x86/entry/32: Fix FIXUP_ESPFIX_STACK with user CR3
[linux-2.6-block.git] / arch / x86 / entry / entry_32.S
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4 2/*
a49976d1 3 * Copyright (C) 1991,1992 Linus Torvalds
1da177e4 4 *
a49976d1 5 * entry_32.S contains the system-call and low-level fault and trap handling routines.
1da177e4 6 *
39e8701f 7 * Stack layout while running C code:
a49976d1
IM
8 * ptrace needs to have all registers on the stack.
9 * If the order here is changed, it needs to be
10 * updated in fork.c:copy_process(), signal.c:do_signal(),
1da177e4
LT
11 * ptrace.c and ptrace.h
12 *
13 * 0(%esp) - %ebx
14 * 4(%esp) - %ecx
15 * 8(%esp) - %edx
9b47feb7 16 * C(%esp) - %esi
1da177e4
LT
17 * 10(%esp) - %edi
18 * 14(%esp) - %ebp
19 * 18(%esp) - %eax
20 * 1C(%esp) - %ds
21 * 20(%esp) - %es
464d1a78 22 * 24(%esp) - %fs
ccbeed3a
TH
23 * 28(%esp) - %gs saved iff !CONFIG_X86_32_LAZY_GS
24 * 2C(%esp) - orig_eax
25 * 30(%esp) - %eip
26 * 34(%esp) - %cs
27 * 38(%esp) - %eflags
28 * 3C(%esp) - %oldesp
29 * 40(%esp) - %oldss
1da177e4
LT
30 */
31
1da177e4 32#include <linux/linkage.h>
d7e7528b 33#include <linux/err.h>
1da177e4 34#include <asm/thread_info.h>
55f327fa 35#include <asm/irqflags.h>
1da177e4
LT
36#include <asm/errno.h>
37#include <asm/segment.h>
38#include <asm/smp.h>
be44d2aa 39#include <asm/percpu.h>
ab68ed98 40#include <asm/processor-flags.h>
9b7dc567 41#include <asm/irq_vectors.h>
cd4d09ec 42#include <asm/cpufeatures.h>
b4ca46e4 43#include <asm/alternative-asm.h>
6837a54d 44#include <asm/asm.h>
e59d1b0a 45#include <asm/smap.h>
4d516f41 46#include <asm/frame.h>
2641f08b 47#include <asm/nospec-branch.h>
1da177e4 48
afaef01c
AP
49#include "calling.h"
50
ea714547
JO
51 .section .entry.text, "ax"
52
139ec7c4
RR
53/*
54 * We use macros for low-level operations which need to be overridden
55 * for paravirtualization. The following will never clobber any registers:
56 * INTERRUPT_RETURN (aka. "iret")
57 * GET_CR0_INTO_EAX (aka. "movl %cr0, %eax")
d75cd22f 58 * ENABLE_INTERRUPTS_SYSEXIT (aka "sti; sysexit").
139ec7c4
RR
59 *
60 * For DISABLE_INTERRUPTS/ENABLE_INTERRUPTS (aka "cli"/"sti"), you must
61 * specify what registers can be overwritten (CLBR_NONE, CLBR_EAX/EDX/ECX/ANY).
62 * Allowing a register to be clobbered can shrink the paravirt replacement
63 * enough to patch inline, increasing performance.
64 */
65
48593975 66#ifdef CONFIG_PREEMPTION
a49976d1 67# define preempt_stop(clobbers) DISABLE_INTERRUPTS(clobbers); TRACE_IRQS_OFF
1da177e4 68#else
a49976d1 69# define preempt_stop(clobbers)
1da177e4
LT
70#endif
71
55f327fa
IM
72.macro TRACE_IRQS_IRET
73#ifdef CONFIG_TRACE_IRQFLAGS
a49976d1
IM
74 testl $X86_EFLAGS_IF, PT_EFLAGS(%esp) # interrupts off?
75 jz 1f
55f327fa
IM
76 TRACE_IRQS_ON
771:
78#endif
79.endm
80
e464fb9f
JR
81#define PTI_SWITCH_MASK (1 << PAGE_SHIFT)
82
ccbeed3a
TH
83/*
84 * User gs save/restore
85 *
86 * %gs is used for userland TLS and kernel only uses it for stack
87 * canary which is required to be at %gs:20 by gcc. Read the comment
88 * at the top of stackprotector.h for more info.
89 *
90 * Local labels 98 and 99 are used.
91 */
92#ifdef CONFIG_X86_32_LAZY_GS
93
94 /* unfortunately push/pop can't be no-op */
95.macro PUSH_GS
a49976d1 96 pushl $0
ccbeed3a
TH
97.endm
98.macro POP_GS pop=0
a49976d1 99 addl $(4 + \pop), %esp
ccbeed3a
TH
100.endm
101.macro POP_GS_EX
102.endm
103
104 /* all the rest are no-op */
105.macro PTGS_TO_GS
106.endm
107.macro PTGS_TO_GS_EX
108.endm
109.macro GS_TO_REG reg
110.endm
111.macro REG_TO_PTGS reg
112.endm
113.macro SET_KERNEL_GS reg
114.endm
115
116#else /* CONFIG_X86_32_LAZY_GS */
117
118.macro PUSH_GS
a49976d1 119 pushl %gs
ccbeed3a
TH
120.endm
121
122.macro POP_GS pop=0
a49976d1 12398: popl %gs
ccbeed3a 124 .if \pop <> 0
9b47feb7 125 add $\pop, %esp
ccbeed3a
TH
126 .endif
127.endm
128.macro POP_GS_EX
129.pushsection .fixup, "ax"
a49976d1
IM
13099: movl $0, (%esp)
131 jmp 98b
ccbeed3a 132.popsection
a49976d1 133 _ASM_EXTABLE(98b, 99b)
ccbeed3a
TH
134.endm
135
136.macro PTGS_TO_GS
a49976d1 13798: mov PT_GS(%esp), %gs
ccbeed3a
TH
138.endm
139.macro PTGS_TO_GS_EX
140.pushsection .fixup, "ax"
a49976d1
IM
14199: movl $0, PT_GS(%esp)
142 jmp 98b
ccbeed3a 143.popsection
a49976d1 144 _ASM_EXTABLE(98b, 99b)
ccbeed3a
TH
145.endm
146
147.macro GS_TO_REG reg
a49976d1 148 movl %gs, \reg
ccbeed3a
TH
149.endm
150.macro REG_TO_PTGS reg
a49976d1 151 movl \reg, PT_GS(%esp)
ccbeed3a
TH
152.endm
153.macro SET_KERNEL_GS reg
a49976d1
IM
154 movl $(__KERNEL_STACK_CANARY), \reg
155 movl \reg, %gs
ccbeed3a
TH
156.endm
157
a49976d1 158#endif /* CONFIG_X86_32_LAZY_GS */
ccbeed3a 159
e464fb9f
JR
160/* Unconditionally switch to user cr3 */
161.macro SWITCH_TO_USER_CR3 scratch_reg:req
162 ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
163
164 movl %cr3, \scratch_reg
165 orl $PTI_SWITCH_MASK, \scratch_reg
166 movl \scratch_reg, %cr3
167.Lend_\@:
168.endm
169
97193702
JR
170.macro BUG_IF_WRONG_CR3 no_user_check=0
171#ifdef CONFIG_DEBUG_ENTRY
172 ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
173 .if \no_user_check == 0
174 /* coming from usermode? */
81ff2c37 175 testl $USER_SEGMENT_RPL_MASK, PT_CS(%esp)
97193702
JR
176 jz .Lend_\@
177 .endif
178 /* On user-cr3? */
179 movl %cr3, %eax
180 testl $PTI_SWITCH_MASK, %eax
181 jnz .Lend_\@
182 /* From userspace with kernel cr3 - BUG */
183 ud2
184.Lend_\@:
185#endif
186.endm
187
e464fb9f
JR
188/*
189 * Switch to kernel cr3 if not already loaded and return current cr3 in
190 * \scratch_reg
191 */
192.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req
193 ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
194 movl %cr3, \scratch_reg
195 /* Test if we are already on kernel CR3 */
196 testl $PTI_SWITCH_MASK, \scratch_reg
197 jz .Lend_\@
198 andl $(~PTI_SWITCH_MASK), \scratch_reg
199 movl \scratch_reg, %cr3
200 /* Return original CR3 in \scratch_reg */
201 orl $PTI_SWITCH_MASK, \scratch_reg
202.Lend_\@:
203.endm
204
3c88c692
PZ
205#define CS_FROM_ENTRY_STACK (1 << 31)
206#define CS_FROM_USER_CR3 (1 << 30)
207#define CS_FROM_KERNEL (1 << 29)
89542907 208#define CS_FROM_ESPFIX (1 << 28)
3c88c692
PZ
209
210.macro FIXUP_FRAME
211 /*
212 * The high bits of the CS dword (__csh) are used for CS_FROM_*.
213 * Clear them in case hardware didn't do this for us.
214 */
82cb8a0b 215 andl $0x0000ffff, 4*4(%esp)
3c88c692
PZ
216
217#ifdef CONFIG_VM86
82cb8a0b 218 testl $X86_EFLAGS_VM, 5*4(%esp)
3c88c692
PZ
219 jnz .Lfrom_usermode_no_fixup_\@
220#endif
82cb8a0b 221 testl $USER_SEGMENT_RPL_MASK, 4*4(%esp)
3c88c692
PZ
222 jnz .Lfrom_usermode_no_fixup_\@
223
82cb8a0b 224 orl $CS_FROM_KERNEL, 4*4(%esp)
3c88c692
PZ
225
226 /*
227 * When we're here from kernel mode; the (exception) stack looks like:
228 *
82cb8a0b
AL
229 * 6*4(%esp) - <previous context>
230 * 5*4(%esp) - flags
231 * 4*4(%esp) - cs
232 * 3*4(%esp) - ip
233 * 2*4(%esp) - orig_eax
234 * 1*4(%esp) - gs / function
235 * 0*4(%esp) - fs
3c88c692
PZ
236 *
237 * Lets build a 5 entry IRET frame after that, such that struct pt_regs
238 * is complete and in particular regs->sp is correct. This gives us
82cb8a0b 239 * the original 6 enties as gap:
3c88c692 240 *
82cb8a0b
AL
241 * 14*4(%esp) - <previous context>
242 * 13*4(%esp) - gap / flags
243 * 12*4(%esp) - gap / cs
244 * 11*4(%esp) - gap / ip
245 * 10*4(%esp) - gap / orig_eax
246 * 9*4(%esp) - gap / gs / function
247 * 8*4(%esp) - gap / fs
248 * 7*4(%esp) - ss
249 * 6*4(%esp) - sp
250 * 5*4(%esp) - flags
251 * 4*4(%esp) - cs
252 * 3*4(%esp) - ip
253 * 2*4(%esp) - orig_eax
254 * 1*4(%esp) - gs / function
255 * 0*4(%esp) - fs
3c88c692
PZ
256 */
257
258 pushl %ss # ss
259 pushl %esp # sp (points at ss)
82cb8a0b
AL
260 addl $7*4, (%esp) # point sp back at the previous context
261 pushl 7*4(%esp) # flags
262 pushl 7*4(%esp) # cs
263 pushl 7*4(%esp) # ip
264 pushl 7*4(%esp) # orig_eax
265 pushl 7*4(%esp) # gs / function
266 pushl 7*4(%esp) # fs
3c88c692
PZ
267.Lfrom_usermode_no_fixup_\@:
268.endm
269
270.macro IRET_FRAME
4c4fd55d
AL
271 /*
272 * We're called with %ds, %es, %fs, and %gs from the interrupted
273 * frame, so we shouldn't use them. Also, we may be in ESPFIX
274 * mode and therefore have a nonzero SS base and an offset ESP,
275 * so any attempt to access the stack needs to use SS. (except for
276 * accesses through %esp, which automatically use SS.)
277 */
3c88c692
PZ
278 testl $CS_FROM_KERNEL, 1*4(%esp)
279 jz .Lfinished_frame_\@
280
281 /*
282 * Reconstruct the 3 entry IRET frame right after the (modified)
283 * regs->sp without lowering %esp in between, such that an NMI in the
284 * middle doesn't scribble our stack.
285 */
286 pushl %eax
287 pushl %ecx
288 movl 5*4(%esp), %eax # (modified) regs->sp
289
290 movl 4*4(%esp), %ecx # flags
4c4fd55d 291 movl %ecx, %ss:-1*4(%eax)
3c88c692
PZ
292
293 movl 3*4(%esp), %ecx # cs
294 andl $0x0000ffff, %ecx
4c4fd55d 295 movl %ecx, %ss:-2*4(%eax)
3c88c692
PZ
296
297 movl 2*4(%esp), %ecx # ip
4c4fd55d 298 movl %ecx, %ss:-3*4(%eax)
3c88c692
PZ
299
300 movl 1*4(%esp), %ecx # eax
4c4fd55d 301 movl %ecx, %ss:-4*4(%eax)
3c88c692
PZ
302
303 popl %ecx
4c4fd55d 304 lea -4*4(%eax), %esp
3c88c692
PZ
305 popl %eax
306.Lfinished_frame_\@:
307.endm
308
a1a338e5 309.macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0 unwind_espfix=0
f0d96110 310 cld
e67f1c11 311.if \skip_gs == 0
ccbeed3a 312 PUSH_GS
e67f1c11 313.endif
a49976d1 314 pushl %fs
a1a338e5
AL
315
316 pushl %eax
317 movl $(__KERNEL_PERCPU), %eax
318 movl %eax, %fs
319.if \unwind_espfix > 0
320 UNWIND_ESPFIX_STACK
321.endif
322 popl %eax
323
82cb8a0b 324 FIXUP_FRAME
a49976d1
IM
325 pushl %es
326 pushl %ds
150ac78d 327 pushl \pt_regs_ax
a49976d1
IM
328 pushl %ebp
329 pushl %edi
330 pushl %esi
331 pushl %edx
332 pushl %ecx
333 pushl %ebx
334 movl $(__USER_DS), %edx
335 movl %edx, %ds
336 movl %edx, %es
e67f1c11 337.if \skip_gs == 0
ccbeed3a 338 SET_KERNEL_GS %edx
e67f1c11 339.endif
45d7b255
JR
340 /* Switch to kernel stack if necessary */
341.if \switch_stacks > 0
342 SWITCH_TO_KERNEL_STACK
343.endif
f0d96110 344.endm
1da177e4 345
89542907
PZ
346.macro SAVE_ALL_NMI cr3_reg:req unwind_espfix=0
347 SAVE_ALL unwind_espfix=\unwind_espfix
b65bef40 348
97193702
JR
349 BUG_IF_WRONG_CR3
350
b65bef40
JR
351 /*
352 * Now switch the CR3 when PTI is enabled.
353 *
354 * We can enter with either user or kernel cr3, the code will
355 * store the old cr3 in \cr3_reg and switches to the kernel cr3
356 * if necessary.
357 */
358 SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg
359
360.Lend_\@:
8b376fae 361.endm
97193702 362
f0d96110 363.macro RESTORE_INT_REGS
a49976d1
IM
364 popl %ebx
365 popl %ecx
366 popl %edx
367 popl %esi
368 popl %edi
369 popl %ebp
370 popl %eax
f0d96110 371.endm
1da177e4 372
ccbeed3a 373.macro RESTORE_REGS pop=0
f0d96110 374 RESTORE_INT_REGS
a49976d1
IM
3751: popl %ds
3762: popl %es
3773: popl %fs
ccbeed3a 378 POP_GS \pop
40ad2199 379 IRET_FRAME
f0d96110 380.pushsection .fixup, "ax"
a49976d1
IM
3814: movl $0, (%esp)
382 jmp 1b
3835: movl $0, (%esp)
384 jmp 2b
3856: movl $0, (%esp)
386 jmp 3b
f95d47ca 387.popsection
a49976d1
IM
388 _ASM_EXTABLE(1b, 4b)
389 _ASM_EXTABLE(2b, 5b)
390 _ASM_EXTABLE(3b, 6b)
ccbeed3a 391 POP_GS_EX
f0d96110 392.endm
1da177e4 393
b65bef40
JR
394.macro RESTORE_ALL_NMI cr3_reg:req pop=0
395 /*
396 * Now switch the CR3 when PTI is enabled.
397 *
398 * We enter with kernel cr3 and switch the cr3 to the value
399 * stored on \cr3_reg, which is either a user or a kernel cr3.
400 */
401 ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI
402
403 testl $PTI_SWITCH_MASK, \cr3_reg
404 jz .Lswitched_\@
405
406 /* User cr3 in \cr3_reg - write it to hardware cr3 */
407 movl \cr3_reg, %cr3
408
409.Lswitched_\@:
410
97193702
JR
411 BUG_IF_WRONG_CR3
412
8b376fae
JR
413 RESTORE_REGS pop=\pop
414.endm
415
46eabca2
JR
416.macro CHECK_AND_APPLY_ESPFIX
417#ifdef CONFIG_X86_ESPFIX32
4a13b0e3
AL
418#define GDT_ESPFIX_OFFSET (GDT_ENTRY_ESPFIX_SS * 8)
419#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + GDT_ESPFIX_OFFSET
46eabca2
JR
420
421 ALTERNATIVE "jmp .Lend_\@", "", X86_BUG_ESPFIX
422
423 movl PT_EFLAGS(%esp), %eax # mix EFLAGS, SS and CS
424 /*
425 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we
426 * are returning to the kernel.
427 * See comments in process.c:copy_thread() for details.
428 */
429 movb PT_OLDSS(%esp), %ah
430 movb PT_CS(%esp), %al
431 andl $(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
432 cmpl $((SEGMENT_LDT << 8) | USER_RPL), %eax
433 jne .Lend_\@ # returning to user-space with LDT SS
434
435 /*
436 * Setup and switch to ESPFIX stack
437 *
438 * We're returning to userspace with a 16 bit stack. The CPU will not
439 * restore the high word of ESP for us on executing iret... This is an
440 * "official" bug of all the x86-compatible CPUs, which we can work
441 * around to make dosemu and wine happy. We do this by preloading the
442 * high word of ESP with the high word of the userspace ESP while
443 * compensating for the offset by changing to the ESPFIX segment with
444 * a base address that matches for the difference.
445 */
446 mov %esp, %edx /* load kernel esp */
447 mov PT_OLDESP(%esp), %eax /* load userspace esp */
448 mov %dx, %ax /* eax: new kernel esp */
449 sub %eax, %edx /* offset (low word is 0) */
450 shr $16, %edx
451 mov %dl, GDT_ESPFIX_SS + 4 /* bits 16..23 */
452 mov %dh, GDT_ESPFIX_SS + 7 /* bits 24..31 */
453 pushl $__ESPFIX_SS
454 pushl %eax /* new kernel esp */
455 /*
456 * Disable interrupts, but do not irqtrace this section: we
457 * will soon execute iret and the tracer was already set to
458 * the irqstate after the IRET:
459 */
460 DISABLE_INTERRUPTS(CLBR_ANY)
461 lss (%esp), %esp /* switch to espfix segment */
462.Lend_\@:
463#endif /* CONFIG_X86_ESPFIX32 */
464.endm
45d7b255 465
45d7b255
JR
466/*
467 * Called with pt_regs fully populated and kernel segments loaded,
468 * so we can access PER_CPU and use the integer registers.
469 *
470 * We need to be very careful here with the %esp switch, because an NMI
471 * can happen everywhere. If the NMI handler finds itself on the
472 * entry-stack, it will overwrite the task-stack and everything we
473 * copied there. So allocate the stack-frame on the task-stack and
474 * switch to it before we do any copying.
475 */
b92a165d 476
45d7b255
JR
477.macro SWITCH_TO_KERNEL_STACK
478
479 ALTERNATIVE "", "jmp .Lend_\@", X86_FEATURE_XENPV
480
97193702
JR
481 BUG_IF_WRONG_CR3
482
e464fb9f
JR
483 SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
484
485 /*
486 * %eax now contains the entry cr3 and we carry it forward in
487 * that register for the time this macro runs
488 */
489
45d7b255
JR
490 /* Are we on the entry stack? Bail out if not! */
491 movl PER_CPU_VAR(cpu_entry_area), %ecx
492 addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
493 subl %esp, %ecx /* ecx = (end of entry_stack) - esp */
494 cmpl $SIZEOF_entry_stack, %ecx
495 jae .Lend_\@
496
497 /* Load stack pointer into %esi and %edi */
498 movl %esp, %esi
499 movl %esi, %edi
500
501 /* Move %edi to the top of the entry stack */
502 andl $(MASK_entry_stack), %edi
503 addl $(SIZEOF_entry_stack), %edi
504
505 /* Load top of task-stack into %edi */
506 movl TSS_entry2task_stack(%edi), %edi
507
b92a165d 508 /* Special case - entry from kernel mode via entry stack */
d5e84c21
JR
509#ifdef CONFIG_VM86
510 movl PT_EFLAGS(%esp), %ecx # mix EFLAGS and CS
511 movb PT_CS(%esp), %cl
512 andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx
513#else
514 movl PT_CS(%esp), %ecx
515 andl $SEGMENT_RPL_MASK, %ecx
516#endif
517 cmpl $USER_RPL, %ecx
518 jb .Lentry_from_kernel_\@
b92a165d 519
45d7b255
JR
520 /* Bytes to copy */
521 movl $PTREGS_SIZE, %ecx
522
523#ifdef CONFIG_VM86
524 testl $X86_EFLAGS_VM, PT_EFLAGS(%esi)
525 jz .Lcopy_pt_regs_\@
526
527 /*
528 * Stack-frame contains 4 additional segment registers when
529 * coming from VM86 mode
530 */
531 addl $(4 * 4), %ecx
532
45d7b255 533#endif
b92a165d 534.Lcopy_pt_regs_\@:
45d7b255
JR
535
536 /* Allocate frame on task-stack */
537 subl %ecx, %edi
538
539 /* Switch to task-stack */
540 movl %edi, %esp
541
542 /*
543 * We are now on the task-stack and can safely copy over the
544 * stack-frame
545 */
546 shrl $2, %ecx
547 cld
548 rep movsl
549
b92a165d
JR
550 jmp .Lend_\@
551
552.Lentry_from_kernel_\@:
553
554 /*
555 * This handles the case when we enter the kernel from
556 * kernel-mode and %esp points to the entry-stack. When this
557 * happens we need to switch to the task-stack to run C code,
558 * but switch back to the entry-stack again when we approach
559 * iret and return to the interrupted code-path. This usually
560 * happens when we hit an exception while restoring user-space
e464fb9f
JR
561 * segment registers on the way back to user-space or when the
562 * sysenter handler runs with eflags.tf set.
b92a165d
JR
563 *
564 * When we switch to the task-stack here, we can't trust the
565 * contents of the entry-stack anymore, as the exception handler
566 * might be scheduled out or moved to another CPU. Therefore we
567 * copy the complete entry-stack to the task-stack and set a
568 * marker in the iret-frame (bit 31 of the CS dword) to detect
569 * what we've done on the iret path.
570 *
571 * On the iret path we copy everything back and switch to the
572 * entry-stack, so that the interrupted kernel code-path
573 * continues on the same stack it was interrupted with.
574 *
575 * Be aware that an NMI can happen anytime in this code.
576 *
577 * %esi: Entry-Stack pointer (same as %esp)
578 * %edi: Top of the task stack
e464fb9f 579 * %eax: CR3 on kernel entry
b92a165d
JR
580 */
581
582 /* Calculate number of bytes on the entry stack in %ecx */
583 movl %esi, %ecx
584
585 /* %ecx to the top of entry-stack */
586 andl $(MASK_entry_stack), %ecx
587 addl $(SIZEOF_entry_stack), %ecx
588
589 /* Number of bytes on the entry stack to %ecx */
590 sub %esi, %ecx
591
592 /* Mark stackframe as coming from entry stack */
593 orl $CS_FROM_ENTRY_STACK, PT_CS(%esp)
594
e464fb9f
JR
595 /*
596 * Test the cr3 used to enter the kernel and add a marker
597 * so that we can switch back to it before iret.
598 */
599 testl $PTI_SWITCH_MASK, %eax
600 jz .Lcopy_pt_regs_\@
601 orl $CS_FROM_USER_CR3, PT_CS(%esp)
602
b92a165d
JR
603 /*
604 * %esi and %edi are unchanged, %ecx contains the number of
605 * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate
606 * the stack-frame on task-stack and copy everything over
607 */
608 jmp .Lcopy_pt_regs_\@
609
45d7b255
JR
610.Lend_\@:
611.endm
612
e5862d05
JR
613/*
614 * Switch back from the kernel stack to the entry stack.
615 *
616 * The %esp register must point to pt_regs on the task stack. It will
617 * first calculate the size of the stack-frame to copy, depending on
618 * whether we return to VM86 mode or not. With that it uses 'rep movsl'
619 * to copy the contents of the stack over to the entry stack.
620 *
621 * We must be very careful here, as we can't trust the contents of the
622 * task-stack once we switched to the entry-stack. When an NMI happens
623 * while on the entry-stack, the NMI handler will switch back to the top
624 * of the task stack, overwriting our stack-frame we are about to copy.
625 * Therefore we switch the stack only after everything is copied over.
626 */
627.macro SWITCH_TO_ENTRY_STACK
628
629 ALTERNATIVE "", "jmp .Lend_\@", X86_FEATURE_XENPV
630
631 /* Bytes to copy */
632 movl $PTREGS_SIZE, %ecx
633
634#ifdef CONFIG_VM86
635 testl $(X86_EFLAGS_VM), PT_EFLAGS(%esp)
636 jz .Lcopy_pt_regs_\@
637
638 /* Additional 4 registers to copy when returning to VM86 mode */
639 addl $(4 * 4), %ecx
640
641.Lcopy_pt_regs_\@:
642#endif
643
644 /* Initialize source and destination for movsl */
645 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
646 subl %ecx, %edi
647 movl %esp, %esi
648
649 /* Save future stack pointer in %ebx */
650 movl %edi, %ebx
651
652 /* Copy over the stack-frame */
653 shrl $2, %ecx
654 cld
655 rep movsl
656
657 /*
658 * Switch to entry-stack - needs to happen after everything is
659 * copied because the NMI handler will overwrite the task-stack
660 * when on entry-stack
661 */
662 movl %ebx, %esp
663
664.Lend_\@:
665.endm
666
b92a165d
JR
667/*
668 * This macro handles the case when we return to kernel-mode on the iret
e464fb9f 669 * path and have to switch back to the entry stack and/or user-cr3
b92a165d
JR
670 *
671 * See the comments below the .Lentry_from_kernel_\@ label in the
672 * SWITCH_TO_KERNEL_STACK macro for more details.
673 */
674.macro PARANOID_EXIT_TO_KERNEL_MODE
675
676 /*
677 * Test if we entered the kernel with the entry-stack. Most
678 * likely we did not, because this code only runs on the
679 * return-to-kernel path.
680 */
681 testl $CS_FROM_ENTRY_STACK, PT_CS(%esp)
682 jz .Lend_\@
683
684 /* Unlikely slow-path */
685
686 /* Clear marker from stack-frame */
687 andl $(~CS_FROM_ENTRY_STACK), PT_CS(%esp)
688
689 /* Copy the remaining task-stack contents to entry-stack */
690 movl %esp, %esi
691 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
692
693 /* Bytes on the task-stack to ecx */
694 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx
695 subl %esi, %ecx
696
697 /* Allocate stack-frame on entry-stack */
698 subl %ecx, %edi
699
700 /*
701 * Save future stack-pointer, we must not switch until the
702 * copy is done, otherwise the NMI handler could destroy the
703 * contents of the task-stack we are about to copy.
704 */
705 movl %edi, %ebx
706
707 /* Do the copy */
708 shrl $2, %ecx
709 cld
710 rep movsl
711
712 /* Safe to switch to entry-stack now */
713 movl %ebx, %esp
714
e464fb9f
JR
715 /*
716 * We came from entry-stack and need to check if we also need to
717 * switch back to user cr3.
718 */
719 testl $CS_FROM_USER_CR3, PT_CS(%esp)
720 jz .Lend_\@
721
722 /* Clear marker from stack-frame */
723 andl $(~CS_FROM_USER_CR3), PT_CS(%esp)
724
725 SWITCH_TO_USER_CR3 scratch_reg=%eax
726
b92a165d
JR
727.Lend_\@:
728.endm
0100301b
BG
729/*
730 * %eax: prev task
731 * %edx: next task
732 */
733ENTRY(__switch_to_asm)
734 /*
735 * Save callee-saved registers
736 * This must match the order in struct inactive_task_frame
737 */
738 pushl %ebp
739 pushl %ebx
740 pushl %edi
741 pushl %esi
6690e86b 742 pushfl
0100301b
BG
743
744 /* switch stack */
745 movl %esp, TASK_threadsp(%eax)
746 movl TASK_threadsp(%edx), %esp
747
050e9baa 748#ifdef CONFIG_STACKPROTECTOR
0100301b
BG
749 movl TASK_stack_canary(%edx), %ebx
750 movl %ebx, PER_CPU_VAR(stack_canary)+stack_canary_offset
751#endif
752
c995efd5
DW
753#ifdef CONFIG_RETPOLINE
754 /*
755 * When switching from a shallower to a deeper call stack
756 * the RSB may either underflow or use entries populated
757 * with userspace addresses. On CPUs where those concerns
758 * exist, overwrite the RSB with entries which capture
759 * speculative execution to prevent attack.
760 */
d1c99108 761 FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
c995efd5
DW
762#endif
763
0100301b 764 /* restore callee-saved registers */
6690e86b 765 popfl
0100301b
BG
766 popl %esi
767 popl %edi
768 popl %ebx
769 popl %ebp
770
771 jmp __switch_to
772END(__switch_to_asm)
773
ebd57499
JP
774/*
775 * The unwinder expects the last frame on the stack to always be at the same
776 * offset from the end of the page, which allows it to validate the stack.
777 * Calling schedule_tail() directly would break that convention because its an
778 * asmlinkage function so its argument has to be pushed on the stack. This
779 * wrapper creates a proper "end of stack" frame header before the call.
780 */
781ENTRY(schedule_tail_wrapper)
782 FRAME_BEGIN
783
784 pushl %eax
785 call schedule_tail
786 popl %eax
787
788 FRAME_END
789 ret
790ENDPROC(schedule_tail_wrapper)
0100301b
BG
791/*
792 * A newly forked process directly context switches into this address.
793 *
794 * eax: prev task we switched from
616d2483
BG
795 * ebx: kernel thread func (NULL for user thread)
796 * edi: kernel thread arg
0100301b 797 */
1da177e4 798ENTRY(ret_from_fork)
ebd57499 799 call schedule_tail_wrapper
39e8701f 800
616d2483
BG
801 testl %ebx, %ebx
802 jnz 1f /* kernel threads are uncommon */
803
8042:
39e8701f 805 /* When we fork, we trace the syscall return in the child, too. */
ebd57499 806 movl %esp, %eax
39e8701f 807 call syscall_return_slowpath
afaef01c 808 STACKLEAK_ERASE
39e8701f 809 jmp restore_all
39e8701f 810
616d2483
BG
811 /* kernel thread */
8121: movl %edi, %eax
2641f08b 813 CALL_NOSPEC %ebx
39e8701f 814 /*
616d2483
BG
815 * A kernel thread is allowed to return here after successfully
816 * calling do_execve(). Exit to userspace to complete the execve()
817 * syscall.
39e8701f 818 */
616d2483
BG
819 movl $0, PT_EAX(%esp)
820 jmp 2b
821END(ret_from_fork)
6783eaa2 822
1da177e4
LT
823/*
824 * Return to user mode is not as complex as all this looks,
825 * but we want the default path for a system call return to
826 * go as quickly as possible which is why some of this is
827 * less clear than it otherwise should be.
828 */
829
830 # userspace resumption stub bypassing syscall exit tracing
831 ALIGN
832ret_from_exception:
139ec7c4 833 preempt_stop(CLBR_ANY)
1da177e4 834ret_from_intr:
29a2e283 835#ifdef CONFIG_VM86
a49976d1
IM
836 movl PT_EFLAGS(%esp), %eax # mix EFLAGS and CS
837 movb PT_CS(%esp), %al
838 andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
29a2e283
DA
839#else
840 /*
6783eaa2 841 * We can be coming here from child spawned by kernel_thread().
29a2e283 842 */
a49976d1
IM
843 movl PT_CS(%esp), %eax
844 andl $SEGMENT_RPL_MASK, %eax
29a2e283 845#endif
a49976d1 846 cmpl $USER_RPL, %eax
5e1246ff 847 jb restore_all_kernel # not returning to v8086 or userspace
f95d47ca 848
1da177e4 849ENTRY(resume_userspace)
5d73fc70 850 DISABLE_INTERRUPTS(CLBR_ANY)
e32e58a9 851 TRACE_IRQS_OFF
5d73fc70
AL
852 movl %esp, %eax
853 call prepare_exit_to_usermode
a49976d1 854 jmp restore_all
47a55cd7 855END(ret_from_exception)
1da177e4 856
f2b37575
AL
857GLOBAL(__begin_SYSENTER_singlestep_region)
858/*
859 * All code from here through __end_SYSENTER_singlestep_region is subject
860 * to being single-stepped if a user program sets TF and executes SYSENTER.
861 * There is absolutely nothing that we can do to prevent this from happening
862 * (thanks Intel!). To keep our handling of this situation as simple as
863 * possible, we handle TF just like AC and NT, except that our #DB handler
864 * will ignore all of the single-step traps generated in this range.
865 */
866
28c11b0f 867#ifdef CONFIG_XEN_PV
f2b37575
AL
868/*
869 * Xen doesn't set %esp to be precisely what the normal SYSENTER
870 * entry point expects, so fix it up before using the normal path.
871 */
872ENTRY(xen_sysenter_target)
873 addl $5*4, %esp /* remove xen-provided frame */
1b00255f 874 jmp .Lsysenter_past_esp
f2b37575
AL
875#endif
876
fda57b22
AL
877/*
878 * 32-bit SYSENTER entry.
879 *
880 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
881 * if X86_FEATURE_SEP is available. This is the preferred system call
882 * entry on 32-bit systems.
883 *
884 * The SYSENTER instruction, in principle, should *only* occur in the
885 * vDSO. In practice, a small number of Android devices were shipped
886 * with a copy of Bionic that inlined a SYSENTER instruction. This
887 * never happened in any of Google's Bionic versions -- it only happened
888 * in a narrow range of Intel-provided versions.
889 *
890 * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
891 * IF and VM in RFLAGS are cleared (IOW: interrupts are off).
892 * SYSENTER does not save anything on the stack,
893 * and does not save old EIP (!!!), ESP, or EFLAGS.
894 *
895 * To avoid losing track of EFLAGS.VM (and thus potentially corrupting
896 * user and/or vm86 state), we explicitly disable the SYSENTER
897 * instruction in vm86 mode by reprogramming the MSRs.
898 *
899 * Arguments:
900 * eax system call number
901 * ebx arg1
902 * ecx arg2
903 * edx arg3
904 * esi arg4
905 * edi arg5
906 * ebp user stack
907 * 0(%ebp) arg6
908 */
4c8cd0c5 909ENTRY(entry_SYSENTER_32)
e464fb9f
JR
910 /*
911 * On entry-stack with all userspace-regs live - save and
912 * restore eflags and %eax to use it as scratch-reg for the cr3
913 * switch.
914 */
915 pushfl
916 pushl %eax
97193702 917 BUG_IF_WRONG_CR3 no_user_check=1
e464fb9f
JR
918 SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
919 popl %eax
920 popfl
921
922 /* Stack empty again, switch to task stack */
ae2e565b 923 movl TSS_entry2task_stack(%esp), %esp
e464fb9f 924
1b00255f 925.Lsysenter_past_esp:
5f310f73 926 pushl $__USER_DS /* pt_regs->ss */
30bfa7b3 927 pushl %ebp /* pt_regs->sp (stashed in bp) */
5f310f73
AL
928 pushfl /* pt_regs->flags (except IF = 0) */
929 orl $X86_EFLAGS_IF, (%esp) /* Fix IF */
930 pushl $__USER_CS /* pt_regs->cs */
931 pushl $0 /* pt_regs->ip = 0 (placeholder) */
932 pushl %eax /* pt_regs->orig_ax */
45d7b255 933 SAVE_ALL pt_regs_ax=$-ENOSYS /* save rest, stack already switched */
5f310f73 934
67f590e8 935 /*
f2b37575
AL
936 * SYSENTER doesn't filter flags, so we need to clear NT, AC
937 * and TF ourselves. To save a few cycles, we can check whether
67f590e8
AL
938 * either was set instead of doing an unconditional popfq.
939 * This needs to happen before enabling interrupts so that
940 * we don't get preempted with NT set.
941 *
f2b37575
AL
942 * If TF is set, we will single-step all the way to here -- do_debug
943 * will ignore all the traps. (Yes, this is slow, but so is
944 * single-stepping in general. This allows us to avoid having
945 * a more complicated code to handle the case where a user program
946 * forces us to single-step through the SYSENTER entry code.)
947 *
67f590e8
AL
948 * NB.: .Lsysenter_fix_flags is a label with the code under it moved
949 * out-of-line as an optimization: NT is unlikely to be set in the
950 * majority of the cases and instead of polluting the I$ unnecessarily,
951 * we're keeping that code behind a branch which will predict as
952 * not-taken and therefore its instructions won't be fetched.
953 */
f2b37575 954 testl $X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
67f590e8
AL
955 jnz .Lsysenter_fix_flags
956.Lsysenter_flags_fixed:
957
55f327fa 958 /*
5f310f73
AL
959 * User mode is traced as though IRQs are on, and SYSENTER
960 * turned them off.
e6e5494c 961 */
55f327fa 962 TRACE_IRQS_OFF
5f310f73
AL
963
964 movl %esp, %eax
965 call do_fast_syscall_32
91e2eea9
BO
966 /* XEN PV guests always use IRET path */
967 ALTERNATIVE "testl %eax, %eax; jz .Lsyscall_32_done", \
968 "jmp .Lsyscall_32_done", X86_FEATURE_XENPV
5f310f73 969
afaef01c
AP
970 STACKLEAK_ERASE
971
5f310f73
AL
972/* Opportunistic SYSEXIT */
973 TRACE_IRQS_ON /* User mode traces as IRQs on. */
e5862d05
JR
974
975 /*
976 * Setup entry stack - we keep the pointer in %eax and do the
977 * switch after almost all user-state is restored.
978 */
979
980 /* Load entry stack pointer and allocate frame for eflags/eax */
981 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax
982 subl $(2*4), %eax
983
984 /* Copy eflags and eax to entry stack */
985 movl PT_EFLAGS(%esp), %edi
986 movl PT_EAX(%esp), %esi
987 movl %edi, (%eax)
988 movl %esi, 4(%eax)
989
990 /* Restore user registers and segments */
5f310f73
AL
991 movl PT_EIP(%esp), %edx /* pt_regs->ip */
992 movl PT_OLDESP(%esp), %ecx /* pt_regs->sp */
3bd29515
AL
9931: mov PT_FS(%esp), %fs
994 PTGS_TO_GS
e5862d05 995
5f310f73
AL
996 popl %ebx /* pt_regs->bx */
997 addl $2*4, %esp /* skip pt_regs->cx and pt_regs->dx */
998 popl %esi /* pt_regs->si */
999 popl %edi /* pt_regs->di */
1000 popl %ebp /* pt_regs->bp */
e5862d05
JR
1001
1002 /* Switch to entry stack */
1003 movl %eax, %esp
5f310f73 1004
e464fb9f
JR
1005 /* Now ready to switch the cr3 */
1006 SWITCH_TO_USER_CR3 scratch_reg=%eax
1007
c2c9b52f
AL
1008 /*
1009 * Restore all flags except IF. (We restore IF separately because
1010 * STI gives a one-instruction window in which we won't be interrupted,
1011 * whereas POPF does not.)
1012 */
236f0cd2 1013 btrl $X86_EFLAGS_IF_BIT, (%esp)
97193702 1014 BUG_IF_WRONG_CR3 no_user_check=1
c2c9b52f 1015 popfl
e5862d05 1016 popl %eax
c2c9b52f 1017
5f310f73
AL
1018 /*
1019 * Return back to the vDSO, which will pop ecx and edx.
1020 * Don't bother with DS and ES (they already contain __USER_DS).
1021 */
88c15ec9
BO
1022 sti
1023 sysexit
af0575bb 1024
a49976d1
IM
1025.pushsection .fixup, "ax"
10262: movl $0, PT_FS(%esp)
1027 jmp 1b
f95d47ca 1028.popsection
a49976d1 1029 _ASM_EXTABLE(1b, 2b)
ccbeed3a 1030 PTGS_TO_GS_EX
67f590e8
AL
1031
1032.Lsysenter_fix_flags:
1033 pushl $X86_EFLAGS_FIXED
1034 popfl
1035 jmp .Lsysenter_flags_fixed
f2b37575 1036GLOBAL(__end_SYSENTER_singlestep_region)
4c8cd0c5 1037ENDPROC(entry_SYSENTER_32)
1da177e4 1038
fda57b22
AL
1039/*
1040 * 32-bit legacy system call entry.
1041 *
1042 * 32-bit x86 Linux system calls traditionally used the INT $0x80
1043 * instruction. INT $0x80 lands here.
1044 *
1045 * This entry point can be used by any 32-bit perform system calls.
1046 * Instances of INT $0x80 can be found inline in various programs and
1047 * libraries. It is also used by the vDSO's __kernel_vsyscall
1048 * fallback for hardware that doesn't support a faster entry method.
1049 * Restarted 32-bit system calls also fall back to INT $0x80
1050 * regardless of what instruction was originally used to do the system
1051 * call. (64-bit programs can use INT $0x80 as well, but they can
1052 * only run on 64-bit kernels and therefore land in
1053 * entry_INT80_compat.)
1054 *
1055 * This is considered a slow path. It is not used by most libc
1056 * implementations on modern hardware except during process startup.
1057 *
1058 * Arguments:
1059 * eax system call number
1060 * ebx arg1
1061 * ecx arg2
1062 * edx arg3
1063 * esi arg4
1064 * edi arg5
1065 * ebp arg6
1066 */
b2502b41 1067ENTRY(entry_INT80_32)
e59d1b0a 1068 ASM_CLAC
150ac78d 1069 pushl %eax /* pt_regs->orig_ax */
45d7b255
JR
1070
1071 SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1 /* save rest */
150ac78d
AL
1072
1073 /*
a798f091
AL
1074 * User mode is traced as though IRQs are on, and the interrupt gate
1075 * turned them off.
150ac78d 1076 */
a798f091 1077 TRACE_IRQS_OFF
150ac78d
AL
1078
1079 movl %esp, %eax
a798f091 1080 call do_int80_syscall_32
5f310f73 1081.Lsyscall_32_done:
1da177e4 1082
afaef01c
AP
1083 STACKLEAK_ERASE
1084
1da177e4 1085restore_all:
2e04bc76 1086 TRACE_IRQS_IRET
e5862d05 1087 SWITCH_TO_ENTRY_STACK
1b00255f 1088.Lrestore_all_notrace:
46eabca2 1089 CHECK_AND_APPLY_ESPFIX
1b00255f 1090.Lrestore_nocheck:
e464fb9f
JR
1091 /* Switch back to user CR3 */
1092 SWITCH_TO_USER_CR3 scratch_reg=%eax
1093
97193702
JR
1094 BUG_IF_WRONG_CR3
1095
e464fb9f
JR
1096 /* Restore user state */
1097 RESTORE_REGS pop=4 # skip orig_eax/error_code
1b00255f 1098.Lirq_return:
10bcc80e
MD
1099 /*
1100 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
1101 * when returning from IPI handler and when returning from
1102 * scheduler to user-space.
1103 */
3701d863 1104 INTERRUPT_RETURN
1b00255f 1105
0d2eb73b 1106restore_all_kernel:
48593975 1107#ifdef CONFIG_PREEMPTION
5e1246ff
PZ
1108 DISABLE_INTERRUPTS(CLBR_ANY)
1109 cmpl $0, PER_CPU_VAR(__preempt_count)
1110 jnz .Lno_preempt
1111 testl $X86_EFLAGS_IF, PT_EFLAGS(%esp) # interrupts off (exception path) ?
1112 jz .Lno_preempt
1113 call preempt_schedule_irq
1114.Lno_preempt:
1115#endif
0d2eb73b 1116 TRACE_IRQS_IRET
b92a165d 1117 PARANOID_EXIT_TO_KERNEL_MODE
97193702 1118 BUG_IF_WRONG_CR3
0d2eb73b
JR
1119 RESTORE_REGS 4
1120 jmp .Lirq_return
1121
a49976d1
IM
1122.section .fixup, "ax"
1123ENTRY(iret_exc )
1124 pushl $0 # no error code
1125 pushl $do_iret_error
97193702
JR
1126
1127#ifdef CONFIG_DEBUG_ENTRY
1128 /*
1129 * The stack-frame here is the one that iret faulted on, so its a
1130 * return-to-user frame. We are on kernel-cr3 because we come here from
1131 * the fixup code. This confuses the CR3 checker, so switch to user-cr3
1132 * as the checker expects it.
1133 */
1134 pushl %eax
1135 SWITCH_TO_USER_CR3 scratch_reg=%eax
1136 popl %eax
1137#endif
1138
7252c4c3 1139 jmp common_exception
1da177e4 1140.previous
1b00255f 1141 _ASM_EXTABLE(.Lirq_return, iret_exc)
b2502b41 1142ENDPROC(entry_INT80_32)
1da177e4 1143
f0d96110 1144.macro FIXUP_ESPFIX_STACK
dc4c2a0a
AH
1145/*
1146 * Switch back for ESPFIX stack to the normal zerobased stack
1147 *
1148 * We can't call C functions using the ESPFIX stack. This code reads
1149 * the high word of the segment base from the GDT and swiches to the
1150 * normal stack and adjusts ESP with the matching offset.
4a13b0e3
AL
1151 *
1152 * We might be on user CR3 here, so percpu data is not mapped and we can't
1153 * access the GDT through the percpu segment. Instead, use SGDT to find
1154 * the cpu_entry_area alias of the GDT.
dc4c2a0a 1155 */
34273f41 1156#ifdef CONFIG_X86_ESPFIX32
dc4c2a0a 1157 /* fixup the stack */
4a13b0e3
AL
1158 pushl %ecx
1159 subl $2*4, %esp
1160 sgdt (%esp)
1161 movl 2(%esp), %ecx /* GDT address */
1162 /*
1163 * Careful: ECX is a linear pointer, so we need to force base
1164 * zero. %cs is the only known-linear segment we have right now.
1165 */
1166 mov %cs:GDT_ESPFIX_OFFSET + 4(%ecx), %al /* bits 16..23 */
1167 mov %cs:GDT_ESPFIX_OFFSET + 7(%ecx), %ah /* bits 24..31 */
9b47feb7 1168 shl $16, %eax
4a13b0e3
AL
1169 addl $2*4, %esp
1170 popl %ecx
a49976d1
IM
1171 addl %esp, %eax /* the adjusted stack pointer */
1172 pushl $__KERNEL_DS
1173 pushl %eax
1174 lss (%esp), %esp /* switch to the normal stack segment */
34273f41 1175#endif
f0d96110 1176.endm
a1a338e5 1177
f0d96110 1178.macro UNWIND_ESPFIX_STACK
a1a338e5 1179 /* It's safe to clobber %eax, all other regs need to be preserved */
34273f41 1180#ifdef CONFIG_X86_ESPFIX32
a49976d1 1181 movl %ss, %eax
f0d96110 1182 /* see if on espfix stack */
a49976d1 1183 cmpw $__ESPFIX_SS, %ax
a1a338e5 1184 jne .Lno_fixup_\@
f0d96110
TH
1185 /* switch to normal stack */
1186 FIXUP_ESPFIX_STACK
a1a338e5 1187.Lno_fixup_\@:
34273f41 1188#endif
f0d96110 1189.endm
1da177e4
LT
1190
1191/*
3304c9c3
DV
1192 * Build the entry stubs with some assembler magic.
1193 * We pack 1 stub into every 8-byte block.
1da177e4 1194 */
3304c9c3 1195 .align 8
1da177e4 1196ENTRY(irq_entries_start)
3304c9c3
DV
1197 vector=FIRST_EXTERNAL_VECTOR
1198 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
a49976d1 1199 pushl $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3
DV
1200 vector=vector+1
1201 jmp common_interrupt
3304c9c3
DV
1202 .align 8
1203 .endr
47a55cd7
JB
1204END(irq_entries_start)
1205
f8a8fe61
TG
1206#ifdef CONFIG_X86_LOCAL_APIC
1207 .align 8
1208ENTRY(spurious_entries_start)
1209 vector=FIRST_SYSTEM_VECTOR
1210 .rept (NR_VECTORS - FIRST_SYSTEM_VECTOR)
1211 pushl $(~vector+0x80) /* Note: always in signed byte range */
1212 vector=vector+1
1213 jmp common_spurious
1214 .align 8
1215 .endr
1216END(spurious_entries_start)
1217
1218common_spurious:
1219 ASM_CLAC
1220 addl $-0x80, (%esp) /* Adjust vector into the [-256, -1] range */
1221 SAVE_ALL switch_stacks=1
1222 ENCODE_FRAME_POINTER
1223 TRACE_IRQS_OFF
1224 movl %esp, %eax
1225 call smp_spurious_interrupt
1226 jmp ret_from_intr
1cbec37b 1227ENDPROC(common_spurious)
f8a8fe61
TG
1228#endif
1229
55f327fa
IM
1230/*
1231 * the CPU automatically disables interrupts when executing an IRQ vector,
1232 * so IRQ-flags tracing has to follow that:
1233 */
b7c6244f 1234 .p2align CONFIG_X86_L1_CACHE_SHIFT
1da177e4 1235common_interrupt:
e59d1b0a 1236 ASM_CLAC
a49976d1 1237 addl $-0x80, (%esp) /* Adjust vector into the [-256, -1] range */
45d7b255
JR
1238
1239 SAVE_ALL switch_stacks=1
946c1911 1240 ENCODE_FRAME_POINTER
55f327fa 1241 TRACE_IRQS_OFF
a49976d1
IM
1242 movl %esp, %eax
1243 call do_IRQ
1244 jmp ret_from_intr
47a55cd7 1245ENDPROC(common_interrupt)
1da177e4 1246
45d7b255
JR
1247#define BUILD_INTERRUPT3(name, nr, fn) \
1248ENTRY(name) \
1249 ASM_CLAC; \
1250 pushl $~(nr); \
1251 SAVE_ALL switch_stacks=1; \
1252 ENCODE_FRAME_POINTER; \
1253 TRACE_IRQS_OFF \
1254 movl %esp, %eax; \
1255 call fn; \
1256 jmp ret_from_intr; \
47a55cd7 1257ENDPROC(name)
1da177e4 1258
a49976d1
IM
1259#define BUILD_INTERRUPT(name, nr) \
1260 BUILD_INTERRUPT3(name, nr, smp_##name); \
02cf94c3 1261
1da177e4 1262/* The include is where all of the SMP etc. interrupts come from */
1164dd00 1263#include <asm/entry_arch.h>
1da177e4 1264
1da177e4 1265ENTRY(coprocessor_error)
e59d1b0a 1266 ASM_CLAC
a49976d1
IM
1267 pushl $0
1268 pushl $do_coprocessor_error
7252c4c3 1269 jmp common_exception
47a55cd7 1270END(coprocessor_error)
1da177e4
LT
1271
1272ENTRY(simd_coprocessor_error)
e59d1b0a 1273 ASM_CLAC
a49976d1 1274 pushl $0
40d2e763
BG
1275#ifdef CONFIG_X86_INVD_BUG
1276 /* AMD 486 bug: invd from userspace calls exception 19 instead of #GP */
a49976d1
IM
1277 ALTERNATIVE "pushl $do_general_protection", \
1278 "pushl $do_simd_coprocessor_error", \
8e65f6e0 1279 X86_FEATURE_XMM
40d2e763 1280#else
a49976d1 1281 pushl $do_simd_coprocessor_error
40d2e763 1282#endif
7252c4c3 1283 jmp common_exception
47a55cd7 1284END(simd_coprocessor_error)
1da177e4
LT
1285
1286ENTRY(device_not_available)
e59d1b0a 1287 ASM_CLAC
a49976d1
IM
1288 pushl $-1 # mark this as an int
1289 pushl $do_device_not_available
7252c4c3 1290 jmp common_exception
47a55cd7 1291END(device_not_available)
1da177e4 1292
d3561b7f
RR
1293#ifdef CONFIG_PARAVIRT
1294ENTRY(native_iret)
3701d863 1295 iret
6837a54d 1296 _ASM_EXTABLE(native_iret, iret_exc)
47a55cd7 1297END(native_iret)
d3561b7f
RR
1298#endif
1299
1da177e4 1300ENTRY(overflow)
e59d1b0a 1301 ASM_CLAC
a49976d1
IM
1302 pushl $0
1303 pushl $do_overflow
7252c4c3 1304 jmp common_exception
47a55cd7 1305END(overflow)
1da177e4
LT
1306
1307ENTRY(bounds)
e59d1b0a 1308 ASM_CLAC
a49976d1
IM
1309 pushl $0
1310 pushl $do_bounds
7252c4c3 1311 jmp common_exception
47a55cd7 1312END(bounds)
1da177e4
LT
1313
1314ENTRY(invalid_op)
e59d1b0a 1315 ASM_CLAC
a49976d1
IM
1316 pushl $0
1317 pushl $do_invalid_op
7252c4c3 1318 jmp common_exception
47a55cd7 1319END(invalid_op)
1da177e4
LT
1320
1321ENTRY(coprocessor_segment_overrun)
e59d1b0a 1322 ASM_CLAC
a49976d1
IM
1323 pushl $0
1324 pushl $do_coprocessor_segment_overrun
7252c4c3 1325 jmp common_exception
47a55cd7 1326END(coprocessor_segment_overrun)
1da177e4
LT
1327
1328ENTRY(invalid_TSS)
e59d1b0a 1329 ASM_CLAC
a49976d1 1330 pushl $do_invalid_TSS
7252c4c3 1331 jmp common_exception
47a55cd7 1332END(invalid_TSS)
1da177e4
LT
1333
1334ENTRY(segment_not_present)
e59d1b0a 1335 ASM_CLAC
a49976d1 1336 pushl $do_segment_not_present
7252c4c3 1337 jmp common_exception
47a55cd7 1338END(segment_not_present)
1da177e4
LT
1339
1340ENTRY(stack_segment)
e59d1b0a 1341 ASM_CLAC
a49976d1 1342 pushl $do_stack_segment
7252c4c3 1343 jmp common_exception
47a55cd7 1344END(stack_segment)
1da177e4 1345
1da177e4 1346ENTRY(alignment_check)
e59d1b0a 1347 ASM_CLAC
a49976d1 1348 pushl $do_alignment_check
7252c4c3 1349 jmp common_exception
47a55cd7 1350END(alignment_check)
1da177e4 1351
d28c4393 1352ENTRY(divide_error)
e59d1b0a 1353 ASM_CLAC
a49976d1
IM
1354 pushl $0 # no error code
1355 pushl $do_divide_error
7252c4c3 1356 jmp common_exception
47a55cd7 1357END(divide_error)
1da177e4
LT
1358
1359#ifdef CONFIG_X86_MCE
1360ENTRY(machine_check)
e59d1b0a 1361 ASM_CLAC
a49976d1
IM
1362 pushl $0
1363 pushl machine_check_vector
7252c4c3 1364 jmp common_exception
47a55cd7 1365END(machine_check)
1da177e4
LT
1366#endif
1367
1368ENTRY(spurious_interrupt_bug)
e59d1b0a 1369 ASM_CLAC
a49976d1
IM
1370 pushl $0
1371 pushl $do_spurious_interrupt_bug
7252c4c3 1372 jmp common_exception
47a55cd7 1373END(spurious_interrupt_bug)
1da177e4 1374
28c11b0f 1375#ifdef CONFIG_XEN_PV
5ead97c8 1376ENTRY(xen_hypervisor_callback)
a49976d1
IM
1377 /*
1378 * Check to see if we got the event in the critical
1379 * region in xen_iret_direct, after we've reenabled
1380 * events and checked for pending events. This simulates
1381 * iret instruction's behaviour where it delivers a
1382 * pending interrupt when enabling interrupts:
1383 */
29b810f5 1384 cmpl $xen_iret_start_crit, (%esp)
a49976d1 1385 jb 1f
29b810f5 1386 cmpl $xen_iret_end_crit, (%esp)
a49976d1 1387 jae 1f
29b810f5
JB
1388 call xen_iret_crit_fixup
13891:
1390 pushl $-1 /* orig_ax = -1 => not a system call */
1391 SAVE_ALL
1392 ENCODE_FRAME_POINTER
1393 TRACE_IRQS_OFF
1394 mov %esp, %eax
a49976d1 1395 call xen_evtchn_do_upcall
48593975 1396#ifndef CONFIG_PREEMPTION
a49976d1 1397 call xen_maybe_preempt_hcall
fdfd811d 1398#endif
a49976d1 1399 jmp ret_from_intr
5ead97c8
JF
1400ENDPROC(xen_hypervisor_callback)
1401
a49976d1
IM
1402/*
1403 * Hypervisor uses this for application faults while it executes.
1404 * We get here for two reasons:
1405 * 1. Fault while reloading DS, ES, FS or GS
1406 * 2. Fault while executing IRET
1407 * Category 1 we fix up by reattempting the load, and zeroing the segment
1408 * register if the load fails.
1409 * Category 2 we fix up by jumping to do_iret_error. We cannot use the
1410 * normal Linux return path in this case because if we use the IRET hypercall
1411 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1412 * We distinguish between categories by maintaining a status value in EAX.
1413 */
5ead97c8 1414ENTRY(xen_failsafe_callback)
a49976d1
IM
1415 pushl %eax
1416 movl $1, %eax
14171: mov 4(%esp), %ds
14182: mov 8(%esp), %es
14193: mov 12(%esp), %fs
14204: mov 16(%esp), %gs
a349e23d
DV
1421 /* EAX == 0 => Category 1 (Bad segment)
1422 EAX != 0 => Category 2 (Bad IRET) */
a49976d1
IM
1423 testl %eax, %eax
1424 popl %eax
1425 lea 16(%esp), %esp
1426 jz 5f
1427 jmp iret_exc
14285: pushl $-1 /* orig_ax = -1 => not a system call */
5ead97c8 1429 SAVE_ALL
946c1911 1430 ENCODE_FRAME_POINTER
a49976d1
IM
1431 jmp ret_from_exception
1432
1433.section .fixup, "ax"
14346: xorl %eax, %eax
1435 movl %eax, 4(%esp)
1436 jmp 1b
14377: xorl %eax, %eax
1438 movl %eax, 8(%esp)
1439 jmp 2b
14408: xorl %eax, %eax
1441 movl %eax, 12(%esp)
1442 jmp 3b
14439: xorl %eax, %eax
1444 movl %eax, 16(%esp)
1445 jmp 4b
5ead97c8 1446.previous
a49976d1
IM
1447 _ASM_EXTABLE(1b, 6b)
1448 _ASM_EXTABLE(2b, 7b)
1449 _ASM_EXTABLE(3b, 8b)
1450 _ASM_EXTABLE(4b, 9b)
5ead97c8 1451ENDPROC(xen_failsafe_callback)
28c11b0f 1452#endif /* CONFIG_XEN_PV */
5ead97c8 1453
28c11b0f 1454#ifdef CONFIG_XEN_PVHVM
bc2b0331 1455BUILD_INTERRUPT3(xen_hvm_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
4b9a8dca 1456 xen_evtchn_do_upcall)
28c11b0f 1457#endif
38e20b07 1458
bc2b0331
S
1459
1460#if IS_ENABLED(CONFIG_HYPERV)
1461
1462BUILD_INTERRUPT3(hyperv_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
4b9a8dca 1463 hyperv_vector_handler)
bc2b0331 1464
93286261
VK
1465BUILD_INTERRUPT3(hyperv_reenlightenment_vector, HYPERV_REENLIGHTENMENT_VECTOR,
1466 hyperv_reenlightenment_intr)
1467
248e742a
MK
1468BUILD_INTERRUPT3(hv_stimer0_callback_vector, HYPERV_STIMER0_VECTOR,
1469 hv_stimer0_vector_handler)
1470
bc2b0331 1471#endif /* CONFIG_HYPERV */
5ead97c8 1472
d211af05 1473ENTRY(page_fault)
e59d1b0a 1474 ASM_CLAC
b8f70953
MM
1475 pushl $do_page_fault
1476 jmp common_exception_read_cr2
1477END(page_fault)
a0d14b89 1478
b8f70953
MM
1479common_exception_read_cr2:
1480 /* the function address is in %gs's slot on the stack */
a1a338e5 1481 SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1
a0d14b89
PZ
1482
1483 ENCODE_FRAME_POINTER
a0d14b89
PZ
1484
1485 /* fixup %gs */
1486 GS_TO_REG %ecx
b8f70953 1487 movl PT_GS(%esp), %edi
a0d14b89
PZ
1488 REG_TO_PTGS %ecx
1489 SET_KERNEL_GS %ecx
1490
1491 GET_CR2_INTO(%ecx) # might clobber %eax
1492
1493 /* fixup orig %eax */
1494 movl PT_ORIG_EAX(%esp), %edx # get the error code
1495 movl $-1, PT_ORIG_EAX(%esp) # no syscall to restart
1496
1497 TRACE_IRQS_OFF
1498 movl %esp, %eax # pt_regs pointer
b8f70953 1499 CALL_NOSPEC %edi
a0d14b89 1500 jmp ret_from_exception
b8f70953 1501END(common_exception_read_cr2)
7252c4c3
JP
1502
1503common_exception:
ccbeed3a 1504 /* the function address is in %gs's slot on the stack */
a1a338e5 1505 SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1
946c1911 1506 ENCODE_FRAME_POINTER
e67f1c11
PZ
1507
1508 /* fixup %gs */
ccbeed3a 1509 GS_TO_REG %ecx
a49976d1 1510 movl PT_GS(%esp), %edi # get the function address
ccbeed3a
TH
1511 REG_TO_PTGS %ecx
1512 SET_KERNEL_GS %ecx
e67f1c11
PZ
1513
1514 /* fixup orig %eax */
1515 movl PT_ORIG_EAX(%esp), %edx # get the error code
1516 movl $-1, PT_ORIG_EAX(%esp) # no syscall to restart
1517
d211af05 1518 TRACE_IRQS_OFF
a49976d1 1519 movl %esp, %eax # pt_regs pointer
2641f08b 1520 CALL_NOSPEC %edi
a49976d1 1521 jmp ret_from_exception
7252c4c3 1522END(common_exception)
d211af05 1523
d211af05 1524ENTRY(debug)
7536656f 1525 /*
929b44eb 1526 * Entry from sysenter is now handled in common_exception
7536656f 1527 */
e59d1b0a 1528 ASM_CLAC
a49976d1 1529 pushl $-1 # mark this as an int
929b44eb
JR
1530 pushl $do_debug
1531 jmp common_exception
d211af05
AH
1532END(debug)
1533
1534/*
7536656f
AL
1535 * NMI is doubly nasty. It can happen on the first instruction of
1536 * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
1537 * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
1538 * switched stacks. We handle both conditions by simply checking whether we
1539 * interrupted kernel code running on the SYSENTER stack.
d211af05
AH
1540 */
1541ENTRY(nmi)
e59d1b0a 1542 ASM_CLAC
45d7b255 1543
34273f41 1544#ifdef CONFIG_X86_ESPFIX32
89542907
PZ
1545 /*
1546 * ESPFIX_SS is only ever set on the return to user path
1547 * after we've switched to the entry stack.
1548 */
a49976d1
IM
1549 pushl %eax
1550 movl %ss, %eax
1551 cmpw $__ESPFIX_SS, %ax
1552 popl %eax
1b00255f 1553 je .Lnmi_espfix_stack
34273f41 1554#endif
7536656f
AL
1555
1556 pushl %eax # pt_regs->orig_ax
b65bef40 1557 SAVE_ALL_NMI cr3_reg=%edi
946c1911 1558 ENCODE_FRAME_POINTER
a49976d1
IM
1559 xorl %edx, %edx # zero error code
1560 movl %esp, %eax # pt_regs pointer
7536656f
AL
1561
1562 /* Are we currently on the SYSENTER stack? */
72f5e08d 1563 movl PER_CPU_VAR(cpu_entry_area), %ecx
4fe2d8b1
DH
1564 addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
1565 subl %eax, %ecx /* ecx = (end of entry_stack) - esp */
1566 cmpl $SIZEOF_entry_stack, %ecx
7536656f
AL
1567 jb .Lnmi_from_sysenter_stack
1568
1569 /* Not on SYSENTER stack. */
a49976d1 1570 call do_nmi
8e676ced 1571 jmp .Lnmi_return
d211af05 1572
7536656f
AL
1573.Lnmi_from_sysenter_stack:
1574 /*
1575 * We're on the SYSENTER stack. Switch off. No one (not even debug)
1576 * is using the thread stack right now, so it's safe for us to use it.
1577 */
946c1911 1578 movl %esp, %ebx
7536656f
AL
1579 movl PER_CPU_VAR(cpu_current_top_of_stack), %esp
1580 call do_nmi
946c1911 1581 movl %ebx, %esp
8e676ced
JR
1582
1583.Lnmi_return:
89542907
PZ
1584#ifdef CONFIG_X86_ESPFIX32
1585 testl $CS_FROM_ESPFIX, PT_CS(%esp)
1586 jnz .Lnmi_from_espfix
1587#endif
1588
8e676ced 1589 CHECK_AND_APPLY_ESPFIX
b65bef40 1590 RESTORE_ALL_NMI cr3_reg=%edi pop=4
8e676ced 1591 jmp .Lirq_return
d211af05 1592
34273f41 1593#ifdef CONFIG_X86_ESPFIX32
1b00255f 1594.Lnmi_espfix_stack:
131484c8 1595 /*
89542907 1596 * Create the pointer to LSS back
d211af05 1597 */
a49976d1
IM
1598 pushl %ss
1599 pushl %esp
1600 addl $4, (%esp)
89542907
PZ
1601
1602 /* Copy the (short) IRET frame */
1603 pushl 4*4(%esp) # flags
1604 pushl 4*4(%esp) # cs
1605 pushl 4*4(%esp) # ip
1606
1607 pushl %eax # orig_ax
1608
1609 SAVE_ALL_NMI cr3_reg=%edi unwind_espfix=1
946c1911 1610 ENCODE_FRAME_POINTER
89542907
PZ
1611
1612 /* clear CS_FROM_KERNEL, set CS_FROM_ESPFIX */
1613 xorl $(CS_FROM_ESPFIX | CS_FROM_KERNEL), PT_CS(%esp)
1614
a49976d1 1615 xorl %edx, %edx # zero error code
89542907
PZ
1616 movl %esp, %eax # pt_regs pointer
1617 jmp .Lnmi_from_sysenter_stack
1618
1619.Lnmi_from_espfix:
b65bef40 1620 RESTORE_ALL_NMI cr3_reg=%edi
89542907
PZ
1621 /*
1622 * Because we cleared CS_FROM_KERNEL, IRET_FRAME 'forgot' to
1623 * fix up the gap and long frame:
1624 *
1625 * 3 - original frame (exception)
1626 * 2 - ESPFIX block (above)
1627 * 6 - gap (FIXUP_FRAME)
1628 * 5 - long frame (FIXUP_FRAME)
1629 * 1 - orig_ax
1630 */
1631 lss (1+5+6)*4(%esp), %esp # back to espfix stack
1b00255f 1632 jmp .Lirq_return
34273f41 1633#endif
d211af05
AH
1634END(nmi)
1635
1636ENTRY(int3)
e59d1b0a 1637 ASM_CLAC
a49976d1 1638 pushl $-1 # mark this as an int
45d7b255
JR
1639
1640 SAVE_ALL switch_stacks=1
946c1911 1641 ENCODE_FRAME_POINTER
d211af05 1642 TRACE_IRQS_OFF
a49976d1
IM
1643 xorl %edx, %edx # zero error code
1644 movl %esp, %eax # pt_regs pointer
1645 call do_int3
1646 jmp ret_from_exception
d211af05
AH
1647END(int3)
1648
1649ENTRY(general_protection)
a49976d1 1650 pushl $do_general_protection
7252c4c3 1651 jmp common_exception
d211af05
AH
1652END(general_protection)
1653
631bc487
GN
1654#ifdef CONFIG_KVM_GUEST
1655ENTRY(async_page_fault)
e59d1b0a 1656 ASM_CLAC
a49976d1 1657 pushl $do_async_page_fault
b8f70953 1658 jmp common_exception_read_cr2
2ae9d293 1659END(async_page_fault)
631bc487 1660#endif
2deb4be2
AL
1661
1662ENTRY(rewind_stack_do_exit)
1663 /* Prevent any naive code from trying to unwind to our caller. */
1664 xorl %ebp, %ebp
1665
1666 movl PER_CPU_VAR(cpu_current_top_of_stack), %esi
1667 leal -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp
1668
1669 call do_exit
16701: jmp 1b
1671END(rewind_stack_do_exit)