x86/entry/32: Move FIXUP_FRAME after pushing %fs in SAVE_ALL
[linux-2.6-block.git] / arch / x86 / entry / entry_32.S
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4 2/*
a49976d1 3 * Copyright (C) 1991,1992 Linus Torvalds
1da177e4 4 *
a49976d1 5 * entry_32.S contains the system-call and low-level fault and trap handling routines.
1da177e4 6 *
39e8701f 7 * Stack layout while running C code:
a49976d1
IM
8 * ptrace needs to have all registers on the stack.
9 * If the order here is changed, it needs to be
10 * updated in fork.c:copy_process(), signal.c:do_signal(),
1da177e4
LT
11 * ptrace.c and ptrace.h
12 *
13 * 0(%esp) - %ebx
14 * 4(%esp) - %ecx
15 * 8(%esp) - %edx
9b47feb7 16 * C(%esp) - %esi
1da177e4
LT
17 * 10(%esp) - %edi
18 * 14(%esp) - %ebp
19 * 18(%esp) - %eax
20 * 1C(%esp) - %ds
21 * 20(%esp) - %es
464d1a78 22 * 24(%esp) - %fs
ccbeed3a
TH
23 * 28(%esp) - %gs saved iff !CONFIG_X86_32_LAZY_GS
24 * 2C(%esp) - orig_eax
25 * 30(%esp) - %eip
26 * 34(%esp) - %cs
27 * 38(%esp) - %eflags
28 * 3C(%esp) - %oldesp
29 * 40(%esp) - %oldss
1da177e4
LT
30 */
31
1da177e4 32#include <linux/linkage.h>
d7e7528b 33#include <linux/err.h>
1da177e4 34#include <asm/thread_info.h>
55f327fa 35#include <asm/irqflags.h>
1da177e4
LT
36#include <asm/errno.h>
37#include <asm/segment.h>
38#include <asm/smp.h>
be44d2aa 39#include <asm/percpu.h>
ab68ed98 40#include <asm/processor-flags.h>
9b7dc567 41#include <asm/irq_vectors.h>
cd4d09ec 42#include <asm/cpufeatures.h>
b4ca46e4 43#include <asm/alternative-asm.h>
6837a54d 44#include <asm/asm.h>
e59d1b0a 45#include <asm/smap.h>
4d516f41 46#include <asm/frame.h>
2641f08b 47#include <asm/nospec-branch.h>
1da177e4 48
afaef01c
AP
49#include "calling.h"
50
ea714547
JO
51 .section .entry.text, "ax"
52
139ec7c4
RR
53/*
54 * We use macros for low-level operations which need to be overridden
55 * for paravirtualization. The following will never clobber any registers:
56 * INTERRUPT_RETURN (aka. "iret")
57 * GET_CR0_INTO_EAX (aka. "movl %cr0, %eax")
d75cd22f 58 * ENABLE_INTERRUPTS_SYSEXIT (aka "sti; sysexit").
139ec7c4
RR
59 *
60 * For DISABLE_INTERRUPTS/ENABLE_INTERRUPTS (aka "cli"/"sti"), you must
61 * specify what registers can be overwritten (CLBR_NONE, CLBR_EAX/EDX/ECX/ANY).
62 * Allowing a register to be clobbered can shrink the paravirt replacement
63 * enough to patch inline, increasing performance.
64 */
65
48593975 66#ifdef CONFIG_PREEMPTION
a49976d1 67# define preempt_stop(clobbers) DISABLE_INTERRUPTS(clobbers); TRACE_IRQS_OFF
1da177e4 68#else
a49976d1 69# define preempt_stop(clobbers)
1da177e4
LT
70#endif
71
55f327fa
IM
72.macro TRACE_IRQS_IRET
73#ifdef CONFIG_TRACE_IRQFLAGS
a49976d1
IM
74 testl $X86_EFLAGS_IF, PT_EFLAGS(%esp) # interrupts off?
75 jz 1f
55f327fa
IM
76 TRACE_IRQS_ON
771:
78#endif
79.endm
80
e464fb9f
JR
81#define PTI_SWITCH_MASK (1 << PAGE_SHIFT)
82
ccbeed3a
TH
83/*
84 * User gs save/restore
85 *
86 * %gs is used for userland TLS and kernel only uses it for stack
87 * canary which is required to be at %gs:20 by gcc. Read the comment
88 * at the top of stackprotector.h for more info.
89 *
90 * Local labels 98 and 99 are used.
91 */
92#ifdef CONFIG_X86_32_LAZY_GS
93
94 /* unfortunately push/pop can't be no-op */
95.macro PUSH_GS
a49976d1 96 pushl $0
ccbeed3a
TH
97.endm
98.macro POP_GS pop=0
a49976d1 99 addl $(4 + \pop), %esp
ccbeed3a
TH
100.endm
101.macro POP_GS_EX
102.endm
103
104 /* all the rest are no-op */
105.macro PTGS_TO_GS
106.endm
107.macro PTGS_TO_GS_EX
108.endm
109.macro GS_TO_REG reg
110.endm
111.macro REG_TO_PTGS reg
112.endm
113.macro SET_KERNEL_GS reg
114.endm
115
116#else /* CONFIG_X86_32_LAZY_GS */
117
118.macro PUSH_GS
a49976d1 119 pushl %gs
ccbeed3a
TH
120.endm
121
122.macro POP_GS pop=0
a49976d1 12398: popl %gs
ccbeed3a 124 .if \pop <> 0
9b47feb7 125 add $\pop, %esp
ccbeed3a
TH
126 .endif
127.endm
128.macro POP_GS_EX
129.pushsection .fixup, "ax"
a49976d1
IM
13099: movl $0, (%esp)
131 jmp 98b
ccbeed3a 132.popsection
a49976d1 133 _ASM_EXTABLE(98b, 99b)
ccbeed3a
TH
134.endm
135
136.macro PTGS_TO_GS
a49976d1 13798: mov PT_GS(%esp), %gs
ccbeed3a
TH
138.endm
139.macro PTGS_TO_GS_EX
140.pushsection .fixup, "ax"
a49976d1
IM
14199: movl $0, PT_GS(%esp)
142 jmp 98b
ccbeed3a 143.popsection
a49976d1 144 _ASM_EXTABLE(98b, 99b)
ccbeed3a
TH
145.endm
146
147.macro GS_TO_REG reg
a49976d1 148 movl %gs, \reg
ccbeed3a
TH
149.endm
150.macro REG_TO_PTGS reg
a49976d1 151 movl \reg, PT_GS(%esp)
ccbeed3a
TH
152.endm
153.macro SET_KERNEL_GS reg
a49976d1
IM
154 movl $(__KERNEL_STACK_CANARY), \reg
155 movl \reg, %gs
ccbeed3a
TH
156.endm
157
a49976d1 158#endif /* CONFIG_X86_32_LAZY_GS */
ccbeed3a 159
e464fb9f
JR
160/* Unconditionally switch to user cr3 */
161.macro SWITCH_TO_USER_CR3 scratch_reg:req
162 ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
163
164 movl %cr3, \scratch_reg
165 orl $PTI_SWITCH_MASK, \scratch_reg
166 movl \scratch_reg, %cr3
167.Lend_\@:
168.endm
169
97193702
JR
170.macro BUG_IF_WRONG_CR3 no_user_check=0
171#ifdef CONFIG_DEBUG_ENTRY
172 ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
173 .if \no_user_check == 0
174 /* coming from usermode? */
81ff2c37 175 testl $USER_SEGMENT_RPL_MASK, PT_CS(%esp)
97193702
JR
176 jz .Lend_\@
177 .endif
178 /* On user-cr3? */
179 movl %cr3, %eax
180 testl $PTI_SWITCH_MASK, %eax
181 jnz .Lend_\@
182 /* From userspace with kernel cr3 - BUG */
183 ud2
184.Lend_\@:
185#endif
186.endm
187
e464fb9f
JR
188/*
189 * Switch to kernel cr3 if not already loaded and return current cr3 in
190 * \scratch_reg
191 */
192.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req
193 ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
194 movl %cr3, \scratch_reg
195 /* Test if we are already on kernel CR3 */
196 testl $PTI_SWITCH_MASK, \scratch_reg
197 jz .Lend_\@
198 andl $(~PTI_SWITCH_MASK), \scratch_reg
199 movl \scratch_reg, %cr3
200 /* Return original CR3 in \scratch_reg */
201 orl $PTI_SWITCH_MASK, \scratch_reg
202.Lend_\@:
203.endm
204
3c88c692
PZ
205#define CS_FROM_ENTRY_STACK (1 << 31)
206#define CS_FROM_USER_CR3 (1 << 30)
207#define CS_FROM_KERNEL (1 << 29)
208
209.macro FIXUP_FRAME
210 /*
211 * The high bits of the CS dword (__csh) are used for CS_FROM_*.
212 * Clear them in case hardware didn't do this for us.
4c4fd55d
AL
213 *
214 * Be careful: we may have nonzero SS base due to ESPFIX.
3c88c692 215 */
82cb8a0b 216 andl $0x0000ffff, 4*4(%esp)
3c88c692
PZ
217
218#ifdef CONFIG_VM86
82cb8a0b 219 testl $X86_EFLAGS_VM, 5*4(%esp)
3c88c692
PZ
220 jnz .Lfrom_usermode_no_fixup_\@
221#endif
82cb8a0b 222 testl $USER_SEGMENT_RPL_MASK, 4*4(%esp)
3c88c692
PZ
223 jnz .Lfrom_usermode_no_fixup_\@
224
82cb8a0b 225 orl $CS_FROM_KERNEL, 4*4(%esp)
3c88c692
PZ
226
227 /*
228 * When we're here from kernel mode; the (exception) stack looks like:
229 *
82cb8a0b
AL
230 * 6*4(%esp) - <previous context>
231 * 5*4(%esp) - flags
232 * 4*4(%esp) - cs
233 * 3*4(%esp) - ip
234 * 2*4(%esp) - orig_eax
235 * 1*4(%esp) - gs / function
236 * 0*4(%esp) - fs
3c88c692
PZ
237 *
238 * Lets build a 5 entry IRET frame after that, such that struct pt_regs
239 * is complete and in particular regs->sp is correct. This gives us
82cb8a0b 240 * the original 6 enties as gap:
3c88c692 241 *
82cb8a0b
AL
242 * 14*4(%esp) - <previous context>
243 * 13*4(%esp) - gap / flags
244 * 12*4(%esp) - gap / cs
245 * 11*4(%esp) - gap / ip
246 * 10*4(%esp) - gap / orig_eax
247 * 9*4(%esp) - gap / gs / function
248 * 8*4(%esp) - gap / fs
249 * 7*4(%esp) - ss
250 * 6*4(%esp) - sp
251 * 5*4(%esp) - flags
252 * 4*4(%esp) - cs
253 * 3*4(%esp) - ip
254 * 2*4(%esp) - orig_eax
255 * 1*4(%esp) - gs / function
256 * 0*4(%esp) - fs
3c88c692
PZ
257 */
258
259 pushl %ss # ss
260 pushl %esp # sp (points at ss)
82cb8a0b
AL
261 addl $7*4, (%esp) # point sp back at the previous context
262 pushl 7*4(%esp) # flags
263 pushl 7*4(%esp) # cs
264 pushl 7*4(%esp) # ip
265 pushl 7*4(%esp) # orig_eax
266 pushl 7*4(%esp) # gs / function
267 pushl 7*4(%esp) # fs
3c88c692
PZ
268.Lfrom_usermode_no_fixup_\@:
269.endm
270
271.macro IRET_FRAME
4c4fd55d
AL
272 /*
273 * We're called with %ds, %es, %fs, and %gs from the interrupted
274 * frame, so we shouldn't use them. Also, we may be in ESPFIX
275 * mode and therefore have a nonzero SS base and an offset ESP,
276 * so any attempt to access the stack needs to use SS. (except for
277 * accesses through %esp, which automatically use SS.)
278 */
3c88c692
PZ
279 testl $CS_FROM_KERNEL, 1*4(%esp)
280 jz .Lfinished_frame_\@
281
282 /*
283 * Reconstruct the 3 entry IRET frame right after the (modified)
284 * regs->sp without lowering %esp in between, such that an NMI in the
285 * middle doesn't scribble our stack.
286 */
287 pushl %eax
288 pushl %ecx
289 movl 5*4(%esp), %eax # (modified) regs->sp
290
291 movl 4*4(%esp), %ecx # flags
4c4fd55d 292 movl %ecx, %ss:-1*4(%eax)
3c88c692
PZ
293
294 movl 3*4(%esp), %ecx # cs
295 andl $0x0000ffff, %ecx
4c4fd55d 296 movl %ecx, %ss:-2*4(%eax)
3c88c692
PZ
297
298 movl 2*4(%esp), %ecx # ip
4c4fd55d 299 movl %ecx, %ss:-3*4(%eax)
3c88c692
PZ
300
301 movl 1*4(%esp), %ecx # eax
4c4fd55d 302 movl %ecx, %ss:-4*4(%eax)
3c88c692
PZ
303
304 popl %ecx
4c4fd55d 305 lea -4*4(%eax), %esp
3c88c692
PZ
306 popl %eax
307.Lfinished_frame_\@:
308.endm
309
e67f1c11 310.macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0
f0d96110 311 cld
e67f1c11 312.if \skip_gs == 0
ccbeed3a 313 PUSH_GS
e67f1c11 314.endif
a49976d1 315 pushl %fs
82cb8a0b 316 FIXUP_FRAME
a49976d1
IM
317 pushl %es
318 pushl %ds
150ac78d 319 pushl \pt_regs_ax
a49976d1
IM
320 pushl %ebp
321 pushl %edi
322 pushl %esi
323 pushl %edx
324 pushl %ecx
325 pushl %ebx
326 movl $(__USER_DS), %edx
327 movl %edx, %ds
328 movl %edx, %es
329 movl $(__KERNEL_PERCPU), %edx
330 movl %edx, %fs
e67f1c11 331.if \skip_gs == 0
ccbeed3a 332 SET_KERNEL_GS %edx
e67f1c11 333.endif
45d7b255
JR
334 /* Switch to kernel stack if necessary */
335.if \switch_stacks > 0
336 SWITCH_TO_KERNEL_STACK
337.endif
f0d96110 338.endm
1da177e4 339
b65bef40 340.macro SAVE_ALL_NMI cr3_reg:req
8b376fae 341 SAVE_ALL
b65bef40 342
97193702
JR
343 BUG_IF_WRONG_CR3
344
b65bef40
JR
345 /*
346 * Now switch the CR3 when PTI is enabled.
347 *
348 * We can enter with either user or kernel cr3, the code will
349 * store the old cr3 in \cr3_reg and switches to the kernel cr3
350 * if necessary.
351 */
352 SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg
353
354.Lend_\@:
8b376fae 355.endm
97193702 356
f0d96110 357.macro RESTORE_INT_REGS
a49976d1
IM
358 popl %ebx
359 popl %ecx
360 popl %edx
361 popl %esi
362 popl %edi
363 popl %ebp
364 popl %eax
f0d96110 365.endm
1da177e4 366
ccbeed3a 367.macro RESTORE_REGS pop=0
f0d96110 368 RESTORE_INT_REGS
a49976d1
IM
3691: popl %ds
3702: popl %es
3713: popl %fs
ccbeed3a 372 POP_GS \pop
40ad2199 373 IRET_FRAME
f0d96110 374.pushsection .fixup, "ax"
a49976d1
IM
3754: movl $0, (%esp)
376 jmp 1b
3775: movl $0, (%esp)
378 jmp 2b
3796: movl $0, (%esp)
380 jmp 3b
f95d47ca 381.popsection
a49976d1
IM
382 _ASM_EXTABLE(1b, 4b)
383 _ASM_EXTABLE(2b, 5b)
384 _ASM_EXTABLE(3b, 6b)
ccbeed3a 385 POP_GS_EX
f0d96110 386.endm
1da177e4 387
b65bef40
JR
388.macro RESTORE_ALL_NMI cr3_reg:req pop=0
389 /*
390 * Now switch the CR3 when PTI is enabled.
391 *
392 * We enter with kernel cr3 and switch the cr3 to the value
393 * stored on \cr3_reg, which is either a user or a kernel cr3.
394 */
395 ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI
396
397 testl $PTI_SWITCH_MASK, \cr3_reg
398 jz .Lswitched_\@
399
400 /* User cr3 in \cr3_reg - write it to hardware cr3 */
401 movl \cr3_reg, %cr3
402
403.Lswitched_\@:
404
97193702
JR
405 BUG_IF_WRONG_CR3
406
8b376fae
JR
407 RESTORE_REGS pop=\pop
408.endm
409
46eabca2
JR
410.macro CHECK_AND_APPLY_ESPFIX
411#ifdef CONFIG_X86_ESPFIX32
412#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + (GDT_ENTRY_ESPFIX_SS * 8)
413
414 ALTERNATIVE "jmp .Lend_\@", "", X86_BUG_ESPFIX
415
416 movl PT_EFLAGS(%esp), %eax # mix EFLAGS, SS and CS
417 /*
418 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we
419 * are returning to the kernel.
420 * See comments in process.c:copy_thread() for details.
421 */
422 movb PT_OLDSS(%esp), %ah
423 movb PT_CS(%esp), %al
424 andl $(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
425 cmpl $((SEGMENT_LDT << 8) | USER_RPL), %eax
426 jne .Lend_\@ # returning to user-space with LDT SS
427
428 /*
429 * Setup and switch to ESPFIX stack
430 *
431 * We're returning to userspace with a 16 bit stack. The CPU will not
432 * restore the high word of ESP for us on executing iret... This is an
433 * "official" bug of all the x86-compatible CPUs, which we can work
434 * around to make dosemu and wine happy. We do this by preloading the
435 * high word of ESP with the high word of the userspace ESP while
436 * compensating for the offset by changing to the ESPFIX segment with
437 * a base address that matches for the difference.
438 */
439 mov %esp, %edx /* load kernel esp */
440 mov PT_OLDESP(%esp), %eax /* load userspace esp */
441 mov %dx, %ax /* eax: new kernel esp */
442 sub %eax, %edx /* offset (low word is 0) */
443 shr $16, %edx
444 mov %dl, GDT_ESPFIX_SS + 4 /* bits 16..23 */
445 mov %dh, GDT_ESPFIX_SS + 7 /* bits 24..31 */
446 pushl $__ESPFIX_SS
447 pushl %eax /* new kernel esp */
448 /*
449 * Disable interrupts, but do not irqtrace this section: we
450 * will soon execute iret and the tracer was already set to
451 * the irqstate after the IRET:
452 */
453 DISABLE_INTERRUPTS(CLBR_ANY)
454 lss (%esp), %esp /* switch to espfix segment */
455.Lend_\@:
456#endif /* CONFIG_X86_ESPFIX32 */
457.endm
45d7b255 458
45d7b255
JR
459/*
460 * Called with pt_regs fully populated and kernel segments loaded,
461 * so we can access PER_CPU and use the integer registers.
462 *
463 * We need to be very careful here with the %esp switch, because an NMI
464 * can happen everywhere. If the NMI handler finds itself on the
465 * entry-stack, it will overwrite the task-stack and everything we
466 * copied there. So allocate the stack-frame on the task-stack and
467 * switch to it before we do any copying.
468 */
b92a165d 469
45d7b255
JR
470.macro SWITCH_TO_KERNEL_STACK
471
472 ALTERNATIVE "", "jmp .Lend_\@", X86_FEATURE_XENPV
473
97193702
JR
474 BUG_IF_WRONG_CR3
475
e464fb9f
JR
476 SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
477
478 /*
479 * %eax now contains the entry cr3 and we carry it forward in
480 * that register for the time this macro runs
481 */
482
45d7b255
JR
483 /* Are we on the entry stack? Bail out if not! */
484 movl PER_CPU_VAR(cpu_entry_area), %ecx
485 addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
486 subl %esp, %ecx /* ecx = (end of entry_stack) - esp */
487 cmpl $SIZEOF_entry_stack, %ecx
488 jae .Lend_\@
489
490 /* Load stack pointer into %esi and %edi */
491 movl %esp, %esi
492 movl %esi, %edi
493
494 /* Move %edi to the top of the entry stack */
495 andl $(MASK_entry_stack), %edi
496 addl $(SIZEOF_entry_stack), %edi
497
498 /* Load top of task-stack into %edi */
499 movl TSS_entry2task_stack(%edi), %edi
500
b92a165d 501 /* Special case - entry from kernel mode via entry stack */
d5e84c21
JR
502#ifdef CONFIG_VM86
503 movl PT_EFLAGS(%esp), %ecx # mix EFLAGS and CS
504 movb PT_CS(%esp), %cl
505 andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx
506#else
507 movl PT_CS(%esp), %ecx
508 andl $SEGMENT_RPL_MASK, %ecx
509#endif
510 cmpl $USER_RPL, %ecx
511 jb .Lentry_from_kernel_\@
b92a165d 512
45d7b255
JR
513 /* Bytes to copy */
514 movl $PTREGS_SIZE, %ecx
515
516#ifdef CONFIG_VM86
517 testl $X86_EFLAGS_VM, PT_EFLAGS(%esi)
518 jz .Lcopy_pt_regs_\@
519
520 /*
521 * Stack-frame contains 4 additional segment registers when
522 * coming from VM86 mode
523 */
524 addl $(4 * 4), %ecx
525
45d7b255 526#endif
b92a165d 527.Lcopy_pt_regs_\@:
45d7b255
JR
528
529 /* Allocate frame on task-stack */
530 subl %ecx, %edi
531
532 /* Switch to task-stack */
533 movl %edi, %esp
534
535 /*
536 * We are now on the task-stack and can safely copy over the
537 * stack-frame
538 */
539 shrl $2, %ecx
540 cld
541 rep movsl
542
b92a165d
JR
543 jmp .Lend_\@
544
545.Lentry_from_kernel_\@:
546
547 /*
548 * This handles the case when we enter the kernel from
549 * kernel-mode and %esp points to the entry-stack. When this
550 * happens we need to switch to the task-stack to run C code,
551 * but switch back to the entry-stack again when we approach
552 * iret and return to the interrupted code-path. This usually
553 * happens when we hit an exception while restoring user-space
e464fb9f
JR
554 * segment registers on the way back to user-space or when the
555 * sysenter handler runs with eflags.tf set.
b92a165d
JR
556 *
557 * When we switch to the task-stack here, we can't trust the
558 * contents of the entry-stack anymore, as the exception handler
559 * might be scheduled out or moved to another CPU. Therefore we
560 * copy the complete entry-stack to the task-stack and set a
561 * marker in the iret-frame (bit 31 of the CS dword) to detect
562 * what we've done on the iret path.
563 *
564 * On the iret path we copy everything back and switch to the
565 * entry-stack, so that the interrupted kernel code-path
566 * continues on the same stack it was interrupted with.
567 *
568 * Be aware that an NMI can happen anytime in this code.
569 *
570 * %esi: Entry-Stack pointer (same as %esp)
571 * %edi: Top of the task stack
e464fb9f 572 * %eax: CR3 on kernel entry
b92a165d
JR
573 */
574
575 /* Calculate number of bytes on the entry stack in %ecx */
576 movl %esi, %ecx
577
578 /* %ecx to the top of entry-stack */
579 andl $(MASK_entry_stack), %ecx
580 addl $(SIZEOF_entry_stack), %ecx
581
582 /* Number of bytes on the entry stack to %ecx */
583 sub %esi, %ecx
584
585 /* Mark stackframe as coming from entry stack */
586 orl $CS_FROM_ENTRY_STACK, PT_CS(%esp)
587
e464fb9f
JR
588 /*
589 * Test the cr3 used to enter the kernel and add a marker
590 * so that we can switch back to it before iret.
591 */
592 testl $PTI_SWITCH_MASK, %eax
593 jz .Lcopy_pt_regs_\@
594 orl $CS_FROM_USER_CR3, PT_CS(%esp)
595
b92a165d
JR
596 /*
597 * %esi and %edi are unchanged, %ecx contains the number of
598 * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate
599 * the stack-frame on task-stack and copy everything over
600 */
601 jmp .Lcopy_pt_regs_\@
602
45d7b255
JR
603.Lend_\@:
604.endm
605
e5862d05
JR
606/*
607 * Switch back from the kernel stack to the entry stack.
608 *
609 * The %esp register must point to pt_regs on the task stack. It will
610 * first calculate the size of the stack-frame to copy, depending on
611 * whether we return to VM86 mode or not. With that it uses 'rep movsl'
612 * to copy the contents of the stack over to the entry stack.
613 *
614 * We must be very careful here, as we can't trust the contents of the
615 * task-stack once we switched to the entry-stack. When an NMI happens
616 * while on the entry-stack, the NMI handler will switch back to the top
617 * of the task stack, overwriting our stack-frame we are about to copy.
618 * Therefore we switch the stack only after everything is copied over.
619 */
620.macro SWITCH_TO_ENTRY_STACK
621
622 ALTERNATIVE "", "jmp .Lend_\@", X86_FEATURE_XENPV
623
624 /* Bytes to copy */
625 movl $PTREGS_SIZE, %ecx
626
627#ifdef CONFIG_VM86
628 testl $(X86_EFLAGS_VM), PT_EFLAGS(%esp)
629 jz .Lcopy_pt_regs_\@
630
631 /* Additional 4 registers to copy when returning to VM86 mode */
632 addl $(4 * 4), %ecx
633
634.Lcopy_pt_regs_\@:
635#endif
636
637 /* Initialize source and destination for movsl */
638 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
639 subl %ecx, %edi
640 movl %esp, %esi
641
642 /* Save future stack pointer in %ebx */
643 movl %edi, %ebx
644
645 /* Copy over the stack-frame */
646 shrl $2, %ecx
647 cld
648 rep movsl
649
650 /*
651 * Switch to entry-stack - needs to happen after everything is
652 * copied because the NMI handler will overwrite the task-stack
653 * when on entry-stack
654 */
655 movl %ebx, %esp
656
657.Lend_\@:
658.endm
659
b92a165d
JR
660/*
661 * This macro handles the case when we return to kernel-mode on the iret
e464fb9f 662 * path and have to switch back to the entry stack and/or user-cr3
b92a165d
JR
663 *
664 * See the comments below the .Lentry_from_kernel_\@ label in the
665 * SWITCH_TO_KERNEL_STACK macro for more details.
666 */
667.macro PARANOID_EXIT_TO_KERNEL_MODE
668
669 /*
670 * Test if we entered the kernel with the entry-stack. Most
671 * likely we did not, because this code only runs on the
672 * return-to-kernel path.
673 */
674 testl $CS_FROM_ENTRY_STACK, PT_CS(%esp)
675 jz .Lend_\@
676
677 /* Unlikely slow-path */
678
679 /* Clear marker from stack-frame */
680 andl $(~CS_FROM_ENTRY_STACK), PT_CS(%esp)
681
682 /* Copy the remaining task-stack contents to entry-stack */
683 movl %esp, %esi
684 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
685
686 /* Bytes on the task-stack to ecx */
687 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx
688 subl %esi, %ecx
689
690 /* Allocate stack-frame on entry-stack */
691 subl %ecx, %edi
692
693 /*
694 * Save future stack-pointer, we must not switch until the
695 * copy is done, otherwise the NMI handler could destroy the
696 * contents of the task-stack we are about to copy.
697 */
698 movl %edi, %ebx
699
700 /* Do the copy */
701 shrl $2, %ecx
702 cld
703 rep movsl
704
705 /* Safe to switch to entry-stack now */
706 movl %ebx, %esp
707
e464fb9f
JR
708 /*
709 * We came from entry-stack and need to check if we also need to
710 * switch back to user cr3.
711 */
712 testl $CS_FROM_USER_CR3, PT_CS(%esp)
713 jz .Lend_\@
714
715 /* Clear marker from stack-frame */
716 andl $(~CS_FROM_USER_CR3), PT_CS(%esp)
717
718 SWITCH_TO_USER_CR3 scratch_reg=%eax
719
b92a165d
JR
720.Lend_\@:
721.endm
0100301b
BG
722/*
723 * %eax: prev task
724 * %edx: next task
725 */
726ENTRY(__switch_to_asm)
727 /*
728 * Save callee-saved registers
729 * This must match the order in struct inactive_task_frame
730 */
731 pushl %ebp
732 pushl %ebx
733 pushl %edi
734 pushl %esi
6690e86b 735 pushfl
0100301b
BG
736
737 /* switch stack */
738 movl %esp, TASK_threadsp(%eax)
739 movl TASK_threadsp(%edx), %esp
740
050e9baa 741#ifdef CONFIG_STACKPROTECTOR
0100301b
BG
742 movl TASK_stack_canary(%edx), %ebx
743 movl %ebx, PER_CPU_VAR(stack_canary)+stack_canary_offset
744#endif
745
c995efd5
DW
746#ifdef CONFIG_RETPOLINE
747 /*
748 * When switching from a shallower to a deeper call stack
749 * the RSB may either underflow or use entries populated
750 * with userspace addresses. On CPUs where those concerns
751 * exist, overwrite the RSB with entries which capture
752 * speculative execution to prevent attack.
753 */
d1c99108 754 FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
c995efd5
DW
755#endif
756
0100301b 757 /* restore callee-saved registers */
6690e86b 758 popfl
0100301b
BG
759 popl %esi
760 popl %edi
761 popl %ebx
762 popl %ebp
763
764 jmp __switch_to
765END(__switch_to_asm)
766
ebd57499
JP
767/*
768 * The unwinder expects the last frame on the stack to always be at the same
769 * offset from the end of the page, which allows it to validate the stack.
770 * Calling schedule_tail() directly would break that convention because its an
771 * asmlinkage function so its argument has to be pushed on the stack. This
772 * wrapper creates a proper "end of stack" frame header before the call.
773 */
774ENTRY(schedule_tail_wrapper)
775 FRAME_BEGIN
776
777 pushl %eax
778 call schedule_tail
779 popl %eax
780
781 FRAME_END
782 ret
783ENDPROC(schedule_tail_wrapper)
0100301b
BG
784/*
785 * A newly forked process directly context switches into this address.
786 *
787 * eax: prev task we switched from
616d2483
BG
788 * ebx: kernel thread func (NULL for user thread)
789 * edi: kernel thread arg
0100301b 790 */
1da177e4 791ENTRY(ret_from_fork)
ebd57499 792 call schedule_tail_wrapper
39e8701f 793
616d2483
BG
794 testl %ebx, %ebx
795 jnz 1f /* kernel threads are uncommon */
796
7972:
39e8701f 798 /* When we fork, we trace the syscall return in the child, too. */
ebd57499 799 movl %esp, %eax
39e8701f 800 call syscall_return_slowpath
afaef01c 801 STACKLEAK_ERASE
39e8701f 802 jmp restore_all
39e8701f 803
616d2483
BG
804 /* kernel thread */
8051: movl %edi, %eax
2641f08b 806 CALL_NOSPEC %ebx
39e8701f 807 /*
616d2483
BG
808 * A kernel thread is allowed to return here after successfully
809 * calling do_execve(). Exit to userspace to complete the execve()
810 * syscall.
39e8701f 811 */
616d2483
BG
812 movl $0, PT_EAX(%esp)
813 jmp 2b
814END(ret_from_fork)
6783eaa2 815
1da177e4
LT
816/*
817 * Return to user mode is not as complex as all this looks,
818 * but we want the default path for a system call return to
819 * go as quickly as possible which is why some of this is
820 * less clear than it otherwise should be.
821 */
822
823 # userspace resumption stub bypassing syscall exit tracing
824 ALIGN
825ret_from_exception:
139ec7c4 826 preempt_stop(CLBR_ANY)
1da177e4 827ret_from_intr:
29a2e283 828#ifdef CONFIG_VM86
a49976d1
IM
829 movl PT_EFLAGS(%esp), %eax # mix EFLAGS and CS
830 movb PT_CS(%esp), %al
831 andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
29a2e283
DA
832#else
833 /*
6783eaa2 834 * We can be coming here from child spawned by kernel_thread().
29a2e283 835 */
a49976d1
IM
836 movl PT_CS(%esp), %eax
837 andl $SEGMENT_RPL_MASK, %eax
29a2e283 838#endif
a49976d1 839 cmpl $USER_RPL, %eax
5e1246ff 840 jb restore_all_kernel # not returning to v8086 or userspace
f95d47ca 841
1da177e4 842ENTRY(resume_userspace)
5d73fc70 843 DISABLE_INTERRUPTS(CLBR_ANY)
e32e58a9 844 TRACE_IRQS_OFF
5d73fc70
AL
845 movl %esp, %eax
846 call prepare_exit_to_usermode
a49976d1 847 jmp restore_all
47a55cd7 848END(ret_from_exception)
1da177e4 849
f2b37575
AL
850GLOBAL(__begin_SYSENTER_singlestep_region)
851/*
852 * All code from here through __end_SYSENTER_singlestep_region is subject
853 * to being single-stepped if a user program sets TF and executes SYSENTER.
854 * There is absolutely nothing that we can do to prevent this from happening
855 * (thanks Intel!). To keep our handling of this situation as simple as
856 * possible, we handle TF just like AC and NT, except that our #DB handler
857 * will ignore all of the single-step traps generated in this range.
858 */
859
28c11b0f 860#ifdef CONFIG_XEN_PV
f2b37575
AL
861/*
862 * Xen doesn't set %esp to be precisely what the normal SYSENTER
863 * entry point expects, so fix it up before using the normal path.
864 */
865ENTRY(xen_sysenter_target)
866 addl $5*4, %esp /* remove xen-provided frame */
1b00255f 867 jmp .Lsysenter_past_esp
f2b37575
AL
868#endif
869
fda57b22
AL
870/*
871 * 32-bit SYSENTER entry.
872 *
873 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
874 * if X86_FEATURE_SEP is available. This is the preferred system call
875 * entry on 32-bit systems.
876 *
877 * The SYSENTER instruction, in principle, should *only* occur in the
878 * vDSO. In practice, a small number of Android devices were shipped
879 * with a copy of Bionic that inlined a SYSENTER instruction. This
880 * never happened in any of Google's Bionic versions -- it only happened
881 * in a narrow range of Intel-provided versions.
882 *
883 * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
884 * IF and VM in RFLAGS are cleared (IOW: interrupts are off).
885 * SYSENTER does not save anything on the stack,
886 * and does not save old EIP (!!!), ESP, or EFLAGS.
887 *
888 * To avoid losing track of EFLAGS.VM (and thus potentially corrupting
889 * user and/or vm86 state), we explicitly disable the SYSENTER
890 * instruction in vm86 mode by reprogramming the MSRs.
891 *
892 * Arguments:
893 * eax system call number
894 * ebx arg1
895 * ecx arg2
896 * edx arg3
897 * esi arg4
898 * edi arg5
899 * ebp user stack
900 * 0(%ebp) arg6
901 */
4c8cd0c5 902ENTRY(entry_SYSENTER_32)
e464fb9f
JR
903 /*
904 * On entry-stack with all userspace-regs live - save and
905 * restore eflags and %eax to use it as scratch-reg for the cr3
906 * switch.
907 */
908 pushfl
909 pushl %eax
97193702 910 BUG_IF_WRONG_CR3 no_user_check=1
e464fb9f
JR
911 SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
912 popl %eax
913 popfl
914
915 /* Stack empty again, switch to task stack */
ae2e565b 916 movl TSS_entry2task_stack(%esp), %esp
e464fb9f 917
1b00255f 918.Lsysenter_past_esp:
5f310f73 919 pushl $__USER_DS /* pt_regs->ss */
30bfa7b3 920 pushl %ebp /* pt_regs->sp (stashed in bp) */
5f310f73
AL
921 pushfl /* pt_regs->flags (except IF = 0) */
922 orl $X86_EFLAGS_IF, (%esp) /* Fix IF */
923 pushl $__USER_CS /* pt_regs->cs */
924 pushl $0 /* pt_regs->ip = 0 (placeholder) */
925 pushl %eax /* pt_regs->orig_ax */
45d7b255 926 SAVE_ALL pt_regs_ax=$-ENOSYS /* save rest, stack already switched */
5f310f73 927
67f590e8 928 /*
f2b37575
AL
929 * SYSENTER doesn't filter flags, so we need to clear NT, AC
930 * and TF ourselves. To save a few cycles, we can check whether
67f590e8
AL
931 * either was set instead of doing an unconditional popfq.
932 * This needs to happen before enabling interrupts so that
933 * we don't get preempted with NT set.
934 *
f2b37575
AL
935 * If TF is set, we will single-step all the way to here -- do_debug
936 * will ignore all the traps. (Yes, this is slow, but so is
937 * single-stepping in general. This allows us to avoid having
938 * a more complicated code to handle the case where a user program
939 * forces us to single-step through the SYSENTER entry code.)
940 *
67f590e8
AL
941 * NB.: .Lsysenter_fix_flags is a label with the code under it moved
942 * out-of-line as an optimization: NT is unlikely to be set in the
943 * majority of the cases and instead of polluting the I$ unnecessarily,
944 * we're keeping that code behind a branch which will predict as
945 * not-taken and therefore its instructions won't be fetched.
946 */
f2b37575 947 testl $X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
67f590e8
AL
948 jnz .Lsysenter_fix_flags
949.Lsysenter_flags_fixed:
950
55f327fa 951 /*
5f310f73
AL
952 * User mode is traced as though IRQs are on, and SYSENTER
953 * turned them off.
e6e5494c 954 */
55f327fa 955 TRACE_IRQS_OFF
5f310f73
AL
956
957 movl %esp, %eax
958 call do_fast_syscall_32
91e2eea9
BO
959 /* XEN PV guests always use IRET path */
960 ALTERNATIVE "testl %eax, %eax; jz .Lsyscall_32_done", \
961 "jmp .Lsyscall_32_done", X86_FEATURE_XENPV
5f310f73 962
afaef01c
AP
963 STACKLEAK_ERASE
964
5f310f73
AL
965/* Opportunistic SYSEXIT */
966 TRACE_IRQS_ON /* User mode traces as IRQs on. */
e5862d05
JR
967
968 /*
969 * Setup entry stack - we keep the pointer in %eax and do the
970 * switch after almost all user-state is restored.
971 */
972
973 /* Load entry stack pointer and allocate frame for eflags/eax */
974 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax
975 subl $(2*4), %eax
976
977 /* Copy eflags and eax to entry stack */
978 movl PT_EFLAGS(%esp), %edi
979 movl PT_EAX(%esp), %esi
980 movl %edi, (%eax)
981 movl %esi, 4(%eax)
982
983 /* Restore user registers and segments */
5f310f73
AL
984 movl PT_EIP(%esp), %edx /* pt_regs->ip */
985 movl PT_OLDESP(%esp), %ecx /* pt_regs->sp */
3bd29515
AL
9861: mov PT_FS(%esp), %fs
987 PTGS_TO_GS
e5862d05 988
5f310f73
AL
989 popl %ebx /* pt_regs->bx */
990 addl $2*4, %esp /* skip pt_regs->cx and pt_regs->dx */
991 popl %esi /* pt_regs->si */
992 popl %edi /* pt_regs->di */
993 popl %ebp /* pt_regs->bp */
e5862d05
JR
994
995 /* Switch to entry stack */
996 movl %eax, %esp
5f310f73 997
e464fb9f
JR
998 /* Now ready to switch the cr3 */
999 SWITCH_TO_USER_CR3 scratch_reg=%eax
1000
c2c9b52f
AL
1001 /*
1002 * Restore all flags except IF. (We restore IF separately because
1003 * STI gives a one-instruction window in which we won't be interrupted,
1004 * whereas POPF does not.)
1005 */
236f0cd2 1006 btrl $X86_EFLAGS_IF_BIT, (%esp)
97193702 1007 BUG_IF_WRONG_CR3 no_user_check=1
c2c9b52f 1008 popfl
e5862d05 1009 popl %eax
c2c9b52f 1010
5f310f73
AL
1011 /*
1012 * Return back to the vDSO, which will pop ecx and edx.
1013 * Don't bother with DS and ES (they already contain __USER_DS).
1014 */
88c15ec9
BO
1015 sti
1016 sysexit
af0575bb 1017
a49976d1
IM
1018.pushsection .fixup, "ax"
10192: movl $0, PT_FS(%esp)
1020 jmp 1b
f95d47ca 1021.popsection
a49976d1 1022 _ASM_EXTABLE(1b, 2b)
ccbeed3a 1023 PTGS_TO_GS_EX
67f590e8
AL
1024
1025.Lsysenter_fix_flags:
1026 pushl $X86_EFLAGS_FIXED
1027 popfl
1028 jmp .Lsysenter_flags_fixed
f2b37575 1029GLOBAL(__end_SYSENTER_singlestep_region)
4c8cd0c5 1030ENDPROC(entry_SYSENTER_32)
1da177e4 1031
fda57b22
AL
1032/*
1033 * 32-bit legacy system call entry.
1034 *
1035 * 32-bit x86 Linux system calls traditionally used the INT $0x80
1036 * instruction. INT $0x80 lands here.
1037 *
1038 * This entry point can be used by any 32-bit perform system calls.
1039 * Instances of INT $0x80 can be found inline in various programs and
1040 * libraries. It is also used by the vDSO's __kernel_vsyscall
1041 * fallback for hardware that doesn't support a faster entry method.
1042 * Restarted 32-bit system calls also fall back to INT $0x80
1043 * regardless of what instruction was originally used to do the system
1044 * call. (64-bit programs can use INT $0x80 as well, but they can
1045 * only run on 64-bit kernels and therefore land in
1046 * entry_INT80_compat.)
1047 *
1048 * This is considered a slow path. It is not used by most libc
1049 * implementations on modern hardware except during process startup.
1050 *
1051 * Arguments:
1052 * eax system call number
1053 * ebx arg1
1054 * ecx arg2
1055 * edx arg3
1056 * esi arg4
1057 * edi arg5
1058 * ebp arg6
1059 */
b2502b41 1060ENTRY(entry_INT80_32)
e59d1b0a 1061 ASM_CLAC
150ac78d 1062 pushl %eax /* pt_regs->orig_ax */
45d7b255
JR
1063
1064 SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1 /* save rest */
150ac78d
AL
1065
1066 /*
a798f091
AL
1067 * User mode is traced as though IRQs are on, and the interrupt gate
1068 * turned them off.
150ac78d 1069 */
a798f091 1070 TRACE_IRQS_OFF
150ac78d
AL
1071
1072 movl %esp, %eax
a798f091 1073 call do_int80_syscall_32
5f310f73 1074.Lsyscall_32_done:
1da177e4 1075
afaef01c
AP
1076 STACKLEAK_ERASE
1077
1da177e4 1078restore_all:
2e04bc76 1079 TRACE_IRQS_IRET
e5862d05 1080 SWITCH_TO_ENTRY_STACK
1b00255f 1081.Lrestore_all_notrace:
46eabca2 1082 CHECK_AND_APPLY_ESPFIX
1b00255f 1083.Lrestore_nocheck:
e464fb9f
JR
1084 /* Switch back to user CR3 */
1085 SWITCH_TO_USER_CR3 scratch_reg=%eax
1086
97193702
JR
1087 BUG_IF_WRONG_CR3
1088
e464fb9f
JR
1089 /* Restore user state */
1090 RESTORE_REGS pop=4 # skip orig_eax/error_code
1b00255f 1091.Lirq_return:
10bcc80e
MD
1092 /*
1093 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
1094 * when returning from IPI handler and when returning from
1095 * scheduler to user-space.
1096 */
3701d863 1097 INTERRUPT_RETURN
1b00255f 1098
0d2eb73b 1099restore_all_kernel:
48593975 1100#ifdef CONFIG_PREEMPTION
5e1246ff
PZ
1101 DISABLE_INTERRUPTS(CLBR_ANY)
1102 cmpl $0, PER_CPU_VAR(__preempt_count)
1103 jnz .Lno_preempt
1104 testl $X86_EFLAGS_IF, PT_EFLAGS(%esp) # interrupts off (exception path) ?
1105 jz .Lno_preempt
1106 call preempt_schedule_irq
1107.Lno_preempt:
1108#endif
0d2eb73b 1109 TRACE_IRQS_IRET
b92a165d 1110 PARANOID_EXIT_TO_KERNEL_MODE
97193702 1111 BUG_IF_WRONG_CR3
0d2eb73b
JR
1112 RESTORE_REGS 4
1113 jmp .Lirq_return
1114
a49976d1
IM
1115.section .fixup, "ax"
1116ENTRY(iret_exc )
1117 pushl $0 # no error code
1118 pushl $do_iret_error
97193702
JR
1119
1120#ifdef CONFIG_DEBUG_ENTRY
1121 /*
1122 * The stack-frame here is the one that iret faulted on, so its a
1123 * return-to-user frame. We are on kernel-cr3 because we come here from
1124 * the fixup code. This confuses the CR3 checker, so switch to user-cr3
1125 * as the checker expects it.
1126 */
1127 pushl %eax
1128 SWITCH_TO_USER_CR3 scratch_reg=%eax
1129 popl %eax
1130#endif
1131
7252c4c3 1132 jmp common_exception
1da177e4 1133.previous
1b00255f 1134 _ASM_EXTABLE(.Lirq_return, iret_exc)
b2502b41 1135ENDPROC(entry_INT80_32)
1da177e4 1136
f0d96110 1137.macro FIXUP_ESPFIX_STACK
dc4c2a0a
AH
1138/*
1139 * Switch back for ESPFIX stack to the normal zerobased stack
1140 *
1141 * We can't call C functions using the ESPFIX stack. This code reads
1142 * the high word of the segment base from the GDT and swiches to the
1143 * normal stack and adjusts ESP with the matching offset.
1144 */
34273f41 1145#ifdef CONFIG_X86_ESPFIX32
dc4c2a0a 1146 /* fixup the stack */
a49976d1
IM
1147 mov GDT_ESPFIX_SS + 4, %al /* bits 16..23 */
1148 mov GDT_ESPFIX_SS + 7, %ah /* bits 24..31 */
9b47feb7 1149 shl $16, %eax
a49976d1
IM
1150 addl %esp, %eax /* the adjusted stack pointer */
1151 pushl $__KERNEL_DS
1152 pushl %eax
1153 lss (%esp), %esp /* switch to the normal stack segment */
34273f41 1154#endif
f0d96110
TH
1155.endm
1156.macro UNWIND_ESPFIX_STACK
34273f41 1157#ifdef CONFIG_X86_ESPFIX32
a49976d1 1158 movl %ss, %eax
f0d96110 1159 /* see if on espfix stack */
a49976d1
IM
1160 cmpw $__ESPFIX_SS, %ax
1161 jne 27f
1162 movl $__KERNEL_DS, %eax
1163 movl %eax, %ds
1164 movl %eax, %es
f0d96110
TH
1165 /* switch to normal stack */
1166 FIXUP_ESPFIX_STACK
116727:
34273f41 1168#endif
f0d96110 1169.endm
1da177e4
LT
1170
1171/*
3304c9c3
DV
1172 * Build the entry stubs with some assembler magic.
1173 * We pack 1 stub into every 8-byte block.
1da177e4 1174 */
3304c9c3 1175 .align 8
1da177e4 1176ENTRY(irq_entries_start)
3304c9c3
DV
1177 vector=FIRST_EXTERNAL_VECTOR
1178 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
a49976d1 1179 pushl $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3
DV
1180 vector=vector+1
1181 jmp common_interrupt
3304c9c3
DV
1182 .align 8
1183 .endr
47a55cd7
JB
1184END(irq_entries_start)
1185
f8a8fe61
TG
1186#ifdef CONFIG_X86_LOCAL_APIC
1187 .align 8
1188ENTRY(spurious_entries_start)
1189 vector=FIRST_SYSTEM_VECTOR
1190 .rept (NR_VECTORS - FIRST_SYSTEM_VECTOR)
1191 pushl $(~vector+0x80) /* Note: always in signed byte range */
1192 vector=vector+1
1193 jmp common_spurious
1194 .align 8
1195 .endr
1196END(spurious_entries_start)
1197
1198common_spurious:
1199 ASM_CLAC
1200 addl $-0x80, (%esp) /* Adjust vector into the [-256, -1] range */
1201 SAVE_ALL switch_stacks=1
1202 ENCODE_FRAME_POINTER
1203 TRACE_IRQS_OFF
1204 movl %esp, %eax
1205 call smp_spurious_interrupt
1206 jmp ret_from_intr
1cbec37b 1207ENDPROC(common_spurious)
f8a8fe61
TG
1208#endif
1209
55f327fa
IM
1210/*
1211 * the CPU automatically disables interrupts when executing an IRQ vector,
1212 * so IRQ-flags tracing has to follow that:
1213 */
b7c6244f 1214 .p2align CONFIG_X86_L1_CACHE_SHIFT
1da177e4 1215common_interrupt:
e59d1b0a 1216 ASM_CLAC
a49976d1 1217 addl $-0x80, (%esp) /* Adjust vector into the [-256, -1] range */
45d7b255
JR
1218
1219 SAVE_ALL switch_stacks=1
946c1911 1220 ENCODE_FRAME_POINTER
55f327fa 1221 TRACE_IRQS_OFF
a49976d1
IM
1222 movl %esp, %eax
1223 call do_IRQ
1224 jmp ret_from_intr
47a55cd7 1225ENDPROC(common_interrupt)
1da177e4 1226
45d7b255
JR
1227#define BUILD_INTERRUPT3(name, nr, fn) \
1228ENTRY(name) \
1229 ASM_CLAC; \
1230 pushl $~(nr); \
1231 SAVE_ALL switch_stacks=1; \
1232 ENCODE_FRAME_POINTER; \
1233 TRACE_IRQS_OFF \
1234 movl %esp, %eax; \
1235 call fn; \
1236 jmp ret_from_intr; \
47a55cd7 1237ENDPROC(name)
1da177e4 1238
a49976d1
IM
1239#define BUILD_INTERRUPT(name, nr) \
1240 BUILD_INTERRUPT3(name, nr, smp_##name); \
02cf94c3 1241
1da177e4 1242/* The include is where all of the SMP etc. interrupts come from */
1164dd00 1243#include <asm/entry_arch.h>
1da177e4 1244
1da177e4 1245ENTRY(coprocessor_error)
e59d1b0a 1246 ASM_CLAC
a49976d1
IM
1247 pushl $0
1248 pushl $do_coprocessor_error
7252c4c3 1249 jmp common_exception
47a55cd7 1250END(coprocessor_error)
1da177e4
LT
1251
1252ENTRY(simd_coprocessor_error)
e59d1b0a 1253 ASM_CLAC
a49976d1 1254 pushl $0
40d2e763
BG
1255#ifdef CONFIG_X86_INVD_BUG
1256 /* AMD 486 bug: invd from userspace calls exception 19 instead of #GP */
a49976d1
IM
1257 ALTERNATIVE "pushl $do_general_protection", \
1258 "pushl $do_simd_coprocessor_error", \
8e65f6e0 1259 X86_FEATURE_XMM
40d2e763 1260#else
a49976d1 1261 pushl $do_simd_coprocessor_error
40d2e763 1262#endif
7252c4c3 1263 jmp common_exception
47a55cd7 1264END(simd_coprocessor_error)
1da177e4
LT
1265
1266ENTRY(device_not_available)
e59d1b0a 1267 ASM_CLAC
a49976d1
IM
1268 pushl $-1 # mark this as an int
1269 pushl $do_device_not_available
7252c4c3 1270 jmp common_exception
47a55cd7 1271END(device_not_available)
1da177e4 1272
d3561b7f
RR
1273#ifdef CONFIG_PARAVIRT
1274ENTRY(native_iret)
3701d863 1275 iret
6837a54d 1276 _ASM_EXTABLE(native_iret, iret_exc)
47a55cd7 1277END(native_iret)
d3561b7f
RR
1278#endif
1279
1da177e4 1280ENTRY(overflow)
e59d1b0a 1281 ASM_CLAC
a49976d1
IM
1282 pushl $0
1283 pushl $do_overflow
7252c4c3 1284 jmp common_exception
47a55cd7 1285END(overflow)
1da177e4
LT
1286
1287ENTRY(bounds)
e59d1b0a 1288 ASM_CLAC
a49976d1
IM
1289 pushl $0
1290 pushl $do_bounds
7252c4c3 1291 jmp common_exception
47a55cd7 1292END(bounds)
1da177e4
LT
1293
1294ENTRY(invalid_op)
e59d1b0a 1295 ASM_CLAC
a49976d1
IM
1296 pushl $0
1297 pushl $do_invalid_op
7252c4c3 1298 jmp common_exception
47a55cd7 1299END(invalid_op)
1da177e4
LT
1300
1301ENTRY(coprocessor_segment_overrun)
e59d1b0a 1302 ASM_CLAC
a49976d1
IM
1303 pushl $0
1304 pushl $do_coprocessor_segment_overrun
7252c4c3 1305 jmp common_exception
47a55cd7 1306END(coprocessor_segment_overrun)
1da177e4
LT
1307
1308ENTRY(invalid_TSS)
e59d1b0a 1309 ASM_CLAC
a49976d1 1310 pushl $do_invalid_TSS
7252c4c3 1311 jmp common_exception
47a55cd7 1312END(invalid_TSS)
1da177e4
LT
1313
1314ENTRY(segment_not_present)
e59d1b0a 1315 ASM_CLAC
a49976d1 1316 pushl $do_segment_not_present
7252c4c3 1317 jmp common_exception
47a55cd7 1318END(segment_not_present)
1da177e4
LT
1319
1320ENTRY(stack_segment)
e59d1b0a 1321 ASM_CLAC
a49976d1 1322 pushl $do_stack_segment
7252c4c3 1323 jmp common_exception
47a55cd7 1324END(stack_segment)
1da177e4 1325
1da177e4 1326ENTRY(alignment_check)
e59d1b0a 1327 ASM_CLAC
a49976d1 1328 pushl $do_alignment_check
7252c4c3 1329 jmp common_exception
47a55cd7 1330END(alignment_check)
1da177e4 1331
d28c4393 1332ENTRY(divide_error)
e59d1b0a 1333 ASM_CLAC
a49976d1
IM
1334 pushl $0 # no error code
1335 pushl $do_divide_error
7252c4c3 1336 jmp common_exception
47a55cd7 1337END(divide_error)
1da177e4
LT
1338
1339#ifdef CONFIG_X86_MCE
1340ENTRY(machine_check)
e59d1b0a 1341 ASM_CLAC
a49976d1
IM
1342 pushl $0
1343 pushl machine_check_vector
7252c4c3 1344 jmp common_exception
47a55cd7 1345END(machine_check)
1da177e4
LT
1346#endif
1347
1348ENTRY(spurious_interrupt_bug)
e59d1b0a 1349 ASM_CLAC
a49976d1
IM
1350 pushl $0
1351 pushl $do_spurious_interrupt_bug
7252c4c3 1352 jmp common_exception
47a55cd7 1353END(spurious_interrupt_bug)
1da177e4 1354
28c11b0f 1355#ifdef CONFIG_XEN_PV
5ead97c8 1356ENTRY(xen_hypervisor_callback)
a49976d1
IM
1357 /*
1358 * Check to see if we got the event in the critical
1359 * region in xen_iret_direct, after we've reenabled
1360 * events and checked for pending events. This simulates
1361 * iret instruction's behaviour where it delivers a
1362 * pending interrupt when enabling interrupts:
1363 */
29b810f5 1364 cmpl $xen_iret_start_crit, (%esp)
a49976d1 1365 jb 1f
29b810f5 1366 cmpl $xen_iret_end_crit, (%esp)
a49976d1 1367 jae 1f
29b810f5
JB
1368 call xen_iret_crit_fixup
13691:
1370 pushl $-1 /* orig_ax = -1 => not a system call */
1371 SAVE_ALL
1372 ENCODE_FRAME_POINTER
1373 TRACE_IRQS_OFF
1374 mov %esp, %eax
a49976d1 1375 call xen_evtchn_do_upcall
48593975 1376#ifndef CONFIG_PREEMPTION
a49976d1 1377 call xen_maybe_preempt_hcall
fdfd811d 1378#endif
a49976d1 1379 jmp ret_from_intr
5ead97c8
JF
1380ENDPROC(xen_hypervisor_callback)
1381
a49976d1
IM
1382/*
1383 * Hypervisor uses this for application faults while it executes.
1384 * We get here for two reasons:
1385 * 1. Fault while reloading DS, ES, FS or GS
1386 * 2. Fault while executing IRET
1387 * Category 1 we fix up by reattempting the load, and zeroing the segment
1388 * register if the load fails.
1389 * Category 2 we fix up by jumping to do_iret_error. We cannot use the
1390 * normal Linux return path in this case because if we use the IRET hypercall
1391 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1392 * We distinguish between categories by maintaining a status value in EAX.
1393 */
5ead97c8 1394ENTRY(xen_failsafe_callback)
a49976d1
IM
1395 pushl %eax
1396 movl $1, %eax
13971: mov 4(%esp), %ds
13982: mov 8(%esp), %es
13993: mov 12(%esp), %fs
14004: mov 16(%esp), %gs
a349e23d
DV
1401 /* EAX == 0 => Category 1 (Bad segment)
1402 EAX != 0 => Category 2 (Bad IRET) */
a49976d1
IM
1403 testl %eax, %eax
1404 popl %eax
1405 lea 16(%esp), %esp
1406 jz 5f
1407 jmp iret_exc
14085: pushl $-1 /* orig_ax = -1 => not a system call */
5ead97c8 1409 SAVE_ALL
946c1911 1410 ENCODE_FRAME_POINTER
a49976d1
IM
1411 jmp ret_from_exception
1412
1413.section .fixup, "ax"
14146: xorl %eax, %eax
1415 movl %eax, 4(%esp)
1416 jmp 1b
14177: xorl %eax, %eax
1418 movl %eax, 8(%esp)
1419 jmp 2b
14208: xorl %eax, %eax
1421 movl %eax, 12(%esp)
1422 jmp 3b
14239: xorl %eax, %eax
1424 movl %eax, 16(%esp)
1425 jmp 4b
5ead97c8 1426.previous
a49976d1
IM
1427 _ASM_EXTABLE(1b, 6b)
1428 _ASM_EXTABLE(2b, 7b)
1429 _ASM_EXTABLE(3b, 8b)
1430 _ASM_EXTABLE(4b, 9b)
5ead97c8 1431ENDPROC(xen_failsafe_callback)
28c11b0f 1432#endif /* CONFIG_XEN_PV */
5ead97c8 1433
28c11b0f 1434#ifdef CONFIG_XEN_PVHVM
bc2b0331 1435BUILD_INTERRUPT3(xen_hvm_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
4b9a8dca 1436 xen_evtchn_do_upcall)
28c11b0f 1437#endif
38e20b07 1438
bc2b0331
S
1439
1440#if IS_ENABLED(CONFIG_HYPERV)
1441
1442BUILD_INTERRUPT3(hyperv_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
4b9a8dca 1443 hyperv_vector_handler)
bc2b0331 1444
93286261
VK
1445BUILD_INTERRUPT3(hyperv_reenlightenment_vector, HYPERV_REENLIGHTENMENT_VECTOR,
1446 hyperv_reenlightenment_intr)
1447
248e742a
MK
1448BUILD_INTERRUPT3(hv_stimer0_callback_vector, HYPERV_STIMER0_VECTOR,
1449 hv_stimer0_vector_handler)
1450
bc2b0331 1451#endif /* CONFIG_HYPERV */
5ead97c8 1452
d211af05 1453ENTRY(page_fault)
e59d1b0a 1454 ASM_CLAC
b8f70953
MM
1455 pushl $do_page_fault
1456 jmp common_exception_read_cr2
1457END(page_fault)
a0d14b89 1458
b8f70953
MM
1459common_exception_read_cr2:
1460 /* the function address is in %gs's slot on the stack */
a0d14b89
PZ
1461 SAVE_ALL switch_stacks=1 skip_gs=1
1462
1463 ENCODE_FRAME_POINTER
1464 UNWIND_ESPFIX_STACK
1465
1466 /* fixup %gs */
1467 GS_TO_REG %ecx
b8f70953 1468 movl PT_GS(%esp), %edi
a0d14b89
PZ
1469 REG_TO_PTGS %ecx
1470 SET_KERNEL_GS %ecx
1471
1472 GET_CR2_INTO(%ecx) # might clobber %eax
1473
1474 /* fixup orig %eax */
1475 movl PT_ORIG_EAX(%esp), %edx # get the error code
1476 movl $-1, PT_ORIG_EAX(%esp) # no syscall to restart
1477
1478 TRACE_IRQS_OFF
1479 movl %esp, %eax # pt_regs pointer
b8f70953 1480 CALL_NOSPEC %edi
a0d14b89 1481 jmp ret_from_exception
b8f70953 1482END(common_exception_read_cr2)
7252c4c3
JP
1483
1484common_exception:
ccbeed3a 1485 /* the function address is in %gs's slot on the stack */
e67f1c11 1486 SAVE_ALL switch_stacks=1 skip_gs=1
946c1911 1487 ENCODE_FRAME_POINTER
d211af05 1488 UNWIND_ESPFIX_STACK
e67f1c11
PZ
1489
1490 /* fixup %gs */
ccbeed3a 1491 GS_TO_REG %ecx
a49976d1 1492 movl PT_GS(%esp), %edi # get the function address
ccbeed3a
TH
1493 REG_TO_PTGS %ecx
1494 SET_KERNEL_GS %ecx
e67f1c11
PZ
1495
1496 /* fixup orig %eax */
1497 movl PT_ORIG_EAX(%esp), %edx # get the error code
1498 movl $-1, PT_ORIG_EAX(%esp) # no syscall to restart
1499
d211af05 1500 TRACE_IRQS_OFF
a49976d1 1501 movl %esp, %eax # pt_regs pointer
2641f08b 1502 CALL_NOSPEC %edi
a49976d1 1503 jmp ret_from_exception
7252c4c3 1504END(common_exception)
d211af05 1505
d211af05 1506ENTRY(debug)
7536656f 1507 /*
929b44eb 1508 * Entry from sysenter is now handled in common_exception
7536656f 1509 */
e59d1b0a 1510 ASM_CLAC
a49976d1 1511 pushl $-1 # mark this as an int
929b44eb
JR
1512 pushl $do_debug
1513 jmp common_exception
d211af05
AH
1514END(debug)
1515
1516/*
7536656f
AL
1517 * NMI is doubly nasty. It can happen on the first instruction of
1518 * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
1519 * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
1520 * switched stacks. We handle both conditions by simply checking whether we
1521 * interrupted kernel code running on the SYSENTER stack.
d211af05
AH
1522 */
1523ENTRY(nmi)
e59d1b0a 1524 ASM_CLAC
45d7b255 1525
34273f41 1526#ifdef CONFIG_X86_ESPFIX32
a49976d1
IM
1527 pushl %eax
1528 movl %ss, %eax
1529 cmpw $__ESPFIX_SS, %ax
1530 popl %eax
1b00255f 1531 je .Lnmi_espfix_stack
34273f41 1532#endif
7536656f
AL
1533
1534 pushl %eax # pt_regs->orig_ax
b65bef40 1535 SAVE_ALL_NMI cr3_reg=%edi
946c1911 1536 ENCODE_FRAME_POINTER
a49976d1
IM
1537 xorl %edx, %edx # zero error code
1538 movl %esp, %eax # pt_regs pointer
7536656f
AL
1539
1540 /* Are we currently on the SYSENTER stack? */
72f5e08d 1541 movl PER_CPU_VAR(cpu_entry_area), %ecx
4fe2d8b1
DH
1542 addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
1543 subl %eax, %ecx /* ecx = (end of entry_stack) - esp */
1544 cmpl $SIZEOF_entry_stack, %ecx
7536656f
AL
1545 jb .Lnmi_from_sysenter_stack
1546
1547 /* Not on SYSENTER stack. */
a49976d1 1548 call do_nmi
8e676ced 1549 jmp .Lnmi_return
d211af05 1550
7536656f
AL
1551.Lnmi_from_sysenter_stack:
1552 /*
1553 * We're on the SYSENTER stack. Switch off. No one (not even debug)
1554 * is using the thread stack right now, so it's safe for us to use it.
1555 */
946c1911 1556 movl %esp, %ebx
7536656f
AL
1557 movl PER_CPU_VAR(cpu_current_top_of_stack), %esp
1558 call do_nmi
946c1911 1559 movl %ebx, %esp
8e676ced
JR
1560
1561.Lnmi_return:
1562 CHECK_AND_APPLY_ESPFIX
b65bef40 1563 RESTORE_ALL_NMI cr3_reg=%edi pop=4
8e676ced 1564 jmp .Lirq_return
d211af05 1565
34273f41 1566#ifdef CONFIG_X86_ESPFIX32
1b00255f 1567.Lnmi_espfix_stack:
131484c8 1568 /*
d211af05
AH
1569 * create the pointer to lss back
1570 */
a49976d1
IM
1571 pushl %ss
1572 pushl %esp
1573 addl $4, (%esp)
d211af05
AH
1574 /* copy the iret frame of 12 bytes */
1575 .rept 3
a49976d1 1576 pushl 16(%esp)
d211af05 1577 .endr
a49976d1 1578 pushl %eax
b65bef40 1579 SAVE_ALL_NMI cr3_reg=%edi
946c1911 1580 ENCODE_FRAME_POINTER
a49976d1
IM
1581 FIXUP_ESPFIX_STACK # %eax == %esp
1582 xorl %edx, %edx # zero error code
1583 call do_nmi
b65bef40 1584 RESTORE_ALL_NMI cr3_reg=%edi
a49976d1 1585 lss 12+4(%esp), %esp # back to espfix stack
1b00255f 1586 jmp .Lirq_return
34273f41 1587#endif
d211af05
AH
1588END(nmi)
1589
1590ENTRY(int3)
e59d1b0a 1591 ASM_CLAC
a49976d1 1592 pushl $-1 # mark this as an int
45d7b255
JR
1593
1594 SAVE_ALL switch_stacks=1
946c1911 1595 ENCODE_FRAME_POINTER
d211af05 1596 TRACE_IRQS_OFF
a49976d1
IM
1597 xorl %edx, %edx # zero error code
1598 movl %esp, %eax # pt_regs pointer
1599 call do_int3
1600 jmp ret_from_exception
d211af05
AH
1601END(int3)
1602
1603ENTRY(general_protection)
a49976d1 1604 pushl $do_general_protection
7252c4c3 1605 jmp common_exception
d211af05
AH
1606END(general_protection)
1607
631bc487
GN
1608#ifdef CONFIG_KVM_GUEST
1609ENTRY(async_page_fault)
e59d1b0a 1610 ASM_CLAC
a49976d1 1611 pushl $do_async_page_fault
b8f70953 1612 jmp common_exception_read_cr2
2ae9d293 1613END(async_page_fault)
631bc487 1614#endif
2deb4be2
AL
1615
1616ENTRY(rewind_stack_do_exit)
1617 /* Prevent any naive code from trying to unwind to our caller. */
1618 xorl %ebp, %ebp
1619
1620 movl PER_CPU_VAR(cpu_current_top_of_stack), %esi
1621 leal -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp
1622
1623 call do_exit
16241: jmp 1b
1625END(rewind_stack_do_exit)