arch/tile: tilegx PCI root complex support
[linux-2.6-block.git] / arch / tile / kernel / pci_gx.c
CommitLineData
12962267
CM
1/*
2 * Copyright 2012 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15#include <linux/kernel.h>
16#include <linux/mmzone.h>
17#include <linux/pci.h>
18#include <linux/delay.h>
19#include <linux/string.h>
20#include <linux/init.h>
21#include <linux/capability.h>
22#include <linux/sched.h>
23#include <linux/errno.h>
24#include <linux/irq.h>
25#include <linux/msi.h>
26#include <linux/io.h>
27#include <linux/uaccess.h>
28#include <linux/ctype.h>
29
30#include <asm/processor.h>
31#include <asm/sections.h>
32#include <asm/byteorder.h>
33
34#include <gxio/iorpc_globals.h>
35#include <gxio/kiorpc.h>
36#include <gxio/trio.h>
37#include <gxio/iorpc_trio.h>
38#include <hv/drv_trio_intf.h>
39
40#include <arch/sim.h>
41
42/*
43 * Initialization flow and process
44 * -------------------------------
45 *
46 * This files containes the routines to search for PCI buses,
47 * enumerate the buses, and configure any attached devices.
48 *
49 * There are two entry points here:
50 * 1) tile_pci_init
51 * This sets up the pci_controller structs, and opens the
52 * FDs to the hypervisor. This is called from setup_arch() early
53 * in the boot process.
54 * 2) pcibios_init
55 * This probes the PCI bus(es) for any attached hardware. It's
56 * called by subsys_initcall. All of the real work is done by the
57 * generic Linux PCI layer.
58 *
59 */
60
61#define DEBUG_PCI_CFG 0
62
63#if DEBUG_PCI_CFG
64#define TRACE_CFG_WR(size, val, bus, dev, func, offset) \
65 pr_info("CFG WR %d-byte VAL %#x to bus %d dev %d func %d addr %u\n", \
66 size, val, bus, dev, func, offset & 0xFFF);
67#define TRACE_CFG_RD(size, val, bus, dev, func, offset) \
68 pr_info("CFG RD %d-byte VAL %#x from bus %d dev %d func %d addr %u\n", \
69 size, val, bus, dev, func, offset & 0xFFF);
70#else
71#define TRACE_CFG_WR(...)
72#define TRACE_CFG_RD(...)
73#endif
74
75static int __devinitdata pci_probe = 1;
76
77/* Information on the PCIe RC ports configuration. */
78static int __devinitdata pcie_rc[TILEGX_NUM_TRIO][TILEGX_TRIO_PCIES];
79
80/*
81 * On some platforms with one or more Gx endpoint ports, we need to
82 * delay the PCIe RC port probe for a few seconds to work around
83 * a HW PCIe link-training bug. The exact delay is specified with
84 * a kernel boot argument in the form of "pcie_rc_delay=T,P,S",
85 * where T is the TRIO instance number, P is the port number and S is
86 * the delay in seconds. If the delay is not provided, the value
87 * will be DEFAULT_RC_DELAY.
88 */
89static int __devinitdata rc_delay[TILEGX_NUM_TRIO][TILEGX_TRIO_PCIES];
90
91/* Default number of seconds that the PCIe RC port probe can be delayed. */
92#define DEFAULT_RC_DELAY 10
93
94/* Max number of seconds that the PCIe RC port probe can be delayed. */
95#define MAX_RC_DELAY 20
96
97/* Array of the PCIe ports configuration info obtained from the BIB. */
98struct pcie_port_property pcie_ports[TILEGX_NUM_TRIO][TILEGX_TRIO_PCIES];
99
100/* All drivers share the TRIO contexts defined here. */
101gxio_trio_context_t trio_contexts[TILEGX_NUM_TRIO];
102
103/* Pointer to an array of PCIe RC controllers. */
104struct pci_controller pci_controllers[TILEGX_NUM_TRIO * TILEGX_TRIO_PCIES];
105int num_rc_controllers;
106static int num_ep_controllers;
107
108static struct pci_ops tile_cfg_ops;
109
110/* Mask of CPUs that should receive PCIe interrupts. */
111static struct cpumask intr_cpus_map;
112
113/*
114 * We don't need to worry about the alignment of resources.
115 */
116resource_size_t pcibios_align_resource(void *data, const struct resource *res,
117 resource_size_t size, resource_size_t align)
118{
119 return res->start;
120}
121EXPORT_SYMBOL(pcibios_align_resource);
122
123
124/*
125 * Pick a CPU to receive and handle the PCIe interrupts, based on the IRQ #.
126 * For now, we simply send interrupts to non-dataplane CPUs.
127 * We may implement methods to allow user to specify the target CPUs,
128 * e.g. via boot arguments.
129 */
130static int tile_irq_cpu(int irq)
131{
132 unsigned int count;
133 int i = 0;
134 int cpu;
135
136 count = cpumask_weight(&intr_cpus_map);
137 if (unlikely(count == 0)) {
138 pr_warning("intr_cpus_map empty, interrupts will be"
139 " delievered to dataplane tiles\n");
140 return irq % (smp_height * smp_width);
141 }
142
143 count = irq % count;
144 for_each_cpu(cpu, &intr_cpus_map) {
145 if (i++ == count)
146 break;
147 }
148 return cpu;
149}
150
151/*
152 * Open a file descriptor to the TRIO shim.
153 */
154static int __devinit tile_pcie_open(int trio_index)
155{
156 gxio_trio_context_t *context = &trio_contexts[trio_index];
157 int ret;
158
159 /*
160 * This opens a file descriptor to the TRIO shim.
161 */
162 ret = gxio_trio_init(context, trio_index);
163 if (ret < 0)
164 return ret;
165
166 /*
167 * Allocate an ASID for the kernel.
168 */
169 ret = gxio_trio_alloc_asids(context, 1, 0, 0);
170 if (ret < 0) {
171 pr_err("PCI: ASID alloc failure on TRIO %d, give up\n",
172 trio_index);
173 goto asid_alloc_failure;
174 }
175
176 context->asid = ret;
177
178#ifdef USE_SHARED_PCIE_CONFIG_REGION
179 /*
180 * Alloc a PIO region for config access, shared by all MACs per TRIO.
181 * This shouldn't fail since the kernel is supposed to the first
182 * client of the TRIO's PIO regions.
183 */
184 ret = gxio_trio_alloc_pio_regions(context, 1, 0, 0);
185 if (ret < 0) {
186 pr_err("PCI: CFG PIO alloc failure on TRIO %d, give up\n",
187 trio_index);
188 goto pio_alloc_failure;
189 }
190
191 context->pio_cfg_index = ret;
192
193 /*
194 * For PIO CFG, the bus_address_hi parameter is 0. The mac parameter
195 * is also 0 because it is specified in PIO_REGION_SETUP_CFG_ADDR.
196 */
197 ret = gxio_trio_init_pio_region_aux(context, context->pio_cfg_index,
198 0, 0, HV_TRIO_PIO_FLAG_CONFIG_SPACE);
199 if (ret < 0) {
200 pr_err("PCI: CFG PIO init failure on TRIO %d, give up\n",
201 trio_index);
202 goto pio_alloc_failure;
203 }
204#endif
205
206 return ret;
207
208asid_alloc_failure:
209#ifdef USE_SHARED_PCIE_CONFIG_REGION
210pio_alloc_failure:
211#endif
212 hv_dev_close(context->fd);
213
214 return ret;
215}
216
217static void
218tilegx_legacy_irq_ack(struct irq_data *d)
219{
220 __insn_mtspr(SPR_IPI_EVENT_RESET_K, 1UL << d->irq);
221}
222
223static void
224tilegx_legacy_irq_mask(struct irq_data *d)
225{
226 __insn_mtspr(SPR_IPI_MASK_SET_K, 1UL << d->irq);
227}
228
229static void
230tilegx_legacy_irq_unmask(struct irq_data *d)
231{
232 __insn_mtspr(SPR_IPI_MASK_RESET_K, 1UL << d->irq);
233}
234
235static struct irq_chip tilegx_legacy_irq_chip = {
236 .name = "tilegx_legacy_irq",
237 .irq_ack = tilegx_legacy_irq_ack,
238 .irq_mask = tilegx_legacy_irq_mask,
239 .irq_unmask = tilegx_legacy_irq_unmask,
240
241 /* TBD: support set_affinity. */
242};
243
244/*
245 * This is a wrapper function of the kernel level-trigger interrupt
246 * handler handle_level_irq() for PCI legacy interrupts. The TRIO
247 * is configured such that only INTx Assert interrupts are proxied
248 * to Linux which just calls handle_level_irq() after clearing the
249 * MAC INTx Assert status bit associated with this interrupt.
250 */
251static void
252trio_handle_level_irq(unsigned int irq, struct irq_desc *desc)
253{
254 struct pci_controller *controller = irq_desc_get_handler_data(desc);
255 gxio_trio_context_t *trio_context = controller->trio;
256 uint64_t intx = (uint64_t)irq_desc_get_chip_data(desc);
257 int mac = controller->mac;
258 unsigned int reg_offset;
259 uint64_t level_mask;
260
261 handle_level_irq(irq, desc);
262
263 /*
264 * Clear the INTx Level status, otherwise future interrupts are
265 * not sent.
266 */
267 reg_offset = (TRIO_PCIE_INTFC_MAC_INT_STS <<
268 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
269 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
270 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
271 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
272
273 level_mask = TRIO_PCIE_INTFC_MAC_INT_STS__INT_LEVEL_MASK << intx;
274
275 __gxio_mmio_write(trio_context->mmio_base_mac + reg_offset, level_mask);
276}
277
278/*
279 * Create kernel irqs and set up the handlers for the legacy interrupts.
280 * Also some minimum initialization for the MSI support.
281 */
282static int __devinit tile_init_irqs(struct pci_controller *controller)
283{
284 int i;
285 int j;
286 int irq;
287 int result;
288
289 cpumask_copy(&intr_cpus_map, cpu_online_mask);
290
291
292 for (i = 0; i < 4; i++) {
293 gxio_trio_context_t *context = controller->trio;
294 int cpu;
295
296 /* Ask the kernel to allocate an IRQ. */
297 irq = create_irq();
298 if (irq < 0) {
299 pr_err("PCI: no free irq vectors, failed for %d\n", i);
300
301 goto free_irqs;
302 }
303 controller->irq_intx_table[i] = irq;
304
305 /* Distribute the 4 IRQs to different tiles. */
306 cpu = tile_irq_cpu(irq);
307
308 /* Configure the TRIO intr binding for this IRQ. */
309 result = gxio_trio_config_legacy_intr(context, cpu_x(cpu),
310 cpu_y(cpu), KERNEL_PL,
311 irq, controller->mac, i);
312 if (result < 0) {
313 pr_err("PCI: MAC intx config failed for %d\n", i);
314
315 goto free_irqs;
316 }
317
318 /*
319 * Register the IRQ handler with the kernel.
320 */
321 irq_set_chip_and_handler(irq, &tilegx_legacy_irq_chip,
322 trio_handle_level_irq);
323 irq_set_chip_data(irq, (void *)(uint64_t)i);
324 irq_set_handler_data(irq, controller);
325 }
326
327 return 0;
328
329free_irqs:
330 for (j = 0; j < i; j++)
331 destroy_irq(controller->irq_intx_table[j]);
332
333 return -1;
334}
335
336/*
337 * First initialization entry point, called from setup_arch().
338 *
339 * Find valid controllers and fill in pci_controller structs for each
340 * of them.
341 *
342 * Returns the number of controllers discovered.
343 */
344int __init tile_pci_init(void)
345{
346 int num_trio_shims = 0;
347 int ctl_index = 0;
348 int i, j;
349
350 if (!pci_probe) {
351 pr_info("PCI: disabled by boot argument\n");
352 return 0;
353 }
354
355 pr_info("PCI: Searching for controllers...\n");
356
357 /*
358 * We loop over all the TRIO shims.
359 */
360 for (i = 0; i < TILEGX_NUM_TRIO; i++) {
361 int ret;
362
363 ret = tile_pcie_open(i);
364 if (ret < 0)
365 continue;
366
367 num_trio_shims++;
368 }
369
370 if (num_trio_shims == 0 || sim_is_simulator())
371 return 0;
372
373 /*
374 * Now determine which PCIe ports are configured to operate in RC mode.
375 * We look at the Board Information Block first and then see if there
376 * are any overriding configuration by the HW strapping pin.
377 */
378 for (i = 0; i < TILEGX_NUM_TRIO; i++) {
379 gxio_trio_context_t *context = &trio_contexts[i];
380 int ret;
381
382 if (context->fd < 0)
383 continue;
384
385 ret = hv_dev_pread(context->fd, 0,
386 (HV_VirtAddr)&pcie_ports[i][0],
387 sizeof(struct pcie_port_property) * TILEGX_TRIO_PCIES,
388 GXIO_TRIO_OP_GET_PORT_PROPERTY);
389 if (ret < 0) {
390 pr_err("PCI: PCIE_GET_PORT_PROPERTY failure, error %d,"
391 " on TRIO %d\n", ret, i);
392 continue;
393 }
394
395 for (j = 0; j < TILEGX_TRIO_PCIES; j++) {
396 if (pcie_ports[i][j].allow_rc) {
397 pcie_rc[i][j] = 1;
398 num_rc_controllers++;
399 }
400 else if (pcie_ports[i][j].allow_ep) {
401 num_ep_controllers++;
402 }
403 }
404 }
405
406 /*
407 * Return if no PCIe ports are configured to operate in RC mode.
408 */
409 if (num_rc_controllers == 0)
410 return 0;
411
412 /*
413 * Set the TRIO pointer and MAC index for each PCIe RC port.
414 */
415 for (i = 0; i < TILEGX_NUM_TRIO; i++) {
416 for (j = 0; j < TILEGX_TRIO_PCIES; j++) {
417 if (pcie_rc[i][j]) {
418 pci_controllers[ctl_index].trio =
419 &trio_contexts[i];
420 pci_controllers[ctl_index].mac = j;
421 pci_controllers[ctl_index].trio_index = i;
422 ctl_index++;
423 if (ctl_index == num_rc_controllers)
424 goto out;
425 }
426 }
427 }
428
429out:
430 /*
431 * Configure each PCIe RC port.
432 */
433 for (i = 0; i < num_rc_controllers; i++) {
434 /*
435 * Configure the PCIe MAC to run in RC mode.
436 */
437
438 struct pci_controller *controller = &pci_controllers[i];
439
440 controller->index = i;
441 controller->last_busno = 0xff;
442 controller->ops = &tile_cfg_ops;
443
444 }
445
446 return num_rc_controllers;
447}
448
449/*
450 * (pin - 1) converts from the PCI standard's [1:4] convention to
451 * a normal [0:3] range.
452 */
453static int tile_map_irq(const struct pci_dev *dev, u8 device, u8 pin)
454{
455 struct pci_controller *controller =
456 (struct pci_controller *)dev->sysdata;
457 return controller->irq_intx_table[pin - 1];
458}
459
460
461static void __devinit fixup_read_and_payload_sizes(struct pci_controller *
462 controller)
463{
464 gxio_trio_context_t *trio_context = controller->trio;
465 struct pci_bus *root_bus = controller->root_bus;
466 TRIO_PCIE_RC_DEVICE_CONTROL_t dev_control;
467 TRIO_PCIE_RC_DEVICE_CAP_t rc_dev_cap;
468 unsigned int reg_offset;
469 struct pci_bus *child;
470 int mac;
471 int err;
472
473 mac = controller->mac;
474
475 /*
476 * Set our max read request size to be 4KB.
477 */
478 reg_offset =
479 (TRIO_PCIE_RC_DEVICE_CONTROL <<
480 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
481 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
482 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
483 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
484
485 dev_control.word = __gxio_mmio_read32(trio_context->mmio_base_mac +
486 reg_offset);
487 dev_control.max_read_req_sz = 5;
488 __gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset,
489 dev_control.word);
490
491 /*
492 * Set the max payload size supported by this Gx PCIe MAC.
493 * Though Gx PCIe supports Max Payload Size of up to 1024 bytes,
494 * experiments have shown that setting MPS to 256 yields the
495 * best performance.
496 */
497 reg_offset =
498 (TRIO_PCIE_RC_DEVICE_CAP <<
499 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
500 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
501 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
502 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
503
504 rc_dev_cap.word = __gxio_mmio_read32(trio_context->mmio_base_mac +
505 reg_offset);
506 rc_dev_cap.mps_sup = 1;
507 __gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset,
508 rc_dev_cap.word);
509
510 /* Configure PCI Express MPS setting. */
511 list_for_each_entry(child, &root_bus->children, node) {
512 struct pci_dev *self = child->self;
513 if (!self)
514 continue;
515
516 pcie_bus_configure_settings(child, self->pcie_mpss);
517 }
518
519 /*
520 * Set the mac_config register in trio based on the MPS/MRS of the link.
521 */
522 reg_offset =
523 (TRIO_PCIE_RC_DEVICE_CONTROL <<
524 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
525 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
526 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
527 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
528
529 dev_control.word = __gxio_mmio_read32(trio_context->mmio_base_mac +
530 reg_offset);
531
532 err = gxio_trio_set_mps_mrs(trio_context,
533 dev_control.max_payload_size,
534 dev_control.max_read_req_sz,
535 mac);
536 if (err < 0) {
537 pr_err("PCI: PCIE_CONFIGURE_MAC_MPS_MRS failure, "
538 "MAC %d on TRIO %d\n",
539 mac, controller->trio_index);
540 }
541}
542
543static int __devinit setup_pcie_rc_delay(char *str)
544{
545 unsigned long delay = 0;
546 unsigned long trio_index;
547 unsigned long mac;
548
549 if (str == NULL || !isdigit(*str))
550 return -EINVAL;
551 trio_index = simple_strtoul(str, (char **)&str, 10);
552 if (trio_index >= TILEGX_NUM_TRIO)
553 return -EINVAL;
554
555 if (*str != ',')
556 return -EINVAL;
557
558 str++;
559 if (!isdigit(*str))
560 return -EINVAL;
561 mac = simple_strtoul(str, (char **)&str, 10);
562 if (mac >= TILEGX_TRIO_PCIES)
563 return -EINVAL;
564
565 if (*str != '\0') {
566 if (*str != ',')
567 return -EINVAL;
568
569 str++;
570 if (!isdigit(*str))
571 return -EINVAL;
572 delay = simple_strtoul(str, (char **)&str, 10);
573 if (delay > MAX_RC_DELAY)
574 return -EINVAL;
575 }
576
577 rc_delay[trio_index][mac] = delay ? : DEFAULT_RC_DELAY;
578 pr_info("Delaying PCIe RC link training for %u sec"
579 " on MAC %lu on TRIO %lu\n", rc_delay[trio_index][mac],
580 mac, trio_index);
581 return 0;
582}
583early_param("pcie_rc_delay", setup_pcie_rc_delay);
584
585/*
586 * Second PCI initialization entry point, called by subsys_initcall.
587 *
588 * The controllers have been set up by the time we get here, by a call to
589 * tile_pci_init.
590 */
591int __init pcibios_init(void)
592{
593 resource_size_t offset;
594 LIST_HEAD(resources);
595 int i;
596
597 if (num_rc_controllers == 0 && num_ep_controllers == 0)
598 return 0;
599
600 pr_info("PCI: Probing PCI hardware\n");
601
602 /*
603 * We loop over all the TRIO shims and set up the MMIO mappings.
604 * This step can't be done in tile_pci_init because the MM subsystem
605 * hasn't been initialized then.
606 */
607 for (i = 0; i < TILEGX_NUM_TRIO; i++) {
608 gxio_trio_context_t *context = &trio_contexts[i];
609
610 if (context->fd < 0)
611 continue;
612
613 /*
614 * Map in the MMIO space for the MAC.
615 */
616 offset = 0;
617 context->mmio_base_mac =
618 iorpc_ioremap(context->fd, offset,
619 HV_TRIO_CONFIG_IOREMAP_SIZE);
620 if (context->mmio_base_mac == NULL) {
621 pr_err("PCI: MAC map failure on TRIO %d\n", i);
622
623 hv_dev_close(context->fd);
624 context->fd = -1;
625 continue;
626 }
627 }
628
629 /*
630 * Delay a bit in case devices aren't ready. Some devices are
631 * known to require at least 20ms here, but we use a more
632 * conservative value.
633 */
634 msleep(250);
635
636 /* Scan all of the recorded PCI controllers. */
637 for (i = 0; i < num_rc_controllers; i++) {
638 struct pci_controller *controller = &pci_controllers[i];
639 gxio_trio_context_t *trio_context = controller->trio;
640 TRIO_PCIE_INTFC_PORT_CONFIG_t port_config;
641 TRIO_PCIE_INTFC_PORT_STATUS_t port_status;
642 TRIO_PCIE_INTFC_TX_FIFO_CTL_t tx_fifo_ctl;
643 struct pci_bus *bus;
644 unsigned int reg_offset;
645 unsigned int class_code_revision;
646 int trio_index;
647 int mac;
648#ifndef USE_SHARED_PCIE_CONFIG_REGION
649 int ret;
650#endif
651
652 if (trio_context->fd < 0)
653 continue;
654
655 trio_index = controller->trio_index;
656 mac = controller->mac;
657
658 /*
659 * Check the port strap state which will override the BIB
660 * setting.
661 */
662
663 reg_offset =
664 (TRIO_PCIE_INTFC_PORT_CONFIG <<
665 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
666 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
667 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
668 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
669
670 port_config.word =
671 __gxio_mmio_read(trio_context->mmio_base_mac +
672 reg_offset);
673
674 if ((port_config.strap_state !=
675 TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_RC) &&
676 (port_config.strap_state !=
677 TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_RC_G1)) {
678 /*
679 * If this is really intended to be an EP port,
680 * record it so that the endpoint driver will know about it.
681 */
682 if (port_config.strap_state ==
683 TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_ENDPOINT ||
684 port_config.strap_state ==
685 TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_ENDPOINT_G1)
686 pcie_ports[trio_index][mac].allow_ep = 1;
687
688 continue;
689 }
690
691 /*
692 * Delay the RC link training if needed.
693 */
694 if (rc_delay[trio_index][mac])
695 msleep(rc_delay[trio_index][mac] * 1000);
696
697 ret = gxio_trio_force_rc_link_up(trio_context, mac);
698 if (ret < 0)
699 pr_err("PCI: PCIE_FORCE_LINK_UP failure, "
700 "MAC %d on TRIO %d\n", mac, trio_index);
701
702 pr_info("PCI: Found PCI controller #%d on TRIO %d MAC %d\n", i,
703 trio_index, controller->mac);
704
705 /*
706 * Wait a bit here because some EP devices take longer
707 * to come up.
708 */
709 msleep(1000);
710
711 /*
712 * Check for PCIe link-up status.
713 */
714
715 reg_offset =
716 (TRIO_PCIE_INTFC_PORT_STATUS <<
717 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
718 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
719 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
720 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
721
722 port_status.word =
723 __gxio_mmio_read(trio_context->mmio_base_mac +
724 reg_offset);
725 if (!port_status.dl_up) {
726 pr_err("PCI: link is down, MAC %d on TRIO %d\n",
727 mac, trio_index);
728 continue;
729 }
730
731 /*
732 * Ensure that the link can come out of L1 power down state.
733 * Strictly speaking, this is needed only in the case of
734 * heavy RC-initiated DMAs.
735 */
736 reg_offset =
737 (TRIO_PCIE_INTFC_TX_FIFO_CTL <<
738 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
739 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
740 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
741 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
742 tx_fifo_ctl.word =
743 __gxio_mmio_read(trio_context->mmio_base_mac +
744 reg_offset);
745 tx_fifo_ctl.min_p_credits = 0;
746 __gxio_mmio_write(trio_context->mmio_base_mac + reg_offset,
747 tx_fifo_ctl.word);
748
749 /*
750 * Change the device ID so that Linux bus crawl doesn't confuse
751 * the internal bridge with any Tilera endpoints.
752 */
753
754 reg_offset =
755 (TRIO_PCIE_RC_DEVICE_ID_VEN_ID <<
756 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
757 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
758 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
759 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
760
761 __gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset,
762 (TILERA_GX36_RC_DEV_ID <<
763 TRIO_PCIE_RC_DEVICE_ID_VEN_ID__DEV_ID_SHIFT) |
764 TILERA_VENDOR_ID);
765
766 /*
767 * Set the internal P2P bridge class code.
768 */
769
770 reg_offset =
771 (TRIO_PCIE_RC_REVISION_ID <<
772 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
773 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
774 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
775 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
776
777 class_code_revision =
778 __gxio_mmio_read32(trio_context->mmio_base_mac +
779 reg_offset);
780 class_code_revision = (class_code_revision & 0xff ) |
781 (PCI_CLASS_BRIDGE_PCI << 16);
782
783 __gxio_mmio_write32(trio_context->mmio_base_mac +
784 reg_offset, class_code_revision);
785
786#ifdef USE_SHARED_PCIE_CONFIG_REGION
787
788 /*
789 * Map in the MMIO space for the PIO region.
790 */
791 offset = HV_TRIO_PIO_OFFSET(trio_context->pio_cfg_index) |
792 (((unsigned long long)mac) <<
793 TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT);
794
795#else
796
797 /*
798 * Alloc a PIO region for PCI config access per MAC.
799 */
800 ret = gxio_trio_alloc_pio_regions(trio_context, 1, 0, 0);
801 if (ret < 0) {
802 pr_err("PCI: PCI CFG PIO alloc failure for mac %d "
803 "on TRIO %d, give up\n", mac, trio_index);
804
805 /* TBD: cleanup ... */
806
807 continue;
808 }
809
810 trio_context->pio_cfg_index[mac] = ret;
811
812 /*
813 * For PIO CFG, the bus_address_hi parameter is 0.
814 */
815 ret = gxio_trio_init_pio_region_aux(trio_context,
816 trio_context->pio_cfg_index[mac],
817 mac, 0, HV_TRIO_PIO_FLAG_CONFIG_SPACE);
818 if (ret < 0) {
819 pr_err("PCI: PCI CFG PIO init failure for mac %d "
820 "on TRIO %d, give up\n", mac, trio_index);
821
822 /* TBD: cleanup ... */
823
824 continue;
825 }
826
827 offset = HV_TRIO_PIO_OFFSET(trio_context->pio_cfg_index[mac]) |
828 (((unsigned long long)mac) <<
829 TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT);
830
831#endif
832
833 trio_context->mmio_base_pio_cfg[mac] =
834 iorpc_ioremap(trio_context->fd, offset,
835 (1 << TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT));
836 if (trio_context->mmio_base_pio_cfg[mac] == NULL) {
837 pr_err("PCI: PIO map failure for mac %d on TRIO %d\n",
838 mac, trio_index);
839
840 /* TBD: cleanup ... */
841
842 continue;
843 }
844
845 /*
846 * Initialize the PCIe interrupts.
847 */
848 if (tile_init_irqs(controller)) {
849 pr_err("PCI: IRQs init failure for mac %d on TRIO %d\n",
850 mac, trio_index);
851
852 continue;
853 }
854
855 pci_add_resource(&resources, &iomem_resource);
856 bus = pci_scan_root_bus(NULL, 0, controller->ops,
857 controller, &resources);
858 controller->root_bus = bus;
859 controller->last_busno = bus->subordinate;
860
861 }
862
863 /* Do machine dependent PCI interrupt routing */
864 pci_fixup_irqs(pci_common_swizzle, tile_map_irq);
865
866 /*
867 * This comes from the generic Linux PCI driver.
868 *
869 * It allocates all of the resources (I/O memory, etc)
870 * associated with the devices read in above.
871 */
872
873 pci_assign_unassigned_resources();
874
875 /* Record the I/O resources in the PCI controller structure. */
876 for (i = 0; i < num_rc_controllers; i++) {
877 struct pci_controller *controller = &pci_controllers[i];
878 gxio_trio_context_t *trio_context = controller->trio;
879 struct pci_bus *root_bus = pci_controllers[i].root_bus;
880 struct pci_bus *next_bus;
881 uint32_t bus_address_hi;
882 struct pci_dev *dev;
883 int ret;
884 int j;
885
886 /*
887 * Skip controllers that are not properly initialized or
888 * have down links.
889 */
890 if (root_bus == NULL)
891 continue;
892
893 /* Configure the max_payload_size values for this domain. */
894 fixup_read_and_payload_sizes(controller);
895
896 list_for_each_entry(dev, &root_bus->devices, bus_list) {
897 /* Find the PCI host controller, ie. the 1st bridge. */
898 if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI &&
899 (PCI_SLOT(dev->devfn) == 0)) {
900 next_bus = dev->subordinate;
901 pci_controllers[i].mem_resources[0] =
902 *next_bus->resource[0];
903 pci_controllers[i].mem_resources[1] =
904 *next_bus->resource[1];
905 pci_controllers[i].mem_resources[2] =
906 *next_bus->resource[2];
907
908 break;
909 }
910 }
911
912 if (pci_controllers[i].mem_resources[1].flags & IORESOURCE_MEM)
913 bus_address_hi =
914 pci_controllers[i].mem_resources[1].start >> 32;
915 else if (pci_controllers[i].mem_resources[2].flags & IORESOURCE_PREFETCH)
916 bus_address_hi =
917 pci_controllers[i].mem_resources[2].start >> 32;
918 else {
919 /* This is unlikely. */
920 pr_err("PCI: no memory resources on TRIO %d mac %d\n",
921 controller->trio_index, controller->mac);
922 continue;
923 }
924
925 /*
926 * We always assign 32-bit PCI bus BAR ranges.
927 */
928 BUG_ON(bus_address_hi != 0);
929
930 /*
931 * Alloc a PIO region for PCI memory access for each RC port.
932 */
933 ret = gxio_trio_alloc_pio_regions(trio_context, 1, 0, 0);
934 if (ret < 0) {
935 pr_err("PCI: MEM PIO alloc failure on TRIO %d mac %d, "
936 "give up\n", controller->trio_index,
937 controller->mac);
938
939 /* TBD: cleanup ... */
940
941 continue;
942 }
943
944 controller->pio_mem_index = ret;
945
946 /*
947 * For PIO MEM, the bus_address_hi parameter is hard-coded 0
948 * because we always assign 32-bit PCI bus BAR ranges.
949 */
950 ret = gxio_trio_init_pio_region_aux(trio_context,
951 controller->pio_mem_index,
952 controller->mac,
953 bus_address_hi,
954 0);
955 if (ret < 0) {
956 pr_err("PCI: MEM PIO init failure on TRIO %d mac %d, "
957 "give up\n", controller->trio_index,
958 controller->mac);
959
960 /* TBD: cleanup ... */
961
962 continue;
963 }
964
965 /*
966 * Configure a Mem-Map region for each memory controller so
967 * that Linux can map all of its PA space to the PCI bus.
968 * Use the IOMMU to handle hash-for-home memory.
969 */
970 for_each_online_node(j) {
971 unsigned long start_pfn = node_start_pfn[j];
972 unsigned long end_pfn = node_end_pfn[j];
973 unsigned long nr_pages = end_pfn - start_pfn;
974
975 ret = gxio_trio_alloc_memory_maps(trio_context, 1, 0,
976 0);
977 if (ret < 0) {
978 pr_err("PCI: Mem-Map alloc failure on TRIO %d "
979 "mac %d for MC %d, give up\n",
980 controller->trio_index,
981 controller->mac, j);
982
983 /* TBD: cleanup ... */
984
985 goto alloc_mem_map_failed;
986 }
987
988 controller->mem_maps[j] = ret;
989
990 /*
991 * Initialize the Mem-Map and the I/O MMU so that all
992 * the physical memory can be accessed by the endpoint
993 * devices. The base bus address is set to the base CPA
994 * of this memory controller, so is the base VA. The
995 * I/O MMU table essentially translates the CPA to
996 * the real PA.
997 */
998 ret = gxio_trio_init_memory_map_mmu_aux(trio_context,
999 controller->mem_maps[j],
1000 start_pfn << PAGE_SHIFT,
1001 nr_pages << PAGE_SHIFT,
1002 trio_context->asid,
1003 controller->mac,
1004 start_pfn << PAGE_SHIFT,
1005 j,
1006 GXIO_TRIO_ORDER_MODE_UNORDERED);
1007 if (ret < 0) {
1008 pr_err("PCI: Mem-Map init failure on TRIO %d "
1009 "mac %d for MC %d, give up\n",
1010 controller->trio_index,
1011 controller->mac, j);
1012
1013 /* TBD: cleanup ... */
1014
1015 goto alloc_mem_map_failed;
1016 }
1017
1018 continue;
1019
1020alloc_mem_map_failed:
1021 break;
1022 }
1023
1024 }
1025
1026 return 0;
1027}
1028subsys_initcall(pcibios_init);
1029
1030/*
1031 * No bus fixups needed.
1032 */
1033void __devinit pcibios_fixup_bus(struct pci_bus *bus)
1034{
1035 /* Nothing needs to be done. */
1036}
1037
1038/*
1039 * This can be called from the generic PCI layer, but doesn't need to
1040 * do anything.
1041 */
1042char __devinit *pcibios_setup(char *str)
1043{
1044 if (!strcmp(str, "off")) {
1045 pci_probe = 0;
1046 return NULL;
1047 }
1048 return str;
1049}
1050
1051/*
1052 * This is called from the generic Linux layer.
1053 */
1054void __devinit pcibios_update_irq(struct pci_dev *dev, int irq)
1055{
1056 pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
1057}
1058
1059/*
1060 * Enable memory address decoding, as appropriate, for the
1061 * device described by the 'dev' struct. The I/O decoding
1062 * is disabled, though the TILE-Gx supports I/O addressing.
1063 *
1064 * This is called from the generic PCI layer, and can be called
1065 * for bridges or endpoints.
1066 */
1067int pcibios_enable_device(struct pci_dev *dev, int mask)
1068{
1069 return pci_enable_resources(dev, mask);
1070}
1071
1072/* Map a PCI MMIO bus address into VA space. */
1073void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
1074{
1075 struct pci_controller *controller = NULL;
1076 resource_size_t bar_start;
1077 resource_size_t bar_end;
1078 resource_size_t offset;
1079 resource_size_t start;
1080 resource_size_t end;
1081 int trio_fd;
1082 int i, j;
1083
1084 start = phys_addr;
1085 end = phys_addr + size - 1;
1086
1087 /*
1088 * In the following, each PCI controller's mem_resources[1]
1089 * represents its (non-prefetchable) PCI memory resource and
1090 * mem_resources[2] refers to its prefetchable PCI memory resource.
1091 * By searching phys_addr in each controller's mem_resources[], we can
1092 * determine the controller that should accept the PCI memory access.
1093 */
1094
1095 for (i = 0; i < num_rc_controllers; i++) {
1096 /*
1097 * Skip controllers that are not properly initialized or
1098 * have down links.
1099 */
1100 if (pci_controllers[i].root_bus == NULL)
1101 continue;
1102
1103 for (j = 1; j < 3; j++) {
1104 bar_start =
1105 pci_controllers[i].mem_resources[j].start;
1106 bar_end =
1107 pci_controllers[i].mem_resources[j].end;
1108
1109 if ((start >= bar_start) && (end <= bar_end)) {
1110
1111 controller = &pci_controllers[i];
1112
1113 goto got_it;
1114 }
1115 }
1116 }
1117
1118 if (controller == NULL)
1119 return NULL;
1120
1121got_it:
1122 trio_fd = controller->trio->fd;
1123
1124 offset = HV_TRIO_PIO_OFFSET(controller->pio_mem_index) + phys_addr;
1125
1126 /*
1127 * We need to keep the PCI bus address's in-page offset in the VA.
1128 */
1129 return iorpc_ioremap(trio_fd, offset, size) +
1130 (phys_addr & (PAGE_SIZE - 1));
1131}
1132EXPORT_SYMBOL(ioremap);
1133
1134void pci_iounmap(struct pci_dev *dev, void __iomem *addr)
1135{
1136 iounmap(addr);
1137}
1138EXPORT_SYMBOL(pci_iounmap);
1139
1140/****************************************************************
1141 *
1142 * Tile PCI config space read/write routines
1143 *
1144 ****************************************************************/
1145
1146/*
1147 * These are the normal read and write ops
1148 * These are expanded with macros from pci_bus_read_config_byte() etc.
1149 *
1150 * devfn is the combined PCI device & function.
1151 *
1152 * offset is in bytes, from the start of config space for the
1153 * specified bus & device.
1154 */
1155
1156static int __devinit tile_cfg_read(struct pci_bus *bus,
1157 unsigned int devfn,
1158 int offset,
1159 int size,
1160 u32 *val)
1161{
1162 struct pci_controller *controller = bus->sysdata;
1163 gxio_trio_context_t *trio_context = controller->trio;
1164 int busnum = bus->number & 0xff;
1165 int device = PCI_SLOT(devfn);
1166 int function = PCI_FUNC(devfn);
1167 int config_type = 1;
1168 TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR_t cfg_addr;
1169 void *mmio_addr;
1170
1171 /*
1172 * Map all accesses to the local device (bus == 0) into the
1173 * MMIO space of the MAC. Accesses to the downstream devices
1174 * go to the PIO space.
1175 */
1176 if (busnum == 0) {
1177 if (device == 0) {
1178 /*
1179 * This is the internal downstream P2P bridge,
1180 * access directly.
1181 */
1182 unsigned int reg_offset;
1183
1184 reg_offset = ((offset & 0xFFF) <<
1185 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
1186 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_PROTECTED
1187 << TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
1188 (controller->mac <<
1189 TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
1190
1191 mmio_addr = trio_context->mmio_base_mac + reg_offset;
1192
1193 goto valid_device;
1194
1195 } else {
1196 /*
1197 * We fake an empty device for (device > 0),
1198 * since there is only one device on bus 0.
1199 */
1200 goto invalid_device;
1201 }
1202 }
1203
1204 /*
1205 * Accesses to the directly attached device (bus == 1) have to be
1206 * sent as type-0 configs.
1207 */
1208
1209 if (busnum == 1) {
1210 /*
1211 * There is only one device off of our built-in P2P bridge.
1212 */
1213 if (device != 0)
1214 goto invalid_device;
1215
1216 config_type = 0;
1217 }
1218
1219 cfg_addr.word = 0;
1220 cfg_addr.reg_addr = (offset & 0xFFF);
1221 cfg_addr.fn = function;
1222 cfg_addr.dev = device;
1223 cfg_addr.bus = busnum;
1224 cfg_addr.type = config_type;
1225
1226 /*
1227 * Note that we don't set the mac field in cfg_addr because the
1228 * mapping is per port.
1229 */
1230
1231 mmio_addr = trio_context->mmio_base_pio_cfg[controller->mac] +
1232 cfg_addr.word;
1233
1234valid_device:
1235
1236 switch (size) {
1237 case 4:
1238 *val = __gxio_mmio_read32(mmio_addr);
1239 break;
1240
1241 case 2:
1242 *val = __gxio_mmio_read16(mmio_addr);
1243 break;
1244
1245 case 1:
1246 *val = __gxio_mmio_read8(mmio_addr);
1247 break;
1248
1249 default:
1250 return PCIBIOS_FUNC_NOT_SUPPORTED;
1251 }
1252
1253 TRACE_CFG_RD(size, *val, busnum, device, function, offset);
1254
1255 return 0;
1256
1257invalid_device:
1258
1259 switch (size) {
1260 case 4:
1261 *val = 0xFFFFFFFF;
1262 break;
1263
1264 case 2:
1265 *val = 0xFFFF;
1266 break;
1267
1268 case 1:
1269 *val = 0xFF;
1270 break;
1271
1272 default:
1273 return PCIBIOS_FUNC_NOT_SUPPORTED;
1274 }
1275
1276 return 0;
1277}
1278
1279
1280/*
1281 * See tile_cfg_read() for relevent comments.
1282 * Note that "val" is the value to write, not a pointer to that value.
1283 */
1284static int __devinit tile_cfg_write(struct pci_bus *bus,
1285 unsigned int devfn,
1286 int offset,
1287 int size,
1288 u32 val)
1289{
1290 struct pci_controller *controller = bus->sysdata;
1291 gxio_trio_context_t *trio_context = controller->trio;
1292 int busnum = bus->number & 0xff;
1293 int device = PCI_SLOT(devfn);
1294 int function = PCI_FUNC(devfn);
1295 int config_type = 1;
1296 TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR_t cfg_addr;
1297 void *mmio_addr;
1298 u32 val_32 = (u32)val;
1299 u16 val_16 = (u16)val;
1300 u8 val_8 = (u8)val;
1301
1302 /*
1303 * Map all accesses to the local device (bus == 0) into the
1304 * MMIO space of the MAC. Accesses to the downstream devices
1305 * go to the PIO space.
1306 */
1307 if (busnum == 0) {
1308 if (device == 0) {
1309 /*
1310 * This is the internal downstream P2P bridge,
1311 * access directly.
1312 */
1313 unsigned int reg_offset;
1314
1315 reg_offset = ((offset & 0xFFF) <<
1316 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
1317 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_PROTECTED
1318 << TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
1319 (controller->mac <<
1320 TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
1321
1322 mmio_addr = trio_context->mmio_base_mac + reg_offset;
1323
1324 goto valid_device;
1325
1326 } else {
1327 /*
1328 * We fake an empty device for (device > 0),
1329 * since there is only one device on bus 0.
1330 */
1331 goto invalid_device;
1332 }
1333 }
1334
1335 /*
1336 * Accesses to the directly attached device (bus == 1) have to be
1337 * sent as type-0 configs.
1338 */
1339
1340 if (busnum == 1) {
1341 /*
1342 * There is only one device off of our built-in P2P bridge.
1343 */
1344 if (device != 0)
1345 goto invalid_device;
1346
1347 config_type = 0;
1348 }
1349
1350 cfg_addr.word = 0;
1351 cfg_addr.reg_addr = (offset & 0xFFF);
1352 cfg_addr.fn = function;
1353 cfg_addr.dev = device;
1354 cfg_addr.bus = busnum;
1355 cfg_addr.type = config_type;
1356
1357 /*
1358 * Note that we don't set the mac field in cfg_addr because the
1359 * mapping is per port.
1360 */
1361
1362 mmio_addr = trio_context->mmio_base_pio_cfg[controller->mac] +
1363 cfg_addr.word;
1364
1365valid_device:
1366
1367 switch (size) {
1368 case 4:
1369 __gxio_mmio_write32(mmio_addr, val_32);
1370 TRACE_CFG_WR(size, val_32, busnum, device, function, offset);
1371 break;
1372
1373 case 2:
1374 __gxio_mmio_write16(mmio_addr, val_16);
1375 TRACE_CFG_WR(size, val_16, busnum, device, function, offset);
1376 break;
1377
1378 case 1:
1379 __gxio_mmio_write8(mmio_addr, val_8);
1380 TRACE_CFG_WR(size, val_8, busnum, device, function, offset);
1381 break;
1382
1383 default:
1384 return PCIBIOS_FUNC_NOT_SUPPORTED;
1385 }
1386
1387invalid_device:
1388
1389 return 0;
1390}
1391
1392
1393static struct pci_ops tile_cfg_ops = {
1394 .read = tile_cfg_read,
1395 .write = tile_cfg_write,
1396};
1397
1398
1399/*
1400 * MSI support starts here.
1401 */
1402static unsigned int
1403tilegx_msi_startup(struct irq_data *d)
1404{
1405 if (d->msi_desc)
1406 unmask_msi_irq(d);
1407
1408 return 0;
1409}
1410
1411static void
1412tilegx_msi_ack(struct irq_data *d)
1413{
1414 __insn_mtspr(SPR_IPI_EVENT_RESET_K, 1UL << d->irq);
1415}
1416
1417static void
1418tilegx_msi_mask(struct irq_data *d)
1419{
1420 mask_msi_irq(d);
1421 __insn_mtspr(SPR_IPI_MASK_SET_K, 1UL << d->irq);
1422}
1423
1424static void
1425tilegx_msi_unmask(struct irq_data *d)
1426{
1427 __insn_mtspr(SPR_IPI_MASK_RESET_K, 1UL << d->irq);
1428 unmask_msi_irq(d);
1429}
1430
1431static struct irq_chip tilegx_msi_chip = {
1432 .name = "tilegx_msi",
1433 .irq_startup = tilegx_msi_startup,
1434 .irq_ack = tilegx_msi_ack,
1435 .irq_mask = tilegx_msi_mask,
1436 .irq_unmask = tilegx_msi_unmask,
1437
1438 /* TBD: support set_affinity. */
1439};
1440
1441int arch_setup_msi_irq(struct pci_dev *pdev, struct msi_desc *desc)
1442{
1443 struct pci_controller *controller;
1444 gxio_trio_context_t *trio_context;
1445 struct msi_msg msg;
1446 int default_irq;
1447 uint64_t mem_map_base;
1448 uint64_t mem_map_limit;
1449 u64 msi_addr;
1450 int mem_map;
1451 int cpu;
1452 int irq;
1453 int ret;
1454
1455 irq = create_irq();
1456 if (irq < 0)
1457 return irq;
1458
1459 /*
1460 * Since we use a 64-bit Mem-Map to accept the MSI write, we fail
1461 * devices that are not capable of generating a 64-bit message address.
1462 * These devices will fall back to using the legacy interrupts.
1463 * Most PCIe endpoint devices do support 64-bit message addressing.
1464 */
1465 if (desc->msi_attrib.is_64 == 0) {
1466 dev_printk(KERN_INFO, &pdev->dev,
1467 "64-bit MSI message address not supported, "
1468 "falling back to legacy interrupts.\n");
1469
1470 ret = -ENOMEM;
1471 goto is_64_failure;
1472 }
1473
1474 default_irq = desc->msi_attrib.default_irq;
1475 controller = irq_get_handler_data(default_irq);
1476
1477 BUG_ON(!controller);
1478
1479 trio_context = controller->trio;
1480
1481 /*
1482 * Allocate the Mem-Map that will accept the MSI write and
1483 * trigger the TILE-side interrupts.
1484 */
1485 mem_map = gxio_trio_alloc_memory_maps(trio_context, 1, 0, 0);
1486 if (mem_map < 0) {
1487 dev_printk(KERN_INFO, &pdev->dev,
1488 "%s Mem-Map alloc failure. "
1489 "Failed to initialize MSI interrupts. "
1490 "Falling back to legacy interrupts.\n",
1491 desc->msi_attrib.is_msix ? "MSI-X" : "MSI");
1492
1493 ret = -ENOMEM;
1494 goto msi_mem_map_alloc_failure;
1495 }
1496
1497 /* We try to distribute different IRQs to different tiles. */
1498 cpu = tile_irq_cpu(irq);
1499
1500 /*
1501 * Now call up to the HV to configure the Mem-Map interrupt and
1502 * set up the IPI binding.
1503 */
1504 mem_map_base = MEM_MAP_INTR_REGIONS_BASE +
1505 mem_map * MEM_MAP_INTR_REGION_SIZE;
1506 mem_map_limit = mem_map_base + MEM_MAP_INTR_REGION_SIZE - 1;
1507
1508 ret = gxio_trio_config_msi_intr(trio_context, cpu_x(cpu), cpu_y(cpu),
1509 KERNEL_PL, irq, controller->mac,
1510 mem_map, mem_map_base, mem_map_limit,
1511 trio_context->asid);
1512 if (ret < 0) {
1513 dev_printk(KERN_INFO, &pdev->dev, "HV MSI config failed.\n");
1514
1515 goto hv_msi_config_failure;
1516 }
1517
1518 irq_set_msi_desc(irq, desc);
1519
1520 msi_addr = mem_map_base + TRIO_MAP_MEM_REG_INT3 - TRIO_MAP_MEM_REG_INT0;
1521
1522 msg.address_hi = msi_addr >> 32;
1523 msg.address_lo = msi_addr & 0xffffffff;
1524
1525 msg.data = mem_map;
1526
1527 write_msi_msg(irq, &msg);
1528 irq_set_chip_and_handler(irq, &tilegx_msi_chip, handle_level_irq);
1529 irq_set_handler_data(irq, controller);
1530
1531 return 0;
1532
1533hv_msi_config_failure:
1534 /* Free mem-map */
1535msi_mem_map_alloc_failure:
1536is_64_failure:
1537 destroy_irq(irq);
1538 return ret;
1539}
1540
1541void arch_teardown_msi_irq(unsigned int irq)
1542{
1543 destroy_irq(irq);
1544}