Merge tag 'libnvdimm-for-5.4' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm...
[linux-2.6-block.git] / arch / x86 / crypto / camellia-aesni-avx-asm_64.S
CommitLineData
d9b1d2e7
JK
1/*
2 * x86_64/AVX/AES-NI assembler implementation of Camellia
3 *
b5c5b072 4 * Copyright © 2012-2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
d9b1d2e7
JK
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 */
12
13/*
14 * Version licensed under 2-clause BSD License is available at:
15 * http://koti.mbnet.fi/axh/crypto/camellia-BSD-1.2.0-aesni1.tar.xz
16 */
17
59990684 18#include <linux/linkage.h>
8691ccd7 19#include <asm/frame.h>
9697fa39 20#include <asm/nospec-branch.h>
59990684 21
d9b1d2e7
JK
22#define CAMELLIA_TABLE_BYTE_LEN 272
23
24/* struct camellia_ctx: */
25#define key_table 0
26#define key_length CAMELLIA_TABLE_BYTE_LEN
27
28/* register macros */
29#define CTX %rdi
30
31/**********************************************************************
32 16-way camellia
33 **********************************************************************/
34#define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \
35 vpand x, mask4bit, tmp0; \
36 vpandn x, mask4bit, x; \
37 vpsrld $4, x, x; \
38 \
39 vpshufb tmp0, lo_t, tmp0; \
40 vpshufb x, hi_t, x; \
41 vpxor tmp0, x, x;
42
43/*
44 * IN:
45 * x0..x7: byte-sliced AB state
46 * mem_cd: register pointer storing CD state
47 * key: index for key material
48 * OUT:
49 * x0..x7: new byte-sliced CD state
50 */
51#define roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \
52 t7, mem_cd, key) \
53 /* \
54 * S-function with AES subbytes \
55 */ \
56 vmovdqa .Linv_shift_row, t4; \
57 vbroadcastss .L0f0f0f0f, t7; \
58 vmovdqa .Lpre_tf_lo_s1, t0; \
59 vmovdqa .Lpre_tf_hi_s1, t1; \
60 \
61 /* AES inverse shift rows */ \
62 vpshufb t4, x0, x0; \
63 vpshufb t4, x7, x7; \
64 vpshufb t4, x1, x1; \
65 vpshufb t4, x4, x4; \
66 vpshufb t4, x2, x2; \
67 vpshufb t4, x5, x5; \
68 vpshufb t4, x3, x3; \
69 vpshufb t4, x6, x6; \
70 \
71 /* prefilter sboxes 1, 2 and 3 */ \
72 vmovdqa .Lpre_tf_lo_s4, t2; \
73 vmovdqa .Lpre_tf_hi_s4, t3; \
74 filter_8bit(x0, t0, t1, t7, t6); \
75 filter_8bit(x7, t0, t1, t7, t6); \
76 filter_8bit(x1, t0, t1, t7, t6); \
77 filter_8bit(x4, t0, t1, t7, t6); \
78 filter_8bit(x2, t0, t1, t7, t6); \
79 filter_8bit(x5, t0, t1, t7, t6); \
80 \
81 /* prefilter sbox 4 */ \
82 vpxor t4, t4, t4; \
83 filter_8bit(x3, t2, t3, t7, t6); \
84 filter_8bit(x6, t2, t3, t7, t6); \
85 \
86 /* AES subbytes + AES shift rows */ \
87 vmovdqa .Lpost_tf_lo_s1, t0; \
88 vmovdqa .Lpost_tf_hi_s1, t1; \
89 vaesenclast t4, x0, x0; \
90 vaesenclast t4, x7, x7; \
91 vaesenclast t4, x1, x1; \
92 vaesenclast t4, x4, x4; \
93 vaesenclast t4, x2, x2; \
94 vaesenclast t4, x5, x5; \
95 vaesenclast t4, x3, x3; \
96 vaesenclast t4, x6, x6; \
97 \
98 /* postfilter sboxes 1 and 4 */ \
99 vmovdqa .Lpost_tf_lo_s3, t2; \
100 vmovdqa .Lpost_tf_hi_s3, t3; \
101 filter_8bit(x0, t0, t1, t7, t6); \
102 filter_8bit(x7, t0, t1, t7, t6); \
103 filter_8bit(x3, t0, t1, t7, t6); \
104 filter_8bit(x6, t0, t1, t7, t6); \
105 \
106 /* postfilter sbox 3 */ \
107 vmovdqa .Lpost_tf_lo_s2, t4; \
108 vmovdqa .Lpost_tf_hi_s2, t5; \
109 filter_8bit(x2, t2, t3, t7, t6); \
110 filter_8bit(x5, t2, t3, t7, t6); \
111 \
112 vpxor t6, t6, t6; \
113 vmovq key, t0; \
114 \
115 /* postfilter sbox 2 */ \
116 filter_8bit(x1, t4, t5, t7, t2); \
117 filter_8bit(x4, t4, t5, t7, t2); \
118 \
119 vpsrldq $5, t0, t5; \
120 vpsrldq $1, t0, t1; \
121 vpsrldq $2, t0, t2; \
122 vpsrldq $3, t0, t3; \
123 vpsrldq $4, t0, t4; \
124 vpshufb t6, t0, t0; \
125 vpshufb t6, t1, t1; \
126 vpshufb t6, t2, t2; \
127 vpshufb t6, t3, t3; \
128 vpshufb t6, t4, t4; \
129 vpsrldq $2, t5, t7; \
130 vpshufb t6, t7, t7; \
131 \
132 /* \
133 * P-function \
134 */ \
135 vpxor x5, x0, x0; \
136 vpxor x6, x1, x1; \
137 vpxor x7, x2, x2; \
138 vpxor x4, x3, x3; \
139 \
140 vpxor x2, x4, x4; \
141 vpxor x3, x5, x5; \
142 vpxor x0, x6, x6; \
143 vpxor x1, x7, x7; \
144 \
145 vpxor x7, x0, x0; \
146 vpxor x4, x1, x1; \
147 vpxor x5, x2, x2; \
148 vpxor x6, x3, x3; \
149 \
150 vpxor x3, x4, x4; \
151 vpxor x0, x5, x5; \
152 vpxor x1, x6, x6; \
153 vpxor x2, x7, x7; /* note: high and low parts swapped */ \
154 \
155 /* \
156 * Add key material and result to CD (x becomes new CD) \
157 */ \
158 \
159 vpxor t3, x4, x4; \
160 vpxor 0 * 16(mem_cd), x4, x4; \
161 \
162 vpxor t2, x5, x5; \
163 vpxor 1 * 16(mem_cd), x5, x5; \
164 \
165 vpsrldq $1, t5, t3; \
166 vpshufb t6, t5, t5; \
167 vpshufb t6, t3, t6; \
168 \
169 vpxor t1, x6, x6; \
170 vpxor 2 * 16(mem_cd), x6, x6; \
171 \
172 vpxor t0, x7, x7; \
173 vpxor 3 * 16(mem_cd), x7, x7; \
174 \
175 vpxor t7, x0, x0; \
176 vpxor 4 * 16(mem_cd), x0, x0; \
177 \
178 vpxor t6, x1, x1; \
179 vpxor 5 * 16(mem_cd), x1, x1; \
180 \
181 vpxor t5, x2, x2; \
182 vpxor 6 * 16(mem_cd), x2, x2; \
183 \
184 vpxor t4, x3, x3; \
185 vpxor 7 * 16(mem_cd), x3, x3;
186
187/*
188 * Size optimization... with inlined roundsm16, binary would be over 5 times
189 * larger and would only be 0.5% faster (on sandy-bridge).
190 */
191.align 8
192roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd:
193 roundsm16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
194 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm15,
195 %rcx, (%r9));
196 ret;
59990684 197ENDPROC(roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
d9b1d2e7
JK
198
199.align 8
200roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab:
201 roundsm16(%xmm4, %xmm5, %xmm6, %xmm7, %xmm0, %xmm1, %xmm2, %xmm3,
202 %xmm12, %xmm13, %xmm14, %xmm15, %xmm8, %xmm9, %xmm10, %xmm11,
203 %rax, (%r9));
204 ret;
59990684 205ENDPROC(roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
d9b1d2e7
JK
206
207/*
208 * IN/OUT:
209 * x0..x7: byte-sliced AB state preloaded
210 * mem_ab: byte-sliced AB state in memory
211 * mem_cb: byte-sliced CD state in memory
212 */
213#define two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
214 y6, y7, mem_ab, mem_cd, i, dir, store_ab) \
215 leaq (key_table + (i) * 8)(CTX), %r9; \
216 call roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \
217 \
218 vmovdqu x4, 0 * 16(mem_cd); \
219 vmovdqu x5, 1 * 16(mem_cd); \
220 vmovdqu x6, 2 * 16(mem_cd); \
221 vmovdqu x7, 3 * 16(mem_cd); \
222 vmovdqu x0, 4 * 16(mem_cd); \
223 vmovdqu x1, 5 * 16(mem_cd); \
224 vmovdqu x2, 6 * 16(mem_cd); \
225 vmovdqu x3, 7 * 16(mem_cd); \
226 \
227 leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \
228 call roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \
229 \
230 store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab);
231
232#define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */
233
234#define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \
235 /* Store new AB state */ \
236 vmovdqu x0, 0 * 16(mem_ab); \
237 vmovdqu x1, 1 * 16(mem_ab); \
238 vmovdqu x2, 2 * 16(mem_ab); \
239 vmovdqu x3, 3 * 16(mem_ab); \
240 vmovdqu x4, 4 * 16(mem_ab); \
241 vmovdqu x5, 5 * 16(mem_ab); \
242 vmovdqu x6, 6 * 16(mem_ab); \
243 vmovdqu x7, 7 * 16(mem_ab);
244
245#define enc_rounds16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
246 y6, y7, mem_ab, mem_cd, i) \
247 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
248 y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \
249 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
250 y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \
251 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
252 y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store);
253
254#define dec_rounds16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
255 y6, y7, mem_ab, mem_cd, i) \
256 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
257 y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \
258 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
259 y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \
260 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
261 y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store);
262
263/*
264 * IN:
265 * v0..3: byte-sliced 32-bit integers
266 * OUT:
267 * v0..3: (IN <<< 1)
268 */
269#define rol32_1_16(v0, v1, v2, v3, t0, t1, t2, zero) \
270 vpcmpgtb v0, zero, t0; \
271 vpaddb v0, v0, v0; \
272 vpabsb t0, t0; \
273 \
274 vpcmpgtb v1, zero, t1; \
275 vpaddb v1, v1, v1; \
276 vpabsb t1, t1; \
277 \
278 vpcmpgtb v2, zero, t2; \
279 vpaddb v2, v2, v2; \
280 vpabsb t2, t2; \
281 \
282 vpor t0, v1, v1; \
283 \
284 vpcmpgtb v3, zero, t0; \
285 vpaddb v3, v3, v3; \
286 vpabsb t0, t0; \
287 \
288 vpor t1, v2, v2; \
289 vpor t2, v3, v3; \
290 vpor t0, v0, v0;
291
292/*
293 * IN:
294 * r: byte-sliced AB state in memory
295 * l: byte-sliced CD state in memory
296 * OUT:
297 * x0..x7: new byte-sliced CD state
298 */
299#define fls16(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \
300 tt1, tt2, tt3, kll, klr, krl, krr) \
301 /* \
302 * t0 = kll; \
303 * t0 &= ll; \
304 * lr ^= rol32(t0, 1); \
305 */ \
306 vpxor tt0, tt0, tt0; \
307 vmovd kll, t0; \
308 vpshufb tt0, t0, t3; \
309 vpsrldq $1, t0, t0; \
310 vpshufb tt0, t0, t2; \
311 vpsrldq $1, t0, t0; \
312 vpshufb tt0, t0, t1; \
313 vpsrldq $1, t0, t0; \
314 vpshufb tt0, t0, t0; \
315 \
316 vpand l0, t0, t0; \
317 vpand l1, t1, t1; \
318 vpand l2, t2, t2; \
319 vpand l3, t3, t3; \
320 \
321 rol32_1_16(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
322 \
323 vpxor l4, t0, l4; \
324 vmovdqu l4, 4 * 16(l); \
325 vpxor l5, t1, l5; \
326 vmovdqu l5, 5 * 16(l); \
327 vpxor l6, t2, l6; \
328 vmovdqu l6, 6 * 16(l); \
329 vpxor l7, t3, l7; \
330 vmovdqu l7, 7 * 16(l); \
331 \
332 /* \
333 * t2 = krr; \
334 * t2 |= rr; \
335 * rl ^= t2; \
336 */ \
337 \
338 vmovd krr, t0; \
339 vpshufb tt0, t0, t3; \
340 vpsrldq $1, t0, t0; \
341 vpshufb tt0, t0, t2; \
342 vpsrldq $1, t0, t0; \
343 vpshufb tt0, t0, t1; \
344 vpsrldq $1, t0, t0; \
345 vpshufb tt0, t0, t0; \
346 \
347 vpor 4 * 16(r), t0, t0; \
348 vpor 5 * 16(r), t1, t1; \
349 vpor 6 * 16(r), t2, t2; \
350 vpor 7 * 16(r), t3, t3; \
351 \
352 vpxor 0 * 16(r), t0, t0; \
353 vpxor 1 * 16(r), t1, t1; \
354 vpxor 2 * 16(r), t2, t2; \
355 vpxor 3 * 16(r), t3, t3; \
356 vmovdqu t0, 0 * 16(r); \
357 vmovdqu t1, 1 * 16(r); \
358 vmovdqu t2, 2 * 16(r); \
359 vmovdqu t3, 3 * 16(r); \
360 \
361 /* \
362 * t2 = krl; \
363 * t2 &= rl; \
364 * rr ^= rol32(t2, 1); \
365 */ \
366 vmovd krl, t0; \
367 vpshufb tt0, t0, t3; \
368 vpsrldq $1, t0, t0; \
369 vpshufb tt0, t0, t2; \
370 vpsrldq $1, t0, t0; \
371 vpshufb tt0, t0, t1; \
372 vpsrldq $1, t0, t0; \
373 vpshufb tt0, t0, t0; \
374 \
375 vpand 0 * 16(r), t0, t0; \
376 vpand 1 * 16(r), t1, t1; \
377 vpand 2 * 16(r), t2, t2; \
378 vpand 3 * 16(r), t3, t3; \
379 \
380 rol32_1_16(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
381 \
382 vpxor 4 * 16(r), t0, t0; \
383 vpxor 5 * 16(r), t1, t1; \
384 vpxor 6 * 16(r), t2, t2; \
385 vpxor 7 * 16(r), t3, t3; \
386 vmovdqu t0, 4 * 16(r); \
387 vmovdqu t1, 5 * 16(r); \
388 vmovdqu t2, 6 * 16(r); \
389 vmovdqu t3, 7 * 16(r); \
390 \
391 /* \
392 * t0 = klr; \
393 * t0 |= lr; \
394 * ll ^= t0; \
395 */ \
396 \
397 vmovd klr, t0; \
398 vpshufb tt0, t0, t3; \
399 vpsrldq $1, t0, t0; \
400 vpshufb tt0, t0, t2; \
401 vpsrldq $1, t0, t0; \
402 vpshufb tt0, t0, t1; \
403 vpsrldq $1, t0, t0; \
404 vpshufb tt0, t0, t0; \
405 \
406 vpor l4, t0, t0; \
407 vpor l5, t1, t1; \
408 vpor l6, t2, t2; \
409 vpor l7, t3, t3; \
410 \
411 vpxor l0, t0, l0; \
412 vmovdqu l0, 0 * 16(l); \
413 vpxor l1, t1, l1; \
414 vmovdqu l1, 1 * 16(l); \
415 vpxor l2, t2, l2; \
416 vmovdqu l2, 2 * 16(l); \
417 vpxor l3, t3, l3; \
418 vmovdqu l3, 3 * 16(l);
419
420#define transpose_4x4(x0, x1, x2, x3, t1, t2) \
421 vpunpckhdq x1, x0, t2; \
422 vpunpckldq x1, x0, x0; \
423 \
424 vpunpckldq x3, x2, t1; \
425 vpunpckhdq x3, x2, x2; \
426 \
427 vpunpckhqdq t1, x0, x1; \
428 vpunpcklqdq t1, x0, x0; \
429 \
430 vpunpckhqdq x2, t2, x3; \
431 vpunpcklqdq x2, t2, x2;
432
433#define byteslice_16x16b(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, a3, \
434 b3, c3, d3, st0, st1) \
435 vmovdqu d2, st0; \
436 vmovdqu d3, st1; \
437 transpose_4x4(a0, a1, a2, a3, d2, d3); \
438 transpose_4x4(b0, b1, b2, b3, d2, d3); \
439 vmovdqu st0, d2; \
440 vmovdqu st1, d3; \
441 \
442 vmovdqu a0, st0; \
443 vmovdqu a1, st1; \
444 transpose_4x4(c0, c1, c2, c3, a0, a1); \
445 transpose_4x4(d0, d1, d2, d3, a0, a1); \
446 \
447 vmovdqu .Lshufb_16x16b, a0; \
448 vmovdqu st1, a1; \
449 vpshufb a0, a2, a2; \
450 vpshufb a0, a3, a3; \
451 vpshufb a0, b0, b0; \
452 vpshufb a0, b1, b1; \
453 vpshufb a0, b2, b2; \
454 vpshufb a0, b3, b3; \
455 vpshufb a0, a1, a1; \
456 vpshufb a0, c0, c0; \
457 vpshufb a0, c1, c1; \
458 vpshufb a0, c2, c2; \
459 vpshufb a0, c3, c3; \
460 vpshufb a0, d0, d0; \
461 vpshufb a0, d1, d1; \
462 vpshufb a0, d2, d2; \
463 vpshufb a0, d3, d3; \
464 vmovdqu d3, st1; \
465 vmovdqu st0, d3; \
466 vpshufb a0, d3, a0; \
467 vmovdqu d2, st0; \
468 \
469 transpose_4x4(a0, b0, c0, d0, d2, d3); \
470 transpose_4x4(a1, b1, c1, d1, d2, d3); \
471 vmovdqu st0, d2; \
472 vmovdqu st1, d3; \
473 \
474 vmovdqu b0, st0; \
475 vmovdqu b1, st1; \
476 transpose_4x4(a2, b2, c2, d2, b0, b1); \
477 transpose_4x4(a3, b3, c3, d3, b0, b1); \
478 vmovdqu st0, b0; \
479 vmovdqu st1, b1; \
480 /* does not adjust output bytes inside vectors */
481
482/* load blocks to registers and apply pre-whitening */
483#define inpack16_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
484 y6, y7, rio, key) \
485 vmovq key, x0; \
486 vpshufb .Lpack_bswap, x0, x0; \
487 \
488 vpxor 0 * 16(rio), x0, y7; \
489 vpxor 1 * 16(rio), x0, y6; \
490 vpxor 2 * 16(rio), x0, y5; \
491 vpxor 3 * 16(rio), x0, y4; \
492 vpxor 4 * 16(rio), x0, y3; \
493 vpxor 5 * 16(rio), x0, y2; \
494 vpxor 6 * 16(rio), x0, y1; \
495 vpxor 7 * 16(rio), x0, y0; \
496 vpxor 8 * 16(rio), x0, x7; \
497 vpxor 9 * 16(rio), x0, x6; \
498 vpxor 10 * 16(rio), x0, x5; \
499 vpxor 11 * 16(rio), x0, x4; \
500 vpxor 12 * 16(rio), x0, x3; \
501 vpxor 13 * 16(rio), x0, x2; \
502 vpxor 14 * 16(rio), x0, x1; \
503 vpxor 15 * 16(rio), x0, x0;
504
505/* byteslice pre-whitened blocks and store to temporary memory */
506#define inpack16_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
507 y6, y7, mem_ab, mem_cd) \
508 byteslice_16x16b(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
509 y5, y6, y7, (mem_ab), (mem_cd)); \
510 \
511 vmovdqu x0, 0 * 16(mem_ab); \
512 vmovdqu x1, 1 * 16(mem_ab); \
513 vmovdqu x2, 2 * 16(mem_ab); \
514 vmovdqu x3, 3 * 16(mem_ab); \
515 vmovdqu x4, 4 * 16(mem_ab); \
516 vmovdqu x5, 5 * 16(mem_ab); \
517 vmovdqu x6, 6 * 16(mem_ab); \
518 vmovdqu x7, 7 * 16(mem_ab); \
519 vmovdqu y0, 0 * 16(mem_cd); \
520 vmovdqu y1, 1 * 16(mem_cd); \
521 vmovdqu y2, 2 * 16(mem_cd); \
522 vmovdqu y3, 3 * 16(mem_cd); \
523 vmovdqu y4, 4 * 16(mem_cd); \
524 vmovdqu y5, 5 * 16(mem_cd); \
525 vmovdqu y6, 6 * 16(mem_cd); \
526 vmovdqu y7, 7 * 16(mem_cd);
527
528/* de-byteslice, apply post-whitening and store blocks */
529#define outunpack16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
530 y5, y6, y7, key, stack_tmp0, stack_tmp1) \
531 byteslice_16x16b(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, y3, \
532 y7, x3, x7, stack_tmp0, stack_tmp1); \
533 \
534 vmovdqu x0, stack_tmp0; \
535 \
536 vmovq key, x0; \
537 vpshufb .Lpack_bswap, x0, x0; \
538 \
539 vpxor x0, y7, y7; \
540 vpxor x0, y6, y6; \
541 vpxor x0, y5, y5; \
542 vpxor x0, y4, y4; \
543 vpxor x0, y3, y3; \
544 vpxor x0, y2, y2; \
545 vpxor x0, y1, y1; \
546 vpxor x0, y0, y0; \
547 vpxor x0, x7, x7; \
548 vpxor x0, x6, x6; \
549 vpxor x0, x5, x5; \
550 vpxor x0, x4, x4; \
551 vpxor x0, x3, x3; \
552 vpxor x0, x2, x2; \
553 vpxor x0, x1, x1; \
554 vpxor stack_tmp0, x0, x0;
555
556#define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
557 y6, y7, rio) \
558 vmovdqu x0, 0 * 16(rio); \
559 vmovdqu x1, 1 * 16(rio); \
560 vmovdqu x2, 2 * 16(rio); \
561 vmovdqu x3, 3 * 16(rio); \
562 vmovdqu x4, 4 * 16(rio); \
563 vmovdqu x5, 5 * 16(rio); \
564 vmovdqu x6, 6 * 16(rio); \
565 vmovdqu x7, 7 * 16(rio); \
566 vmovdqu y0, 8 * 16(rio); \
567 vmovdqu y1, 9 * 16(rio); \
568 vmovdqu y2, 10 * 16(rio); \
569 vmovdqu y3, 11 * 16(rio); \
570 vmovdqu y4, 12 * 16(rio); \
571 vmovdqu y5, 13 * 16(rio); \
572 vmovdqu y6, 14 * 16(rio); \
573 vmovdqu y7, 15 * 16(rio);
574
e183914a
DV
575
576/* NB: section is mergeable, all elements must be aligned 16-byte blocks */
577.section .rodata.cst16, "aM", @progbits, 16
d9b1d2e7
JK
578.align 16
579
580#define SHUFB_BYTES(idx) \
581 0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx)
582
583.Lshufb_16x16b:
584 .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3);
585
586.Lpack_bswap:
587 .long 0x00010203
588 .long 0x04050607
589 .long 0x80808080
590 .long 0x80808080
591
592/* For CTR-mode IV byteswap */
593.Lbswap128_mask:
594 .byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
595
b5c5b072
JK
596/* For XTS mode IV generation */
597.Lxts_gf128mul_and_shl1_mask:
598 .byte 0x87, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
599
d9b1d2e7
JK
600/*
601 * pre-SubByte transform
602 *
603 * pre-lookup for sbox1, sbox2, sbox3:
604 * swap_bitendianness(
605 * isom_map_camellia_to_aes(
606 * camellia_f(
607 * swap_bitendianess(in)
608 * )
609 * )
610 * )
611 *
612 * (note: '⊕ 0xc5' inside camellia_f())
613 */
614.Lpre_tf_lo_s1:
615 .byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86
616 .byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88
617.Lpre_tf_hi_s1:
618 .byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a
619 .byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23
620
621/*
622 * pre-SubByte transform
623 *
624 * pre-lookup for sbox4:
625 * swap_bitendianness(
626 * isom_map_camellia_to_aes(
627 * camellia_f(
628 * swap_bitendianess(in <<< 1)
629 * )
630 * )
631 * )
632 *
633 * (note: '⊕ 0xc5' inside camellia_f())
634 */
635.Lpre_tf_lo_s4:
636 .byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25
637 .byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74
638.Lpre_tf_hi_s4:
639 .byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72
640 .byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf
641
642/*
643 * post-SubByte transform
644 *
645 * post-lookup for sbox1, sbox4:
646 * swap_bitendianness(
647 * camellia_h(
648 * isom_map_aes_to_camellia(
649 * swap_bitendianness(
650 * aes_inverse_affine_transform(in)
651 * )
652 * )
653 * )
654 * )
655 *
656 * (note: '⊕ 0x6e' inside camellia_h())
657 */
658.Lpost_tf_lo_s1:
659 .byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31
660 .byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1
661.Lpost_tf_hi_s1:
662 .byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8
663 .byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c
664
665/*
666 * post-SubByte transform
667 *
668 * post-lookup for sbox2:
669 * swap_bitendianness(
670 * camellia_h(
671 * isom_map_aes_to_camellia(
672 * swap_bitendianness(
673 * aes_inverse_affine_transform(in)
674 * )
675 * )
676 * )
677 * ) <<< 1
678 *
679 * (note: '⊕ 0x6e' inside camellia_h())
680 */
681.Lpost_tf_lo_s2:
682 .byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62
683 .byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3
684.Lpost_tf_hi_s2:
685 .byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51
686 .byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18
687
688/*
689 * post-SubByte transform
690 *
691 * post-lookup for sbox3:
692 * swap_bitendianness(
693 * camellia_h(
694 * isom_map_aes_to_camellia(
695 * swap_bitendianness(
696 * aes_inverse_affine_transform(in)
697 * )
698 * )
699 * )
700 * ) >>> 1
701 *
702 * (note: '⊕ 0x6e' inside camellia_h())
703 */
704.Lpost_tf_lo_s3:
705 .byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98
706 .byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8
707.Lpost_tf_hi_s3:
708 .byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54
709 .byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06
710
711/* For isolating SubBytes from AESENCLAST, inverse shift row */
712.Linv_shift_row:
713 .byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
714 .byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
715
716/* 4-bit mask */
e183914a 717.section .rodata.cst4.L0f0f0f0f, "aM", @progbits, 4
d9b1d2e7
JK
718.align 4
719.L0f0f0f0f:
720 .long 0x0f0f0f0f
721
722.text
723
724.align 8
d9b1d2e7
JK
725__camellia_enc_blk16:
726 /* input:
727 * %rdi: ctx, CTX
728 * %rax: temporary storage, 256 bytes
729 * %xmm0..%xmm15: 16 plaintext blocks
730 * output:
731 * %xmm0..%xmm15: 16 encrypted blocks, order swapped:
732 * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
733 */
8691ccd7 734 FRAME_BEGIN
d9b1d2e7
JK
735
736 leaq 8 * 16(%rax), %rcx;
737
738 inpack16_post(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
739 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
740 %xmm15, %rax, %rcx);
741
742 enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
743 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
744 %xmm15, %rax, %rcx, 0);
745
746 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
747 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
748 %xmm15,
749 ((key_table + (8) * 8) + 0)(CTX),
750 ((key_table + (8) * 8) + 4)(CTX),
751 ((key_table + (8) * 8) + 8)(CTX),
752 ((key_table + (8) * 8) + 12)(CTX));
753
754 enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
755 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
756 %xmm15, %rax, %rcx, 8);
757
758 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
759 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
760 %xmm15,
761 ((key_table + (16) * 8) + 0)(CTX),
762 ((key_table + (16) * 8) + 4)(CTX),
763 ((key_table + (16) * 8) + 8)(CTX),
764 ((key_table + (16) * 8) + 12)(CTX));
765
766 enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
767 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
768 %xmm15, %rax, %rcx, 16);
769
770 movl $24, %r8d;
771 cmpl $16, key_length(CTX);
772 jne .Lenc_max32;
773
774.Lenc_done:
775 /* load CD for output */
776 vmovdqu 0 * 16(%rcx), %xmm8;
777 vmovdqu 1 * 16(%rcx), %xmm9;
778 vmovdqu 2 * 16(%rcx), %xmm10;
779 vmovdqu 3 * 16(%rcx), %xmm11;
780 vmovdqu 4 * 16(%rcx), %xmm12;
781 vmovdqu 5 * 16(%rcx), %xmm13;
782 vmovdqu 6 * 16(%rcx), %xmm14;
783 vmovdqu 7 * 16(%rcx), %xmm15;
784
785 outunpack16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
786 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
787 %xmm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 16(%rax));
788
8691ccd7 789 FRAME_END
d9b1d2e7
JK
790 ret;
791
792.align 8
793.Lenc_max32:
794 movl $32, %r8d;
795
796 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
797 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
798 %xmm15,
799 ((key_table + (24) * 8) + 0)(CTX),
800 ((key_table + (24) * 8) + 4)(CTX),
801 ((key_table + (24) * 8) + 8)(CTX),
802 ((key_table + (24) * 8) + 12)(CTX));
803
804 enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
805 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
806 %xmm15, %rax, %rcx, 24);
807
808 jmp .Lenc_done;
59990684 809ENDPROC(__camellia_enc_blk16)
d9b1d2e7
JK
810
811.align 8
d9b1d2e7
JK
812__camellia_dec_blk16:
813 /* input:
814 * %rdi: ctx, CTX
815 * %rax: temporary storage, 256 bytes
816 * %r8d: 24 for 16 byte key, 32 for larger
817 * %xmm0..%xmm15: 16 encrypted blocks
818 * output:
819 * %xmm0..%xmm15: 16 plaintext blocks, order swapped:
820 * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
821 */
8691ccd7 822 FRAME_BEGIN
d9b1d2e7
JK
823
824 leaq 8 * 16(%rax), %rcx;
825
826 inpack16_post(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
827 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
828 %xmm15, %rax, %rcx);
829
830 cmpl $32, %r8d;
831 je .Ldec_max32;
832
833.Ldec_max24:
834 dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
835 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
836 %xmm15, %rax, %rcx, 16);
837
838 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
839 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
840 %xmm15,
841 ((key_table + (16) * 8) + 8)(CTX),
842 ((key_table + (16) * 8) + 12)(CTX),
843 ((key_table + (16) * 8) + 0)(CTX),
844 ((key_table + (16) * 8) + 4)(CTX));
845
846 dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
847 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
848 %xmm15, %rax, %rcx, 8);
849
850 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
851 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
852 %xmm15,
853 ((key_table + (8) * 8) + 8)(CTX),
854 ((key_table + (8) * 8) + 12)(CTX),
855 ((key_table + (8) * 8) + 0)(CTX),
856 ((key_table + (8) * 8) + 4)(CTX));
857
858 dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
859 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
860 %xmm15, %rax, %rcx, 0);
861
862 /* load CD for output */
863 vmovdqu 0 * 16(%rcx), %xmm8;
864 vmovdqu 1 * 16(%rcx), %xmm9;
865 vmovdqu 2 * 16(%rcx), %xmm10;
866 vmovdqu 3 * 16(%rcx), %xmm11;
867 vmovdqu 4 * 16(%rcx), %xmm12;
868 vmovdqu 5 * 16(%rcx), %xmm13;
869 vmovdqu 6 * 16(%rcx), %xmm14;
870 vmovdqu 7 * 16(%rcx), %xmm15;
871
872 outunpack16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
873 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
874 %xmm15, (key_table)(CTX), (%rax), 1 * 16(%rax));
875
8691ccd7 876 FRAME_END
d9b1d2e7
JK
877 ret;
878
879.align 8
880.Ldec_max32:
881 dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
882 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
883 %xmm15, %rax, %rcx, 24);
884
885 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
886 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
887 %xmm15,
888 ((key_table + (24) * 8) + 8)(CTX),
889 ((key_table + (24) * 8) + 12)(CTX),
890 ((key_table + (24) * 8) + 0)(CTX),
891 ((key_table + (24) * 8) + 4)(CTX));
892
893 jmp .Ldec_max24;
59990684 894ENDPROC(__camellia_dec_blk16)
d9b1d2e7 895
59990684 896ENTRY(camellia_ecb_enc_16way)
d9b1d2e7
JK
897 /* input:
898 * %rdi: ctx, CTX
899 * %rsi: dst (16 blocks)
900 * %rdx: src (16 blocks)
901 */
8691ccd7 902 FRAME_BEGIN
d9b1d2e7
JK
903
904 inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
905 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
906 %xmm15, %rdx, (key_table)(CTX));
907
908 /* now dst can be used as temporary buffer (even in src == dst case) */
909 movq %rsi, %rax;
910
911 call __camellia_enc_blk16;
912
913 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
914 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
915 %xmm8, %rsi);
916
8691ccd7 917 FRAME_END
d9b1d2e7 918 ret;
59990684 919ENDPROC(camellia_ecb_enc_16way)
d9b1d2e7 920
59990684 921ENTRY(camellia_ecb_dec_16way)
d9b1d2e7
JK
922 /* input:
923 * %rdi: ctx, CTX
924 * %rsi: dst (16 blocks)
925 * %rdx: src (16 blocks)
926 */
8691ccd7 927 FRAME_BEGIN
d9b1d2e7
JK
928
929 cmpl $16, key_length(CTX);
930 movl $32, %r8d;
931 movl $24, %eax;
932 cmovel %eax, %r8d; /* max */
933
934 inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
935 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
936 %xmm15, %rdx, (key_table)(CTX, %r8, 8));
937
938 /* now dst can be used as temporary buffer (even in src == dst case) */
939 movq %rsi, %rax;
940
941 call __camellia_dec_blk16;
942
943 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
944 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
945 %xmm8, %rsi);
946
8691ccd7 947 FRAME_END
d9b1d2e7 948 ret;
59990684 949ENDPROC(camellia_ecb_dec_16way)
d9b1d2e7 950
59990684 951ENTRY(camellia_cbc_dec_16way)
d9b1d2e7
JK
952 /* input:
953 * %rdi: ctx, CTX
954 * %rsi: dst (16 blocks)
955 * %rdx: src (16 blocks)
956 */
8691ccd7 957 FRAME_BEGIN
d9b1d2e7
JK
958
959 cmpl $16, key_length(CTX);
960 movl $32, %r8d;
961 movl $24, %eax;
962 cmovel %eax, %r8d; /* max */
963
964 inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
965 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
966 %xmm15, %rdx, (key_table)(CTX, %r8, 8));
967
968 /*
969 * dst might still be in-use (in case dst == src), so use stack for
970 * temporary storage.
971 */
972 subq $(16 * 16), %rsp;
973 movq %rsp, %rax;
974
975 call __camellia_dec_blk16;
976
977 addq $(16 * 16), %rsp;
978
979 vpxor (0 * 16)(%rdx), %xmm6, %xmm6;
980 vpxor (1 * 16)(%rdx), %xmm5, %xmm5;
981 vpxor (2 * 16)(%rdx), %xmm4, %xmm4;
982 vpxor (3 * 16)(%rdx), %xmm3, %xmm3;
983 vpxor (4 * 16)(%rdx), %xmm2, %xmm2;
984 vpxor (5 * 16)(%rdx), %xmm1, %xmm1;
985 vpxor (6 * 16)(%rdx), %xmm0, %xmm0;
986 vpxor (7 * 16)(%rdx), %xmm15, %xmm15;
987 vpxor (8 * 16)(%rdx), %xmm14, %xmm14;
988 vpxor (9 * 16)(%rdx), %xmm13, %xmm13;
989 vpxor (10 * 16)(%rdx), %xmm12, %xmm12;
990 vpxor (11 * 16)(%rdx), %xmm11, %xmm11;
991 vpxor (12 * 16)(%rdx), %xmm10, %xmm10;
992 vpxor (13 * 16)(%rdx), %xmm9, %xmm9;
993 vpxor (14 * 16)(%rdx), %xmm8, %xmm8;
994 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
995 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
996 %xmm8, %rsi);
997
8691ccd7 998 FRAME_END
d9b1d2e7 999 ret;
59990684 1000ENDPROC(camellia_cbc_dec_16way)
d9b1d2e7
JK
1001
1002#define inc_le128(x, minus_one, tmp) \
1003 vpcmpeqq minus_one, x, tmp; \
1004 vpsubq minus_one, x, x; \
1005 vpslldq $8, tmp, tmp; \
1006 vpsubq tmp, x, x;
1007
59990684 1008ENTRY(camellia_ctr_16way)
d9b1d2e7
JK
1009 /* input:
1010 * %rdi: ctx, CTX
1011 * %rsi: dst (16 blocks)
1012 * %rdx: src (16 blocks)
1013 * %rcx: iv (little endian, 128bit)
1014 */
8691ccd7 1015 FRAME_BEGIN
d9b1d2e7
JK
1016
1017 subq $(16 * 16), %rsp;
1018 movq %rsp, %rax;
1019
1020 vmovdqa .Lbswap128_mask, %xmm14;
1021
1022 /* load IV and byteswap */
1023 vmovdqu (%rcx), %xmm0;
1024 vpshufb %xmm14, %xmm0, %xmm15;
1025 vmovdqu %xmm15, 15 * 16(%rax);
1026
1027 vpcmpeqd %xmm15, %xmm15, %xmm15;
1028 vpsrldq $8, %xmm15, %xmm15; /* low: -1, high: 0 */
1029
1030 /* construct IVs */
1031 inc_le128(%xmm0, %xmm15, %xmm13);
1032 vpshufb %xmm14, %xmm0, %xmm13;
1033 vmovdqu %xmm13, 14 * 16(%rax);
1034 inc_le128(%xmm0, %xmm15, %xmm13);
1035 vpshufb %xmm14, %xmm0, %xmm13;
1036 vmovdqu %xmm13, 13 * 16(%rax);
1037 inc_le128(%xmm0, %xmm15, %xmm13);
1038 vpshufb %xmm14, %xmm0, %xmm12;
1039 inc_le128(%xmm0, %xmm15, %xmm13);
1040 vpshufb %xmm14, %xmm0, %xmm11;
1041 inc_le128(%xmm0, %xmm15, %xmm13);
1042 vpshufb %xmm14, %xmm0, %xmm10;
1043 inc_le128(%xmm0, %xmm15, %xmm13);
1044 vpshufb %xmm14, %xmm0, %xmm9;
1045 inc_le128(%xmm0, %xmm15, %xmm13);
1046 vpshufb %xmm14, %xmm0, %xmm8;
1047 inc_le128(%xmm0, %xmm15, %xmm13);
1048 vpshufb %xmm14, %xmm0, %xmm7;
1049 inc_le128(%xmm0, %xmm15, %xmm13);
1050 vpshufb %xmm14, %xmm0, %xmm6;
1051 inc_le128(%xmm0, %xmm15, %xmm13);
1052 vpshufb %xmm14, %xmm0, %xmm5;
1053 inc_le128(%xmm0, %xmm15, %xmm13);
1054 vpshufb %xmm14, %xmm0, %xmm4;
1055 inc_le128(%xmm0, %xmm15, %xmm13);
1056 vpshufb %xmm14, %xmm0, %xmm3;
1057 inc_le128(%xmm0, %xmm15, %xmm13);
1058 vpshufb %xmm14, %xmm0, %xmm2;
1059 inc_le128(%xmm0, %xmm15, %xmm13);
1060 vpshufb %xmm14, %xmm0, %xmm1;
1061 inc_le128(%xmm0, %xmm15, %xmm13);
1062 vmovdqa %xmm0, %xmm13;
1063 vpshufb %xmm14, %xmm0, %xmm0;
1064 inc_le128(%xmm13, %xmm15, %xmm14);
1065 vmovdqu %xmm13, (%rcx);
1066
1067 /* inpack16_pre: */
1068 vmovq (key_table)(CTX), %xmm15;
1069 vpshufb .Lpack_bswap, %xmm15, %xmm15;
1070 vpxor %xmm0, %xmm15, %xmm0;
1071 vpxor %xmm1, %xmm15, %xmm1;
1072 vpxor %xmm2, %xmm15, %xmm2;
1073 vpxor %xmm3, %xmm15, %xmm3;
1074 vpxor %xmm4, %xmm15, %xmm4;
1075 vpxor %xmm5, %xmm15, %xmm5;
1076 vpxor %xmm6, %xmm15, %xmm6;
1077 vpxor %xmm7, %xmm15, %xmm7;
1078 vpxor %xmm8, %xmm15, %xmm8;
1079 vpxor %xmm9, %xmm15, %xmm9;
1080 vpxor %xmm10, %xmm15, %xmm10;
1081 vpxor %xmm11, %xmm15, %xmm11;
1082 vpxor %xmm12, %xmm15, %xmm12;
1083 vpxor 13 * 16(%rax), %xmm15, %xmm13;
1084 vpxor 14 * 16(%rax), %xmm15, %xmm14;
1085 vpxor 15 * 16(%rax), %xmm15, %xmm15;
1086
1087 call __camellia_enc_blk16;
1088
1089 addq $(16 * 16), %rsp;
1090
1091 vpxor 0 * 16(%rdx), %xmm7, %xmm7;
1092 vpxor 1 * 16(%rdx), %xmm6, %xmm6;
1093 vpxor 2 * 16(%rdx), %xmm5, %xmm5;
1094 vpxor 3 * 16(%rdx), %xmm4, %xmm4;
1095 vpxor 4 * 16(%rdx), %xmm3, %xmm3;
1096 vpxor 5 * 16(%rdx), %xmm2, %xmm2;
1097 vpxor 6 * 16(%rdx), %xmm1, %xmm1;
1098 vpxor 7 * 16(%rdx), %xmm0, %xmm0;
1099 vpxor 8 * 16(%rdx), %xmm15, %xmm15;
1100 vpxor 9 * 16(%rdx), %xmm14, %xmm14;
1101 vpxor 10 * 16(%rdx), %xmm13, %xmm13;
1102 vpxor 11 * 16(%rdx), %xmm12, %xmm12;
1103 vpxor 12 * 16(%rdx), %xmm11, %xmm11;
1104 vpxor 13 * 16(%rdx), %xmm10, %xmm10;
1105 vpxor 14 * 16(%rdx), %xmm9, %xmm9;
1106 vpxor 15 * 16(%rdx), %xmm8, %xmm8;
1107 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
1108 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
1109 %xmm8, %rsi);
1110
8691ccd7 1111 FRAME_END
d9b1d2e7 1112 ret;
59990684 1113ENDPROC(camellia_ctr_16way)
b5c5b072
JK
1114
1115#define gf128mul_x_ble(iv, mask, tmp) \
1116 vpsrad $31, iv, tmp; \
1117 vpaddq iv, iv, iv; \
1118 vpshufd $0x13, tmp, tmp; \
1119 vpand mask, tmp, tmp; \
1120 vpxor tmp, iv, iv;
1121
1122.align 8
1123camellia_xts_crypt_16way:
1124 /* input:
1125 * %rdi: ctx, CTX
1126 * %rsi: dst (16 blocks)
1127 * %rdx: src (16 blocks)
1128 * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1129 * %r8: index for input whitening key
1130 * %r9: pointer to __camellia_enc_blk16 or __camellia_dec_blk16
1131 */
8691ccd7 1132 FRAME_BEGIN
b5c5b072
JK
1133
1134 subq $(16 * 16), %rsp;
1135 movq %rsp, %rax;
1136
1137 vmovdqa .Lxts_gf128mul_and_shl1_mask, %xmm14;
1138
1139 /* load IV */
1140 vmovdqu (%rcx), %xmm0;
1141 vpxor 0 * 16(%rdx), %xmm0, %xmm15;
1142 vmovdqu %xmm15, 15 * 16(%rax);
1143 vmovdqu %xmm0, 0 * 16(%rsi);
1144
1145 /* construct IVs */
1146 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1147 vpxor 1 * 16(%rdx), %xmm0, %xmm15;
1148 vmovdqu %xmm15, 14 * 16(%rax);
1149 vmovdqu %xmm0, 1 * 16(%rsi);
1150
1151 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1152 vpxor 2 * 16(%rdx), %xmm0, %xmm13;
1153 vmovdqu %xmm0, 2 * 16(%rsi);
1154
1155 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1156 vpxor 3 * 16(%rdx), %xmm0, %xmm12;
1157 vmovdqu %xmm0, 3 * 16(%rsi);
1158
1159 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1160 vpxor 4 * 16(%rdx), %xmm0, %xmm11;
1161 vmovdqu %xmm0, 4 * 16(%rsi);
1162
1163 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1164 vpxor 5 * 16(%rdx), %xmm0, %xmm10;
1165 vmovdqu %xmm0, 5 * 16(%rsi);
1166
1167 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1168 vpxor 6 * 16(%rdx), %xmm0, %xmm9;
1169 vmovdqu %xmm0, 6 * 16(%rsi);
1170
1171 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1172 vpxor 7 * 16(%rdx), %xmm0, %xmm8;
1173 vmovdqu %xmm0, 7 * 16(%rsi);
1174
1175 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1176 vpxor 8 * 16(%rdx), %xmm0, %xmm7;
1177 vmovdqu %xmm0, 8 * 16(%rsi);
1178
1179 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1180 vpxor 9 * 16(%rdx), %xmm0, %xmm6;
1181 vmovdqu %xmm0, 9 * 16(%rsi);
1182
1183 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1184 vpxor 10 * 16(%rdx), %xmm0, %xmm5;
1185 vmovdqu %xmm0, 10 * 16(%rsi);
1186
1187 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1188 vpxor 11 * 16(%rdx), %xmm0, %xmm4;
1189 vmovdqu %xmm0, 11 * 16(%rsi);
1190
1191 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1192 vpxor 12 * 16(%rdx), %xmm0, %xmm3;
1193 vmovdqu %xmm0, 12 * 16(%rsi);
1194
1195 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1196 vpxor 13 * 16(%rdx), %xmm0, %xmm2;
1197 vmovdqu %xmm0, 13 * 16(%rsi);
1198
1199 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1200 vpxor 14 * 16(%rdx), %xmm0, %xmm1;
1201 vmovdqu %xmm0, 14 * 16(%rsi);
1202
1203 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1204 vpxor 15 * 16(%rdx), %xmm0, %xmm15;
1205 vmovdqu %xmm15, 0 * 16(%rax);
1206 vmovdqu %xmm0, 15 * 16(%rsi);
1207
1208 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1209 vmovdqu %xmm0, (%rcx);
1210
1211 /* inpack16_pre: */
1212 vmovq (key_table)(CTX, %r8, 8), %xmm15;
1213 vpshufb .Lpack_bswap, %xmm15, %xmm15;
1214 vpxor 0 * 16(%rax), %xmm15, %xmm0;
1215 vpxor %xmm1, %xmm15, %xmm1;
1216 vpxor %xmm2, %xmm15, %xmm2;
1217 vpxor %xmm3, %xmm15, %xmm3;
1218 vpxor %xmm4, %xmm15, %xmm4;
1219 vpxor %xmm5, %xmm15, %xmm5;
1220 vpxor %xmm6, %xmm15, %xmm6;
1221 vpxor %xmm7, %xmm15, %xmm7;
1222 vpxor %xmm8, %xmm15, %xmm8;
1223 vpxor %xmm9, %xmm15, %xmm9;
1224 vpxor %xmm10, %xmm15, %xmm10;
1225 vpxor %xmm11, %xmm15, %xmm11;
1226 vpxor %xmm12, %xmm15, %xmm12;
1227 vpxor %xmm13, %xmm15, %xmm13;
1228 vpxor 14 * 16(%rax), %xmm15, %xmm14;
1229 vpxor 15 * 16(%rax), %xmm15, %xmm15;
1230
9697fa39 1231 CALL_NOSPEC %r9;
b5c5b072
JK
1232
1233 addq $(16 * 16), %rsp;
1234
1235 vpxor 0 * 16(%rsi), %xmm7, %xmm7;
1236 vpxor 1 * 16(%rsi), %xmm6, %xmm6;
1237 vpxor 2 * 16(%rsi), %xmm5, %xmm5;
1238 vpxor 3 * 16(%rsi), %xmm4, %xmm4;
1239 vpxor 4 * 16(%rsi), %xmm3, %xmm3;
1240 vpxor 5 * 16(%rsi), %xmm2, %xmm2;
1241 vpxor 6 * 16(%rsi), %xmm1, %xmm1;
1242 vpxor 7 * 16(%rsi), %xmm0, %xmm0;
1243 vpxor 8 * 16(%rsi), %xmm15, %xmm15;
1244 vpxor 9 * 16(%rsi), %xmm14, %xmm14;
1245 vpxor 10 * 16(%rsi), %xmm13, %xmm13;
1246 vpxor 11 * 16(%rsi), %xmm12, %xmm12;
1247 vpxor 12 * 16(%rsi), %xmm11, %xmm11;
1248 vpxor 13 * 16(%rsi), %xmm10, %xmm10;
1249 vpxor 14 * 16(%rsi), %xmm9, %xmm9;
1250 vpxor 15 * 16(%rsi), %xmm8, %xmm8;
1251 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
1252 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
1253 %xmm8, %rsi);
1254
8691ccd7 1255 FRAME_END
b5c5b072
JK
1256 ret;
1257ENDPROC(camellia_xts_crypt_16way)
1258
1259ENTRY(camellia_xts_enc_16way)
1260 /* input:
1261 * %rdi: ctx, CTX
1262 * %rsi: dst (16 blocks)
1263 * %rdx: src (16 blocks)
1264 * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1265 */
1266 xorl %r8d, %r8d; /* input whitening key, 0 for enc */
1267
1268 leaq __camellia_enc_blk16, %r9;
1269
1270 jmp camellia_xts_crypt_16way;
1271ENDPROC(camellia_xts_enc_16way)
1272
1273ENTRY(camellia_xts_dec_16way)
1274 /* input:
1275 * %rdi: ctx, CTX
1276 * %rsi: dst (16 blocks)
1277 * %rdx: src (16 blocks)
1278 * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1279 */
1280
1281 cmpl $16, key_length(CTX);
1282 movl $32, %r8d;
1283 movl $24, %eax;
1284 cmovel %eax, %r8d; /* input whitening key, last for dec */
1285
1286 leaq __camellia_dec_blk16, %r9;
1287
1288 jmp camellia_xts_crypt_16way;
1289ENDPROC(camellia_xts_dec_16way)