi do_nmi has_error_code=0
5878d5d6
JG
1135idtentry xendebug do_debug has_error_code=0
1136idtentry xenint3 do_int3 has_error_code=0
6cac5a92 1137#endif
4d732138
IM
1138
1139idtentry general_protection do_general_protection has_error_code=1
11a7ffb0 1140idtentry page_fault do_page_fault has_error_code=1
4d732138 1141
631bc487 1142#ifdef CONFIG_KVM_GUEST
4d732138 1143idtentry async_page_fault do_async_page_fault has_error_code=1
631bc487 1144#endif
4d732138 1145
ddeb8f21 1146#ifdef CONFIG_X86_MCE
6f41c34d 1147idtentry machine_check do_mce has_error_code=0 paranoid=1
ddeb8f21
AH
1148#endif
1149
ebfc453e
DV
1150/*
1151 * Save all registers in pt_regs, and switch gs if needed.
1152 * Use slow, but surefire "are we in kernel?" check.
1153 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1154 */
1155ENTRY(paranoid_entry)
8c1f7558 1156 UNWIND_HINT_FUNC
1eeb207f 1157 cld
f7bafa2b 1158 SAVE_AND_CLEAR_REGS 8
946c1911 1159 ENCODE_FRAME_POINTER 8
4d732138
IM
1160 movl $1, %ebx
1161 movl $MSR_GS_BASE, %ecx
1eeb207f 1162 rdmsr
4d732138
IM
1163 testl %edx, %edx
1164 js 1f /* negative -> in kernel */
1eeb207f 1165 SWAPGS
4d732138 1166 xorl %ebx, %ebx
8a09317b
DH
1167
11681:
1169 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
1170
1171 ret
ebfc453e 1172END(paranoid_entry)
ddeb8f21 1173
ebfc453e
DV
1174/*
1175 * "Paranoid" exit path from exception stack. This is invoked
1176 * only on return from non-NMI IST interrupts that came
1177 * from kernel space.
1178 *
1179 * We may be returning to very strange contexts (e.g. very early
1180 * in syscall entry), so checking for preemption here would
1181 * be complicated. Fortunately, we there's no good reason
1182 * to try to handle preemption here.
4d732138
IM
1183 *
1184 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
ebfc453e 1185 */
ddeb8f21 1186ENTRY(paranoid_exit)
8c1f7558 1187 UNWIND_HINT_REGS
2140a994 1188 DISABLE_INTERRUPTS(CLBR_ANY)
5963e317 1189 TRACE_IRQS_OFF_DEBUG
4d732138 1190 testl %ebx, %ebx /* swapgs needed? */
e5317832 1191 jnz .Lparanoid_exit_no_swapgs
f2db9382 1192 TRACE_IRQS_IRETQ
21e94459 1193 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
ddeb8f21 1194 SWAPGS_UNSAFE_STACK
e5317832
AL
1195 jmp .Lparanoid_exit_restore
1196.Lparanoid_exit_no_swapgs:
f2db9382 1197 TRACE_IRQS_IRETQ_DEBUG
e5317832
AL
1198.Lparanoid_exit_restore:
1199 jmp restore_regs_and_return_to_kernel
ddeb8f21
AH
1200END(paranoid_exit)
1201
1202/*
ebfc453e 1203 * Save all registers in pt_regs, and switch gs if needed.
539f5113 1204 * Return: EBX=0: came from user mode; EBX=1: otherwise
ddeb8f21
AH
1205 */
1206ENTRY(error_entry)
8c1f7558 1207 UNWIND_HINT_FUNC
ddeb8f21 1208 cld
f7bafa2b 1209 SAVE_AND_CLEAR_REGS 8
946c1911 1210 ENCODE_FRAME_POINTER 8
03335e95 1211 testb $3, CS+8(%rsp)
cb6f64ed 1212 jz .Lerror_kernelspace
539f5113 1213
cb6f64ed
AL
1214 /*
1215 * We entered from user mode or we're pretending to have entered
1216 * from user mode due to an IRET fault.
1217 */
ddeb8f21 1218 SWAPGS
8a09317b
DH
1219 /* We have user CR3. Change to kernel CR3. */
1220 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
539f5113 1221
cb6f64ed 1222.Lerror_entry_from_usermode_after_swapgs:
7f2590a1
AL
1223 /* Put us onto the real thread stack. */
1224 popq %r12 /* save return addr in %12 */
1225 movq %rsp, %rdi /* arg0 = pt_regs pointer */
1226 call sync_regs
1227 movq %rax, %rsp /* switch stack */
1228 ENCODE_FRAME_POINTER
1229 pushq %r12
1230
f1075053
AL
1231 /*
1232 * We need to tell lockdep that IRQs are off. We can't do this until
1233 * we fix gsbase, and we should do it before enter_from_user_mode
1234 * (which can take locks).
1235 */
1236 TRACE_IRQS_OFF
478dc89c 1237 CALL_enter_from_user_mode
f1075053 1238 ret
02bc7768 1239
cb6f64ed 1240.Lerror_entry_done:
ddeb8f21
AH
1241 TRACE_IRQS_OFF
1242 ret
ddeb8f21 1243
ebfc453e
DV
1244 /*
1245 * There are two places in the kernel that can potentially fault with
1246 * usergs. Handle them here. B stepping K8s sometimes report a
1247 * truncated RIP for IRET exceptions returning to compat mode. Check
1248 * for these here too.
1249 */
cb6f64ed 1250.Lerror_kernelspace:
4d732138
IM
1251 incl %ebx
1252 leaq native_irq_return_iret(%rip), %rcx
1253 cmpq %rcx, RIP+8(%rsp)
cb6f64ed 1254 je .Lerror_bad_iret
4d732138
IM
1255 movl %ecx, %eax /* zero extend */
1256 cmpq %rax, RIP+8(%rsp)
cb6f64ed 1257 je .Lbstep_iret
42c748bb 1258 cmpq $.Lgs_change, RIP+8(%rsp)
cb6f64ed 1259 jne .Lerror_entry_done
539f5113
AL
1260
1261 /*
42c748bb 1262 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
539f5113 1263 * gsbase and proceed. We'll fix up the exception and land in
42c748bb 1264 * .Lgs_change's error handler with kernel gsbase.
539f5113 1265 */
2fa5f04f 1266 SWAPGS
8a09317b 1267 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
2fa5f04f 1268 jmp .Lerror_entry_done
ae24ffe5 1269
cb6f64ed 1270.Lbstep_iret:
ae24ffe5 1271 /* Fix truncated RIP */
4d732138 1272 movq %rcx, RIP+8(%rsp)
b645af2d
AL
1273 /* fall through */
1274
cb6f64ed 1275.Lerror_bad_iret:
539f5113 1276 /*
8a09317b
DH
1277 * We came from an IRET to user mode, so we have user
1278 * gsbase and CR3. Switch to kernel gsbase and CR3:
539f5113 1279 */
b645af2d 1280 SWAPGS
8a09317b 1281 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
539f5113
AL
1282
1283 /*
1284 * Pretend that the exception came from user mode: set up pt_regs
1285 * as if we faulted immediately after IRET and clear EBX so that
1286 * error_exit knows that we will be returning to user mode.
1287 */
4d732138
IM
1288 mov %rsp, %rdi
1289 call fixup_bad_iret
1290 mov %rax, %rsp
539f5113 1291 decl %ebx
cb6f64ed 1292 jmp .Lerror_entry_from_usermode_after_swapgs
ddeb8f21
AH
1293END(error_entry)
1294
1295
539f5113 1296/*
75ca5b22 1297 * On entry, EBX is a "return to kernel mode" flag:
539f5113
AL
1298 * 1: already in kernel mode, don't need SWAPGS
1299 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1300 */
ddeb8f21 1301ENTRY(error_exit)
8c1f7558 1302 UNWIND_HINT_REGS
2140a994 1303 DISABLE_INTERRUPTS(CLBR_ANY)
ddeb8f21 1304 TRACE_IRQS_OFF
2140a994 1305 testl %ebx, %ebx
4d732138
IM
1306 jnz retint_kernel
1307 jmp retint_user
ddeb8f21
AH
1308END(error_exit)
1309
929bacec
AL
1310/*
1311 * Runs on exception stack. Xen PV does not go through this path at all,
1312 * so we can use real assembly here.
8a09317b
DH
1313 *
1314 * Registers:
1315 * %r14: Used to save/restore the CR3 of the interrupted context
1316 * when PAGE_TABLE_ISOLATION is in use. Do not clobber.
929bacec 1317 */
ddeb8f21 1318ENTRY(nmi)
8c1f7558 1319 UNWIND_HINT_IRET_REGS
929bacec 1320
3f3c8b8c
SR
1321 /*
1322 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1323 * the iretq it performs will take us out of NMI context.
1324 * This means that we can have nested NMIs where the next
1325 * NMI is using the top of the stack of the previous NMI. We
1326 * can't let it execute because the nested NMI will corrupt the
1327 * stack of the previous NMI. NMI handlers are not re-entrant
1328 * anyway.
1329 *
1330 * To handle this case we do the following:
1331 * Check the a special location on the stack that contains
1332 * a variable that is set when NMIs are executing.
1333 * The interrupted task's stack is also checked to see if it
1334 * is an NMI stack.
1335 * If the variable is not set and the stack is not the NMI
1336 * stack then:
1337 * o Set the special variable on the stack
0b22930e
AL
1338 * o Copy the interrupt frame into an "outermost" location on the
1339 * stack
1340 * o Copy the interrupt frame into an "iret" location on the stack
3f3c8b8c
SR
1341 * o Continue processing the NMI
1342 * If the variable is set or the previous stack is the NMI stack:
0b22930e 1343 * o Modify the "iret" location to jump to the repeat_nmi
3f3c8b8c
SR
1344 * o return back to the first NMI
1345 *
1346 * Now on exit of the first NMI, we first clear the stack variable
1347 * The NMI stack will tell any nested NMIs at that point that it is
1348 * nested. Then we pop the stack normally with iret, and if there was
1349 * a nested NMI that updated the copy interrupt stack frame, a
1350 * jump will be made to the repeat_nmi code that will handle the second
1351 * NMI.
9b6e6a83
AL
1352 *
1353 * However, espfix prevents us from directly returning to userspace
1354 * with a single IRET instruction. Similarly, IRET to user mode
1355 * can fault. We therefore handle NMIs from user space like
1356 * other IST entries.
3f3c8b8c
SR
1357 */
1358
e93c1730
AL
1359 ASM_CLAC
1360
146b2b09 1361 /* Use %rdx as our temp variable throughout */
4d732138 1362 pushq %rdx
3f3c8b8c 1363
9b6e6a83
AL
1364 testb $3, CS-RIP+8(%rsp)
1365 jz .Lnmi_from_kernel
1366
1367 /*
1368 * NMI from user mode. We need to run on the thread stack, but we
1369 * can't go through the normal entry paths: NMIs are masked, and
1370 * we don't want to enable interrupts, because then we'll end
1371 * up in an awkward situation in which IRQs are on but NMIs
1372 * are off.
83c133cf
AL
1373 *
1374 * We also must not push anything to the stack before switching
1375 * stacks lest we corrupt the "NMI executing" variable.
9b6e6a83
AL
1376 */
1377
929bacec 1378 swapgs
9b6e6a83 1379 cld
8a09317b 1380 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
9b6e6a83
AL
1381 movq %rsp, %rdx
1382 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
8c1f7558 1383 UNWIND_HINT_IRET_REGS base=%rdx offset=8
9b6e6a83
AL
1384 pushq 5*8(%rdx) /* pt_regs->ss */
1385 pushq 4*8(%rdx) /* pt_regs->rsp */
1386 pushq 3*8(%rdx) /* pt_regs->flags */
1387 pushq 2*8(%rdx) /* pt_regs->cs */
1388 pushq 1*8(%rdx) /* pt_regs->rip */
8c1f7558 1389 UNWIND_HINT_IRET_REGS
9b6e6a83
AL
1390 pushq $-1 /* pt_regs->orig_ax */
1391 pushq %rdi /* pt_regs->di */
1392 pushq %rsi /* pt_regs->si */
1393 pushq (%rdx) /* pt_regs->dx */
1394 pushq %rcx /* pt_regs->cx */
1395 pushq %rax /* pt_regs->ax */
f7bafa2b
DB
1396 /*
1397 * Sanitize registers of values that a speculation attack
1398 * might otherwise want to exploit. The lower registers are
1399 * likely clobbered well before they could be put to use in
1400 * a speculative execution gadget. Interleave XOR with PUSH
1401 * for better uop scheduling:
1402 */
9b6e6a83 1403 pushq %r8 /* pt_regs->r8 */
f7bafa2b 1404 xorq %r8, %r8 /* nospec r8 */
9b6e6a83 1405 pushq %r9 /* pt_regs->r9 */
f7bafa2b 1406 xorq %r9, %r9 /* nospec r9 */
9b6e6a83 1407 pushq %r10 /* pt_regs->r10 */
f7bafa2b 1408 xorq %r10, %r10 /* nospec r10 */
9b6e6a83 1409 pushq %r11 /* pt_regs->r11 */
f7bafa2b 1410 xorq %r11, %r11 /* nospec r11*/
9b6e6a83 1411 pushq %rbx /* pt_regs->rbx */
f7bafa2b 1412 xorl %ebx, %ebx /* nospec rbx*/
9b6e6a83 1413 pushq %rbp /* pt_regs->rbp */
f7bafa2b 1414 xorl %ebp, %ebp /* nospec rbp*/
9b6e6a83 1415 pushq %r12 /* pt_regs->r12 */
f7bafa2b 1416 xorq %r12, %r12 /* nospec r12*/
9b6e6a83 1417 pushq %r13 /* pt_regs->r13 */
f7bafa2b 1418 xorq %r13, %r13 /* nospec r13*/
9b6e6a83 1419 pushq %r14 /* pt_regs->r14 */
f7bafa2b 1420 xorq %r14, %r14 /* nospec r14*/
9b6e6a83 1421 pushq %r15 /* pt_regs->r15 */
f7bafa2b 1422 xorq %r15, %r15 /* nospec r15*/
8c1f7558 1423 UNWIND_HINT_REGS
946c1911 1424 ENCODE_FRAME_POINTER
9b6e6a83
AL
1425
1426 /*
1427 * At this point we no longer need to worry about stack damage
1428 * due to nesting -- we're on the normal thread stack and we're
1429 * done with the NMI stack.
1430 */
1431
1432 movq %rsp, %rdi
1433 movq $-1, %rsi
1434 call do_nmi
1435
45d5a168 1436 /*
9b6e6a83 1437 * Return back to user mode. We must *not* do the normal exit
946c1911 1438 * work, because we don't want to enable interrupts.
45d5a168 1439 */
8a055d7f 1440 jmp swapgs_restore_regs_and_return_to_usermode
45d5a168 1441
9b6e6a83 1442.Lnmi_from_kernel:
3f3c8b8c 1443 /*
0b22930e
AL
1444 * Here's what our stack frame will look like:
1445 * +---------------------------------------------------------+
1446 * | original SS |
1447 * | original Return RSP |
1448 * | original RFLAGS |
1449 * | original CS |
1450 * | original RIP |
1451 * +---------------------------------------------------------+
1452 * | temp storage for rdx |
1453 * +---------------------------------------------------------+
1454 * | "NMI executing" variable |
1455 * +---------------------------------------------------------+
1456 * | iret SS } Copied from "outermost" frame |
1457 * | iret Return RSP } on each loop iteration; overwritten |
1458 * | iret RFLAGS } by a nested NMI to force another |
1459 * | iret CS } iteration if needed. |
1460 * | iret RIP } |
1461 * +---------------------------------------------------------+
1462 * | outermost SS } initialized in first_nmi; |
1463 * | outermost Return RSP } will not be changed before |
1464 * | outermost RFLAGS } NMI processing is done. |
1465 * | outermost CS } Copied to "iret" frame on each |
1466 * | outermost RIP } iteration. |
1467 * +---------------------------------------------------------+
1468 * | pt_regs |
1469 * +---------------------------------------------------------+
1470 *
1471 * The "original" frame is used by hardware. Before re-enabling
1472 * NMIs, we need to be done with it, and we need to leave enough
1473 * space for the asm code here.
1474 *
1475 * We return by executing IRET while RSP points to the "iret" frame.
1476 * That will either return for real or it will loop back into NMI
1477 * processing.
1478 *
1479 * The "outermost" frame is copied to the "iret" frame on each
1480 * iteration of the loop, so each iteration starts with the "iret"
1481 * frame pointing to the final return target.
1482 */
1483
45d5a168 1484 /*
0b22930e
AL
1485 * Determine whether we're a nested NMI.
1486 *
a27507ca
AL
1487 * If we interrupted kernel code between repeat_nmi and
1488 * end_repeat_nmi, then we are a nested NMI. We must not
1489 * modify the "iret" frame because it's being written by
1490 * the outer NMI. That's okay; the outer NMI handler is
1491 * about to about to call do_nmi anyway, so we can just
1492 * resume the outer NMI.
45d5a168 1493 */
a27507ca
AL
1494
1495 movq $repeat_nmi, %rdx
1496 cmpq 8(%rsp), %rdx
1497 ja 1f
1498 movq $end_repeat_nmi, %rdx
1499 cmpq 8(%rsp), %rdx
1500 ja nested_nmi_out
15011:
45d5a168 1502
3f3c8b8c 1503 /*
a27507ca 1504 * Now check "NMI executing". If it's set, then we're nested.
0b22930e
AL
1505 * This will not detect if we interrupted an outer NMI just
1506 * before IRET.
3f3c8b8c 1507 */
4d732138
IM
1508 cmpl $1, -8(%rsp)
1509 je nested_nmi
3f3c8b8c
SR
1510
1511 /*
0b22930e
AL
1512 * Now test if the previous stack was an NMI stack. This covers
1513 * the case where we interrupt an outer NMI after it clears
810bc075
AL
1514 * "NMI executing" but before IRET. We need to be careful, though:
1515 * there is one case in which RSP could point to the NMI stack
1516 * despite there being no NMI active: naughty userspace controls
1517 * RSP at the very beginning of the SYSCALL targets. We can
1518 * pull a fast one on naughty userspace, though: we program
1519 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1520 * if it controls the kernel's RSP. We set DF before we clear
1521 * "NMI executing".
3f3c8b8c 1522 */
0784b364
DV
1523 lea 6*8(%rsp), %rdx
1524 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1525 cmpq %rdx, 4*8(%rsp)
1526 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1527 ja first_nmi
4d732138 1528
0784b364
DV
1529 subq $EXCEPTION_STKSZ, %rdx
1530 cmpq %rdx, 4*8(%rsp)
1531 /* If it is below the NMI stack, it is a normal NMI */
1532 jb first_nmi
810bc075
AL
1533
1534 /* Ah, it is within the NMI stack. */
1535
1536 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1537 jz first_nmi /* RSP was user controlled. */
1538
1539 /* This is a nested NMI. */
0784b364 1540
3f3c8b8c
SR
1541nested_nmi:
1542 /*
0b22930e
AL
1543 * Modify the "iret" frame to point to repeat_nmi, forcing another
1544 * iteration of NMI handling.
3f3c8b8c 1545 */
23a781e9 1546 subq $8, %rsp
4d732138
IM
1547 leaq -10*8(%rsp), %rdx
1548 pushq $__KERNEL_DS
1549 pushq %rdx
131484c8 1550 pushfq
4d732138
IM
1551 pushq $__KERNEL_CS
1552 pushq $repeat_nmi
3f3c8b8c
SR
1553
1554 /* Put stack back */
4d732138 1555 addq $(6*8), %rsp
3f3c8b8c
SR
1556
1557nested_nmi_out:
4d732138 1558 popq %rdx
3f3c8b8c 1559
0b22930e 1560 /* We are returning to kernel mode, so this cannot result in a fault. */
929bacec 1561 iretq
3f3c8b8c
SR
1562
1563first_nmi:
0b22930e 1564 /* Restore rdx. */
4d732138 1565 movq (%rsp), %rdx
62610913 1566
36f1a77b
AL
1567 /* Make room for "NMI executing". */
1568 pushq $0
3f3c8b8c 1569
0b22930e 1570 /* Leave room for the "iret" frame */
4d732138 1571 subq $(5*8), %rsp
28696f43 1572
0b22930e 1573 /* Copy the "original" frame to the "outermost" frame */
3f3c8b8c 1574 .rept 5
4d732138 1575 pushq 11*8(%rsp)
3f3c8b8c 1576 .endr
8c1f7558 1577 UNWIND_HINT_IRET_REGS
62610913 1578
79fb4ad6
SR
1579 /* Everything up to here is safe from nested NMIs */
1580
a97439aa
AL
1581#ifdef CONFIG_DEBUG_ENTRY
1582 /*
1583 * For ease of testing, unmask NMIs right away. Disabled by
1584 * default because IRET is very expensive.
1585 */
1586 pushq $0 /* SS */
1587 pushq %rsp /* RSP (minus 8 because of the previous push) */
1588 addq $8, (%rsp) /* Fix up RSP */
1589 pushfq /* RFLAGS */
1590 pushq $__KERNEL_CS /* CS */
1591 pushq $1f /* RIP */
929bacec 1592 iretq /* continues at repeat_nmi below */
8c1f7558 1593 UNWIND_HINT_IRET_REGS
a97439aa
AL
15941:
1595#endif
1596
0b22930e 1597repeat_nmi:
62610913
JB
1598 /*
1599 * If there was a nested NMI, the first NMI's iret will return
1600 * here. But NMIs are still enabled and we can take another
1601 * nested NMI. The nested NMI checks the interrupted RIP to see
1602 * if it is between repeat_nmi and end_repeat_nmi, and if so
1603 * it will just return, as we are about to repeat an NMI anyway.
1604 * This makes it safe to copy to the stack frame that a nested
1605 * NMI will update.
0b22930e
AL
1606 *
1607 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1608 * we're repeating an NMI, gsbase has the same value that it had on
1609 * the first iteration. paranoid_entry will load the kernel
36f1a77b
AL
1610 * gsbase if needed before we call do_nmi. "NMI executing"
1611 * is zero.
62610913 1612 */
36f1a77b 1613 movq $1, 10*8(%rsp) /* Set "NMI executing". */
3f3c8b8c 1614
62610913 1615 /*
0b22930e
AL
1616 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1617 * here must not modify the "iret" frame while we're writing to
1618 * it or it will end up containing garbage.
62610913 1619 */
4d732138 1620 addq $(10*8), %rsp
3f3c8b8c 1621 .rept 5
4d732138 1622 pushq -6*8(%rsp)
3f3c8b8c 1623 .endr
4d732138 1624 subq $(5*8), %rsp
62610913 1625end_repeat_nmi:
3f3c8b8c
SR
1626
1627 /*
0b22930e
AL
1628 * Everything below this point can be preempted by a nested NMI.
1629 * If this happens, then the inner NMI will change the "iret"
1630 * frame to point back to repeat_nmi.
3f3c8b8c 1631 */
4d732138 1632 pushq $-1 /* ORIG_RAX: no syscall to restart */
76f5df43
DV
1633 ALLOC_PT_GPREGS_ON_STACK
1634
1fd466ef 1635 /*
ebfc453e 1636 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1fd466ef
SR
1637 * as we should not be calling schedule in NMI context.
1638 * Even with normal interrupts enabled. An NMI should not be
1639 * setting NEED_RESCHED or anything that normal interrupts and
1640 * exceptions might do.
1641 */
4d732138 1642 call paranoid_entry
8c1f7558 1643 UNWIND_HINT_REGS
7fbb98c5 1644
ddeb8f21 1645 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
4d732138
IM
1646 movq %rsp, %rdi
1647 movq $-1, %rsi
1648 call do_nmi
7fbb98c5 1649
21e94459 1650 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
8a09317b 1651
4d732138
IM
1652 testl %ebx, %ebx /* swapgs needed? */
1653 jnz nmi_restore
ddeb8f21
AH
1654nmi_swapgs:
1655 SWAPGS_UNSAFE_STACK
1656nmi_restore:
502af0d7 1657 POP_REGS
0b22930e 1658
471ee483
AL
1659 /*
1660 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1661 * at the "iret" frame.
1662 */
1663 addq $6*8, %rsp
28696f43 1664
810bc075
AL
1665 /*
1666 * Clear "NMI executing". Set DF first so that we can easily
1667 * distinguish the remaining code between here and IRET from
929bacec
AL
1668 * the SYSCALL entry and exit paths.
1669 *
1670 * We arguably should just inspect RIP instead, but I (Andy) wrote
1671 * this code when I had the misapprehension that Xen PV supported
1672 * NMIs, and Xen PV would break that approach.
810bc075
AL
1673 */
1674 std
1675 movq $0, 5*8(%rsp) /* clear "NMI executing" */
0b22930e
AL
1676
1677 /*
929bacec
AL
1678 * iretq reads the "iret" frame and exits the NMI stack in a
1679 * single instruction. We are returning to kernel mode, so this
1680 * cannot result in a fault. Similarly, we don't need to worry
1681 * about espfix64 on the way back to kernel mode.
0b22930e 1682 */
929bacec 1683 iretq
ddeb8f21
AH
1684END(nmi)
1685
1686ENTRY(ignore_sysret)
8c1f7558 1687 UNWIND_HINT_EMPTY
4d732138 1688 mov $-ENOSYS, %eax
ddeb8f21 1689 sysret
ddeb8f21 1690END(ignore_sysret)
2deb4be2
AL
1691
1692ENTRY(rewind_stack_do_exit)
8c1f7558 1693 UNWIND_HINT_FUNC
2deb4be2
AL
1694 /* Prevent any naive code from trying to unwind to our caller. */
1695 xorl %ebp, %ebp
1696
1697 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
8c1f7558
JP
1698 leaq -PTREGS_SIZE(%rax), %rsp
1699 UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
2deb4be2
AL
1700
1701 call do_exit
2deb4be2 1702END(rewind_stack_do_exit)