sparc64: Disable local interrupts around xcall_deliver_impl() invocation.
[linux-block.git] / arch / sparc64 / kernel / smp.c
CommitLineData
1da177e4
LT
1/* smp.c: Sparc64 SMP support.
2 *
cf3d7c1e 3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
1da177e4
LT
4 */
5
6#include <linux/module.h>
7#include <linux/kernel.h>
8#include <linux/sched.h>
9#include <linux/mm.h>
10#include <linux/pagemap.h>
11#include <linux/threads.h>
12#include <linux/smp.h>
1da177e4
LT
13#include <linux/interrupt.h>
14#include <linux/kernel_stat.h>
15#include <linux/delay.h>
16#include <linux/init.h>
17#include <linux/spinlock.h>
18#include <linux/fs.h>
19#include <linux/seq_file.h>
20#include <linux/cache.h>
21#include <linux/jiffies.h>
22#include <linux/profile.h>
b9709456 23#include <linux/lmb.h>
1da177e4
LT
24
25#include <asm/head.h>
26#include <asm/ptrace.h>
27#include <asm/atomic.h>
28#include <asm/tlbflush.h>
29#include <asm/mmu_context.h>
30#include <asm/cpudata.h>
27a2ef38
DM
31#include <asm/hvtramp.h>
32#include <asm/io.h>
cf3d7c1e 33#include <asm/timer.h>
1da177e4
LT
34
35#include <asm/irq.h>
6d24c8dc 36#include <asm/irq_regs.h>
1da177e4
LT
37#include <asm/page.h>
38#include <asm/pgtable.h>
39#include <asm/oplib.h>
40#include <asm/uaccess.h>
1da177e4
LT
41#include <asm/starfire.h>
42#include <asm/tlb.h>
56fb4df6 43#include <asm/sections.h>
07f8e5f3 44#include <asm/prom.h>
5cbc3073 45#include <asm/mdesc.h>
4f0234f4 46#include <asm/ldc.h>
e0204409 47#include <asm/hypervisor.h>
1da177e4 48
a2f9f6bb
DM
49int sparc64_multi_core __read_mostly;
50
4f0234f4 51cpumask_t cpu_possible_map __read_mostly = CPU_MASK_NONE;
c12a8289 52cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
d5a7430d 53DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
f78eae2e
DM
54cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
55 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
4f0234f4
DM
56
57EXPORT_SYMBOL(cpu_possible_map);
58EXPORT_SYMBOL(cpu_online_map);
d5a7430d 59EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
4f0234f4
DM
60EXPORT_SYMBOL(cpu_core_map);
61
1da177e4 62static cpumask_t smp_commenced_mask;
1da177e4
LT
63
64void smp_info(struct seq_file *m)
65{
66 int i;
67
68 seq_printf(m, "State:\n");
394e3902
AM
69 for_each_online_cpu(i)
70 seq_printf(m, "CPU%d:\t\tonline\n", i);
1da177e4
LT
71}
72
73void smp_bogo(struct seq_file *m)
74{
75 int i;
76
394e3902
AM
77 for_each_online_cpu(i)
78 seq_printf(m,
394e3902 79 "Cpu%dClkTck\t: %016lx\n",
394e3902 80 i, cpu_data(i).clock_tick);
1da177e4
LT
81}
82
e0204409
DM
83static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
84
112f4871 85extern void setup_sparc64_timer(void);
1da177e4
LT
86
87static volatile unsigned long callin_flag = 0;
88
0f7f22d9 89void __cpuinit smp_callin(void)
1da177e4
LT
90{
91 int cpuid = hard_smp_processor_id();
92
56fb4df6 93 __local_per_cpu_offset = __per_cpu_offset(cpuid);
1da177e4 94
4a07e646 95 if (tlb_type == hypervisor)
490384e7 96 sun4v_ktsb_register();
481295f9 97
56fb4df6 98 __flush_tlb_all();
1da177e4 99
112f4871 100 setup_sparc64_timer();
1da177e4 101
816242da
DM
102 if (cheetah_pcache_forced_on)
103 cheetah_enable_pcache();
104
1da177e4
LT
105 local_irq_enable();
106
1da177e4
LT
107 callin_flag = 1;
108 __asm__ __volatile__("membar #Sync\n\t"
109 "flush %%g6" : : : "memory");
110
111 /* Clear this or we will die instantly when we
112 * schedule back to this idler...
113 */
db7d9a4e 114 current_thread_info()->new_child = 0;
1da177e4
LT
115
116 /* Attach to the address space of init_task. */
117 atomic_inc(&init_mm.mm_count);
118 current->active_mm = &init_mm;
119
120 while (!cpu_isset(cpuid, smp_commenced_mask))
4f07118f 121 rmb();
1da177e4 122
e0204409 123 spin_lock(&call_lock);
1da177e4 124 cpu_set(cpuid, cpu_online_map);
e0204409 125 spin_unlock(&call_lock);
5bfb5d69
NP
126
127 /* idle thread is expected to have preempt disabled */
128 preempt_disable();
1da177e4
LT
129}
130
131void cpu_panic(void)
132{
133 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
134 panic("SMP bolixed\n");
135}
136
1da177e4
LT
137/* This tick register synchronization scheme is taken entirely from
138 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
139 *
140 * The only change I've made is to rework it so that the master
141 * initiates the synchonization instead of the slave. -DaveM
142 */
143
144#define MASTER 0
145#define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
146
147#define NUM_ROUNDS 64 /* magic value */
148#define NUM_ITERS 5 /* likewise */
149
150static DEFINE_SPINLOCK(itc_sync_lock);
151static unsigned long go[SLAVE + 1];
152
153#define DEBUG_TICK_SYNC 0
154
155static inline long get_delta (long *rt, long *master)
156{
157 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
158 unsigned long tcenter, t0, t1, tm;
159 unsigned long i;
160
161 for (i = 0; i < NUM_ITERS; i++) {
162 t0 = tick_ops->get_tick();
163 go[MASTER] = 1;
4f07118f 164 membar_storeload();
1da177e4 165 while (!(tm = go[SLAVE]))
4f07118f 166 rmb();
1da177e4 167 go[SLAVE] = 0;
4f07118f 168 wmb();
1da177e4
LT
169 t1 = tick_ops->get_tick();
170
171 if (t1 - t0 < best_t1 - best_t0)
172 best_t0 = t0, best_t1 = t1, best_tm = tm;
173 }
174
175 *rt = best_t1 - best_t0;
176 *master = best_tm - best_t0;
177
178 /* average best_t0 and best_t1 without overflow: */
179 tcenter = (best_t0/2 + best_t1/2);
180 if (best_t0 % 2 + best_t1 % 2 == 2)
181 tcenter++;
182 return tcenter - best_tm;
183}
184
185void smp_synchronize_tick_client(void)
186{
187 long i, delta, adj, adjust_latency = 0, done = 0;
188 unsigned long flags, rt, master_time_stamp, bound;
189#if DEBUG_TICK_SYNC
190 struct {
191 long rt; /* roundtrip time */
192 long master; /* master's timestamp */
193 long diff; /* difference between midpoint and master's timestamp */
194 long lat; /* estimate of itc adjustment latency */
195 } t[NUM_ROUNDS];
196#endif
197
198 go[MASTER] = 1;
199
200 while (go[MASTER])
4f07118f 201 rmb();
1da177e4
LT
202
203 local_irq_save(flags);
204 {
205 for (i = 0; i < NUM_ROUNDS; i++) {
206 delta = get_delta(&rt, &master_time_stamp);
207 if (delta == 0) {
208 done = 1; /* let's lock on to this... */
209 bound = rt;
210 }
211
212 if (!done) {
213 if (i > 0) {
214 adjust_latency += -delta;
215 adj = -delta + adjust_latency/4;
216 } else
217 adj = -delta;
218
112f4871 219 tick_ops->add_tick(adj);
1da177e4
LT
220 }
221#if DEBUG_TICK_SYNC
222 t[i].rt = rt;
223 t[i].master = master_time_stamp;
224 t[i].diff = delta;
225 t[i].lat = adjust_latency/4;
226#endif
227 }
228 }
229 local_irq_restore(flags);
230
231#if DEBUG_TICK_SYNC
232 for (i = 0; i < NUM_ROUNDS; i++)
233 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
234 t[i].rt, t[i].master, t[i].diff, t[i].lat);
235#endif
236
519c4d2d
JP
237 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
238 "(last diff %ld cycles, maxerr %lu cycles)\n",
239 smp_processor_id(), delta, rt);
1da177e4
LT
240}
241
242static void smp_start_sync_tick_client(int cpu);
243
244static void smp_synchronize_one_tick(int cpu)
245{
246 unsigned long flags, i;
247
248 go[MASTER] = 0;
249
250 smp_start_sync_tick_client(cpu);
251
252 /* wait for client to be ready */
253 while (!go[MASTER])
4f07118f 254 rmb();
1da177e4
LT
255
256 /* now let the client proceed into his loop */
257 go[MASTER] = 0;
4f07118f 258 membar_storeload();
1da177e4
LT
259
260 spin_lock_irqsave(&itc_sync_lock, flags);
261 {
262 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
263 while (!go[MASTER])
4f07118f 264 rmb();
1da177e4 265 go[MASTER] = 0;
4f07118f 266 wmb();
1da177e4 267 go[SLAVE] = tick_ops->get_tick();
4f07118f 268 membar_storeload();
1da177e4
LT
269 }
270 }
271 spin_unlock_irqrestore(&itc_sync_lock, flags);
272}
273
b14f5c10 274#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
27a2ef38
DM
275/* XXX Put this in some common place. XXX */
276static unsigned long kimage_addr_to_ra(void *p)
277{
278 unsigned long val = (unsigned long) p;
279
280 return kern_base + (val - KERNBASE);
281}
282
b14f5c10
DM
283static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg)
284{
285 extern unsigned long sparc64_ttable_tl0;
286 extern unsigned long kern_locked_tte_data;
b14f5c10
DM
287 struct hvtramp_descr *hdesc;
288 unsigned long trampoline_ra;
289 struct trap_per_cpu *tb;
290 u64 tte_vaddr, tte_data;
291 unsigned long hv_err;
64658743 292 int i;
b14f5c10 293
64658743
DM
294 hdesc = kzalloc(sizeof(*hdesc) +
295 (sizeof(struct hvtramp_mapping) *
296 num_kernel_image_mappings - 1),
297 GFP_KERNEL);
b14f5c10 298 if (!hdesc) {
27a2ef38 299 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
b14f5c10
DM
300 "hvtramp_descr.\n");
301 return;
302 }
303
304 hdesc->cpu = cpu;
64658743 305 hdesc->num_mappings = num_kernel_image_mappings;
b14f5c10
DM
306
307 tb = &trap_block[cpu];
308 tb->hdesc = hdesc;
309
310 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
311 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
312
313 hdesc->thread_reg = thread_reg;
314
315 tte_vaddr = (unsigned long) KERNBASE;
316 tte_data = kern_locked_tte_data;
317
64658743
DM
318 for (i = 0; i < hdesc->num_mappings; i++) {
319 hdesc->maps[i].vaddr = tte_vaddr;
320 hdesc->maps[i].tte = tte_data;
b14f5c10
DM
321 tte_vaddr += 0x400000;
322 tte_data += 0x400000;
b14f5c10
DM
323 }
324
325 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
326
327 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
328 kimage_addr_to_ra(&sparc64_ttable_tl0),
329 __pa(hdesc));
e0204409
DM
330 if (hv_err)
331 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
332 "gives error %lu\n", hv_err);
b14f5c10
DM
333}
334#endif
335
1da177e4
LT
336extern unsigned long sparc64_cpu_startup;
337
338/* The OBP cpu startup callback truncates the 3rd arg cookie to
339 * 32-bits (I think) so to be safe we have it read the pointer
340 * contained here so we work on >4GB machines. -DaveM
341 */
342static struct thread_info *cpu_new_thread = NULL;
343
344static int __devinit smp_boot_one_cpu(unsigned int cpu)
345{
b37d40d1 346 struct trap_per_cpu *tb = &trap_block[cpu];
1da177e4
LT
347 unsigned long entry =
348 (unsigned long)(&sparc64_cpu_startup);
349 unsigned long cookie =
350 (unsigned long)(&cpu_new_thread);
351 struct task_struct *p;
7890f794 352 int timeout, ret;
1da177e4
LT
353
354 p = fork_idle(cpu);
1177bf97
AM
355 if (IS_ERR(p))
356 return PTR_ERR(p);
1da177e4 357 callin_flag = 0;
f3169641 358 cpu_new_thread = task_thread_info(p);
1da177e4 359
7890f794 360 if (tlb_type == hypervisor) {
b14f5c10 361#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
4f0234f4
DM
362 if (ldom_domaining_enabled)
363 ldom_startcpu_cpuid(cpu,
364 (unsigned long) cpu_new_thread);
365 else
366#endif
367 prom_startcpu_cpuid(cpu, entry, cookie);
7890f794 368 } else {
5cbc3073 369 struct device_node *dp = of_find_node_by_cpuid(cpu);
7890f794 370
07f8e5f3 371 prom_startcpu(dp->node, entry, cookie);
7890f794 372 }
1da177e4 373
4f0234f4 374 for (timeout = 0; timeout < 50000; timeout++) {
1da177e4
LT
375 if (callin_flag)
376 break;
377 udelay(100);
378 }
72aff53f 379
1da177e4
LT
380 if (callin_flag) {
381 ret = 0;
382 } else {
383 printk("Processor %d is stuck.\n", cpu);
1da177e4
LT
384 ret = -ENODEV;
385 }
386 cpu_new_thread = NULL;
387
b37d40d1
DM
388 if (tb->hdesc) {
389 kfree(tb->hdesc);
390 tb->hdesc = NULL;
391 }
392
1da177e4
LT
393 return ret;
394}
395
396static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
397{
398 u64 result, target;
399 int stuck, tmp;
400
401 if (this_is_starfire) {
402 /* map to real upaid */
403 cpu = (((cpu & 0x3c) << 1) |
404 ((cpu & 0x40) >> 4) |
405 (cpu & 0x3));
406 }
407
408 target = (cpu << 14) | 0x70;
409again:
410 /* Ok, this is the real Spitfire Errata #54.
411 * One must read back from a UDB internal register
412 * after writes to the UDB interrupt dispatch, but
413 * before the membar Sync for that write.
414 * So we use the high UDB control register (ASI 0x7f,
415 * ADDR 0x20) for the dummy read. -DaveM
416 */
417 tmp = 0x40;
418 __asm__ __volatile__(
419 "wrpr %1, %2, %%pstate\n\t"
420 "stxa %4, [%0] %3\n\t"
421 "stxa %5, [%0+%8] %3\n\t"
422 "add %0, %8, %0\n\t"
423 "stxa %6, [%0+%8] %3\n\t"
424 "membar #Sync\n\t"
425 "stxa %%g0, [%7] %3\n\t"
426 "membar #Sync\n\t"
427 "mov 0x20, %%g1\n\t"
428 "ldxa [%%g1] 0x7f, %%g0\n\t"
429 "membar #Sync"
430 : "=r" (tmp)
431 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
432 "r" (data0), "r" (data1), "r" (data2), "r" (target),
433 "r" (0x10), "0" (tmp)
434 : "g1");
435
436 /* NOTE: PSTATE_IE is still clear. */
437 stuck = 100000;
438 do {
439 __asm__ __volatile__("ldxa [%%g0] %1, %0"
440 : "=r" (result)
441 : "i" (ASI_INTR_DISPATCH_STAT));
442 if (result == 0) {
443 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
444 : : "r" (pstate));
445 return;
446 }
447 stuck -= 1;
448 if (stuck == 0)
449 break;
450 } while (result & 0x1);
451 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
452 : : "r" (pstate));
453 if (stuck == 0) {
454 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
455 smp_processor_id(), result);
456 } else {
457 udelay(2);
458 goto again;
459 }
460}
461
cd5bc89d 462static inline void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
1da177e4
LT
463{
464 u64 pstate;
465 int i;
466
467 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
cd5bc89d 468 for_each_cpu_mask_nr(i, *mask)
1da177e4
LT
469 spitfire_xcall_helper(data0, data1, data2, pstate, i);
470}
471
472/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
473 * packet, but we have no use for that. However we do take advantage of
474 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
475 */
cd5bc89d 476static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask_p)
1da177e4 477{
0de56d1a 478 u64 pstate, ver, busy_mask;
22adb358 479 int nack_busy_id, is_jbus, need_more;
cd5bc89d 480 cpumask_t mask;
1da177e4 481
cd5bc89d 482 if (cpus_empty(*mask_p))
1da177e4
LT
483 return;
484
cd5bc89d
DM
485 mask = *mask_p;
486
1da177e4
LT
487 /* Unfortunately, someone at Sun had the brilliant idea to make the
488 * busy/nack fields hard-coded by ITID number for this Ultra-III
489 * derivative processor.
490 */
491 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
92704a1c
DM
492 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
493 (ver >> 32) == __SERRANO_ID);
1da177e4
LT
494
495 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
496
497retry:
22adb358 498 need_more = 0;
1da177e4
LT
499 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
500 : : "r" (pstate), "i" (PSTATE_IE));
501
502 /* Setup the dispatch data registers. */
503 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
504 "stxa %1, [%4] %6\n\t"
505 "stxa %2, [%5] %6\n\t"
506 "membar #Sync\n\t"
507 : /* no outputs */
508 : "r" (data0), "r" (data1), "r" (data2),
509 "r" (0x40), "r" (0x50), "r" (0x60),
510 "i" (ASI_INTR_W));
511
512 nack_busy_id = 0;
0de56d1a 513 busy_mask = 0;
1da177e4
LT
514 {
515 int i;
516
cd5bc89d 517 for_each_cpu_mask_nr(i, mask) {
1da177e4
LT
518 u64 target = (i << 14) | 0x70;
519
0de56d1a
DM
520 if (is_jbus) {
521 busy_mask |= (0x1UL << (i * 2));
522 } else {
1da177e4 523 target |= (nack_busy_id << 24);
0de56d1a
DM
524 busy_mask |= (0x1UL <<
525 (nack_busy_id * 2));
526 }
1da177e4
LT
527 __asm__ __volatile__(
528 "stxa %%g0, [%0] %1\n\t"
529 "membar #Sync\n\t"
530 : /* no outputs */
531 : "r" (target), "i" (ASI_INTR_W));
532 nack_busy_id++;
22adb358
DM
533 if (nack_busy_id == 32) {
534 need_more = 1;
535 break;
536 }
1da177e4
LT
537 }
538 }
539
540 /* Now, poll for completion. */
541 {
0de56d1a 542 u64 dispatch_stat, nack_mask;
1da177e4
LT
543 long stuck;
544
545 stuck = 100000 * nack_busy_id;
0de56d1a 546 nack_mask = busy_mask << 1;
1da177e4
LT
547 do {
548 __asm__ __volatile__("ldxa [%%g0] %1, %0"
549 : "=r" (dispatch_stat)
550 : "i" (ASI_INTR_DISPATCH_STAT));
0de56d1a 551 if (!(dispatch_stat & (busy_mask | nack_mask))) {
1da177e4
LT
552 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
553 : : "r" (pstate));
22adb358
DM
554 if (unlikely(need_more)) {
555 int i, cnt = 0;
cd5bc89d 556 for_each_cpu_mask_nr(i, mask) {
22adb358
DM
557 cpu_clear(i, mask);
558 cnt++;
559 if (cnt == 32)
560 break;
561 }
562 goto retry;
563 }
1da177e4
LT
564 return;
565 }
566 if (!--stuck)
567 break;
0de56d1a 568 } while (dispatch_stat & busy_mask);
1da177e4
LT
569
570 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
571 : : "r" (pstate));
572
0de56d1a 573 if (dispatch_stat & busy_mask) {
1da177e4
LT
574 /* Busy bits will not clear, continue instead
575 * of freezing up on this cpu.
576 */
577 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
578 smp_processor_id(), dispatch_stat);
579 } else {
580 int i, this_busy_nack = 0;
581
582 /* Delay some random time with interrupts enabled
583 * to prevent deadlock.
584 */
585 udelay(2 * nack_busy_id);
586
587 /* Clear out the mask bits for cpus which did not
588 * NACK us.
589 */
cd5bc89d 590 for_each_cpu_mask_nr(i, mask) {
1da177e4
LT
591 u64 check_mask;
592
92704a1c 593 if (is_jbus)
1da177e4
LT
594 check_mask = (0x2UL << (2*i));
595 else
596 check_mask = (0x2UL <<
597 this_busy_nack);
598 if ((dispatch_stat & check_mask) == 0)
599 cpu_clear(i, mask);
600 this_busy_nack += 2;
22adb358
DM
601 if (this_busy_nack == 64)
602 break;
1da177e4
LT
603 }
604
605 goto retry;
606 }
607 }
608}
609
1d2f1f90 610/* Multi-cpu list version. */
cd5bc89d 611static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
a43fe0e7 612{
cd5bc89d 613 int cnt, retries, this_cpu, prev_sent, i;
c02a5119 614 unsigned long status;
cd5bc89d 615 cpumask_t error_mask;
b830ab66
DM
616 struct trap_per_cpu *tb;
617 u16 *cpu_list;
618 u64 *mondo;
b830ab66 619
cd5bc89d 620 if (cpus_empty(*mask))
17f34f0e
DM
621 return;
622
b830ab66
DM
623 this_cpu = smp_processor_id();
624 tb = &trap_block[this_cpu];
1d2f1f90 625
b830ab66 626 mondo = __va(tb->cpu_mondo_block_pa);
1d2f1f90
DM
627 mondo[0] = data0;
628 mondo[1] = data1;
629 mondo[2] = data2;
630 wmb();
631
b830ab66
DM
632 cpu_list = __va(tb->cpu_list_pa);
633
634 /* Setup the initial cpu list. */
635 cnt = 0;
cd5bc89d 636 for_each_cpu_mask_nr(i, *mask)
b830ab66
DM
637 cpu_list[cnt++] = i;
638
639 cpus_clear(error_mask);
1d2f1f90 640 retries = 0;
3cab0c3e 641 prev_sent = 0;
1d2f1f90 642 do {
3cab0c3e 643 int forward_progress, n_sent;
1d2f1f90 644
b830ab66
DM
645 status = sun4v_cpu_mondo_send(cnt,
646 tb->cpu_list_pa,
647 tb->cpu_mondo_block_pa);
648
649 /* HV_EOK means all cpus received the xcall, we're done. */
650 if (likely(status == HV_EOK))
1d2f1f90 651 break;
b830ab66 652
3cab0c3e
DM
653 /* First, see if we made any forward progress.
654 *
655 * The hypervisor indicates successful sends by setting
656 * cpu list entries to the value 0xffff.
b830ab66 657 */
3cab0c3e 658 n_sent = 0;
b830ab66 659 for (i = 0; i < cnt; i++) {
3cab0c3e
DM
660 if (likely(cpu_list[i] == 0xffff))
661 n_sent++;
1d2f1f90
DM
662 }
663
3cab0c3e
DM
664 forward_progress = 0;
665 if (n_sent > prev_sent)
666 forward_progress = 1;
667
668 prev_sent = n_sent;
669
b830ab66
DM
670 /* If we get a HV_ECPUERROR, then one or more of the cpus
671 * in the list are in error state. Use the cpu_state()
672 * hypervisor call to find out which cpus are in error state.
673 */
674 if (unlikely(status == HV_ECPUERROR)) {
675 for (i = 0; i < cnt; i++) {
676 long err;
677 u16 cpu;
678
679 cpu = cpu_list[i];
680 if (cpu == 0xffff)
681 continue;
682
683 err = sun4v_cpu_state(cpu);
684 if (err >= 0 &&
685 err == HV_CPU_STATE_ERROR) {
3cab0c3e 686 cpu_list[i] = 0xffff;
b830ab66
DM
687 cpu_set(cpu, error_mask);
688 }
689 }
690 } else if (unlikely(status != HV_EWOULDBLOCK))
691 goto fatal_mondo_error;
692
3cab0c3e
DM
693 /* Don't bother rewriting the CPU list, just leave the
694 * 0xffff and non-0xffff entries in there and the
695 * hypervisor will do the right thing.
696 *
697 * Only advance timeout state if we didn't make any
698 * forward progress.
699 */
b830ab66
DM
700 if (unlikely(!forward_progress)) {
701 if (unlikely(++retries > 10000))
702 goto fatal_mondo_timeout;
703
704 /* Delay a little bit to let other cpus catch up
705 * on their cpu mondo queue work.
706 */
707 udelay(2 * cnt);
708 }
1d2f1f90
DM
709 } while (1);
710
b830ab66
DM
711 if (unlikely(!cpus_empty(error_mask)))
712 goto fatal_mondo_cpu_error;
713
714 return;
715
716fatal_mondo_cpu_error:
717 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
718 "were in error state\n",
719 this_cpu);
720 printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
cd5bc89d 721 for_each_cpu_mask_nr(i, error_mask)
b830ab66
DM
722 printk("%d ", i);
723 printk("]\n");
724 return;
725
726fatal_mondo_timeout:
b830ab66
DM
727 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
728 " progress after %d retries.\n",
729 this_cpu, retries);
730 goto dump_cpu_list_and_out;
731
732fatal_mondo_error:
b830ab66
DM
733 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
734 this_cpu, status);
735 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
736 "mondo_block_pa(%lx)\n",
737 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
738
739dump_cpu_list_and_out:
740 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
741 for (i = 0; i < cnt; i++)
742 printk("%u ", cpu_list[i]);
743 printk("]\n");
1d2f1f90 744}
a43fe0e7 745
deb16999
DM
746static void (*xcall_deliver_impl)(u64, u64, u64, const cpumask_t *);
747
748static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
749{
c02a5119
DM
750 unsigned long flags;
751
752 /* We have to do this whole thing with interrupts fully disabled.
753 * Otherwise if we send an xcall from interrupt context it will
754 * corrupt both our mondo block and cpu list state.
755 *
756 * One consequence of this is that we cannot use timeout mechanisms
757 * that depend upon interrupts being delivered locally. So, for
758 * example, we cannot sample jiffies and expect it to advance.
759 *
760 * Fortunately, udelay() uses %stick/%tick so we can use that.
761 */
762 local_irq_save(flags);
deb16999 763 xcall_deliver_impl(data0, data1, data2, mask);
c02a5119 764 local_irq_restore(flags);
deb16999 765}
5e0797e5 766
91a4231c
DM
767/* Send cross call to all processors mentioned in MASK_P
768 * except self. Really, there are only two cases currently,
769 * "&cpu_online_map" and "&mm->cpu_vm_mask".
1da177e4 770 */
91a4231c 771static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask_p)
1da177e4
LT
772{
773 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
774 int this_cpu = get_cpu();
91a4231c 775 cpumask_t mask;
1da177e4 776
91a4231c
DM
777 mask = *mask_p;
778 if (mask_p != &cpu_online_map)
779 cpus_and(mask, mask, cpu_online_map);
1da177e4
LT
780 cpu_clear(this_cpu, mask);
781
cd5bc89d 782 xcall_deliver(data0, data1, data2, &mask);
1da177e4
LT
783 /* NOTE: Caller runs local copy on master. */
784
785 put_cpu();
786}
787
788extern unsigned long xcall_sync_tick;
789
790static void smp_start_sync_tick_client(int cpu)
791{
24445a4a
DM
792 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
793 &cpumask_of_cpu(cpu));
1da177e4
LT
794}
795
1da177e4
LT
796extern unsigned long xcall_call_function;
797
d172ad18 798void arch_send_call_function_ipi(cpumask_t mask)
1da177e4 799{
19926630 800 xcall_deliver((u64) &xcall_call_function, 0, 0, &mask);
d172ad18 801}
1da177e4 802
d172ad18 803extern unsigned long xcall_call_function_single;
1da177e4 804
d172ad18
DM
805void arch_send_call_function_single_ipi(int cpu)
806{
19926630
DM
807 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
808 &cpumask_of_cpu(cpu));
1da177e4
LT
809}
810
d172ad18
DM
811/* Send cross call to all processors except self. */
812#define smp_cross_call(func, ctx, data1, data2) \
91a4231c 813 smp_cross_call_masked(func, ctx, data1, data2, &cpu_online_map)
bd40791e 814
1da177e4
LT
815void smp_call_function_client(int irq, struct pt_regs *regs)
816{
d172ad18
DM
817 clear_softint(1 << irq);
818 generic_smp_call_function_interrupt();
819}
1da177e4 820
d172ad18
DM
821void smp_call_function_single_client(int irq, struct pt_regs *regs)
822{
1da177e4 823 clear_softint(1 << irq);
d172ad18 824 generic_smp_call_function_single_interrupt();
1da177e4
LT
825}
826
bd40791e
DM
827static void tsb_sync(void *info)
828{
6f25f398 829 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
bd40791e
DM
830 struct mm_struct *mm = info;
831
6f25f398
DM
832 /* It is not valid to test "currrent->active_mm == mm" here.
833 *
834 * The value of "current" is not changed atomically with
835 * switch_mm(). But that's OK, we just need to check the
836 * current cpu's trap block PGD physical address.
837 */
838 if (tp->pgd_paddr == __pa(mm->pgd))
bd40791e
DM
839 tsb_context_switch(mm);
840}
841
842void smp_tsb_sync(struct mm_struct *mm)
843{
d172ad18 844 smp_call_function_mask(mm->cpu_vm_mask, tsb_sync, mm, 1);
bd40791e
DM
845}
846
1da177e4
LT
847extern unsigned long xcall_flush_tlb_mm;
848extern unsigned long xcall_flush_tlb_pending;
849extern unsigned long xcall_flush_tlb_kernel_range;
93dae5b7
DM
850#ifdef CONFIG_MAGIC_SYSRQ
851extern unsigned long xcall_fetch_glob_regs;
852#endif
1da177e4 853extern unsigned long xcall_receive_signal;
ee29074d 854extern unsigned long xcall_new_mmu_context_version;
e2fdd7fd
DM
855#ifdef CONFIG_KGDB
856extern unsigned long xcall_kgdb_capture;
857#endif
1da177e4
LT
858
859#ifdef DCACHE_ALIASING_POSSIBLE
860extern unsigned long xcall_flush_dcache_page_cheetah;
861#endif
862extern unsigned long xcall_flush_dcache_page_spitfire;
863
864#ifdef CONFIG_DEBUG_DCFLUSH
865extern atomic_t dcpage_flushes;
866extern atomic_t dcpage_flushes_xcall;
867#endif
868
d979f179 869static inline void __local_flush_dcache_page(struct page *page)
1da177e4
LT
870{
871#ifdef DCACHE_ALIASING_POSSIBLE
872 __flush_dcache_page(page_address(page),
873 ((tlb_type == spitfire) &&
874 page_mapping(page) != NULL));
875#else
876 if (page_mapping(page) != NULL &&
877 tlb_type == spitfire)
878 __flush_icache_page(__pa(page_address(page)));
879#endif
880}
881
882void smp_flush_dcache_page_impl(struct page *page, int cpu)
883{
884 cpumask_t mask = cpumask_of_cpu(cpu);
a43fe0e7
DM
885 int this_cpu;
886
887 if (tlb_type == hypervisor)
888 return;
1da177e4
LT
889
890#ifdef CONFIG_DEBUG_DCFLUSH
891 atomic_inc(&dcpage_flushes);
892#endif
a43fe0e7
DM
893
894 this_cpu = get_cpu();
895
1da177e4
LT
896 if (cpu == this_cpu) {
897 __local_flush_dcache_page(page);
898 } else if (cpu_online(cpu)) {
899 void *pg_addr = page_address(page);
622824db 900 u64 data0 = 0;
1da177e4
LT
901
902 if (tlb_type == spitfire) {
622824db 903 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
1da177e4
LT
904 if (page_mapping(page) != NULL)
905 data0 |= ((u64)1 << 32);
a43fe0e7 906 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4 907#ifdef DCACHE_ALIASING_POSSIBLE
622824db 908 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1da177e4
LT
909#endif
910 }
622824db
DM
911 if (data0) {
912 xcall_deliver(data0, __pa(pg_addr),
cd5bc89d 913 (u64) pg_addr, &mask);
1da177e4 914#ifdef CONFIG_DEBUG_DCFLUSH
622824db 915 atomic_inc(&dcpage_flushes_xcall);
1da177e4 916#endif
622824db 917 }
1da177e4
LT
918 }
919
920 put_cpu();
921}
922
923void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
924{
1da177e4 925 cpumask_t mask = cpu_online_map;
622824db 926 void *pg_addr;
a43fe0e7 927 int this_cpu;
622824db 928 u64 data0;
a43fe0e7
DM
929
930 if (tlb_type == hypervisor)
931 return;
932
933 this_cpu = get_cpu();
1da177e4
LT
934
935 cpu_clear(this_cpu, mask);
936
937#ifdef CONFIG_DEBUG_DCFLUSH
938 atomic_inc(&dcpage_flushes);
939#endif
940 if (cpus_empty(mask))
941 goto flush_self;
622824db
DM
942 data0 = 0;
943 pg_addr = page_address(page);
1da177e4
LT
944 if (tlb_type == spitfire) {
945 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
946 if (page_mapping(page) != NULL)
947 data0 |= ((u64)1 << 32);
a43fe0e7 948 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
949#ifdef DCACHE_ALIASING_POSSIBLE
950 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1da177e4
LT
951#endif
952 }
622824db
DM
953 if (data0) {
954 xcall_deliver(data0, __pa(pg_addr),
cd5bc89d 955 (u64) pg_addr, &mask);
1da177e4 956#ifdef CONFIG_DEBUG_DCFLUSH
622824db 957 atomic_inc(&dcpage_flushes_xcall);
1da177e4 958#endif
622824db 959 }
1da177e4
LT
960 flush_self:
961 __local_flush_dcache_page(page);
962
963 put_cpu();
964}
965
ee29074d 966void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
1da177e4 967{
a0663a79 968 struct mm_struct *mm;
ee29074d 969 unsigned long flags;
a0663a79 970
1da177e4 971 clear_softint(1 << irq);
a0663a79
DM
972
973 /* See if we need to allocate a new TLB context because
974 * the version of the one we are using is now out of date.
975 */
976 mm = current->active_mm;
ee29074d
DM
977 if (unlikely(!mm || (mm == &init_mm)))
978 return;
a0663a79 979
ee29074d 980 spin_lock_irqsave(&mm->context.lock, flags);
aac0aadf 981
ee29074d
DM
982 if (unlikely(!CTX_VALID(mm->context)))
983 get_new_mmu_context(mm);
aac0aadf 984
ee29074d 985 spin_unlock_irqrestore(&mm->context.lock, flags);
aac0aadf 986
ee29074d
DM
987 load_secondary_context(mm);
988 __flush_tlb_mm(CTX_HWBITS(mm->context),
989 SECONDARY_CONTEXT);
a0663a79
DM
990}
991
992void smp_new_mmu_context_version(void)
993{
ee29074d 994 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1da177e4
LT
995}
996
e2fdd7fd
DM
997#ifdef CONFIG_KGDB
998void kgdb_roundup_cpus(unsigned long flags)
999{
1000 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1001}
1002#endif
1003
93dae5b7
DM
1004#ifdef CONFIG_MAGIC_SYSRQ
1005void smp_fetch_global_regs(void)
1006{
1007 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1008}
1009#endif
1010
1da177e4
LT
1011/* We know that the window frames of the user have been flushed
1012 * to the stack before we get here because all callers of us
1013 * are flush_tlb_*() routines, and these run after flush_cache_*()
1014 * which performs the flushw.
1015 *
1016 * The SMP TLB coherency scheme we use works as follows:
1017 *
1018 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1019 * space has (potentially) executed on, this is the heuristic
1020 * we use to avoid doing cross calls.
1021 *
1022 * Also, for flushing from kswapd and also for clones, we
1023 * use cpu_vm_mask as the list of cpus to make run the TLB.
1024 *
1025 * 2) TLB context numbers are shared globally across all processors
1026 * in the system, this allows us to play several games to avoid
1027 * cross calls.
1028 *
1029 * One invariant is that when a cpu switches to a process, and
1030 * that processes tsk->active_mm->cpu_vm_mask does not have the
1031 * current cpu's bit set, that tlb context is flushed locally.
1032 *
1033 * If the address space is non-shared (ie. mm->count == 1) we avoid
1034 * cross calls when we want to flush the currently running process's
1035 * tlb state. This is done by clearing all cpu bits except the current
1036 * processor's in current->active_mm->cpu_vm_mask and performing the
1037 * flush locally only. This will force any subsequent cpus which run
1038 * this task to flush the context from the local tlb if the process
1039 * migrates to another cpu (again).
1040 *
1041 * 3) For shared address spaces (threads) and swapping we bite the
1042 * bullet for most cases and perform the cross call (but only to
1043 * the cpus listed in cpu_vm_mask).
1044 *
1045 * The performance gain from "optimizing" away the cross call for threads is
1046 * questionable (in theory the big win for threads is the massive sharing of
1047 * address space state across processors).
1048 */
62dbec78
DM
1049
1050/* This currently is only used by the hugetlb arch pre-fault
1051 * hook on UltraSPARC-III+ and later when changing the pagesize
1052 * bits of the context register for an address space.
1053 */
1da177e4
LT
1054void smp_flush_tlb_mm(struct mm_struct *mm)
1055{
62dbec78
DM
1056 u32 ctx = CTX_HWBITS(mm->context);
1057 int cpu = get_cpu();
1da177e4 1058
62dbec78
DM
1059 if (atomic_read(&mm->mm_users) == 1) {
1060 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1061 goto local_flush_and_out;
1062 }
1da177e4 1063
62dbec78
DM
1064 smp_cross_call_masked(&xcall_flush_tlb_mm,
1065 ctx, 0, 0,
91a4231c 1066 &mm->cpu_vm_mask);
1da177e4 1067
62dbec78
DM
1068local_flush_and_out:
1069 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1da177e4 1070
62dbec78 1071 put_cpu();
1da177e4
LT
1072}
1073
1074void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1075{
1076 u32 ctx = CTX_HWBITS(mm->context);
1077 int cpu = get_cpu();
1078
dedeb002 1079 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1da177e4 1080 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
dedeb002
HD
1081 else
1082 smp_cross_call_masked(&xcall_flush_tlb_pending,
1083 ctx, nr, (unsigned long) vaddrs,
91a4231c 1084 &mm->cpu_vm_mask);
1da177e4 1085
1da177e4
LT
1086 __flush_tlb_pending(ctx, nr, vaddrs);
1087
1088 put_cpu();
1089}
1090
1091void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1092{
1093 start &= PAGE_MASK;
1094 end = PAGE_ALIGN(end);
1095 if (start != end) {
1096 smp_cross_call(&xcall_flush_tlb_kernel_range,
1097 0, start, end);
1098
1099 __flush_tlb_kernel_range(start, end);
1100 }
1101}
1102
1103/* CPU capture. */
1104/* #define CAPTURE_DEBUG */
1105extern unsigned long xcall_capture;
1106
1107static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1108static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1109static unsigned long penguins_are_doing_time;
1110
1111void smp_capture(void)
1112{
1113 int result = atomic_add_ret(1, &smp_capture_depth);
1114
1115 if (result == 1) {
1116 int ncpus = num_online_cpus();
1117
1118#ifdef CAPTURE_DEBUG
1119 printk("CPU[%d]: Sending penguins to jail...",
1120 smp_processor_id());
1121#endif
1122 penguins_are_doing_time = 1;
4f07118f 1123 membar_storestore_loadstore();
1da177e4
LT
1124 atomic_inc(&smp_capture_registry);
1125 smp_cross_call(&xcall_capture, 0, 0, 0);
1126 while (atomic_read(&smp_capture_registry) != ncpus)
4f07118f 1127 rmb();
1da177e4
LT
1128#ifdef CAPTURE_DEBUG
1129 printk("done\n");
1130#endif
1131 }
1132}
1133
1134void smp_release(void)
1135{
1136 if (atomic_dec_and_test(&smp_capture_depth)) {
1137#ifdef CAPTURE_DEBUG
1138 printk("CPU[%d]: Giving pardon to "
1139 "imprisoned penguins\n",
1140 smp_processor_id());
1141#endif
1142 penguins_are_doing_time = 0;
4f07118f 1143 membar_storeload_storestore();
1da177e4
LT
1144 atomic_dec(&smp_capture_registry);
1145 }
1146}
1147
1148/* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1149 * can service tlb flush xcalls...
1150 */
1151extern void prom_world(int);
96c6e0d8 1152
1da177e4
LT
1153void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1154{
1da177e4
LT
1155 clear_softint(1 << irq);
1156
1157 preempt_disable();
1158
1159 __asm__ __volatile__("flushw");
1da177e4
LT
1160 prom_world(1);
1161 atomic_inc(&smp_capture_registry);
4f07118f 1162 membar_storeload_storestore();
1da177e4 1163 while (penguins_are_doing_time)
4f07118f 1164 rmb();
1da177e4
LT
1165 atomic_dec(&smp_capture_registry);
1166 prom_world(0);
1167
1168 preempt_enable();
1169}
1170
1da177e4 1171/* /proc/profile writes can call this, don't __init it please. */
1da177e4
LT
1172int setup_profiling_timer(unsigned int multiplier)
1173{
777a4475 1174 return -EINVAL;
1da177e4
LT
1175}
1176
1177void __init smp_prepare_cpus(unsigned int max_cpus)
1178{
1da177e4
LT
1179}
1180
5cbc3073 1181void __devinit smp_prepare_boot_cpu(void)
7abea921 1182{
7abea921
DM
1183}
1184
5e0797e5
DM
1185void __init smp_setup_processor_id(void)
1186{
1187 if (tlb_type == spitfire)
deb16999 1188 xcall_deliver_impl = spitfire_xcall_deliver;
5e0797e5 1189 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
deb16999 1190 xcall_deliver_impl = cheetah_xcall_deliver;
5e0797e5 1191 else
deb16999 1192 xcall_deliver_impl = hypervisor_xcall_deliver;
5e0797e5
DM
1193}
1194
5cbc3073 1195void __devinit smp_fill_in_sib_core_maps(void)
1da177e4 1196{
5cbc3073
DM
1197 unsigned int i;
1198
e0204409 1199 for_each_present_cpu(i) {
5cbc3073
DM
1200 unsigned int j;
1201
39dd992a 1202 cpus_clear(cpu_core_map[i]);
5cbc3073 1203 if (cpu_data(i).core_id == 0) {
f78eae2e 1204 cpu_set(i, cpu_core_map[i]);
5cbc3073
DM
1205 continue;
1206 }
1207
e0204409 1208 for_each_present_cpu(j) {
5cbc3073
DM
1209 if (cpu_data(i).core_id ==
1210 cpu_data(j).core_id)
f78eae2e
DM
1211 cpu_set(j, cpu_core_map[i]);
1212 }
1213 }
1214
e0204409 1215 for_each_present_cpu(i) {
f78eae2e
DM
1216 unsigned int j;
1217
d5a7430d 1218 cpus_clear(per_cpu(cpu_sibling_map, i));
f78eae2e 1219 if (cpu_data(i).proc_id == -1) {
d5a7430d 1220 cpu_set(i, per_cpu(cpu_sibling_map, i));
f78eae2e
DM
1221 continue;
1222 }
1223
e0204409 1224 for_each_present_cpu(j) {
f78eae2e
DM
1225 if (cpu_data(i).proc_id ==
1226 cpu_data(j).proc_id)
d5a7430d 1227 cpu_set(j, per_cpu(cpu_sibling_map, i));
5cbc3073
DM
1228 }
1229 }
1da177e4
LT
1230}
1231
b282b6f8 1232int __cpuinit __cpu_up(unsigned int cpu)
1da177e4
LT
1233{
1234 int ret = smp_boot_one_cpu(cpu);
1235
1236 if (!ret) {
1237 cpu_set(cpu, smp_commenced_mask);
1238 while (!cpu_isset(cpu, cpu_online_map))
1239 mb();
1240 if (!cpu_isset(cpu, cpu_online_map)) {
1241 ret = -ENODEV;
1242 } else {
02fead75
DM
1243 /* On SUN4V, writes to %tick and %stick are
1244 * not allowed.
1245 */
1246 if (tlb_type != hypervisor)
1247 smp_synchronize_one_tick(cpu);
1da177e4
LT
1248 }
1249 }
1250 return ret;
1251}
1252
4f0234f4 1253#ifdef CONFIG_HOTPLUG_CPU
e0204409
DM
1254void cpu_play_dead(void)
1255{
1256 int cpu = smp_processor_id();
1257 unsigned long pstate;
1258
1259 idle_task_exit();
1260
1261 if (tlb_type == hypervisor) {
1262 struct trap_per_cpu *tb = &trap_block[cpu];
1263
1264 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1265 tb->cpu_mondo_pa, 0);
1266 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1267 tb->dev_mondo_pa, 0);
1268 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1269 tb->resum_mondo_pa, 0);
1270 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1271 tb->nonresum_mondo_pa, 0);
1272 }
1273
1274 cpu_clear(cpu, smp_commenced_mask);
1275 membar_safe("#Sync");
1276
1277 local_irq_disable();
1278
1279 __asm__ __volatile__(
1280 "rdpr %%pstate, %0\n\t"
1281 "wrpr %0, %1, %%pstate"
1282 : "=r" (pstate)
1283 : "i" (PSTATE_IE));
1284
1285 while (1)
1286 barrier();
1287}
1288
4f0234f4
DM
1289int __cpu_disable(void)
1290{
e0204409
DM
1291 int cpu = smp_processor_id();
1292 cpuinfo_sparc *c;
1293 int i;
1294
1295 for_each_cpu_mask(i, cpu_core_map[cpu])
1296 cpu_clear(cpu, cpu_core_map[i]);
1297 cpus_clear(cpu_core_map[cpu]);
1298
d5a7430d
MT
1299 for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
1300 cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
1301 cpus_clear(per_cpu(cpu_sibling_map, cpu));
e0204409
DM
1302
1303 c = &cpu_data(cpu);
1304
1305 c->core_id = 0;
1306 c->proc_id = -1;
1307
1308 spin_lock(&call_lock);
1309 cpu_clear(cpu, cpu_online_map);
1310 spin_unlock(&call_lock);
1311
1312 smp_wmb();
1313
1314 /* Make sure no interrupts point to this cpu. */
1315 fixup_irqs();
1316
1317 local_irq_enable();
1318 mdelay(1);
1319 local_irq_disable();
1320
1321 return 0;
4f0234f4
DM
1322}
1323
1324void __cpu_die(unsigned int cpu)
1325{
e0204409
DM
1326 int i;
1327
1328 for (i = 0; i < 100; i++) {
1329 smp_rmb();
1330 if (!cpu_isset(cpu, smp_commenced_mask))
1331 break;
1332 msleep(100);
1333 }
1334 if (cpu_isset(cpu, smp_commenced_mask)) {
1335 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1336 } else {
1337#if defined(CONFIG_SUN_LDOMS)
1338 unsigned long hv_err;
1339 int limit = 100;
1340
1341 do {
1342 hv_err = sun4v_cpu_stop(cpu);
1343 if (hv_err == HV_EOK) {
1344 cpu_clear(cpu, cpu_present_map);
1345 break;
1346 }
1347 } while (--limit > 0);
1348 if (limit <= 0) {
1349 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1350 hv_err);
1351 }
1352#endif
1353 }
4f0234f4
DM
1354}
1355#endif
1356
1da177e4
LT
1357void __init smp_cpus_done(unsigned int max_cpus)
1358{
1da177e4
LT
1359}
1360
1da177e4
LT
1361void smp_send_reschedule(int cpu)
1362{
19926630
DM
1363 xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1364 &cpumask_of_cpu(cpu));
1365}
1366
1367void smp_receive_signal_client(int irq, struct pt_regs *regs)
1368{
1369 clear_softint(1 << irq);
1da177e4
LT
1370}
1371
1372/* This is a nop because we capture all other cpus
1373 * anyways when making the PROM active.
1374 */
1375void smp_send_stop(void)
1376{
1377}
1378
d369ddd2
DM
1379unsigned long __per_cpu_base __read_mostly;
1380unsigned long __per_cpu_shift __read_mostly;
1da177e4
LT
1381
1382EXPORT_SYMBOL(__per_cpu_base);
1383EXPORT_SYMBOL(__per_cpu_shift);
1384
5cbc3073 1385void __init real_setup_per_cpu_areas(void)
1da177e4 1386{
b9709456 1387 unsigned long paddr, goal, size, i;
1da177e4 1388 char *ptr;
1da177e4
LT
1389
1390 /* Copy section for each CPU (we discard the original) */
5a089006
DM
1391 goal = PERCPU_ENOUGH_ROOM;
1392
b6e3590f
JF
1393 __per_cpu_shift = PAGE_SHIFT;
1394 for (size = PAGE_SIZE; size < goal; size <<= 1UL)
1da177e4
LT
1395 __per_cpu_shift++;
1396
b9709456
DM
1397 paddr = lmb_alloc(size * NR_CPUS, PAGE_SIZE);
1398 if (!paddr) {
1399 prom_printf("Cannot allocate per-cpu memory.\n");
1400 prom_halt();
1401 }
1da177e4 1402
b9709456 1403 ptr = __va(paddr);
1da177e4
LT
1404 __per_cpu_base = ptr - __per_cpu_start;
1405
1da177e4
LT
1406 for (i = 0; i < NR_CPUS; i++, ptr += size)
1407 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
951bc82c
DM
1408
1409 /* Setup %g5 for the boot cpu. */
1410 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1da177e4 1411}