VM: add "vm_mmap()" helper function
[linux-2.6-block.git] / arch / tile / kernel / single_step.c
CommitLineData
867e359b
CM
1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 *
14 * A code-rewriter that enables instruction single-stepping.
15 * Derived from iLib's single-stepping code.
16 */
17
233325b9 18#ifndef __tilegx__ /* Hardware support for single step unavailable. */
867e359b
CM
19
20/* These functions are only used on the TILE platform */
21#include <linux/slab.h>
22#include <linux/thread_info.h>
23#include <linux/uaccess.h>
24#include <linux/mman.h>
25#include <linux/types.h>
0707ad30 26#include <linux/err.h>
867e359b 27#include <asm/cacheflush.h>
bd119c69 28#include <asm/unaligned.h>
867e359b 29#include <arch/abi.h>
eb7c792d 30#include <arch/opcode.h>
867e359b
CM
31
32#define signExtend17(val) sign_extend((val), 17)
33#define TILE_X1_MASK (0xffffffffULL << 31)
34
35int unaligned_printk;
36
37static int __init setup_unaligned_printk(char *str)
38{
39 long val;
40 if (strict_strtol(str, 0, &val) != 0)
41 return 0;
42 unaligned_printk = val;
0707ad30
CM
43 pr_info("Printk for each unaligned data accesses is %s\n",
44 unaligned_printk ? "enabled" : "disabled");
867e359b
CM
45 return 1;
46}
47__setup("unaligned_printk=", setup_unaligned_printk);
48
49unsigned int unaligned_fixup_count;
50
51enum mem_op {
52 MEMOP_NONE,
53 MEMOP_LOAD,
54 MEMOP_STORE,
55 MEMOP_LOAD_POSTINCR,
56 MEMOP_STORE_POSTINCR
57};
58
04f7a3f1 59static inline tile_bundle_bits set_BrOff_X1(tile_bundle_bits n, s32 offset)
867e359b
CM
60{
61 tile_bundle_bits result;
62
63 /* mask out the old offset */
64 tile_bundle_bits mask = create_BrOff_X1(-1);
65 result = n & (~mask);
66
67 /* or in the new offset */
68 result |= create_BrOff_X1(offset);
69
70 return result;
71}
72
73static inline tile_bundle_bits move_X1(tile_bundle_bits n, int dest, int src)
74{
75 tile_bundle_bits result;
76 tile_bundle_bits op;
77
78 result = n & (~TILE_X1_MASK);
79
80 op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) |
81 create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) |
82 create_Dest_X1(dest) |
83 create_SrcB_X1(TREG_ZERO) |
84 create_SrcA_X1(src) ;
85
86 result |= op;
87 return result;
88}
89
90static inline tile_bundle_bits nop_X1(tile_bundle_bits n)
91{
92 return move_X1(n, TREG_ZERO, TREG_ZERO);
93}
94
95static inline tile_bundle_bits addi_X1(
96 tile_bundle_bits n, int dest, int src, int imm)
97{
98 n &= ~TILE_X1_MASK;
99
100 n |= (create_SrcA_X1(src) |
101 create_Dest_X1(dest) |
102 create_Imm8_X1(imm) |
103 create_S_X1(0) |
104 create_Opcode_X1(IMM_0_OPCODE_X1) |
105 create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1));
106
107 return n;
108}
109
110static tile_bundle_bits rewrite_load_store_unaligned(
111 struct single_step_state *state,
112 tile_bundle_bits bundle,
113 struct pt_regs *regs,
114 enum mem_op mem_op,
115 int size, int sign_ext)
116{
0707ad30 117 unsigned char __user *addr;
867e359b
CM
118 int val_reg, addr_reg, err, val;
119
120 /* Get address and value registers */
eb7c792d 121 if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
867e359b
CM
122 addr_reg = get_SrcA_Y2(bundle);
123 val_reg = get_SrcBDest_Y2(bundle);
124 } else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
125 addr_reg = get_SrcA_X1(bundle);
126 val_reg = get_Dest_X1(bundle);
127 } else {
128 addr_reg = get_SrcA_X1(bundle);
129 val_reg = get_SrcB_X1(bundle);
130 }
131
132 /*
133 * If registers are not GPRs, don't try to handle it.
134 *
135 * FIXME: we could handle non-GPR loads by getting the real value
136 * from memory, writing it to the single step buffer, using a
137 * temp_reg to hold a pointer to that memory, then executing that
138 * instruction and resetting temp_reg. For non-GPR stores, it's a
139 * little trickier; we could use the single step buffer for that
140 * too, but we'd have to add some more state bits so that we could
141 * call back in here to copy that value to the real target. For
142 * now, we just handle the simple case.
143 */
144 if ((val_reg >= PTREGS_NR_GPRS &&
145 (val_reg != TREG_ZERO ||
146 mem_op == MEMOP_LOAD ||
147 mem_op == MEMOP_LOAD_POSTINCR)) ||
148 addr_reg >= PTREGS_NR_GPRS)
149 return bundle;
150
151 /* If it's aligned, don't handle it specially */
0707ad30 152 addr = (void __user *)regs->regs[addr_reg];
867e359b
CM
153 if (((unsigned long)addr % size) == 0)
154 return bundle;
155
cdd8e16f
CM
156 /*
157 * Return SIGBUS with the unaligned address, if requested.
158 * Note that we return SIGBUS even for completely invalid addresses
159 * as long as they are in fact unaligned; this matches what the
160 * tilepro hardware would be doing, if it could provide us with the
161 * actual bad address in an SPR, which it doesn't.
162 */
163 if (unaligned_fixup == 0) {
164 siginfo_t info = {
165 .si_signo = SIGBUS,
166 .si_code = BUS_ADRALN,
167 .si_addr = addr
168 };
169 trace_unhandled_signal("unaligned trap", regs,
170 (unsigned long)addr, SIGBUS);
171 force_sig_info(info.si_signo, &info, current);
172 return (tilepro_bundle_bits) 0;
173 }
174
867e359b
CM
175#ifndef __LITTLE_ENDIAN
176# error We assume little-endian representation with copy_xx_user size 2 here
177#endif
178 /* Handle unaligned load/store */
179 if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
180 unsigned short val_16;
181 switch (size) {
182 case 2:
183 err = copy_from_user(&val_16, addr, sizeof(val_16));
184 val = sign_ext ? ((short)val_16) : val_16;
185 break;
186 case 4:
187 err = copy_from_user(&val, addr, sizeof(val));
188 break;
189 default:
190 BUG();
191 }
192 if (err == 0) {
193 state->update_reg = val_reg;
194 state->update_value = val;
195 state->update = 1;
196 }
197 } else {
198 val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg];
199 err = copy_to_user(addr, &val, size);
200 }
201
202 if (err) {
203 siginfo_t info = {
204 .si_signo = SIGSEGV,
205 .si_code = SEGV_MAPERR,
0707ad30 206 .si_addr = addr
867e359b 207 };
571d76ac
CM
208 trace_unhandled_signal("segfault", regs,
209 (unsigned long)addr, SIGSEGV);
867e359b
CM
210 force_sig_info(info.si_signo, &info, current);
211 return (tile_bundle_bits) 0;
212 }
213
867e359b 214 if (unaligned_printk || unaligned_fixup_count == 0) {
0707ad30
CM
215 pr_info("Process %d/%s: PC %#lx: Fixup of"
216 " unaligned %s at %#lx.\n",
217 current->pid, current->comm, regs->pc,
218 (mem_op == MEMOP_LOAD ||
219 mem_op == MEMOP_LOAD_POSTINCR) ?
220 "load" : "store",
221 (unsigned long)addr);
867e359b 222 if (!unaligned_printk) {
0707ad30
CM
223#define P pr_info
224P("\n");
225P("Unaligned fixups in the kernel will slow your application considerably.\n");
226P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n");
227P("which requests the kernel show all unaligned fixups, or write a \"0\"\n");
228P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n");
229P("access will become a SIGBUS you can debug. No further warnings will be\n");
230P("shown so as to avoid additional slowdown, but you can track the number\n");
231P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n");
232P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n");
233P("\n");
234#undef P
867e359b
CM
235 }
236 }
237 ++unaligned_fixup_count;
238
eb7c792d 239 if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
867e359b
CM
240 /* Convert the Y2 instruction to a prefetch. */
241 bundle &= ~(create_SrcBDest_Y2(-1) |
242 create_Opcode_Y2(-1));
243 bundle |= (create_SrcBDest_Y2(TREG_ZERO) |
244 create_Opcode_Y2(LW_OPCODE_Y2));
245 /* Replace the load postincr with an addi */
246 } else if (mem_op == MEMOP_LOAD_POSTINCR) {
247 bundle = addi_X1(bundle, addr_reg, addr_reg,
248 get_Imm8_X1(bundle));
249 /* Replace the store postincr with an addi */
250 } else if (mem_op == MEMOP_STORE_POSTINCR) {
251 bundle = addi_X1(bundle, addr_reg, addr_reg,
252 get_Dest_Imm8_X1(bundle));
253 } else {
254 /* Convert the X1 instruction to a nop. */
255 bundle &= ~(create_Opcode_X1(-1) |
256 create_UnShOpcodeExtension_X1(-1) |
257 create_UnOpcodeExtension_X1(-1));
258 bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) |
259 create_UnShOpcodeExtension_X1(
260 UN_0_SHUN_0_OPCODE_X1) |
261 create_UnOpcodeExtension_X1(
262 NOP_UN_0_SHUN_0_OPCODE_X1));
263 }
264
265 return bundle;
266}
267
04f7a3f1
CM
268/*
269 * Called after execve() has started the new image. This allows us
270 * to reset the info state. Note that the the mmap'ed memory, if there
271 * was any, has already been unmapped by the exec.
272 */
273void single_step_execve(void)
274{
275 struct thread_info *ti = current_thread_info();
276 kfree(ti->step_state);
277 ti->step_state = NULL;
278}
279
867e359b
CM
280/**
281 * single_step_once() - entry point when single stepping has been triggered.
282 * @regs: The machine register state
283 *
284 * When we arrive at this routine via a trampoline, the single step
285 * engine copies the executing bundle to the single step buffer.
286 * If the instruction is a condition branch, then the target is
287 * reset to one past the next instruction. If the instruction
288 * sets the lr, then that is noted. If the instruction is a jump
289 * or call, then the new target pc is preserved and the current
290 * bundle instruction set to null.
291 *
292 * The necessary post-single-step rewriting information is stored in
293 * single_step_state-> We use data segment values because the
294 * stack will be rewound when we run the rewritten single-stepped
295 * instruction.
296 */
297void single_step_once(struct pt_regs *regs)
298{
299 extern tile_bundle_bits __single_step_ill_insn;
300 extern tile_bundle_bits __single_step_j_insn;
301 extern tile_bundle_bits __single_step_addli_insn;
302 extern tile_bundle_bits __single_step_auli_insn;
303 struct thread_info *info = (void *)current_thread_info();
304 struct single_step_state *state = info->step_state;
305 int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
0707ad30 306 tile_bundle_bits __user *buffer, *pc;
867e359b
CM
307 tile_bundle_bits bundle;
308 int temp_reg;
309 int target_reg = TREG_LR;
310 int err;
311 enum mem_op mem_op = MEMOP_NONE;
312 int size = 0, sign_ext = 0; /* happy compiler */
313
314 asm(
315" .pushsection .rodata.single_step\n"
316" .align 8\n"
317" .globl __single_step_ill_insn\n"
318"__single_step_ill_insn:\n"
319" ill\n"
320" .globl __single_step_addli_insn\n"
321"__single_step_addli_insn:\n"
322" { nop; addli r0, zero, 0 }\n"
323" .globl __single_step_auli_insn\n"
324"__single_step_auli_insn:\n"
325" { nop; auli r0, r0, 0 }\n"
326" .globl __single_step_j_insn\n"
327"__single_step_j_insn:\n"
328" j .\n"
329" .popsection\n"
330 );
331
313ce674
CM
332 /*
333 * Enable interrupts here to allow touching userspace and the like.
334 * The callers expect this: do_trap() already has interrupts
335 * enabled, and do_work_pending() handles functions that enable
336 * interrupts internally.
337 */
338 local_irq_enable();
339
867e359b
CM
340 if (state == NULL) {
341 /* allocate a page of writable, executable memory */
342 state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL);
343 if (state == NULL) {
0707ad30 344 pr_err("Out of kernel memory trying to single-step\n");
867e359b
CM
345 return;
346 }
347
348 /* allocate a cache line of writable, executable memory */
6be5ceb0 349 buffer = (void __user *) vm_mmap(NULL, 0, 64,
867e359b
CM
350 PROT_EXEC | PROT_READ | PROT_WRITE,
351 MAP_PRIVATE | MAP_ANONYMOUS,
352 0);
867e359b 353
0707ad30 354 if (IS_ERR((void __force *)buffer)) {
867e359b 355 kfree(state);
0707ad30 356 pr_err("Out of kernel pages trying to single-step\n");
867e359b
CM
357 return;
358 }
359
360 state->buffer = buffer;
361 state->is_enabled = 0;
362
363 info->step_state = state;
364
365 /* Validate our stored instruction patterns */
366 BUG_ON(get_Opcode_X1(__single_step_addli_insn) !=
367 ADDLI_OPCODE_X1);
368 BUG_ON(get_Opcode_X1(__single_step_auli_insn) !=
369 AULI_OPCODE_X1);
370 BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO);
371 BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0);
372 BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0);
373 }
374
375 /*
376 * If we are returning from a syscall, we still haven't hit the
377 * "ill" for the swint1 instruction. So back the PC up to be
378 * pointing at the swint1, but we'll actually return directly
379 * back to the "ill" so we come back in via SIGILL as if we
380 * had "executed" the swint1 without ever being in kernel space.
381 */
382 if (regs->faultnum == INT_SWINT_1)
383 regs->pc -= 8;
384
0707ad30
CM
385 pc = (tile_bundle_bits __user *)(regs->pc);
386 if (get_user(bundle, pc) != 0) {
387 pr_err("Couldn't read instruction at %p trying to step\n", pc);
388 return;
389 }
867e359b
CM
390
391 /* We'll follow the instruction with 2 ill op bundles */
0707ad30 392 state->orig_pc = (unsigned long)pc;
867e359b
CM
393 state->next_pc = (unsigned long)(pc + 1);
394 state->branch_next_pc = 0;
395 state->update = 0;
396
eb7c792d 397 if (!(bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK)) {
867e359b
CM
398 /* two wide, check for control flow */
399 int opcode = get_Opcode_X1(bundle);
400
401 switch (opcode) {
402 /* branches */
403 case BRANCH_OPCODE_X1:
404 {
04f7a3f1 405 s32 offset = signExtend17(get_BrOff_X1(bundle));
867e359b
CM
406
407 /*
408 * For branches, we use a rewriting trick to let the
409 * hardware evaluate whether the branch is taken or
410 * untaken. We record the target offset and then
411 * rewrite the branch instruction to target 1 insn
412 * ahead if the branch is taken. We then follow the
413 * rewritten branch with two bundles, each containing
414 * an "ill" instruction. The supervisor examines the
415 * pc after the single step code is executed, and if
416 * the pc is the first ill instruction, then the
417 * branch (if any) was not taken. If the pc is the
418 * second ill instruction, then the branch was
419 * taken. The new pc is computed for these cases, and
420 * inserted into the registers for the thread. If
421 * the pc is the start of the single step code, then
422 * an exception or interrupt was taken before the
423 * code started processing, and the same "original"
424 * pc is restored. This change, different from the
425 * original implementation, has the advantage of
426 * executing a single user instruction.
427 */
428 state->branch_next_pc = (unsigned long)(pc + offset);
429
430 /* rewrite branch offset to go forward one bundle */
431 bundle = set_BrOff_X1(bundle, 2);
432 }
433 break;
434
435 /* jumps */
436 case JALB_OPCODE_X1:
437 case JALF_OPCODE_X1:
438 state->update = 1;
439 state->next_pc =
440 (unsigned long) (pc + get_JOffLong_X1(bundle));
441 break;
442
443 case JB_OPCODE_X1:
444 case JF_OPCODE_X1:
445 state->next_pc =
446 (unsigned long) (pc + get_JOffLong_X1(bundle));
447 bundle = nop_X1(bundle);
448 break;
449
450 case SPECIAL_0_OPCODE_X1:
451 switch (get_RRROpcodeExtension_X1(bundle)) {
452 /* jump-register */
453 case JALRP_SPECIAL_0_OPCODE_X1:
454 case JALR_SPECIAL_0_OPCODE_X1:
455 state->update = 1;
456 state->next_pc =
457 regs->regs[get_SrcA_X1(bundle)];
458 break;
459
460 case JRP_SPECIAL_0_OPCODE_X1:
461 case JR_SPECIAL_0_OPCODE_X1:
462 state->next_pc =
463 regs->regs[get_SrcA_X1(bundle)];
464 bundle = nop_X1(bundle);
465 break;
466
467 case LNK_SPECIAL_0_OPCODE_X1:
468 state->update = 1;
469 target_reg = get_Dest_X1(bundle);
470 break;
471
472 /* stores */
473 case SH_SPECIAL_0_OPCODE_X1:
474 mem_op = MEMOP_STORE;
475 size = 2;
476 break;
477
478 case SW_SPECIAL_0_OPCODE_X1:
479 mem_op = MEMOP_STORE;
480 size = 4;
481 break;
482 }
483 break;
484
485 /* loads and iret */
486 case SHUN_0_OPCODE_X1:
487 if (get_UnShOpcodeExtension_X1(bundle) ==
488 UN_0_SHUN_0_OPCODE_X1) {
489 switch (get_UnOpcodeExtension_X1(bundle)) {
490 case LH_UN_0_SHUN_0_OPCODE_X1:
491 mem_op = MEMOP_LOAD;
492 size = 2;
493 sign_ext = 1;
494 break;
495
496 case LH_U_UN_0_SHUN_0_OPCODE_X1:
497 mem_op = MEMOP_LOAD;
498 size = 2;
499 sign_ext = 0;
500 break;
501
502 case LW_UN_0_SHUN_0_OPCODE_X1:
503 mem_op = MEMOP_LOAD;
504 size = 4;
505 break;
506
507 case IRET_UN_0_SHUN_0_OPCODE_X1:
508 {
509 unsigned long ex0_0 = __insn_mfspr(
510 SPR_EX_CONTEXT_0_0);
511 unsigned long ex0_1 = __insn_mfspr(
512 SPR_EX_CONTEXT_0_1);
513 /*
514 * Special-case it if we're iret'ing
515 * to PL0 again. Otherwise just let
516 * it run and it will generate SIGILL.
517 */
518 if (EX1_PL(ex0_1) == USER_PL) {
519 state->next_pc = ex0_0;
520 regs->ex1 = ex0_1;
521 bundle = nop_X1(bundle);
522 }
523 }
524 }
525 }
526 break;
527
528#if CHIP_HAS_WH64()
529 /* postincrement operations */
530 case IMM_0_OPCODE_X1:
531 switch (get_ImmOpcodeExtension_X1(bundle)) {
532 case LWADD_IMM_0_OPCODE_X1:
533 mem_op = MEMOP_LOAD_POSTINCR;
534 size = 4;
535 break;
536
537 case LHADD_IMM_0_OPCODE_X1:
538 mem_op = MEMOP_LOAD_POSTINCR;
539 size = 2;
540 sign_ext = 1;
541 break;
542
543 case LHADD_U_IMM_0_OPCODE_X1:
544 mem_op = MEMOP_LOAD_POSTINCR;
545 size = 2;
546 sign_ext = 0;
547 break;
548
549 case SWADD_IMM_0_OPCODE_X1:
550 mem_op = MEMOP_STORE_POSTINCR;
551 size = 4;
552 break;
553
554 case SHADD_IMM_0_OPCODE_X1:
555 mem_op = MEMOP_STORE_POSTINCR;
556 size = 2;
557 break;
558
559 default:
560 break;
561 }
562 break;
563#endif /* CHIP_HAS_WH64() */
564 }
565
566 if (state->update) {
567 /*
568 * Get an available register. We start with a
569 * bitmask with 1's for available registers.
570 * We truncate to the low 32 registers since
571 * we are guaranteed to have set bits in the
572 * low 32 bits, then use ctz to pick the first.
573 */
574 u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) |
575 (1ULL << get_SrcA_X0(bundle)) |
576 (1ULL << get_SrcB_X0(bundle)) |
577 (1ULL << target_reg));
578 temp_reg = __builtin_ctz(mask);
579 state->update_reg = temp_reg;
580 state->update_value = regs->regs[temp_reg];
581 regs->regs[temp_reg] = (unsigned long) (pc+1);
582 regs->flags |= PT_FLAGS_RESTORE_REGS;
583 bundle = move_X1(bundle, target_reg, temp_reg);
584 }
585 } else {
586 int opcode = get_Opcode_Y2(bundle);
587
588 switch (opcode) {
589 /* loads */
590 case LH_OPCODE_Y2:
591 mem_op = MEMOP_LOAD;
592 size = 2;
593 sign_ext = 1;
594 break;
595
596 case LH_U_OPCODE_Y2:
597 mem_op = MEMOP_LOAD;
598 size = 2;
599 sign_ext = 0;
600 break;
601
602 case LW_OPCODE_Y2:
603 mem_op = MEMOP_LOAD;
604 size = 4;
605 break;
606
607 /* stores */
608 case SH_OPCODE_Y2:
609 mem_op = MEMOP_STORE;
610 size = 2;
611 break;
612
613 case SW_OPCODE_Y2:
614 mem_op = MEMOP_STORE;
615 size = 4;
616 break;
617 }
618 }
619
620 /*
621 * Check if we need to rewrite an unaligned load/store.
622 * Returning zero is a special value meaning we need to SIGSEGV.
623 */
624 if (mem_op != MEMOP_NONE && unaligned_fixup >= 0) {
625 bundle = rewrite_load_store_unaligned(state, bundle, regs,
626 mem_op, size, sign_ext);
627 if (bundle == 0)
628 return;
629 }
630
631 /* write the bundle to our execution area */
632 buffer = state->buffer;
633 err = __put_user(bundle, buffer++);
634
635 /*
636 * If we're really single-stepping, we take an INT_ILL after.
637 * If we're just handling an unaligned access, we can just
638 * jump directly back to where we were in user code.
639 */
640 if (is_single_step) {
641 err |= __put_user(__single_step_ill_insn, buffer++);
642 err |= __put_user(__single_step_ill_insn, buffer++);
643 } else {
644 long delta;
645
646 if (state->update) {
647 /* We have some state to update; do it inline */
648 int ha16;
649 bundle = __single_step_addli_insn;
650 bundle |= create_Dest_X1(state->update_reg);
651 bundle |= create_Imm16_X1(state->update_value);
652 err |= __put_user(bundle, buffer++);
653 bundle = __single_step_auli_insn;
654 bundle |= create_Dest_X1(state->update_reg);
655 bundle |= create_SrcA_X1(state->update_reg);
656 ha16 = (state->update_value + 0x8000) >> 16;
657 bundle |= create_Imm16_X1(ha16);
658 err |= __put_user(bundle, buffer++);
659 state->update = 0;
660 }
661
662 /* End with a jump back to the next instruction */
663 delta = ((regs->pc + TILE_BUNDLE_SIZE_IN_BYTES) -
664 (unsigned long)buffer) >>
665 TILE_LOG2_BUNDLE_ALIGNMENT_IN_BYTES;
666 bundle = __single_step_j_insn;
667 bundle |= create_JOffLong_X1(delta);
668 err |= __put_user(bundle, buffer++);
669 }
670
671 if (err) {
0707ad30 672 pr_err("Fault when writing to single-step buffer\n");
867e359b
CM
673 return;
674 }
675
676 /*
677 * Flush the buffer.
678 * We do a local flush only, since this is a thread-specific buffer.
679 */
0707ad30
CM
680 __flush_icache_range((unsigned long)state->buffer,
681 (unsigned long)buffer);
867e359b
CM
682
683 /* Indicate enabled */
684 state->is_enabled = is_single_step;
0707ad30 685 regs->pc = (unsigned long)state->buffer;
867e359b
CM
686
687 /* Fault immediately if we are coming back from a syscall. */
688 if (regs->faultnum == INT_SWINT_1)
689 regs->pc += 8;
690}
691
233325b9
CM
692#else
693#include <linux/smp.h>
694#include <linux/ptrace.h>
695#include <arch/spr_def.h>
696
697static DEFINE_PER_CPU(unsigned long, ss_saved_pc);
698
699
700/*
701 * Called directly on the occasion of an interrupt.
702 *
703 * If the process doesn't have single step set, then we use this as an
704 * opportunity to turn single step off.
705 *
706 * It has been mentioned that we could conditionally turn off single stepping
707 * on each entry into the kernel and rely on single_step_once to turn it
708 * on for the processes that matter (as we already do), but this
709 * implementation is somewhat more efficient in that we muck with registers
710 * once on a bum interrupt rather than on every entry into the kernel.
711 *
712 * If SINGLE_STEP_CONTROL_K has CANCELED set, then an interrupt occurred,
713 * so we have to run through this process again before we can say that an
714 * instruction has executed.
715 *
716 * swint will set CANCELED, but it's a legitimate instruction. Fortunately
717 * it changes the PC. If it hasn't changed, then we know that the interrupt
718 * wasn't generated by swint and we'll need to run this process again before
719 * we can say an instruction has executed.
720 *
721 * If either CANCELED == 0 or the PC's changed, we send out SIGTRAPs and get
722 * on with our lives.
723 */
724
725void gx_singlestep_handle(struct pt_regs *regs, int fault_num)
726{
727 unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
728 struct thread_info *info = (void *)current_thread_info();
729 int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
730 unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
731
732 if (is_single_step == 0) {
733 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 0);
734
735 } else if ((*ss_pc != regs->pc) ||
736 (!(control & SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK))) {
737
738 ptrace_notify(SIGTRAP);
739 control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
740 control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
741 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
742 }
743}
744
745
746/*
747 * Called from need_singlestep. Set up the control registers and the enable
748 * register, then return back.
749 */
750
751void single_step_once(struct pt_regs *regs)
752{
753 unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
754 unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
755
756 *ss_pc = regs->pc;
757 control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
758 control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
759 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
760 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 1 << USER_PL);
761}
762
04f7a3f1
CM
763void single_step_execve(void)
764{
765 /* Nothing */
766}
767
867e359b 768#endif /* !__tilegx__ */