unicore32 core architecture: mm related: fault handling
[linux-2.6-block.git] / arch / unicore32 / mm / mmu.c
CommitLineData
56372b0b
G
1/*
2 * linux/arch/unicore32/mm/mmu.c
3 *
4 * Code specific to PKUnity SoC and UniCore ISA
5 *
6 * Copyright (C) 2001-2010 GUAN Xue-tao
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/errno.h>
15#include <linux/init.h>
16#include <linux/mman.h>
17#include <linux/nodemask.h>
18#include <linux/memblock.h>
19#include <linux/fs.h>
20#include <linux/bootmem.h>
21#include <linux/io.h>
22
23#include <asm/cputype.h>
24#include <asm/sections.h>
25#include <asm/setup.h>
26#include <asm/sizes.h>
27#include <asm/tlb.h>
28
29#include <mach/map.h>
30
31#include "mm.h"
32
33DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
34
35/*
36 * empty_zero_page is a special page that is used for
37 * zero-initialized data and COW.
38 */
39struct page *empty_zero_page;
40EXPORT_SYMBOL(empty_zero_page);
41
42/*
43 * The pmd table for the upper-most set of pages.
44 */
45pmd_t *top_pmd;
46
47pgprot_t pgprot_user;
48EXPORT_SYMBOL(pgprot_user);
49
50pgprot_t pgprot_kernel;
51EXPORT_SYMBOL(pgprot_kernel);
52
53static int __init noalign_setup(char *__unused)
54{
55 cr_alignment &= ~CR_A;
56 cr_no_alignment &= ~CR_A;
57 set_cr(cr_alignment);
58 return 1;
59}
60__setup("noalign", noalign_setup);
61
62void adjust_cr(unsigned long mask, unsigned long set)
63{
64 unsigned long flags;
65
66 mask &= ~CR_A;
67
68 set &= mask;
69
70 local_irq_save(flags);
71
72 cr_no_alignment = (cr_no_alignment & ~mask) | set;
73 cr_alignment = (cr_alignment & ~mask) | set;
74
75 set_cr((get_cr() & ~mask) | set);
76
77 local_irq_restore(flags);
78}
79
80struct map_desc {
81 unsigned long virtual;
82 unsigned long pfn;
83 unsigned long length;
84 unsigned int type;
85};
86
87#define PROT_PTE_DEVICE (PTE_PRESENT | PTE_YOUNG | \
88 PTE_DIRTY | PTE_READ | PTE_WRITE)
89#define PROT_SECT_DEVICE (PMD_TYPE_SECT | PMD_PRESENT | \
90 PMD_SECT_READ | PMD_SECT_WRITE)
91
92static struct mem_type mem_types[] = {
93 [MT_DEVICE] = { /* Strongly ordered */
94 .prot_pte = PROT_PTE_DEVICE,
95 .prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT,
96 .prot_sect = PROT_SECT_DEVICE,
97 },
98 /*
99 * MT_KUSER: pte for vecpage -- cacheable,
100 * and sect for unigfx mmap -- noncacheable
101 */
102 [MT_KUSER] = {
103 .prot_pte = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
104 PTE_CACHEABLE | PTE_READ | PTE_EXEC,
105 .prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT,
106 .prot_sect = PROT_SECT_DEVICE,
107 },
108 [MT_HIGH_VECTORS] = {
109 .prot_pte = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
110 PTE_CACHEABLE | PTE_READ | PTE_WRITE |
111 PTE_EXEC,
112 .prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT,
113 },
114 [MT_MEMORY] = {
115 .prot_pte = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
116 PTE_WRITE | PTE_EXEC,
117 .prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT,
118 .prot_sect = PMD_TYPE_SECT | PMD_PRESENT | PMD_SECT_CACHEABLE |
119 PMD_SECT_READ | PMD_SECT_WRITE | PMD_SECT_EXEC,
120 },
121 [MT_ROM] = {
122 .prot_sect = PMD_TYPE_SECT | PMD_PRESENT | PMD_SECT_CACHEABLE |
123 PMD_SECT_READ,
124 },
125};
126
127const struct mem_type *get_mem_type(unsigned int type)
128{
129 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
130}
131EXPORT_SYMBOL(get_mem_type);
132
133/*
134 * Adjust the PMD section entries according to the CPU in use.
135 */
136static void __init build_mem_type_table(void)
137{
138 pgprot_user = __pgprot(PTE_PRESENT | PTE_YOUNG | PTE_CACHEABLE);
139 pgprot_kernel = __pgprot(PTE_PRESENT | PTE_YOUNG |
140 PTE_DIRTY | PTE_READ | PTE_WRITE |
141 PTE_EXEC | PTE_CACHEABLE);
142}
143
144#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
145
146static void __init *early_alloc(unsigned long sz)
147{
148 void *ptr = __va(memblock_alloc(sz, sz));
149 memset(ptr, 0, sz);
150 return ptr;
151}
152
153static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
154 unsigned long prot)
155{
156 if (pmd_none(*pmd)) {
157 pte_t *pte = early_alloc(PTRS_PER_PTE * sizeof(pte_t));
158 __pmd_populate(pmd, __pa(pte) | prot);
159 }
160 BUG_ON(pmd_bad(*pmd));
161 return pte_offset_kernel(pmd, addr);
162}
163
164static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
165 unsigned long end, unsigned long pfn,
166 const struct mem_type *type)
167{
168 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
169 do {
170 set_pte(pte, pfn_pte(pfn, __pgprot(type->prot_pte)));
171 pfn++;
172 } while (pte++, addr += PAGE_SIZE, addr != end);
173}
174
175static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
176 unsigned long end, unsigned long phys,
177 const struct mem_type *type)
178{
179 pmd_t *pmd = pmd_offset((pud_t *)pgd, addr);
180
181 /*
182 * Try a section mapping - end, addr and phys must all be aligned
183 * to a section boundary.
184 */
185 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
186 pmd_t *p = pmd;
187
188 do {
189 set_pmd(pmd, __pmd(phys | type->prot_sect));
190 phys += SECTION_SIZE;
191 } while (pmd++, addr += SECTION_SIZE, addr != end);
192
193 flush_pmd_entry(p);
194 } else {
195 /*
196 * No need to loop; pte's aren't interested in the
197 * individual L1 entries.
198 */
199 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
200 }
201}
202
203/*
204 * Create the page directory entries and any necessary
205 * page tables for the mapping specified by `md'. We
206 * are able to cope here with varying sizes and address
207 * offsets, and we take full advantage of sections.
208 */
209static void __init create_mapping(struct map_desc *md)
210{
211 unsigned long phys, addr, length, end;
212 const struct mem_type *type;
213 pgd_t *pgd;
214
215 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
216 printk(KERN_WARNING "BUG: not creating mapping for "
217 "0x%08llx at 0x%08lx in user region\n",
218 __pfn_to_phys((u64)md->pfn), md->virtual);
219 return;
220 }
221
222 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
223 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
224 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
225 "overlaps vmalloc space\n",
226 __pfn_to_phys((u64)md->pfn), md->virtual);
227 }
228
229 type = &mem_types[md->type];
230
231 addr = md->virtual & PAGE_MASK;
232 phys = (unsigned long)__pfn_to_phys(md->pfn);
233 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
234
235 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
236 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
237 "be mapped using pages, ignoring.\n",
238 __pfn_to_phys(md->pfn), addr);
239 return;
240 }
241
242 pgd = pgd_offset_k(addr);
243 end = addr + length;
244 do {
245 unsigned long next = pgd_addr_end(addr, end);
246
247 alloc_init_section(pgd, addr, next, phys, type);
248
249 phys += next - addr;
250 addr = next;
251 } while (pgd++, addr != end);
252}
253
254static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
255
256/*
257 * vmalloc=size forces the vmalloc area to be exactly 'size'
258 * bytes. This can be used to increase (or decrease) the vmalloc
259 * area - the default is 128m.
260 */
261static int __init early_vmalloc(char *arg)
262{
263 unsigned long vmalloc_reserve = memparse(arg, NULL);
264
265 if (vmalloc_reserve < SZ_16M) {
266 vmalloc_reserve = SZ_16M;
267 printk(KERN_WARNING
268 "vmalloc area too small, limiting to %luMB\n",
269 vmalloc_reserve >> 20);
270 }
271
272 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
273 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
274 printk(KERN_WARNING
275 "vmalloc area is too big, limiting to %luMB\n",
276 vmalloc_reserve >> 20);
277 }
278
279 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
280 return 0;
281}
282early_param("vmalloc", early_vmalloc);
283
284static phys_addr_t lowmem_limit __initdata = SZ_1G;
285
286static void __init sanity_check_meminfo(void)
287{
288 int i, j;
289
290 lowmem_limit = __pa(vmalloc_min - 1) + 1;
291 memblock_set_current_limit(lowmem_limit);
292
293 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
294 struct membank *bank = &meminfo.bank[j];
295 *bank = meminfo.bank[i];
296 j++;
297 }
298 meminfo.nr_banks = j;
299}
300
301static inline void prepare_page_table(void)
302{
303 unsigned long addr;
304 phys_addr_t end;
305
306 /*
307 * Clear out all the mappings below the kernel image.
308 */
309 for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
310 pmd_clear(pmd_off_k(addr));
311
312 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
313 pmd_clear(pmd_off_k(addr));
314
315 /*
316 * Find the end of the first block of lowmem.
317 */
318 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
319 if (end >= lowmem_limit)
320 end = lowmem_limit;
321
322 /*
323 * Clear out all the kernel space mappings, except for the first
324 * memory bank, up to the end of the vmalloc region.
325 */
326 for (addr = __phys_to_virt(end);
327 addr < VMALLOC_END; addr += PGDIR_SIZE)
328 pmd_clear(pmd_off_k(addr));
329}
330
331/*
332 * Reserve the special regions of memory
333 */
334void __init uc32_mm_memblock_reserve(void)
335{
336 /*
337 * Reserve the page tables. These are already in use,
338 * and can only be in node 0.
339 */
340 memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
341
342#ifdef CONFIG_PUV3_UNIGFX
343 /*
344 * These should likewise go elsewhere. They pre-reserve the
345 * screen/video memory region at the 48M~64M of main system memory.
346 */
347 memblock_reserve(PKUNITY_UNIGFX_MMAP_BASE, PKUNITY_UNIGFX_MMAP_SIZE);
348 memblock_reserve(PKUNITY_UVC_MMAP_BASE, PKUNITY_UVC_MMAP_SIZE);
349#endif
350}
351
352/*
353 * Set up device the mappings. Since we clear out the page tables for all
354 * mappings above VMALLOC_END, we will remove any debug device mappings.
355 * This means you have to be careful how you debug this function, or any
356 * called function. This means you can't use any function or debugging
357 * method which may touch any device, otherwise the kernel _will_ crash.
358 */
359static void __init devicemaps_init(void)
360{
361 struct map_desc map;
362 unsigned long addr;
363 void *vectors;
364
365 /*
366 * Allocate the vector page early.
367 */
368 vectors = early_alloc(PAGE_SIZE);
369
370 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
371 pmd_clear(pmd_off_k(addr));
372
373 /*
374 * Create a mapping for UniGFX VRAM
375 */
376#ifdef CONFIG_PUV3_UNIGFX
377 map.pfn = __phys_to_pfn(PKUNITY_UNIGFX_MMAP_BASE);
378 map.virtual = KUSER_UNIGFX_BASE;
379 map.length = PKUNITY_UNIGFX_MMAP_SIZE;
380 map.type = MT_KUSER;
381 create_mapping(&map);
382#endif
383
384 /*
385 * Create a mapping for the machine vectors at the high-vectors
386 * location (0xffff0000). If we aren't using high-vectors, also
387 * create a mapping at the low-vectors virtual address.
388 */
389 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
390 map.virtual = VECTORS_BASE;
391 map.length = PAGE_SIZE;
392 map.type = MT_HIGH_VECTORS;
393 create_mapping(&map);
394
395 /*
396 * Create a mapping for the kuser page at the special
397 * location (0xbfff0000) to the same vectors location.
398 */
399 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
400 map.virtual = KUSER_VECPAGE_BASE;
401 map.length = PAGE_SIZE;
402 map.type = MT_KUSER;
403 create_mapping(&map);
404
405 /*
406 * Finally flush the caches and tlb to ensure that we're in a
407 * consistent state wrt the writebuffer. This also ensures that
408 * any write-allocated cache lines in the vector page are written
409 * back. After this point, we can start to touch devices again.
410 */
411 local_flush_tlb_all();
412 flush_cache_all();
413}
414
415static void __init map_lowmem(void)
416{
417 struct memblock_region *reg;
418
419 /* Map all the lowmem memory banks. */
420 for_each_memblock(memory, reg) {
421 phys_addr_t start = reg->base;
422 phys_addr_t end = start + reg->size;
423 struct map_desc map;
424
425 if (end > lowmem_limit)
426 end = lowmem_limit;
427 if (start >= end)
428 break;
429
430 map.pfn = __phys_to_pfn(start);
431 map.virtual = __phys_to_virt(start);
432 map.length = end - start;
433 map.type = MT_MEMORY;
434
435 create_mapping(&map);
436 }
437}
438
439/*
440 * paging_init() sets up the page tables, initialises the zone memory
441 * maps, and sets up the zero page, bad page and bad page tables.
442 */
443void __init paging_init(void)
444{
445 void *zero_page;
446
447 build_mem_type_table();
448 sanity_check_meminfo();
449 prepare_page_table();
450 map_lowmem();
451 devicemaps_init();
452
453 top_pmd = pmd_off_k(0xffff0000);
454
455 /* allocate the zero page. */
456 zero_page = early_alloc(PAGE_SIZE);
457
458 bootmem_init();
459
460 empty_zero_page = virt_to_page(zero_page);
461 __flush_dcache_page(NULL, empty_zero_page);
462}
463
464/*
465 * In order to soft-boot, we need to insert a 1:1 mapping in place of
466 * the user-mode pages. This will then ensure that we have predictable
467 * results when turning the mmu off
468 */
469void setup_mm_for_reboot(char mode)
470{
471 unsigned long base_pmdval;
472 pgd_t *pgd;
473 int i;
474
475 /*
476 * We need to access to user-mode page tables here. For kernel threads
477 * we don't have any user-mode mappings so we use the context that we
478 * "borrowed".
479 */
480 pgd = current->active_mm->pgd;
481
482 base_pmdval = PMD_SECT_WRITE | PMD_SECT_READ | PMD_TYPE_SECT;
483
484 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
485 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
486 pmd_t *pmd;
487
488 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
489 set_pmd(pmd, __pmd(pmdval));
490 flush_pmd_entry(pmd);
491 }
492
493 local_flush_tlb_all();
494}
495
496/*
497 * Take care of architecture specific things when placing a new PTE into
498 * a page table, or changing an existing PTE. Basically, there are two
499 * things that we need to take care of:
500 *
501 * 1. If PG_dcache_clean is not set for the page, we need to ensure
502 * that any cache entries for the kernels virtual memory
503 * range are written back to the page.
504 * 2. If we have multiple shared mappings of the same space in
505 * an object, we need to deal with the cache aliasing issues.
506 *
507 * Note that the pte lock will be held.
508 */
509void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
510 pte_t *ptep)
511{
512 unsigned long pfn = pte_pfn(*ptep);
513 struct address_space *mapping;
514 struct page *page;
515
516 if (!pfn_valid(pfn))
517 return;
518
519 /*
520 * The zero page is never written to, so never has any dirty
521 * cache lines, and therefore never needs to be flushed.
522 */
523 page = pfn_to_page(pfn);
524 if (page == ZERO_PAGE(0))
525 return;
526
527 mapping = page_mapping(page);
528 if (!test_and_set_bit(PG_dcache_clean, &page->flags))
529 __flush_dcache_page(mapping, page);
530 if (mapping)
531 if (vma->vm_flags & VM_EXEC)
532 __flush_icache_all();
533}