sched/x86: Rewrite the switch_to() code
[linux-block.git] / arch / x86 / entry / entry_64.S
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/x86_64/entry.S
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
4d732138 7 *
1da177e4
LT
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
8b4777a4
AL
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
0bd7b798 12 * A note on terminology:
4d732138
IM
13 * - iret frame: Architecture defined interrupt frame from SS to RIP
14 * at the top of the kernel process stack.
2e91a17b
AK
15 *
16 * Some macro usage:
4d732138
IM
17 * - ENTRY/END: Define functions in the symbol table.
18 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
19 * - idtentry: Define exception entry points.
1da177e4 20 */
1da177e4
LT
21#include <linux/linkage.h>
22#include <asm/segment.h>
1da177e4
LT
23#include <asm/cache.h>
24#include <asm/errno.h>
d36f9479 25#include "calling.h"
e2d5df93 26#include <asm/asm-offsets.h>
1da177e4
LT
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
0341c14d 31#include <asm/page_types.h>
2601e64d 32#include <asm/irqflags.h>
72fe4858 33#include <asm/paravirt.h>
9939ddaf 34#include <asm/percpu.h>
d7abc0fa 35#include <asm/asm.h>
63bcff2a 36#include <asm/smap.h>
3891a04a 37#include <asm/pgtable_types.h>
d7e7528b 38#include <linux/err.h>
1da177e4 39
86a1c34a
RM
40/* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this. */
41#include <linux/elf-em.h>
4d732138
IM
42#define AUDIT_ARCH_X86_64 (EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE)
43#define __AUDIT_ARCH_64BIT 0x80000000
44#define __AUDIT_ARCH_LE 0x40000000
ea714547 45
4d732138
IM
46.code64
47.section .entry.text, "ax"
16444a8a 48
72fe4858 49#ifdef CONFIG_PARAVIRT
2be29982 50ENTRY(native_usergs_sysret64)
72fe4858
GOC
51 swapgs
52 sysretq
b3baaa13 53ENDPROC(native_usergs_sysret64)
72fe4858
GOC
54#endif /* CONFIG_PARAVIRT */
55
f2db9382 56.macro TRACE_IRQS_IRETQ
2601e64d 57#ifdef CONFIG_TRACE_IRQFLAGS
4d732138
IM
58 bt $9, EFLAGS(%rsp) /* interrupts off? */
59 jnc 1f
2601e64d
IM
60 TRACE_IRQS_ON
611:
62#endif
63.endm
64
5963e317
SR
65/*
66 * When dynamic function tracer is enabled it will add a breakpoint
67 * to all locations that it is about to modify, sync CPUs, update
68 * all the code, sync CPUs, then remove the breakpoints. In this time
69 * if lockdep is enabled, it might jump back into the debug handler
70 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
71 *
72 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
73 * make sure the stack pointer does not get reset back to the top
74 * of the debug stack, and instead just reuses the current stack.
75 */
76#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
77
78.macro TRACE_IRQS_OFF_DEBUG
4d732138 79 call debug_stack_set_zero
5963e317 80 TRACE_IRQS_OFF
4d732138 81 call debug_stack_reset
5963e317
SR
82.endm
83
84.macro TRACE_IRQS_ON_DEBUG
4d732138 85 call debug_stack_set_zero
5963e317 86 TRACE_IRQS_ON
4d732138 87 call debug_stack_reset
5963e317
SR
88.endm
89
f2db9382 90.macro TRACE_IRQS_IRETQ_DEBUG
4d732138
IM
91 bt $9, EFLAGS(%rsp) /* interrupts off? */
92 jnc 1f
5963e317
SR
93 TRACE_IRQS_ON_DEBUG
941:
95.endm
96
97#else
4d732138
IM
98# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
99# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
100# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
5963e317
SR
101#endif
102
1da177e4 103/*
4d732138 104 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
1da177e4 105 *
fda57b22
AL
106 * This is the only entry point used for 64-bit system calls. The
107 * hardware interface is reasonably well designed and the register to
108 * argument mapping Linux uses fits well with the registers that are
109 * available when SYSCALL is used.
110 *
111 * SYSCALL instructions can be found inlined in libc implementations as
112 * well as some other programs and libraries. There are also a handful
113 * of SYSCALL instructions in the vDSO used, for example, as a
114 * clock_gettimeofday fallback.
115 *
4d732138 116 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
b87cf63e
DV
117 * then loads new ss, cs, and rip from previously programmed MSRs.
118 * rflags gets masked by a value from another MSR (so CLD and CLAC
119 * are not needed). SYSCALL does not save anything on the stack
120 * and does not change rsp.
121 *
122 * Registers on entry:
1da177e4 123 * rax system call number
b87cf63e
DV
124 * rcx return address
125 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
1da177e4 126 * rdi arg0
1da177e4 127 * rsi arg1
0bd7b798 128 * rdx arg2
b87cf63e 129 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
1da177e4
LT
130 * r8 arg4
131 * r9 arg5
4d732138 132 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
0bd7b798 133 *
1da177e4
LT
134 * Only called from user space.
135 *
7fcb3bc3 136 * When user can change pt_regs->foo always force IRET. That is because
7bf36bbc
AK
137 * it deals with uncanonical addresses better. SYSRET has trouble
138 * with them due to bugs in both AMD and Intel CPUs.
0bd7b798 139 */
1da177e4 140
b2502b41 141ENTRY(entry_SYSCALL_64)
9ed8e7d8
DV
142 /*
143 * Interrupts are off on entry.
144 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
145 * it is too small to ever cause noticeable irq latency.
146 */
72fe4858
GOC
147 SWAPGS_UNSAFE_STACK
148 /*
149 * A hypervisor implementation might want to use a label
150 * after the swapgs, so that it can do the swapgs
151 * for the guest and jump here on syscall.
152 */
b2502b41 153GLOBAL(entry_SYSCALL_64_after_swapgs)
72fe4858 154
4d732138
IM
155 movq %rsp, PER_CPU_VAR(rsp_scratch)
156 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
9ed8e7d8 157
1e423bff
AL
158 TRACE_IRQS_OFF
159
9ed8e7d8 160 /* Construct struct pt_regs on stack */
4d732138
IM
161 pushq $__USER_DS /* pt_regs->ss */
162 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
4d732138
IM
163 pushq %r11 /* pt_regs->flags */
164 pushq $__USER_CS /* pt_regs->cs */
165 pushq %rcx /* pt_regs->ip */
166 pushq %rax /* pt_regs->orig_ax */
167 pushq %rdi /* pt_regs->di */
168 pushq %rsi /* pt_regs->si */
169 pushq %rdx /* pt_regs->dx */
170 pushq %rcx /* pt_regs->cx */
171 pushq $-ENOSYS /* pt_regs->ax */
172 pushq %r8 /* pt_regs->r8 */
173 pushq %r9 /* pt_regs->r9 */
174 pushq %r10 /* pt_regs->r10 */
175 pushq %r11 /* pt_regs->r11 */
176 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
177
1e423bff
AL
178 /*
179 * If we need to do entry work or if we guess we'll need to do
180 * exit work, go straight to the slow path.
181 */
182 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
183 jnz entry_SYSCALL64_slow_path
184
b2502b41 185entry_SYSCALL_64_fastpath:
1e423bff
AL
186 /*
187 * Easy case: enable interrupts and issue the syscall. If the syscall
188 * needs pt_regs, we'll call a stub that disables interrupts again
189 * and jumps to the slow path.
190 */
191 TRACE_IRQS_ON
192 ENABLE_INTERRUPTS(CLBR_NONE)
fca460f9 193#if __SYSCALL_MASK == ~0
4d732138 194 cmpq $__NR_syscall_max, %rax
fca460f9 195#else
4d732138
IM
196 andl $__SYSCALL_MASK, %eax
197 cmpl $__NR_syscall_max, %eax
fca460f9 198#endif
4d732138
IM
199 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
200 movq %r10, %rcx
302f5b26
AL
201
202 /*
203 * This call instruction is handled specially in stub_ptregs_64.
b7765086
AL
204 * It might end up jumping to the slow path. If it jumps, RAX
205 * and all argument registers are clobbered.
302f5b26 206 */
4d732138 207 call *sys_call_table(, %rax, 8)
302f5b26
AL
208.Lentry_SYSCALL_64_after_fastpath_call:
209
4d732138 210 movq %rax, RAX(%rsp)
146b2b09 2111:
b3494a4a
AL
212
213 /*
1e423bff
AL
214 * If we get here, then we know that pt_regs is clean for SYSRET64.
215 * If we see that no exit work is required (which we are required
216 * to check with IRQs off), then we can go straight to SYSRET64.
b3494a4a 217 */
1e423bff
AL
218 DISABLE_INTERRUPTS(CLBR_NONE)
219 TRACE_IRQS_OFF
4d732138 220 testl $_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
1e423bff 221 jnz 1f
b3494a4a 222
1e423bff
AL
223 LOCKDEP_SYS_EXIT
224 TRACE_IRQS_ON /* user mode is traced as IRQs on */
eb2a54c3
AL
225 movq RIP(%rsp), %rcx
226 movq EFLAGS(%rsp), %r11
227 RESTORE_C_REGS_EXCEPT_RCX_R11
4d732138 228 movq RSP(%rsp), %rsp
2be29982 229 USERGS_SYSRET64
1da177e4 230
1e423bff
AL
2311:
232 /*
233 * The fast path looked good when we started, but something changed
234 * along the way and we need to switch to the slow path. Calling
235 * raise(3) will trigger this, for example. IRQs are off.
236 */
29ea1b25
AL
237 TRACE_IRQS_ON
238 ENABLE_INTERRUPTS(CLBR_NONE)
76f5df43 239 SAVE_EXTRA_REGS
4d732138 240 movq %rsp, %rdi
1e423bff
AL
241 call syscall_return_slowpath /* returns with IRQs disabled */
242 jmp return_from_SYSCALL_64
0bd7b798 243
1e423bff
AL
244entry_SYSCALL64_slow_path:
245 /* IRQs are off. */
76f5df43 246 SAVE_EXTRA_REGS
29ea1b25 247 movq %rsp, %rdi
1e423bff
AL
248 call do_syscall_64 /* returns with IRQs disabled */
249
250return_from_SYSCALL_64:
76f5df43 251 RESTORE_EXTRA_REGS
29ea1b25 252 TRACE_IRQS_IRETQ /* we're about to change IF */
fffbb5dc
DV
253
254 /*
255 * Try to use SYSRET instead of IRET if we're returning to
256 * a completely clean 64-bit userspace context.
257 */
4d732138
IM
258 movq RCX(%rsp), %rcx
259 movq RIP(%rsp), %r11
260 cmpq %rcx, %r11 /* RCX == RIP */
261 jne opportunistic_sysret_failed
fffbb5dc
DV
262
263 /*
264 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
265 * in kernel space. This essentially lets the user take over
17be0aec 266 * the kernel, since userspace controls RSP.
fffbb5dc 267 *
17be0aec 268 * If width of "canonical tail" ever becomes variable, this will need
fffbb5dc
DV
269 * to be updated to remain correct on both old and new CPUs.
270 */
271 .ifne __VIRTUAL_MASK_SHIFT - 47
272 .error "virtual address width changed -- SYSRET checks need update"
273 .endif
4d732138 274
17be0aec
DV
275 /* Change top 16 bits to be the sign-extension of 47th bit */
276 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
277 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
4d732138 278
17be0aec
DV
279 /* If this changed %rcx, it was not canonical */
280 cmpq %rcx, %r11
281 jne opportunistic_sysret_failed
fffbb5dc 282
4d732138
IM
283 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
284 jne opportunistic_sysret_failed
fffbb5dc 285
4d732138
IM
286 movq R11(%rsp), %r11
287 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
288 jne opportunistic_sysret_failed
fffbb5dc
DV
289
290 /*
3e035305
BP
291 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
292 * restore RF properly. If the slowpath sets it for whatever reason, we
293 * need to restore it correctly.
294 *
295 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
296 * trap from userspace immediately after SYSRET. This would cause an
297 * infinite loop whenever #DB happens with register state that satisfies
298 * the opportunistic SYSRET conditions. For example, single-stepping
299 * this user code:
fffbb5dc 300 *
4d732138 301 * movq $stuck_here, %rcx
fffbb5dc
DV
302 * pushfq
303 * popq %r11
304 * stuck_here:
305 *
306 * would never get past 'stuck_here'.
307 */
4d732138
IM
308 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
309 jnz opportunistic_sysret_failed
fffbb5dc
DV
310
311 /* nothing to check for RSP */
312
4d732138
IM
313 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
314 jne opportunistic_sysret_failed
fffbb5dc
DV
315
316 /*
4d732138
IM
317 * We win! This label is here just for ease of understanding
318 * perf profiles. Nothing jumps here.
fffbb5dc
DV
319 */
320syscall_return_via_sysret:
17be0aec
DV
321 /* rcx and r11 are already restored (see code above) */
322 RESTORE_C_REGS_EXCEPT_RCX_R11
4d732138 323 movq RSP(%rsp), %rsp
fffbb5dc 324 USERGS_SYSRET64
fffbb5dc
DV
325
326opportunistic_sysret_failed:
327 SWAPGS
328 jmp restore_c_regs_and_iret
b2502b41 329END(entry_SYSCALL_64)
0bd7b798 330
302f5b26
AL
331ENTRY(stub_ptregs_64)
332 /*
333 * Syscalls marked as needing ptregs land here.
b7765086
AL
334 * If we are on the fast path, we need to save the extra regs,
335 * which we achieve by trying again on the slow path. If we are on
336 * the slow path, the extra regs are already saved.
302f5b26
AL
337 *
338 * RAX stores a pointer to the C function implementing the syscall.
b7765086 339 * IRQs are on.
302f5b26
AL
340 */
341 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
342 jne 1f
343
b7765086
AL
344 /*
345 * Called from fast path -- disable IRQs again, pop return address
346 * and jump to slow path
347 */
348 DISABLE_INTERRUPTS(CLBR_NONE)
349 TRACE_IRQS_OFF
302f5b26 350 popq %rax
b7765086 351 jmp entry_SYSCALL64_slow_path
302f5b26
AL
352
3531:
b3830e8d 354 jmp *%rax /* Called from C */
302f5b26
AL
355END(stub_ptregs_64)
356
357.macro ptregs_stub func
358ENTRY(ptregs_\func)
359 leaq \func(%rip), %rax
360 jmp stub_ptregs_64
361END(ptregs_\func)
362.endm
363
364/* Instantiate ptregs_stub for each ptregs-using syscall */
365#define __SYSCALL_64_QUAL_(sym)
366#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
367#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
368#include <asm/syscalls_64.h>
fffbb5dc 369
0100301b
BG
370/*
371 * %rdi: prev task
372 * %rsi: next task
373 */
374ENTRY(__switch_to_asm)
375 /*
376 * Save callee-saved registers
377 * This must match the order in inactive_task_frame
378 */
379 pushq %rbp
380 pushq %rbx
381 pushq %r12
382 pushq %r13
383 pushq %r14
384 pushq %r15
385
386 /* switch stack */
387 movq %rsp, TASK_threadsp(%rdi)
388 movq TASK_threadsp(%rsi), %rsp
389
390#ifdef CONFIG_CC_STACKPROTECTOR
391 movq TASK_stack_canary(%rsi), %rbx
392 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
393#endif
394
395 /* restore callee-saved registers */
396 popq %r15
397 popq %r14
398 popq %r13
399 popq %r12
400 popq %rbx
401 popq %rbp
402
403 jmp __switch_to
404END(__switch_to_asm)
405
1eeb207f
DV
406/*
407 * A newly forked process directly context switches into this address.
408 *
0100301b 409 * rax: prev task we switched from
1eeb207f
DV
410 */
411ENTRY(ret_from_fork)
0100301b 412 movq %rax, %rdi
4d732138 413 call schedule_tail /* rdi: 'prev' task parameter */
1eeb207f 414
4d732138 415 testb $3, CS(%rsp) /* from kernel_thread? */
24d978b7 416 jnz 1f
1eeb207f 417
1e3fbb8a 418 /*
24d978b7
AL
419 * We came from kernel_thread. This code path is quite twisted, and
420 * someone should clean it up.
421 *
422 * copy_thread_tls stashes the function pointer in RBX and the
423 * parameter to be passed in RBP. The called function is permitted
424 * to call do_execve and thereby jump to user mode.
1e3fbb8a 425 */
24d978b7
AL
426 movq RBP(%rsp), %rdi
427 call *RBX(%rsp)
428 movl $0, RAX(%rsp)
1eeb207f 429
4d732138 430 /*
24d978b7
AL
431 * Fall through as though we're exiting a syscall. This makes a
432 * twisted sort of sense if we just called do_execve.
4d732138 433 */
24d978b7
AL
434
4351:
436 movq %rsp, %rdi
437 call syscall_return_slowpath /* returns with IRQs disabled */
438 TRACE_IRQS_ON /* user mode is traced as IRQS on */
439 SWAPGS
440 jmp restore_regs_and_iret
1eeb207f
DV
441END(ret_from_fork)
442
939b7871 443/*
3304c9c3
DV
444 * Build the entry stubs with some assembler magic.
445 * We pack 1 stub into every 8-byte block.
939b7871 446 */
3304c9c3 447 .align 8
939b7871 448ENTRY(irq_entries_start)
3304c9c3
DV
449 vector=FIRST_EXTERNAL_VECTOR
450 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
4d732138 451 pushq $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3
DV
452 vector=vector+1
453 jmp common_interrupt
3304c9c3
DV
454 .align 8
455 .endr
939b7871
PA
456END(irq_entries_start)
457
d99015b1 458/*
1da177e4
LT
459 * Interrupt entry/exit.
460 *
461 * Interrupt entry points save only callee clobbered registers in fast path.
d99015b1
AH
462 *
463 * Entry runs with interrupts off.
464 */
1da177e4 465
722024db 466/* 0(%rsp): ~(interrupt number) */
1da177e4 467 .macro interrupt func
f6f64681 468 cld
ff467594
AL
469 ALLOC_PT_GPREGS_ON_STACK
470 SAVE_C_REGS
471 SAVE_EXTRA_REGS
76f5df43 472
ff467594 473 testb $3, CS(%rsp)
dde74f2e 474 jz 1f
02bc7768
AL
475
476 /*
477 * IRQ from user mode. Switch to kernel gsbase and inform context
478 * tracking that we're in kernel mode.
479 */
f6f64681 480 SWAPGS
f1075053
AL
481
482 /*
483 * We need to tell lockdep that IRQs are off. We can't do this until
484 * we fix gsbase, and we should do it before enter_from_user_mode
485 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
486 * the simplest way to handle it is to just call it twice if
487 * we enter from user mode. There's no reason to optimize this since
488 * TRACE_IRQS_OFF is a no-op if lockdep is off.
489 */
490 TRACE_IRQS_OFF
491
478dc89c 492 CALL_enter_from_user_mode
02bc7768 493
76f5df43 4941:
f6f64681 495 /*
e90e147c 496 * Save previous stack pointer, optionally switch to interrupt stack.
f6f64681
DV
497 * irq_count is used to check if a CPU is already on an interrupt stack
498 * or not. While this is essentially redundant with preempt_count it is
499 * a little cheaper to use a separate counter in the PDA (short of
500 * moving irq_enter into assembly, which would be too much work)
501 */
a586f98e 502 movq %rsp, %rdi
4d732138
IM
503 incl PER_CPU_VAR(irq_count)
504 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
a586f98e 505 pushq %rdi
f6f64681
DV
506 /* We entered an interrupt context - irqs are off: */
507 TRACE_IRQS_OFF
508
a586f98e 509 call \func /* rdi points to pt_regs */
1da177e4
LT
510 .endm
511
722024db
AH
512 /*
513 * The interrupt stubs push (~vector+0x80) onto the stack and
514 * then jump to common_interrupt.
515 */
939b7871
PA
516 .p2align CONFIG_X86_L1_CACHE_SHIFT
517common_interrupt:
ee4eb87b 518 ASM_CLAC
4d732138 519 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
1da177e4 520 interrupt do_IRQ
34061f13 521 /* 0(%rsp): old RSP */
7effaa88 522ret_from_intr:
72fe4858 523 DISABLE_INTERRUPTS(CLBR_NONE)
2601e64d 524 TRACE_IRQS_OFF
4d732138 525 decl PER_CPU_VAR(irq_count)
625dbc3b 526
a2bbe750 527 /* Restore saved previous stack */
ff467594 528 popq %rsp
625dbc3b 529
03335e95 530 testb $3, CS(%rsp)
dde74f2e 531 jz retint_kernel
4d732138 532
02bc7768 533 /* Interrupt came from user space */
02bc7768
AL
534GLOBAL(retint_user)
535 mov %rsp,%rdi
536 call prepare_exit_to_usermode
2601e64d 537 TRACE_IRQS_IRETQ
72fe4858 538 SWAPGS
ff467594 539 jmp restore_regs_and_iret
2601e64d 540
627276cb 541/* Returning to kernel space */
6ba71b76 542retint_kernel:
627276cb
DV
543#ifdef CONFIG_PREEMPT
544 /* Interrupts are off */
545 /* Check if we need preemption */
4d732138 546 bt $9, EFLAGS(%rsp) /* were interrupts off? */
6ba71b76 547 jnc 1f
4d732138 5480: cmpl $0, PER_CPU_VAR(__preempt_count)
36acef25 549 jnz 1f
627276cb 550 call preempt_schedule_irq
36acef25 551 jmp 0b
6ba71b76 5521:
627276cb 553#endif
2601e64d
IM
554 /*
555 * The iretq could re-enable interrupts:
556 */
557 TRACE_IRQS_IRETQ
fffbb5dc
DV
558
559/*
560 * At this label, code paths which return to kernel and to user,
561 * which come from interrupts/exception and from syscalls, merge.
562 */
ee08c6bd 563GLOBAL(restore_regs_and_iret)
ff467594 564 RESTORE_EXTRA_REGS
fffbb5dc 565restore_c_regs_and_iret:
76f5df43
DV
566 RESTORE_C_REGS
567 REMOVE_PT_GPREGS_FROM_STACK 8
7209a75d
AL
568 INTERRUPT_RETURN
569
570ENTRY(native_iret)
3891a04a
PA
571 /*
572 * Are we returning to a stack segment from the LDT? Note: in
573 * 64-bit mode SS:RSP on the exception stack is always valid.
574 */
34273f41 575#ifdef CONFIG_X86_ESPFIX64
4d732138
IM
576 testb $4, (SS-RIP)(%rsp)
577 jnz native_irq_return_ldt
34273f41 578#endif
3891a04a 579
af726f21 580.global native_irq_return_iret
7209a75d 581native_irq_return_iret:
b645af2d
AL
582 /*
583 * This may fault. Non-paranoid faults on return to userspace are
584 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
585 * Double-faults due to espfix64 are handled in do_double_fault.
586 * Other faults here are fatal.
587 */
1da177e4 588 iretq
3701d863 589
34273f41 590#ifdef CONFIG_X86_ESPFIX64
7209a75d 591native_irq_return_ldt:
4d732138
IM
592 pushq %rax
593 pushq %rdi
3891a04a 594 SWAPGS
4d732138
IM
595 movq PER_CPU_VAR(espfix_waddr), %rdi
596 movq %rax, (0*8)(%rdi) /* RAX */
597 movq (2*8)(%rsp), %rax /* RIP */
598 movq %rax, (1*8)(%rdi)
599 movq (3*8)(%rsp), %rax /* CS */
600 movq %rax, (2*8)(%rdi)
601 movq (4*8)(%rsp), %rax /* RFLAGS */
602 movq %rax, (3*8)(%rdi)
603 movq (6*8)(%rsp), %rax /* SS */
604 movq %rax, (5*8)(%rdi)
605 movq (5*8)(%rsp), %rax /* RSP */
606 movq %rax, (4*8)(%rdi)
607 andl $0xffff0000, %eax
608 popq %rdi
609 orq PER_CPU_VAR(espfix_stack), %rax
3891a04a 610 SWAPGS
4d732138
IM
611 movq %rax, %rsp
612 popq %rax
613 jmp native_irq_return_iret
34273f41 614#endif
4b787e0b 615END(common_interrupt)
3891a04a 616
1da177e4
LT
617/*
618 * APIC interrupts.
0bd7b798 619 */
cf910e83 620.macro apicinterrupt3 num sym do_sym
322648d1 621ENTRY(\sym)
ee4eb87b 622 ASM_CLAC
4d732138 623 pushq $~(\num)
39e95433 624.Lcommon_\sym:
322648d1 625 interrupt \do_sym
4d732138 626 jmp ret_from_intr
322648d1
AH
627END(\sym)
628.endm
1da177e4 629
cf910e83
SA
630#ifdef CONFIG_TRACING
631#define trace(sym) trace_##sym
632#define smp_trace(sym) smp_trace_##sym
633
634.macro trace_apicinterrupt num sym
635apicinterrupt3 \num trace(\sym) smp_trace(\sym)
636.endm
637#else
638.macro trace_apicinterrupt num sym do_sym
639.endm
640#endif
641
469f0023
AP
642/* Make sure APIC interrupt handlers end up in the irqentry section: */
643#if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
644# define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
645# define POP_SECTION_IRQENTRY .popsection
646#else
647# define PUSH_SECTION_IRQENTRY
648# define POP_SECTION_IRQENTRY
649#endif
650
cf910e83 651.macro apicinterrupt num sym do_sym
469f0023 652PUSH_SECTION_IRQENTRY
cf910e83
SA
653apicinterrupt3 \num \sym \do_sym
654trace_apicinterrupt \num \sym
469f0023 655POP_SECTION_IRQENTRY
cf910e83
SA
656.endm
657
322648d1 658#ifdef CONFIG_SMP
4d732138
IM
659apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
660apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
322648d1 661#endif
1da177e4 662
03b48632 663#ifdef CONFIG_X86_UV
4d732138 664apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
03b48632 665#endif
4d732138
IM
666
667apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
668apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
89b831ef 669
d78f2664 670#ifdef CONFIG_HAVE_KVM
4d732138
IM
671apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
672apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
d78f2664
YZ
673#endif
674
33e5ff63 675#ifdef CONFIG_X86_MCE_THRESHOLD
4d732138 676apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
33e5ff63
SA
677#endif
678
24fd78a8 679#ifdef CONFIG_X86_MCE_AMD
4d732138 680apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
24fd78a8
AG
681#endif
682
33e5ff63 683#ifdef CONFIG_X86_THERMAL_VECTOR
4d732138 684apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
33e5ff63 685#endif
1812924b 686
322648d1 687#ifdef CONFIG_SMP
4d732138
IM
688apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
689apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
690apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
322648d1 691#endif
1da177e4 692
4d732138
IM
693apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
694apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
0bd7b798 695
e360adbe 696#ifdef CONFIG_IRQ_WORK
4d732138 697apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
241771ef
IM
698#endif
699
1da177e4
LT
700/*
701 * Exception entry points.
0bd7b798 702 */
9b476688 703#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
577ed45e
AL
704
705.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
322648d1 706ENTRY(\sym)
577ed45e
AL
707 /* Sanity check */
708 .if \shift_ist != -1 && \paranoid == 0
709 .error "using shift_ist requires paranoid=1"
710 .endif
711
ee4eb87b 712 ASM_CLAC
b8b1d08b 713 PARAVIRT_ADJUST_EXCEPTION_FRAME
cb5dd2c5
AL
714
715 .ifeq \has_error_code
4d732138 716 pushq $-1 /* ORIG_RAX: no syscall to restart */
cb5dd2c5
AL
717 .endif
718
76f5df43 719 ALLOC_PT_GPREGS_ON_STACK
cb5dd2c5
AL
720
721 .if \paranoid
48e08d0f 722 .if \paranoid == 1
4d732138
IM
723 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
724 jnz 1f
48e08d0f 725 .endif
4d732138 726 call paranoid_entry
cb5dd2c5 727 .else
4d732138 728 call error_entry
cb5dd2c5 729 .endif
ebfc453e 730 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
cb5dd2c5 731
cb5dd2c5 732 .if \paranoid
577ed45e 733 .if \shift_ist != -1
4d732138 734 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
577ed45e 735 .else
b8b1d08b 736 TRACE_IRQS_OFF
cb5dd2c5 737 .endif
577ed45e 738 .endif
cb5dd2c5 739
4d732138 740 movq %rsp, %rdi /* pt_regs pointer */
cb5dd2c5
AL
741
742 .if \has_error_code
4d732138
IM
743 movq ORIG_RAX(%rsp), %rsi /* get error code */
744 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
cb5dd2c5 745 .else
4d732138 746 xorl %esi, %esi /* no error code */
cb5dd2c5
AL
747 .endif
748
577ed45e 749 .if \shift_ist != -1
4d732138 750 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
751 .endif
752
4d732138 753 call \do_sym
cb5dd2c5 754
577ed45e 755 .if \shift_ist != -1
4d732138 756 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
757 .endif
758
ebfc453e 759 /* these procedures expect "no swapgs" flag in ebx */
cb5dd2c5 760 .if \paranoid
4d732138 761 jmp paranoid_exit
cb5dd2c5 762 .else
4d732138 763 jmp error_exit
cb5dd2c5
AL
764 .endif
765
48e08d0f 766 .if \paranoid == 1
48e08d0f
AL
767 /*
768 * Paranoid entry from userspace. Switch stacks and treat it
769 * as a normal entry. This means that paranoid handlers
770 * run in real process context if user_mode(regs).
771 */
7721:
4d732138 773 call error_entry
48e08d0f 774
48e08d0f 775
4d732138
IM
776 movq %rsp, %rdi /* pt_regs pointer */
777 call sync_regs
778 movq %rax, %rsp /* switch stack */
48e08d0f 779
4d732138 780 movq %rsp, %rdi /* pt_regs pointer */
48e08d0f
AL
781
782 .if \has_error_code
4d732138
IM
783 movq ORIG_RAX(%rsp), %rsi /* get error code */
784 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
48e08d0f 785 .else
4d732138 786 xorl %esi, %esi /* no error code */
48e08d0f
AL
787 .endif
788
4d732138 789 call \do_sym
48e08d0f 790
4d732138 791 jmp error_exit /* %ebx: no swapgs flag */
48e08d0f 792 .endif
ddeb8f21 793END(\sym)
322648d1 794.endm
b8b1d08b 795
25c74b10 796#ifdef CONFIG_TRACING
cb5dd2c5
AL
797.macro trace_idtentry sym do_sym has_error_code:req
798idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
799idtentry \sym \do_sym has_error_code=\has_error_code
25c74b10
SA
800.endm
801#else
cb5dd2c5
AL
802.macro trace_idtentry sym do_sym has_error_code:req
803idtentry \sym \do_sym has_error_code=\has_error_code
25c74b10
SA
804.endm
805#endif
806
4d732138
IM
807idtentry divide_error do_divide_error has_error_code=0
808idtentry overflow do_overflow has_error_code=0
809idtentry bounds do_bounds has_error_code=0
810idtentry invalid_op do_invalid_op has_error_code=0
811idtentry device_not_available do_device_not_available has_error_code=0
812idtentry double_fault do_double_fault has_error_code=1 paranoid=2
813idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
814idtentry invalid_TSS do_invalid_TSS has_error_code=1
815idtentry segment_not_present do_segment_not_present has_error_code=1
816idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
817idtentry coprocessor_error do_coprocessor_error has_error_code=0
818idtentry alignment_check do_alignment_check has_error_code=1
819idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
820
821
822 /*
823 * Reload gs selector with exception handling
824 * edi: new selector
825 */
9f9d489a 826ENTRY(native_load_gs_index)
131484c8 827 pushfq
b8aa287f 828 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
9f1e87ea 829 SWAPGS
42c748bb 830.Lgs_change:
4d732138 831 movl %edi, %gs
96e5d28a 8322: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
72fe4858 833 SWAPGS
131484c8 834 popfq
9f1e87ea 835 ret
6efdcfaf 836END(native_load_gs_index)
0bd7b798 837
42c748bb 838 _ASM_EXTABLE(.Lgs_change, bad_gs)
4d732138 839 .section .fixup, "ax"
1da177e4 840 /* running with kernelgs */
0bd7b798 841bad_gs:
4d732138 842 SWAPGS /* switch back to user gs */
b038c842
AL
843.macro ZAP_GS
844 /* This can't be a string because the preprocessor needs to see it. */
845 movl $__USER_DS, %eax
846 movl %eax, %gs
847.endm
848 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
4d732138
IM
849 xorl %eax, %eax
850 movl %eax, %gs
851 jmp 2b
9f1e87ea 852 .previous
0bd7b798 853
2699500b 854/* Call softirq on interrupt stack. Interrupts are off. */
7d65f4a6 855ENTRY(do_softirq_own_stack)
4d732138
IM
856 pushq %rbp
857 mov %rsp, %rbp
858 incl PER_CPU_VAR(irq_count)
859 cmove PER_CPU_VAR(irq_stack_ptr), %rsp
860 push %rbp /* frame pointer backlink */
861 call __do_softirq
2699500b 862 leaveq
4d732138 863 decl PER_CPU_VAR(irq_count)
ed6b676c 864 ret
7d65f4a6 865END(do_softirq_own_stack)
75154f40 866
3d75e1b8 867#ifdef CONFIG_XEN
cb5dd2c5 868idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
3d75e1b8
JF
869
870/*
9f1e87ea
CG
871 * A note on the "critical region" in our callback handler.
872 * We want to avoid stacking callback handlers due to events occurring
873 * during handling of the last event. To do this, we keep events disabled
874 * until we've done all processing. HOWEVER, we must enable events before
875 * popping the stack frame (can't be done atomically) and so it would still
876 * be possible to get enough handler activations to overflow the stack.
877 * Although unlikely, bugs of that kind are hard to track down, so we'd
878 * like to avoid the possibility.
879 * So, on entry to the handler we detect whether we interrupted an
880 * existing activation in its critical region -- if so, we pop the current
881 * activation and restart the handler using the previous one.
882 */
4d732138
IM
883ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
884
9f1e87ea
CG
885/*
886 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
887 * see the correct pointer to the pt_regs
888 */
4d732138
IM
889 movq %rdi, %rsp /* we don't return, adjust the stack frame */
89011: incl PER_CPU_VAR(irq_count)
891 movq %rsp, %rbp
892 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
893 pushq %rbp /* frame pointer backlink */
894 call xen_evtchn_do_upcall
895 popq %rsp
896 decl PER_CPU_VAR(irq_count)
fdfd811d 897#ifndef CONFIG_PREEMPT
4d732138 898 call xen_maybe_preempt_hcall
fdfd811d 899#endif
4d732138 900 jmp error_exit
371c394a 901END(xen_do_hypervisor_callback)
3d75e1b8
JF
902
903/*
9f1e87ea
CG
904 * Hypervisor uses this for application faults while it executes.
905 * We get here for two reasons:
906 * 1. Fault while reloading DS, ES, FS or GS
907 * 2. Fault while executing IRET
908 * Category 1 we do not need to fix up as Xen has already reloaded all segment
909 * registers that could be reloaded and zeroed the others.
910 * Category 2 we fix up by killing the current process. We cannot use the
911 * normal Linux return path in this case because if we use the IRET hypercall
912 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
913 * We distinguish between categories by comparing each saved segment register
914 * with its current contents: any discrepancy means we in category 1.
915 */
3d75e1b8 916ENTRY(xen_failsafe_callback)
4d732138
IM
917 movl %ds, %ecx
918 cmpw %cx, 0x10(%rsp)
919 jne 1f
920 movl %es, %ecx
921 cmpw %cx, 0x18(%rsp)
922 jne 1f
923 movl %fs, %ecx
924 cmpw %cx, 0x20(%rsp)
925 jne 1f
926 movl %gs, %ecx
927 cmpw %cx, 0x28(%rsp)
928 jne 1f
3d75e1b8 929 /* All segments match their saved values => Category 2 (Bad IRET). */
4d732138
IM
930 movq (%rsp), %rcx
931 movq 8(%rsp), %r11
932 addq $0x30, %rsp
933 pushq $0 /* RIP */
934 pushq %r11
935 pushq %rcx
936 jmp general_protection
3d75e1b8 9371: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
4d732138
IM
938 movq (%rsp), %rcx
939 movq 8(%rsp), %r11
940 addq $0x30, %rsp
941 pushq $-1 /* orig_ax = -1 => not a system call */
76f5df43
DV
942 ALLOC_PT_GPREGS_ON_STACK
943 SAVE_C_REGS
944 SAVE_EXTRA_REGS
4d732138 945 jmp error_exit
3d75e1b8
JF
946END(xen_failsafe_callback)
947
cf910e83 948apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
38e20b07
SY
949 xen_hvm_callback_vector xen_evtchn_do_upcall
950
3d75e1b8 951#endif /* CONFIG_XEN */
ddeb8f21 952
bc2b0331 953#if IS_ENABLED(CONFIG_HYPERV)
cf910e83 954apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
bc2b0331
S
955 hyperv_callback_vector hyperv_vector_handler
956#endif /* CONFIG_HYPERV */
957
4d732138
IM
958idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
959idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
960idtentry stack_segment do_stack_segment has_error_code=1
961
6cac5a92 962#ifdef CONFIG_XEN
4d732138
IM
963idtentry xen_debug do_debug has_error_code=0
964idtentry xen_int3 do_int3 has_error_code=0
965idtentry xen_stack_segment do_stack_segment has_error_code=1
6cac5a92 966#endif
4d732138
IM
967
968idtentry general_protection do_general_protection has_error_code=1
969trace_idtentry page_fault do_page_fault has_error_code=1
970
631bc487 971#ifdef CONFIG_KVM_GUEST
4d732138 972idtentry async_page_fault do_async_page_fault has_error_code=1
631bc487 973#endif
4d732138 974
ddeb8f21 975#ifdef CONFIG_X86_MCE
4d732138 976idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
ddeb8f21
AH
977#endif
978
ebfc453e
DV
979/*
980 * Save all registers in pt_regs, and switch gs if needed.
981 * Use slow, but surefire "are we in kernel?" check.
982 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
983 */
984ENTRY(paranoid_entry)
1eeb207f
DV
985 cld
986 SAVE_C_REGS 8
987 SAVE_EXTRA_REGS 8
4d732138
IM
988 movl $1, %ebx
989 movl $MSR_GS_BASE, %ecx
1eeb207f 990 rdmsr
4d732138
IM
991 testl %edx, %edx
992 js 1f /* negative -> in kernel */
1eeb207f 993 SWAPGS
4d732138 994 xorl %ebx, %ebx
1eeb207f 9951: ret
ebfc453e 996END(paranoid_entry)
ddeb8f21 997
ebfc453e
DV
998/*
999 * "Paranoid" exit path from exception stack. This is invoked
1000 * only on return from non-NMI IST interrupts that came
1001 * from kernel space.
1002 *
1003 * We may be returning to very strange contexts (e.g. very early
1004 * in syscall entry), so checking for preemption here would
1005 * be complicated. Fortunately, we there's no good reason
1006 * to try to handle preemption here.
4d732138
IM
1007 *
1008 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
ebfc453e 1009 */
ddeb8f21 1010ENTRY(paranoid_exit)
ddeb8f21 1011 DISABLE_INTERRUPTS(CLBR_NONE)
5963e317 1012 TRACE_IRQS_OFF_DEBUG
4d732138
IM
1013 testl %ebx, %ebx /* swapgs needed? */
1014 jnz paranoid_exit_no_swapgs
f2db9382 1015 TRACE_IRQS_IRETQ
ddeb8f21 1016 SWAPGS_UNSAFE_STACK
4d732138 1017 jmp paranoid_exit_restore
0d550836 1018paranoid_exit_no_swapgs:
f2db9382 1019 TRACE_IRQS_IRETQ_DEBUG
0d550836 1020paranoid_exit_restore:
76f5df43
DV
1021 RESTORE_EXTRA_REGS
1022 RESTORE_C_REGS
1023 REMOVE_PT_GPREGS_FROM_STACK 8
48e08d0f 1024 INTERRUPT_RETURN
ddeb8f21
AH
1025END(paranoid_exit)
1026
1027/*
ebfc453e 1028 * Save all registers in pt_regs, and switch gs if needed.
539f5113 1029 * Return: EBX=0: came from user mode; EBX=1: otherwise
ddeb8f21
AH
1030 */
1031ENTRY(error_entry)
ddeb8f21 1032 cld
76f5df43
DV
1033 SAVE_C_REGS 8
1034 SAVE_EXTRA_REGS 8
4d732138 1035 xorl %ebx, %ebx
03335e95 1036 testb $3, CS+8(%rsp)
cb6f64ed 1037 jz .Lerror_kernelspace
539f5113 1038
cb6f64ed
AL
1039.Lerror_entry_from_usermode_swapgs:
1040 /*
1041 * We entered from user mode or we're pretending to have entered
1042 * from user mode due to an IRET fault.
1043 */
ddeb8f21 1044 SWAPGS
539f5113 1045
cb6f64ed 1046.Lerror_entry_from_usermode_after_swapgs:
f1075053
AL
1047 /*
1048 * We need to tell lockdep that IRQs are off. We can't do this until
1049 * we fix gsbase, and we should do it before enter_from_user_mode
1050 * (which can take locks).
1051 */
1052 TRACE_IRQS_OFF
478dc89c 1053 CALL_enter_from_user_mode
f1075053 1054 ret
02bc7768 1055
cb6f64ed 1056.Lerror_entry_done:
ddeb8f21
AH
1057 TRACE_IRQS_OFF
1058 ret
ddeb8f21 1059
ebfc453e
DV
1060 /*
1061 * There are two places in the kernel that can potentially fault with
1062 * usergs. Handle them here. B stepping K8s sometimes report a
1063 * truncated RIP for IRET exceptions returning to compat mode. Check
1064 * for these here too.
1065 */
cb6f64ed 1066.Lerror_kernelspace:
4d732138
IM
1067 incl %ebx
1068 leaq native_irq_return_iret(%rip), %rcx
1069 cmpq %rcx, RIP+8(%rsp)
cb6f64ed 1070 je .Lerror_bad_iret
4d732138
IM
1071 movl %ecx, %eax /* zero extend */
1072 cmpq %rax, RIP+8(%rsp)
cb6f64ed 1073 je .Lbstep_iret
42c748bb 1074 cmpq $.Lgs_change, RIP+8(%rsp)
cb6f64ed 1075 jne .Lerror_entry_done
539f5113
AL
1076
1077 /*
42c748bb 1078 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
539f5113 1079 * gsbase and proceed. We'll fix up the exception and land in
42c748bb 1080 * .Lgs_change's error handler with kernel gsbase.
539f5113 1081 */
cb6f64ed 1082 jmp .Lerror_entry_from_usermode_swapgs
ae24ffe5 1083
cb6f64ed 1084.Lbstep_iret:
ae24ffe5 1085 /* Fix truncated RIP */
4d732138 1086 movq %rcx, RIP+8(%rsp)
b645af2d
AL
1087 /* fall through */
1088
cb6f64ed 1089.Lerror_bad_iret:
539f5113
AL
1090 /*
1091 * We came from an IRET to user mode, so we have user gsbase.
1092 * Switch to kernel gsbase:
1093 */
b645af2d 1094 SWAPGS
539f5113
AL
1095
1096 /*
1097 * Pretend that the exception came from user mode: set up pt_regs
1098 * as if we faulted immediately after IRET and clear EBX so that
1099 * error_exit knows that we will be returning to user mode.
1100 */
4d732138
IM
1101 mov %rsp, %rdi
1102 call fixup_bad_iret
1103 mov %rax, %rsp
539f5113 1104 decl %ebx
cb6f64ed 1105 jmp .Lerror_entry_from_usermode_after_swapgs
ddeb8f21
AH
1106END(error_entry)
1107
1108
539f5113
AL
1109/*
1110 * On entry, EBS is a "return to kernel mode" flag:
1111 * 1: already in kernel mode, don't need SWAPGS
1112 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1113 */
ddeb8f21 1114ENTRY(error_exit)
4d732138 1115 movl %ebx, %eax
ddeb8f21
AH
1116 DISABLE_INTERRUPTS(CLBR_NONE)
1117 TRACE_IRQS_OFF
4d732138
IM
1118 testl %eax, %eax
1119 jnz retint_kernel
1120 jmp retint_user
ddeb8f21
AH
1121END(error_exit)
1122
0784b364 1123/* Runs on exception stack */
ddeb8f21 1124ENTRY(nmi)
fc57a7c6
AL
1125 /*
1126 * Fix up the exception frame if we're on Xen.
1127 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
1128 * one value to the stack on native, so it may clobber the rdx
1129 * scratch slot, but it won't clobber any of the important
1130 * slots past it.
1131 *
1132 * Xen is a different story, because the Xen frame itself overlaps
1133 * the "NMI executing" variable.
1134 */
ddeb8f21 1135 PARAVIRT_ADJUST_EXCEPTION_FRAME
fc57a7c6 1136
3f3c8b8c
SR
1137 /*
1138 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1139 * the iretq it performs will take us out of NMI context.
1140 * This means that we can have nested NMIs where the next
1141 * NMI is using the top of the stack of the previous NMI. We
1142 * can't let it execute because the nested NMI will corrupt the
1143 * stack of the previous NMI. NMI handlers are not re-entrant
1144 * anyway.
1145 *
1146 * To handle this case we do the following:
1147 * Check the a special location on the stack that contains
1148 * a variable that is set when NMIs are executing.
1149 * The interrupted task's stack is also checked to see if it
1150 * is an NMI stack.
1151 * If the variable is not set and the stack is not the NMI
1152 * stack then:
1153 * o Set the special variable on the stack
0b22930e
AL
1154 * o Copy the interrupt frame into an "outermost" location on the
1155 * stack
1156 * o Copy the interrupt frame into an "iret" location on the stack
3f3c8b8c
SR
1157 * o Continue processing the NMI
1158 * If the variable is set or the previous stack is the NMI stack:
0b22930e 1159 * o Modify the "iret" location to jump to the repeat_nmi
3f3c8b8c
SR
1160 * o return back to the first NMI
1161 *
1162 * Now on exit of the first NMI, we first clear the stack variable
1163 * The NMI stack will tell any nested NMIs at that point that it is
1164 * nested. Then we pop the stack normally with iret, and if there was
1165 * a nested NMI that updated the copy interrupt stack frame, a
1166 * jump will be made to the repeat_nmi code that will handle the second
1167 * NMI.
9b6e6a83
AL
1168 *
1169 * However, espfix prevents us from directly returning to userspace
1170 * with a single IRET instruction. Similarly, IRET to user mode
1171 * can fault. We therefore handle NMIs from user space like
1172 * other IST entries.
3f3c8b8c
SR
1173 */
1174
146b2b09 1175 /* Use %rdx as our temp variable throughout */
4d732138 1176 pushq %rdx
3f3c8b8c 1177
9b6e6a83
AL
1178 testb $3, CS-RIP+8(%rsp)
1179 jz .Lnmi_from_kernel
1180
1181 /*
1182 * NMI from user mode. We need to run on the thread stack, but we
1183 * can't go through the normal entry paths: NMIs are masked, and
1184 * we don't want to enable interrupts, because then we'll end
1185 * up in an awkward situation in which IRQs are on but NMIs
1186 * are off.
83c133cf
AL
1187 *
1188 * We also must not push anything to the stack before switching
1189 * stacks lest we corrupt the "NMI executing" variable.
9b6e6a83
AL
1190 */
1191
83c133cf 1192 SWAPGS_UNSAFE_STACK
9b6e6a83
AL
1193 cld
1194 movq %rsp, %rdx
1195 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1196 pushq 5*8(%rdx) /* pt_regs->ss */
1197 pushq 4*8(%rdx) /* pt_regs->rsp */
1198 pushq 3*8(%rdx) /* pt_regs->flags */
1199 pushq 2*8(%rdx) /* pt_regs->cs */
1200 pushq 1*8(%rdx) /* pt_regs->rip */
1201 pushq $-1 /* pt_regs->orig_ax */
1202 pushq %rdi /* pt_regs->di */
1203 pushq %rsi /* pt_regs->si */
1204 pushq (%rdx) /* pt_regs->dx */
1205 pushq %rcx /* pt_regs->cx */
1206 pushq %rax /* pt_regs->ax */
1207 pushq %r8 /* pt_regs->r8 */
1208 pushq %r9 /* pt_regs->r9 */
1209 pushq %r10 /* pt_regs->r10 */
1210 pushq %r11 /* pt_regs->r11 */
1211 pushq %rbx /* pt_regs->rbx */
1212 pushq %rbp /* pt_regs->rbp */
1213 pushq %r12 /* pt_regs->r12 */
1214 pushq %r13 /* pt_regs->r13 */
1215 pushq %r14 /* pt_regs->r14 */
1216 pushq %r15 /* pt_regs->r15 */
1217
1218 /*
1219 * At this point we no longer need to worry about stack damage
1220 * due to nesting -- we're on the normal thread stack and we're
1221 * done with the NMI stack.
1222 */
1223
1224 movq %rsp, %rdi
1225 movq $-1, %rsi
1226 call do_nmi
1227
45d5a168 1228 /*
9b6e6a83
AL
1229 * Return back to user mode. We must *not* do the normal exit
1230 * work, because we don't want to enable interrupts. Fortunately,
1231 * do_nmi doesn't modify pt_regs.
45d5a168 1232 */
9b6e6a83
AL
1233 SWAPGS
1234 jmp restore_c_regs_and_iret
45d5a168 1235
9b6e6a83 1236.Lnmi_from_kernel:
3f3c8b8c 1237 /*
0b22930e
AL
1238 * Here's what our stack frame will look like:
1239 * +---------------------------------------------------------+
1240 * | original SS |
1241 * | original Return RSP |
1242 * | original RFLAGS |
1243 * | original CS |
1244 * | original RIP |
1245 * +---------------------------------------------------------+
1246 * | temp storage for rdx |
1247 * +---------------------------------------------------------+
1248 * | "NMI executing" variable |
1249 * +---------------------------------------------------------+
1250 * | iret SS } Copied from "outermost" frame |
1251 * | iret Return RSP } on each loop iteration; overwritten |
1252 * | iret RFLAGS } by a nested NMI to force another |
1253 * | iret CS } iteration if needed. |
1254 * | iret RIP } |
1255 * +---------------------------------------------------------+
1256 * | outermost SS } initialized in first_nmi; |
1257 * | outermost Return RSP } will not be changed before |
1258 * | outermost RFLAGS } NMI processing is done. |
1259 * | outermost CS } Copied to "iret" frame on each |
1260 * | outermost RIP } iteration. |
1261 * +---------------------------------------------------------+
1262 * | pt_regs |
1263 * +---------------------------------------------------------+
1264 *
1265 * The "original" frame is used by hardware. Before re-enabling
1266 * NMIs, we need to be done with it, and we need to leave enough
1267 * space for the asm code here.
1268 *
1269 * We return by executing IRET while RSP points to the "iret" frame.
1270 * That will either return for real or it will loop back into NMI
1271 * processing.
1272 *
1273 * The "outermost" frame is copied to the "iret" frame on each
1274 * iteration of the loop, so each iteration starts with the "iret"
1275 * frame pointing to the final return target.
1276 */
1277
45d5a168 1278 /*
0b22930e
AL
1279 * Determine whether we're a nested NMI.
1280 *
a27507ca
AL
1281 * If we interrupted kernel code between repeat_nmi and
1282 * end_repeat_nmi, then we are a nested NMI. We must not
1283 * modify the "iret" frame because it's being written by
1284 * the outer NMI. That's okay; the outer NMI handler is
1285 * about to about to call do_nmi anyway, so we can just
1286 * resume the outer NMI.
45d5a168 1287 */
a27507ca
AL
1288
1289 movq $repeat_nmi, %rdx
1290 cmpq 8(%rsp), %rdx
1291 ja 1f
1292 movq $end_repeat_nmi, %rdx
1293 cmpq 8(%rsp), %rdx
1294 ja nested_nmi_out
12951:
45d5a168 1296
3f3c8b8c 1297 /*
a27507ca 1298 * Now check "NMI executing". If it's set, then we're nested.
0b22930e
AL
1299 * This will not detect if we interrupted an outer NMI just
1300 * before IRET.
3f3c8b8c 1301 */
4d732138
IM
1302 cmpl $1, -8(%rsp)
1303 je nested_nmi
3f3c8b8c
SR
1304
1305 /*
0b22930e
AL
1306 * Now test if the previous stack was an NMI stack. This covers
1307 * the case where we interrupt an outer NMI after it clears
810bc075
AL
1308 * "NMI executing" but before IRET. We need to be careful, though:
1309 * there is one case in which RSP could point to the NMI stack
1310 * despite there being no NMI active: naughty userspace controls
1311 * RSP at the very beginning of the SYSCALL targets. We can
1312 * pull a fast one on naughty userspace, though: we program
1313 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1314 * if it controls the kernel's RSP. We set DF before we clear
1315 * "NMI executing".
3f3c8b8c 1316 */
0784b364
DV
1317 lea 6*8(%rsp), %rdx
1318 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1319 cmpq %rdx, 4*8(%rsp)
1320 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1321 ja first_nmi
4d732138 1322
0784b364
DV
1323 subq $EXCEPTION_STKSZ, %rdx
1324 cmpq %rdx, 4*8(%rsp)
1325 /* If it is below the NMI stack, it is a normal NMI */
1326 jb first_nmi
810bc075
AL
1327
1328 /* Ah, it is within the NMI stack. */
1329
1330 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1331 jz first_nmi /* RSP was user controlled. */
1332
1333 /* This is a nested NMI. */
0784b364 1334
3f3c8b8c
SR
1335nested_nmi:
1336 /*
0b22930e
AL
1337 * Modify the "iret" frame to point to repeat_nmi, forcing another
1338 * iteration of NMI handling.
3f3c8b8c 1339 */
23a781e9 1340 subq $8, %rsp
4d732138
IM
1341 leaq -10*8(%rsp), %rdx
1342 pushq $__KERNEL_DS
1343 pushq %rdx
131484c8 1344 pushfq
4d732138
IM
1345 pushq $__KERNEL_CS
1346 pushq $repeat_nmi
3f3c8b8c
SR
1347
1348 /* Put stack back */
4d732138 1349 addq $(6*8), %rsp
3f3c8b8c
SR
1350
1351nested_nmi_out:
4d732138 1352 popq %rdx
3f3c8b8c 1353
0b22930e 1354 /* We are returning to kernel mode, so this cannot result in a fault. */
3f3c8b8c
SR
1355 INTERRUPT_RETURN
1356
1357first_nmi:
0b22930e 1358 /* Restore rdx. */
4d732138 1359 movq (%rsp), %rdx
62610913 1360
36f1a77b
AL
1361 /* Make room for "NMI executing". */
1362 pushq $0
3f3c8b8c 1363
0b22930e 1364 /* Leave room for the "iret" frame */
4d732138 1365 subq $(5*8), %rsp
28696f43 1366
0b22930e 1367 /* Copy the "original" frame to the "outermost" frame */
3f3c8b8c 1368 .rept 5
4d732138 1369 pushq 11*8(%rsp)
3f3c8b8c 1370 .endr
62610913 1371
79fb4ad6
SR
1372 /* Everything up to here is safe from nested NMIs */
1373
a97439aa
AL
1374#ifdef CONFIG_DEBUG_ENTRY
1375 /*
1376 * For ease of testing, unmask NMIs right away. Disabled by
1377 * default because IRET is very expensive.
1378 */
1379 pushq $0 /* SS */
1380 pushq %rsp /* RSP (minus 8 because of the previous push) */
1381 addq $8, (%rsp) /* Fix up RSP */
1382 pushfq /* RFLAGS */
1383 pushq $__KERNEL_CS /* CS */
1384 pushq $1f /* RIP */
1385 INTERRUPT_RETURN /* continues at repeat_nmi below */
13861:
1387#endif
1388
0b22930e 1389repeat_nmi:
62610913
JB
1390 /*
1391 * If there was a nested NMI, the first NMI's iret will return
1392 * here. But NMIs are still enabled and we can take another
1393 * nested NMI. The nested NMI checks the interrupted RIP to see
1394 * if it is between repeat_nmi and end_repeat_nmi, and if so
1395 * it will just return, as we are about to repeat an NMI anyway.
1396 * This makes it safe to copy to the stack frame that a nested
1397 * NMI will update.
0b22930e
AL
1398 *
1399 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1400 * we're repeating an NMI, gsbase has the same value that it had on
1401 * the first iteration. paranoid_entry will load the kernel
36f1a77b
AL
1402 * gsbase if needed before we call do_nmi. "NMI executing"
1403 * is zero.
62610913 1404 */
36f1a77b 1405 movq $1, 10*8(%rsp) /* Set "NMI executing". */
3f3c8b8c 1406
62610913 1407 /*
0b22930e
AL
1408 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1409 * here must not modify the "iret" frame while we're writing to
1410 * it or it will end up containing garbage.
62610913 1411 */
4d732138 1412 addq $(10*8), %rsp
3f3c8b8c 1413 .rept 5
4d732138 1414 pushq -6*8(%rsp)
3f3c8b8c 1415 .endr
4d732138 1416 subq $(5*8), %rsp
62610913 1417end_repeat_nmi:
3f3c8b8c
SR
1418
1419 /*
0b22930e
AL
1420 * Everything below this point can be preempted by a nested NMI.
1421 * If this happens, then the inner NMI will change the "iret"
1422 * frame to point back to repeat_nmi.
3f3c8b8c 1423 */
4d732138 1424 pushq $-1 /* ORIG_RAX: no syscall to restart */
76f5df43
DV
1425 ALLOC_PT_GPREGS_ON_STACK
1426
1fd466ef 1427 /*
ebfc453e 1428 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1fd466ef
SR
1429 * as we should not be calling schedule in NMI context.
1430 * Even with normal interrupts enabled. An NMI should not be
1431 * setting NEED_RESCHED or anything that normal interrupts and
1432 * exceptions might do.
1433 */
4d732138 1434 call paranoid_entry
7fbb98c5 1435
ddeb8f21 1436 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
4d732138
IM
1437 movq %rsp, %rdi
1438 movq $-1, %rsi
1439 call do_nmi
7fbb98c5 1440
4d732138
IM
1441 testl %ebx, %ebx /* swapgs needed? */
1442 jnz nmi_restore
ddeb8f21
AH
1443nmi_swapgs:
1444 SWAPGS_UNSAFE_STACK
1445nmi_restore:
76f5df43
DV
1446 RESTORE_EXTRA_REGS
1447 RESTORE_C_REGS
0b22930e
AL
1448
1449 /* Point RSP at the "iret" frame. */
76f5df43 1450 REMOVE_PT_GPREGS_FROM_STACK 6*8
28696f43 1451
810bc075
AL
1452 /*
1453 * Clear "NMI executing". Set DF first so that we can easily
1454 * distinguish the remaining code between here and IRET from
1455 * the SYSCALL entry and exit paths. On a native kernel, we
1456 * could just inspect RIP, but, on paravirt kernels,
1457 * INTERRUPT_RETURN can translate into a jump into a
1458 * hypercall page.
1459 */
1460 std
1461 movq $0, 5*8(%rsp) /* clear "NMI executing" */
0b22930e
AL
1462
1463 /*
1464 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1465 * stack in a single instruction. We are returning to kernel
1466 * mode, so this cannot result in a fault.
1467 */
5ca6f70f 1468 INTERRUPT_RETURN
ddeb8f21
AH
1469END(nmi)
1470
1471ENTRY(ignore_sysret)
4d732138 1472 mov $-ENOSYS, %eax
ddeb8f21 1473 sysret
ddeb8f21 1474END(ignore_sysret)
2deb4be2
AL
1475
1476ENTRY(rewind_stack_do_exit)
1477 /* Prevent any naive code from trying to unwind to our caller. */
1478 xorl %ebp, %ebp
1479
1480 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1481 leaq -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%rax), %rsp
1482
1483 call do_exit
14841: jmp 1b
1485END(rewind_stack_do_exit)