[SPARC64]: Add ->set_affinity IRQ handlers.
[linux-2.6-block.git] / arch / sparc64 / kernel / smp.c
CommitLineData
1da177e4
LT
1/* smp.c: Sparc64 SMP support.
2 *
27a2ef38 3 * Copyright (C) 1997, 2007 David S. Miller (davem@davemloft.net)
1da177e4
LT
4 */
5
6#include <linux/module.h>
7#include <linux/kernel.h>
8#include <linux/sched.h>
9#include <linux/mm.h>
10#include <linux/pagemap.h>
11#include <linux/threads.h>
12#include <linux/smp.h>
1da177e4
LT
13#include <linux/interrupt.h>
14#include <linux/kernel_stat.h>
15#include <linux/delay.h>
16#include <linux/init.h>
17#include <linux/spinlock.h>
18#include <linux/fs.h>
19#include <linux/seq_file.h>
20#include <linux/cache.h>
21#include <linux/jiffies.h>
22#include <linux/profile.h>
23#include <linux/bootmem.h>
24
25#include <asm/head.h>
26#include <asm/ptrace.h>
27#include <asm/atomic.h>
28#include <asm/tlbflush.h>
29#include <asm/mmu_context.h>
30#include <asm/cpudata.h>
27a2ef38
DM
31#include <asm/hvtramp.h>
32#include <asm/io.h>
1da177e4
LT
33
34#include <asm/irq.h>
6d24c8dc 35#include <asm/irq_regs.h>
1da177e4
LT
36#include <asm/page.h>
37#include <asm/pgtable.h>
38#include <asm/oplib.h>
39#include <asm/uaccess.h>
40#include <asm/timer.h>
41#include <asm/starfire.h>
42#include <asm/tlb.h>
56fb4df6 43#include <asm/sections.h>
07f8e5f3 44#include <asm/prom.h>
5cbc3073 45#include <asm/mdesc.h>
4f0234f4 46#include <asm/ldc.h>
1da177e4 47
1da177e4
LT
48extern void calibrate_delay(void);
49
a2f9f6bb
DM
50int sparc64_multi_core __read_mostly;
51
4f0234f4 52cpumask_t cpu_possible_map __read_mostly = CPU_MASK_NONE;
c12a8289 53cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
8935dced
DM
54cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly =
55 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
f78eae2e
DM
56cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
57 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
4f0234f4
DM
58
59EXPORT_SYMBOL(cpu_possible_map);
60EXPORT_SYMBOL(cpu_online_map);
61EXPORT_SYMBOL(cpu_sibling_map);
62EXPORT_SYMBOL(cpu_core_map);
63
1da177e4
LT
64static cpumask_t smp_commenced_mask;
65static cpumask_t cpu_callout_map;
66
67void smp_info(struct seq_file *m)
68{
69 int i;
70
71 seq_printf(m, "State:\n");
394e3902
AM
72 for_each_online_cpu(i)
73 seq_printf(m, "CPU%d:\t\tonline\n", i);
1da177e4
LT
74}
75
76void smp_bogo(struct seq_file *m)
77{
78 int i;
79
394e3902
AM
80 for_each_online_cpu(i)
81 seq_printf(m,
394e3902 82 "Cpu%dClkTck\t: %016lx\n",
394e3902 83 i, cpu_data(i).clock_tick);
1da177e4
LT
84}
85
112f4871 86extern void setup_sparc64_timer(void);
1da177e4
LT
87
88static volatile unsigned long callin_flag = 0;
89
4f0234f4 90void __devinit smp_callin(void)
1da177e4
LT
91{
92 int cpuid = hard_smp_processor_id();
4f0234f4 93 struct trap_per_cpu *tb = &trap_block[cpuid];;
1da177e4 94
56fb4df6 95 __local_per_cpu_offset = __per_cpu_offset(cpuid);
1da177e4 96
4a07e646 97 if (tlb_type == hypervisor)
490384e7 98 sun4v_ktsb_register();
481295f9 99
56fb4df6 100 __flush_tlb_all();
1da177e4 101
112f4871 102 setup_sparc64_timer();
1da177e4 103
816242da
DM
104 if (cheetah_pcache_forced_on)
105 cheetah_enable_pcache();
106
1da177e4
LT
107 local_irq_enable();
108
1da177e4
LT
109 callin_flag = 1;
110 __asm__ __volatile__("membar #Sync\n\t"
111 "flush %%g6" : : : "memory");
112
113 /* Clear this or we will die instantly when we
114 * schedule back to this idler...
115 */
db7d9a4e 116 current_thread_info()->new_child = 0;
1da177e4
LT
117
118 /* Attach to the address space of init_task. */
119 atomic_inc(&init_mm.mm_count);
120 current->active_mm = &init_mm;
121
4f0234f4
DM
122 if (tb->hdesc) {
123 kfree(tb->hdesc);
124 tb->hdesc = NULL;
125 }
126
1da177e4 127 while (!cpu_isset(cpuid, smp_commenced_mask))
4f07118f 128 rmb();
1da177e4
LT
129
130 cpu_set(cpuid, cpu_online_map);
5bfb5d69
NP
131
132 /* idle thread is expected to have preempt disabled */
133 preempt_disable();
1da177e4
LT
134}
135
136void cpu_panic(void)
137{
138 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
139 panic("SMP bolixed\n");
140}
141
1da177e4
LT
142/* This tick register synchronization scheme is taken entirely from
143 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
144 *
145 * The only change I've made is to rework it so that the master
146 * initiates the synchonization instead of the slave. -DaveM
147 */
148
149#define MASTER 0
150#define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
151
152#define NUM_ROUNDS 64 /* magic value */
153#define NUM_ITERS 5 /* likewise */
154
155static DEFINE_SPINLOCK(itc_sync_lock);
156static unsigned long go[SLAVE + 1];
157
158#define DEBUG_TICK_SYNC 0
159
160static inline long get_delta (long *rt, long *master)
161{
162 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
163 unsigned long tcenter, t0, t1, tm;
164 unsigned long i;
165
166 for (i = 0; i < NUM_ITERS; i++) {
167 t0 = tick_ops->get_tick();
168 go[MASTER] = 1;
4f07118f 169 membar_storeload();
1da177e4 170 while (!(tm = go[SLAVE]))
4f07118f 171 rmb();
1da177e4 172 go[SLAVE] = 0;
4f07118f 173 wmb();
1da177e4
LT
174 t1 = tick_ops->get_tick();
175
176 if (t1 - t0 < best_t1 - best_t0)
177 best_t0 = t0, best_t1 = t1, best_tm = tm;
178 }
179
180 *rt = best_t1 - best_t0;
181 *master = best_tm - best_t0;
182
183 /* average best_t0 and best_t1 without overflow: */
184 tcenter = (best_t0/2 + best_t1/2);
185 if (best_t0 % 2 + best_t1 % 2 == 2)
186 tcenter++;
187 return tcenter - best_tm;
188}
189
190void smp_synchronize_tick_client(void)
191{
192 long i, delta, adj, adjust_latency = 0, done = 0;
193 unsigned long flags, rt, master_time_stamp, bound;
194#if DEBUG_TICK_SYNC
195 struct {
196 long rt; /* roundtrip time */
197 long master; /* master's timestamp */
198 long diff; /* difference between midpoint and master's timestamp */
199 long lat; /* estimate of itc adjustment latency */
200 } t[NUM_ROUNDS];
201#endif
202
203 go[MASTER] = 1;
204
205 while (go[MASTER])
4f07118f 206 rmb();
1da177e4
LT
207
208 local_irq_save(flags);
209 {
210 for (i = 0; i < NUM_ROUNDS; i++) {
211 delta = get_delta(&rt, &master_time_stamp);
212 if (delta == 0) {
213 done = 1; /* let's lock on to this... */
214 bound = rt;
215 }
216
217 if (!done) {
218 if (i > 0) {
219 adjust_latency += -delta;
220 adj = -delta + adjust_latency/4;
221 } else
222 adj = -delta;
223
112f4871 224 tick_ops->add_tick(adj);
1da177e4
LT
225 }
226#if DEBUG_TICK_SYNC
227 t[i].rt = rt;
228 t[i].master = master_time_stamp;
229 t[i].diff = delta;
230 t[i].lat = adjust_latency/4;
231#endif
232 }
233 }
234 local_irq_restore(flags);
235
236#if DEBUG_TICK_SYNC
237 for (i = 0; i < NUM_ROUNDS; i++)
238 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
239 t[i].rt, t[i].master, t[i].diff, t[i].lat);
240#endif
241
242 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
243 "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
244}
245
246static void smp_start_sync_tick_client(int cpu);
247
248static void smp_synchronize_one_tick(int cpu)
249{
250 unsigned long flags, i;
251
252 go[MASTER] = 0;
253
254 smp_start_sync_tick_client(cpu);
255
256 /* wait for client to be ready */
257 while (!go[MASTER])
4f07118f 258 rmb();
1da177e4
LT
259
260 /* now let the client proceed into his loop */
261 go[MASTER] = 0;
4f07118f 262 membar_storeload();
1da177e4
LT
263
264 spin_lock_irqsave(&itc_sync_lock, flags);
265 {
266 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
267 while (!go[MASTER])
4f07118f 268 rmb();
1da177e4 269 go[MASTER] = 0;
4f07118f 270 wmb();
1da177e4 271 go[SLAVE] = tick_ops->get_tick();
4f07118f 272 membar_storeload();
1da177e4
LT
273 }
274 }
275 spin_unlock_irqrestore(&itc_sync_lock, flags);
276}
277
b14f5c10 278#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
27a2ef38
DM
279/* XXX Put this in some common place. XXX */
280static unsigned long kimage_addr_to_ra(void *p)
281{
282 unsigned long val = (unsigned long) p;
283
284 return kern_base + (val - KERNBASE);
285}
286
b14f5c10
DM
287static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg)
288{
289 extern unsigned long sparc64_ttable_tl0;
290 extern unsigned long kern_locked_tte_data;
291 extern int bigkernel;
292 struct hvtramp_descr *hdesc;
293 unsigned long trampoline_ra;
294 struct trap_per_cpu *tb;
295 u64 tte_vaddr, tte_data;
296 unsigned long hv_err;
297
298 hdesc = kzalloc(sizeof(*hdesc), GFP_KERNEL);
299 if (!hdesc) {
27a2ef38 300 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
b14f5c10
DM
301 "hvtramp_descr.\n");
302 return;
303 }
304
305 hdesc->cpu = cpu;
306 hdesc->num_mappings = (bigkernel ? 2 : 1);
307
308 tb = &trap_block[cpu];
309 tb->hdesc = hdesc;
310
311 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
312 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
313
314 hdesc->thread_reg = thread_reg;
315
316 tte_vaddr = (unsigned long) KERNBASE;
317 tte_data = kern_locked_tte_data;
318
319 hdesc->maps[0].vaddr = tte_vaddr;
320 hdesc->maps[0].tte = tte_data;
321 if (bigkernel) {
322 tte_vaddr += 0x400000;
323 tte_data += 0x400000;
324 hdesc->maps[1].vaddr = tte_vaddr;
325 hdesc->maps[1].tte = tte_data;
326 }
327
328 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
329
330 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
331 kimage_addr_to_ra(&sparc64_ttable_tl0),
332 __pa(hdesc));
333}
334#endif
335
72aff53f
DM
336extern void sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load);
337
1da177e4
LT
338extern unsigned long sparc64_cpu_startup;
339
340/* The OBP cpu startup callback truncates the 3rd arg cookie to
341 * 32-bits (I think) so to be safe we have it read the pointer
342 * contained here so we work on >4GB machines. -DaveM
343 */
344static struct thread_info *cpu_new_thread = NULL;
345
346static int __devinit smp_boot_one_cpu(unsigned int cpu)
347{
348 unsigned long entry =
349 (unsigned long)(&sparc64_cpu_startup);
350 unsigned long cookie =
351 (unsigned long)(&cpu_new_thread);
352 struct task_struct *p;
7890f794 353 int timeout, ret;
1da177e4
LT
354
355 p = fork_idle(cpu);
356 callin_flag = 0;
f3169641 357 cpu_new_thread = task_thread_info(p);
1da177e4
LT
358 cpu_set(cpu, cpu_callout_map);
359
7890f794 360 if (tlb_type == hypervisor) {
72aff53f
DM
361 /* Alloc the mondo queues, cpu will load them. */
362 sun4v_init_mondo_queues(0, cpu, 1, 0);
363
b14f5c10 364#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
4f0234f4
DM
365 if (ldom_domaining_enabled)
366 ldom_startcpu_cpuid(cpu,
367 (unsigned long) cpu_new_thread);
368 else
369#endif
370 prom_startcpu_cpuid(cpu, entry, cookie);
7890f794 371 } else {
5cbc3073 372 struct device_node *dp = of_find_node_by_cpuid(cpu);
7890f794 373
07f8e5f3 374 prom_startcpu(dp->node, entry, cookie);
7890f794 375 }
1da177e4 376
4f0234f4 377 for (timeout = 0; timeout < 50000; timeout++) {
1da177e4
LT
378 if (callin_flag)
379 break;
380 udelay(100);
381 }
72aff53f 382
1da177e4
LT
383 if (callin_flag) {
384 ret = 0;
385 } else {
386 printk("Processor %d is stuck.\n", cpu);
387 cpu_clear(cpu, cpu_callout_map);
388 ret = -ENODEV;
389 }
390 cpu_new_thread = NULL;
391
392 return ret;
393}
394
395static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
396{
397 u64 result, target;
398 int stuck, tmp;
399
400 if (this_is_starfire) {
401 /* map to real upaid */
402 cpu = (((cpu & 0x3c) << 1) |
403 ((cpu & 0x40) >> 4) |
404 (cpu & 0x3));
405 }
406
407 target = (cpu << 14) | 0x70;
408again:
409 /* Ok, this is the real Spitfire Errata #54.
410 * One must read back from a UDB internal register
411 * after writes to the UDB interrupt dispatch, but
412 * before the membar Sync for that write.
413 * So we use the high UDB control register (ASI 0x7f,
414 * ADDR 0x20) for the dummy read. -DaveM
415 */
416 tmp = 0x40;
417 __asm__ __volatile__(
418 "wrpr %1, %2, %%pstate\n\t"
419 "stxa %4, [%0] %3\n\t"
420 "stxa %5, [%0+%8] %3\n\t"
421 "add %0, %8, %0\n\t"
422 "stxa %6, [%0+%8] %3\n\t"
423 "membar #Sync\n\t"
424 "stxa %%g0, [%7] %3\n\t"
425 "membar #Sync\n\t"
426 "mov 0x20, %%g1\n\t"
427 "ldxa [%%g1] 0x7f, %%g0\n\t"
428 "membar #Sync"
429 : "=r" (tmp)
430 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
431 "r" (data0), "r" (data1), "r" (data2), "r" (target),
432 "r" (0x10), "0" (tmp)
433 : "g1");
434
435 /* NOTE: PSTATE_IE is still clear. */
436 stuck = 100000;
437 do {
438 __asm__ __volatile__("ldxa [%%g0] %1, %0"
439 : "=r" (result)
440 : "i" (ASI_INTR_DISPATCH_STAT));
441 if (result == 0) {
442 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
443 : : "r" (pstate));
444 return;
445 }
446 stuck -= 1;
447 if (stuck == 0)
448 break;
449 } while (result & 0x1);
450 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
451 : : "r" (pstate));
452 if (stuck == 0) {
453 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
454 smp_processor_id(), result);
455 } else {
456 udelay(2);
457 goto again;
458 }
459}
460
461static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
462{
463 u64 pstate;
464 int i;
465
466 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
467 for_each_cpu_mask(i, mask)
468 spitfire_xcall_helper(data0, data1, data2, pstate, i);
469}
470
471/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
472 * packet, but we have no use for that. However we do take advantage of
473 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
474 */
475static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
476{
477 u64 pstate, ver;
22adb358 478 int nack_busy_id, is_jbus, need_more;
1da177e4
LT
479
480 if (cpus_empty(mask))
481 return;
482
483 /* Unfortunately, someone at Sun had the brilliant idea to make the
484 * busy/nack fields hard-coded by ITID number for this Ultra-III
485 * derivative processor.
486 */
487 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
92704a1c
DM
488 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
489 (ver >> 32) == __SERRANO_ID);
1da177e4
LT
490
491 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
492
493retry:
22adb358 494 need_more = 0;
1da177e4
LT
495 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
496 : : "r" (pstate), "i" (PSTATE_IE));
497
498 /* Setup the dispatch data registers. */
499 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
500 "stxa %1, [%4] %6\n\t"
501 "stxa %2, [%5] %6\n\t"
502 "membar #Sync\n\t"
503 : /* no outputs */
504 : "r" (data0), "r" (data1), "r" (data2),
505 "r" (0x40), "r" (0x50), "r" (0x60),
506 "i" (ASI_INTR_W));
507
508 nack_busy_id = 0;
509 {
510 int i;
511
512 for_each_cpu_mask(i, mask) {
513 u64 target = (i << 14) | 0x70;
514
92704a1c 515 if (!is_jbus)
1da177e4
LT
516 target |= (nack_busy_id << 24);
517 __asm__ __volatile__(
518 "stxa %%g0, [%0] %1\n\t"
519 "membar #Sync\n\t"
520 : /* no outputs */
521 : "r" (target), "i" (ASI_INTR_W));
522 nack_busy_id++;
22adb358
DM
523 if (nack_busy_id == 32) {
524 need_more = 1;
525 break;
526 }
1da177e4
LT
527 }
528 }
529
530 /* Now, poll for completion. */
531 {
532 u64 dispatch_stat;
533 long stuck;
534
535 stuck = 100000 * nack_busy_id;
536 do {
537 __asm__ __volatile__("ldxa [%%g0] %1, %0"
538 : "=r" (dispatch_stat)
539 : "i" (ASI_INTR_DISPATCH_STAT));
540 if (dispatch_stat == 0UL) {
541 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
542 : : "r" (pstate));
22adb358
DM
543 if (unlikely(need_more)) {
544 int i, cnt = 0;
545 for_each_cpu_mask(i, mask) {
546 cpu_clear(i, mask);
547 cnt++;
548 if (cnt == 32)
549 break;
550 }
551 goto retry;
552 }
1da177e4
LT
553 return;
554 }
555 if (!--stuck)
556 break;
557 } while (dispatch_stat & 0x5555555555555555UL);
558
559 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
560 : : "r" (pstate));
561
562 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
563 /* Busy bits will not clear, continue instead
564 * of freezing up on this cpu.
565 */
566 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
567 smp_processor_id(), dispatch_stat);
568 } else {
569 int i, this_busy_nack = 0;
570
571 /* Delay some random time with interrupts enabled
572 * to prevent deadlock.
573 */
574 udelay(2 * nack_busy_id);
575
576 /* Clear out the mask bits for cpus which did not
577 * NACK us.
578 */
579 for_each_cpu_mask(i, mask) {
580 u64 check_mask;
581
92704a1c 582 if (is_jbus)
1da177e4
LT
583 check_mask = (0x2UL << (2*i));
584 else
585 check_mask = (0x2UL <<
586 this_busy_nack);
587 if ((dispatch_stat & check_mask) == 0)
588 cpu_clear(i, mask);
589 this_busy_nack += 2;
22adb358
DM
590 if (this_busy_nack == 64)
591 break;
1da177e4
LT
592 }
593
594 goto retry;
595 }
596 }
597}
598
1d2f1f90 599/* Multi-cpu list version. */
a43fe0e7
DM
600static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
601{
b830ab66
DM
602 struct trap_per_cpu *tb;
603 u16 *cpu_list;
604 u64 *mondo;
605 cpumask_t error_mask;
606 unsigned long flags, status;
3cab0c3e 607 int cnt, retries, this_cpu, prev_sent, i;
b830ab66 608
17f34f0e
DM
609 if (cpus_empty(mask))
610 return;
611
b830ab66
DM
612 /* We have to do this whole thing with interrupts fully disabled.
613 * Otherwise if we send an xcall from interrupt context it will
614 * corrupt both our mondo block and cpu list state.
615 *
616 * One consequence of this is that we cannot use timeout mechanisms
617 * that depend upon interrupts being delivered locally. So, for
618 * example, we cannot sample jiffies and expect it to advance.
619 *
620 * Fortunately, udelay() uses %stick/%tick so we can use that.
621 */
622 local_irq_save(flags);
623
624 this_cpu = smp_processor_id();
625 tb = &trap_block[this_cpu];
1d2f1f90 626
b830ab66 627 mondo = __va(tb->cpu_mondo_block_pa);
1d2f1f90
DM
628 mondo[0] = data0;
629 mondo[1] = data1;
630 mondo[2] = data2;
631 wmb();
632
b830ab66
DM
633 cpu_list = __va(tb->cpu_list_pa);
634
635 /* Setup the initial cpu list. */
636 cnt = 0;
637 for_each_cpu_mask(i, mask)
638 cpu_list[cnt++] = i;
639
640 cpus_clear(error_mask);
1d2f1f90 641 retries = 0;
3cab0c3e 642 prev_sent = 0;
1d2f1f90 643 do {
3cab0c3e 644 int forward_progress, n_sent;
1d2f1f90 645
b830ab66
DM
646 status = sun4v_cpu_mondo_send(cnt,
647 tb->cpu_list_pa,
648 tb->cpu_mondo_block_pa);
649
650 /* HV_EOK means all cpus received the xcall, we're done. */
651 if (likely(status == HV_EOK))
1d2f1f90 652 break;
b830ab66 653
3cab0c3e
DM
654 /* First, see if we made any forward progress.
655 *
656 * The hypervisor indicates successful sends by setting
657 * cpu list entries to the value 0xffff.
b830ab66 658 */
3cab0c3e 659 n_sent = 0;
b830ab66 660 for (i = 0; i < cnt; i++) {
3cab0c3e
DM
661 if (likely(cpu_list[i] == 0xffff))
662 n_sent++;
1d2f1f90
DM
663 }
664
3cab0c3e
DM
665 forward_progress = 0;
666 if (n_sent > prev_sent)
667 forward_progress = 1;
668
669 prev_sent = n_sent;
670
b830ab66
DM
671 /* If we get a HV_ECPUERROR, then one or more of the cpus
672 * in the list are in error state. Use the cpu_state()
673 * hypervisor call to find out which cpus are in error state.
674 */
675 if (unlikely(status == HV_ECPUERROR)) {
676 for (i = 0; i < cnt; i++) {
677 long err;
678 u16 cpu;
679
680 cpu = cpu_list[i];
681 if (cpu == 0xffff)
682 continue;
683
684 err = sun4v_cpu_state(cpu);
685 if (err >= 0 &&
686 err == HV_CPU_STATE_ERROR) {
3cab0c3e 687 cpu_list[i] = 0xffff;
b830ab66
DM
688 cpu_set(cpu, error_mask);
689 }
690 }
691 } else if (unlikely(status != HV_EWOULDBLOCK))
692 goto fatal_mondo_error;
693
3cab0c3e
DM
694 /* Don't bother rewriting the CPU list, just leave the
695 * 0xffff and non-0xffff entries in there and the
696 * hypervisor will do the right thing.
697 *
698 * Only advance timeout state if we didn't make any
699 * forward progress.
700 */
b830ab66
DM
701 if (unlikely(!forward_progress)) {
702 if (unlikely(++retries > 10000))
703 goto fatal_mondo_timeout;
704
705 /* Delay a little bit to let other cpus catch up
706 * on their cpu mondo queue work.
707 */
708 udelay(2 * cnt);
709 }
1d2f1f90
DM
710 } while (1);
711
b830ab66
DM
712 local_irq_restore(flags);
713
714 if (unlikely(!cpus_empty(error_mask)))
715 goto fatal_mondo_cpu_error;
716
717 return;
718
719fatal_mondo_cpu_error:
720 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
721 "were in error state\n",
722 this_cpu);
723 printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
724 for_each_cpu_mask(i, error_mask)
725 printk("%d ", i);
726 printk("]\n");
727 return;
728
729fatal_mondo_timeout:
730 local_irq_restore(flags);
731 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
732 " progress after %d retries.\n",
733 this_cpu, retries);
734 goto dump_cpu_list_and_out;
735
736fatal_mondo_error:
737 local_irq_restore(flags);
738 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
739 this_cpu, status);
740 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
741 "mondo_block_pa(%lx)\n",
742 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
743
744dump_cpu_list_and_out:
745 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
746 for (i = 0; i < cnt; i++)
747 printk("%u ", cpu_list[i]);
748 printk("]\n");
1d2f1f90 749}
a43fe0e7 750
1da177e4
LT
751/* Send cross call to all processors mentioned in MASK
752 * except self.
753 */
754static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
755{
756 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
757 int this_cpu = get_cpu();
758
759 cpus_and(mask, mask, cpu_online_map);
760 cpu_clear(this_cpu, mask);
761
762 if (tlb_type == spitfire)
763 spitfire_xcall_deliver(data0, data1, data2, mask);
a43fe0e7 764 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1da177e4 765 cheetah_xcall_deliver(data0, data1, data2, mask);
a43fe0e7
DM
766 else
767 hypervisor_xcall_deliver(data0, data1, data2, mask);
1da177e4
LT
768 /* NOTE: Caller runs local copy on master. */
769
770 put_cpu();
771}
772
773extern unsigned long xcall_sync_tick;
774
775static void smp_start_sync_tick_client(int cpu)
776{
777 cpumask_t mask = cpumask_of_cpu(cpu);
778
779 smp_cross_call_masked(&xcall_sync_tick,
780 0, 0, 0, mask);
781}
782
783/* Send cross call to all processors except self. */
784#define smp_cross_call(func, ctx, data1, data2) \
785 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
786
787struct call_data_struct {
788 void (*func) (void *info);
789 void *info;
790 atomic_t finished;
791 int wait;
792};
793
aa1d1a0a 794static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
1da177e4
LT
795static struct call_data_struct *call_data;
796
797extern unsigned long xcall_call_function;
798
aa1d1a0a
DM
799/**
800 * smp_call_function(): Run a function on all other CPUs.
801 * @func: The function to run. This must be fast and non-blocking.
802 * @info: An arbitrary pointer to pass to the function.
803 * @nonatomic: currently unused.
804 * @wait: If true, wait (atomically) until function has completed on other CPUs.
805 *
806 * Returns 0 on success, else a negative status code. Does not return until
807 * remote CPUs are nearly ready to execute <<func>> or are or have executed.
808 *
1da177e4
LT
809 * You must not call this function with disabled interrupts or from a
810 * hardware interrupt handler or from a bottom half handler.
811 */
bd40791e
DM
812static int smp_call_function_mask(void (*func)(void *info), void *info,
813 int nonatomic, int wait, cpumask_t mask)
1da177e4
LT
814{
815 struct call_data_struct data;
ee29074d 816 int cpus;
1da177e4 817
1da177e4
LT
818 /* Can deadlock when called with interrupts disabled */
819 WARN_ON(irqs_disabled());
820
821 data.func = func;
822 data.info = info;
823 atomic_set(&data.finished, 0);
824 data.wait = wait;
825
826 spin_lock(&call_lock);
827
ee29074d
DM
828 cpu_clear(smp_processor_id(), mask);
829 cpus = cpus_weight(mask);
830 if (!cpus)
831 goto out_unlock;
832
1da177e4 833 call_data = &data;
aa1d1a0a 834 mb();
1da177e4 835
bd40791e 836 smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
1da177e4 837
aa1d1a0a
DM
838 /* Wait for response */
839 while (atomic_read(&data.finished) != cpus)
840 cpu_relax();
1da177e4 841
ee29074d 842out_unlock:
1da177e4
LT
843 spin_unlock(&call_lock);
844
845 return 0;
1da177e4
LT
846}
847
bd40791e
DM
848int smp_call_function(void (*func)(void *info), void *info,
849 int nonatomic, int wait)
850{
851 return smp_call_function_mask(func, info, nonatomic, wait,
852 cpu_online_map);
853}
854
1da177e4
LT
855void smp_call_function_client(int irq, struct pt_regs *regs)
856{
857 void (*func) (void *info) = call_data->func;
858 void *info = call_data->info;
859
860 clear_softint(1 << irq);
861 if (call_data->wait) {
862 /* let initiator proceed only after completion */
863 func(info);
864 atomic_inc(&call_data->finished);
865 } else {
866 /* let initiator proceed after getting data */
867 atomic_inc(&call_data->finished);
868 func(info);
869 }
870}
871
bd40791e
DM
872static void tsb_sync(void *info)
873{
6f25f398 874 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
bd40791e
DM
875 struct mm_struct *mm = info;
876
6f25f398
DM
877 /* It is not valid to test "currrent->active_mm == mm" here.
878 *
879 * The value of "current" is not changed atomically with
880 * switch_mm(). But that's OK, we just need to check the
881 * current cpu's trap block PGD physical address.
882 */
883 if (tp->pgd_paddr == __pa(mm->pgd))
bd40791e
DM
884 tsb_context_switch(mm);
885}
886
887void smp_tsb_sync(struct mm_struct *mm)
888{
889 smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
890}
891
1da177e4
LT
892extern unsigned long xcall_flush_tlb_mm;
893extern unsigned long xcall_flush_tlb_pending;
894extern unsigned long xcall_flush_tlb_kernel_range;
1da177e4
LT
895extern unsigned long xcall_report_regs;
896extern unsigned long xcall_receive_signal;
ee29074d 897extern unsigned long xcall_new_mmu_context_version;
1da177e4
LT
898
899#ifdef DCACHE_ALIASING_POSSIBLE
900extern unsigned long xcall_flush_dcache_page_cheetah;
901#endif
902extern unsigned long xcall_flush_dcache_page_spitfire;
903
904#ifdef CONFIG_DEBUG_DCFLUSH
905extern atomic_t dcpage_flushes;
906extern atomic_t dcpage_flushes_xcall;
907#endif
908
909static __inline__ void __local_flush_dcache_page(struct page *page)
910{
911#ifdef DCACHE_ALIASING_POSSIBLE
912 __flush_dcache_page(page_address(page),
913 ((tlb_type == spitfire) &&
914 page_mapping(page) != NULL));
915#else
916 if (page_mapping(page) != NULL &&
917 tlb_type == spitfire)
918 __flush_icache_page(__pa(page_address(page)));
919#endif
920}
921
922void smp_flush_dcache_page_impl(struct page *page, int cpu)
923{
924 cpumask_t mask = cpumask_of_cpu(cpu);
a43fe0e7
DM
925 int this_cpu;
926
927 if (tlb_type == hypervisor)
928 return;
1da177e4
LT
929
930#ifdef CONFIG_DEBUG_DCFLUSH
931 atomic_inc(&dcpage_flushes);
932#endif
a43fe0e7
DM
933
934 this_cpu = get_cpu();
935
1da177e4
LT
936 if (cpu == this_cpu) {
937 __local_flush_dcache_page(page);
938 } else if (cpu_online(cpu)) {
939 void *pg_addr = page_address(page);
940 u64 data0;
941
942 if (tlb_type == spitfire) {
943 data0 =
944 ((u64)&xcall_flush_dcache_page_spitfire);
945 if (page_mapping(page) != NULL)
946 data0 |= ((u64)1 << 32);
947 spitfire_xcall_deliver(data0,
948 __pa(pg_addr),
949 (u64) pg_addr,
950 mask);
a43fe0e7 951 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
952#ifdef DCACHE_ALIASING_POSSIBLE
953 data0 =
954 ((u64)&xcall_flush_dcache_page_cheetah);
955 cheetah_xcall_deliver(data0,
956 __pa(pg_addr),
957 0, mask);
958#endif
959 }
960#ifdef CONFIG_DEBUG_DCFLUSH
961 atomic_inc(&dcpage_flushes_xcall);
962#endif
963 }
964
965 put_cpu();
966}
967
968void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
969{
970 void *pg_addr = page_address(page);
971 cpumask_t mask = cpu_online_map;
972 u64 data0;
a43fe0e7
DM
973 int this_cpu;
974
975 if (tlb_type == hypervisor)
976 return;
977
978 this_cpu = get_cpu();
1da177e4
LT
979
980 cpu_clear(this_cpu, mask);
981
982#ifdef CONFIG_DEBUG_DCFLUSH
983 atomic_inc(&dcpage_flushes);
984#endif
985 if (cpus_empty(mask))
986 goto flush_self;
987 if (tlb_type == spitfire) {
988 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
989 if (page_mapping(page) != NULL)
990 data0 |= ((u64)1 << 32);
991 spitfire_xcall_deliver(data0,
992 __pa(pg_addr),
993 (u64) pg_addr,
994 mask);
a43fe0e7 995 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
996#ifdef DCACHE_ALIASING_POSSIBLE
997 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
998 cheetah_xcall_deliver(data0,
999 __pa(pg_addr),
1000 0, mask);
1001#endif
1002 }
1003#ifdef CONFIG_DEBUG_DCFLUSH
1004 atomic_inc(&dcpage_flushes_xcall);
1005#endif
1006 flush_self:
1007 __local_flush_dcache_page(page);
1008
1009 put_cpu();
1010}
1011
a0663a79
DM
1012static void __smp_receive_signal_mask(cpumask_t mask)
1013{
1014 smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
1015}
1016
1da177e4
LT
1017void smp_receive_signal(int cpu)
1018{
1019 cpumask_t mask = cpumask_of_cpu(cpu);
1020
a0663a79
DM
1021 if (cpu_online(cpu))
1022 __smp_receive_signal_mask(mask);
1da177e4
LT
1023}
1024
1025void smp_receive_signal_client(int irq, struct pt_regs *regs)
ee29074d
DM
1026{
1027 clear_softint(1 << irq);
1028}
1029
1030void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
1da177e4 1031{
a0663a79 1032 struct mm_struct *mm;
ee29074d 1033 unsigned long flags;
a0663a79 1034
1da177e4 1035 clear_softint(1 << irq);
a0663a79
DM
1036
1037 /* See if we need to allocate a new TLB context because
1038 * the version of the one we are using is now out of date.
1039 */
1040 mm = current->active_mm;
ee29074d
DM
1041 if (unlikely(!mm || (mm == &init_mm)))
1042 return;
a0663a79 1043
ee29074d 1044 spin_lock_irqsave(&mm->context.lock, flags);
aac0aadf 1045
ee29074d
DM
1046 if (unlikely(!CTX_VALID(mm->context)))
1047 get_new_mmu_context(mm);
aac0aadf 1048
ee29074d 1049 spin_unlock_irqrestore(&mm->context.lock, flags);
aac0aadf 1050
ee29074d
DM
1051 load_secondary_context(mm);
1052 __flush_tlb_mm(CTX_HWBITS(mm->context),
1053 SECONDARY_CONTEXT);
a0663a79
DM
1054}
1055
1056void smp_new_mmu_context_version(void)
1057{
ee29074d 1058 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1da177e4
LT
1059}
1060
1061void smp_report_regs(void)
1062{
1063 smp_cross_call(&xcall_report_regs, 0, 0, 0);
1064}
1065
1da177e4
LT
1066/* We know that the window frames of the user have been flushed
1067 * to the stack before we get here because all callers of us
1068 * are flush_tlb_*() routines, and these run after flush_cache_*()
1069 * which performs the flushw.
1070 *
1071 * The SMP TLB coherency scheme we use works as follows:
1072 *
1073 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1074 * space has (potentially) executed on, this is the heuristic
1075 * we use to avoid doing cross calls.
1076 *
1077 * Also, for flushing from kswapd and also for clones, we
1078 * use cpu_vm_mask as the list of cpus to make run the TLB.
1079 *
1080 * 2) TLB context numbers are shared globally across all processors
1081 * in the system, this allows us to play several games to avoid
1082 * cross calls.
1083 *
1084 * One invariant is that when a cpu switches to a process, and
1085 * that processes tsk->active_mm->cpu_vm_mask does not have the
1086 * current cpu's bit set, that tlb context is flushed locally.
1087 *
1088 * If the address space is non-shared (ie. mm->count == 1) we avoid
1089 * cross calls when we want to flush the currently running process's
1090 * tlb state. This is done by clearing all cpu bits except the current
1091 * processor's in current->active_mm->cpu_vm_mask and performing the
1092 * flush locally only. This will force any subsequent cpus which run
1093 * this task to flush the context from the local tlb if the process
1094 * migrates to another cpu (again).
1095 *
1096 * 3) For shared address spaces (threads) and swapping we bite the
1097 * bullet for most cases and perform the cross call (but only to
1098 * the cpus listed in cpu_vm_mask).
1099 *
1100 * The performance gain from "optimizing" away the cross call for threads is
1101 * questionable (in theory the big win for threads is the massive sharing of
1102 * address space state across processors).
1103 */
62dbec78
DM
1104
1105/* This currently is only used by the hugetlb arch pre-fault
1106 * hook on UltraSPARC-III+ and later when changing the pagesize
1107 * bits of the context register for an address space.
1108 */
1da177e4
LT
1109void smp_flush_tlb_mm(struct mm_struct *mm)
1110{
62dbec78
DM
1111 u32 ctx = CTX_HWBITS(mm->context);
1112 int cpu = get_cpu();
1da177e4 1113
62dbec78
DM
1114 if (atomic_read(&mm->mm_users) == 1) {
1115 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1116 goto local_flush_and_out;
1117 }
1da177e4 1118
62dbec78
DM
1119 smp_cross_call_masked(&xcall_flush_tlb_mm,
1120 ctx, 0, 0,
1121 mm->cpu_vm_mask);
1da177e4 1122
62dbec78
DM
1123local_flush_and_out:
1124 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1da177e4 1125
62dbec78 1126 put_cpu();
1da177e4
LT
1127}
1128
1129void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1130{
1131 u32 ctx = CTX_HWBITS(mm->context);
1132 int cpu = get_cpu();
1133
dedeb002 1134 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1da177e4 1135 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
dedeb002
HD
1136 else
1137 smp_cross_call_masked(&xcall_flush_tlb_pending,
1138 ctx, nr, (unsigned long) vaddrs,
1139 mm->cpu_vm_mask);
1da177e4 1140
1da177e4
LT
1141 __flush_tlb_pending(ctx, nr, vaddrs);
1142
1143 put_cpu();
1144}
1145
1146void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1147{
1148 start &= PAGE_MASK;
1149 end = PAGE_ALIGN(end);
1150 if (start != end) {
1151 smp_cross_call(&xcall_flush_tlb_kernel_range,
1152 0, start, end);
1153
1154 __flush_tlb_kernel_range(start, end);
1155 }
1156}
1157
1158/* CPU capture. */
1159/* #define CAPTURE_DEBUG */
1160extern unsigned long xcall_capture;
1161
1162static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1163static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1164static unsigned long penguins_are_doing_time;
1165
1166void smp_capture(void)
1167{
1168 int result = atomic_add_ret(1, &smp_capture_depth);
1169
1170 if (result == 1) {
1171 int ncpus = num_online_cpus();
1172
1173#ifdef CAPTURE_DEBUG
1174 printk("CPU[%d]: Sending penguins to jail...",
1175 smp_processor_id());
1176#endif
1177 penguins_are_doing_time = 1;
4f07118f 1178 membar_storestore_loadstore();
1da177e4
LT
1179 atomic_inc(&smp_capture_registry);
1180 smp_cross_call(&xcall_capture, 0, 0, 0);
1181 while (atomic_read(&smp_capture_registry) != ncpus)
4f07118f 1182 rmb();
1da177e4
LT
1183#ifdef CAPTURE_DEBUG
1184 printk("done\n");
1185#endif
1186 }
1187}
1188
1189void smp_release(void)
1190{
1191 if (atomic_dec_and_test(&smp_capture_depth)) {
1192#ifdef CAPTURE_DEBUG
1193 printk("CPU[%d]: Giving pardon to "
1194 "imprisoned penguins\n",
1195 smp_processor_id());
1196#endif
1197 penguins_are_doing_time = 0;
4f07118f 1198 membar_storeload_storestore();
1da177e4
LT
1199 atomic_dec(&smp_capture_registry);
1200 }
1201}
1202
1203/* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1204 * can service tlb flush xcalls...
1205 */
1206extern void prom_world(int);
96c6e0d8 1207
1da177e4
LT
1208void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1209{
1da177e4
LT
1210 clear_softint(1 << irq);
1211
1212 preempt_disable();
1213
1214 __asm__ __volatile__("flushw");
1da177e4
LT
1215 prom_world(1);
1216 atomic_inc(&smp_capture_registry);
4f07118f 1217 membar_storeload_storestore();
1da177e4 1218 while (penguins_are_doing_time)
4f07118f 1219 rmb();
1da177e4
LT
1220 atomic_dec(&smp_capture_registry);
1221 prom_world(0);
1222
1223 preempt_enable();
1224}
1225
1da177e4 1226/* /proc/profile writes can call this, don't __init it please. */
1da177e4
LT
1227int setup_profiling_timer(unsigned int multiplier)
1228{
777a4475 1229 return -EINVAL;
1da177e4
LT
1230}
1231
1232void __init smp_prepare_cpus(unsigned int max_cpus)
1233{
1da177e4
LT
1234}
1235
5cbc3073 1236void __devinit smp_prepare_boot_cpu(void)
7abea921 1237{
7abea921
DM
1238}
1239
5cbc3073 1240void __devinit smp_fill_in_sib_core_maps(void)
1da177e4 1241{
5cbc3073
DM
1242 unsigned int i;
1243
1244 for_each_possible_cpu(i) {
1245 unsigned int j;
1246
1247 if (cpu_data(i).core_id == 0) {
f78eae2e 1248 cpu_set(i, cpu_core_map[i]);
5cbc3073
DM
1249 continue;
1250 }
1251
1252 for_each_possible_cpu(j) {
1253 if (cpu_data(i).core_id ==
1254 cpu_data(j).core_id)
f78eae2e
DM
1255 cpu_set(j, cpu_core_map[i]);
1256 }
1257 }
1258
1259 for_each_possible_cpu(i) {
1260 unsigned int j;
1261
1262 if (cpu_data(i).proc_id == -1) {
1263 cpu_set(i, cpu_sibling_map[i]);
1264 continue;
1265 }
1266
1267 for_each_possible_cpu(j) {
1268 if (cpu_data(i).proc_id ==
1269 cpu_data(j).proc_id)
5cbc3073
DM
1270 cpu_set(j, cpu_sibling_map[i]);
1271 }
1272 }
1da177e4
LT
1273}
1274
b282b6f8 1275int __cpuinit __cpu_up(unsigned int cpu)
1da177e4
LT
1276{
1277 int ret = smp_boot_one_cpu(cpu);
1278
1279 if (!ret) {
1280 cpu_set(cpu, smp_commenced_mask);
1281 while (!cpu_isset(cpu, cpu_online_map))
1282 mb();
1283 if (!cpu_isset(cpu, cpu_online_map)) {
1284 ret = -ENODEV;
1285 } else {
02fead75
DM
1286 /* On SUN4V, writes to %tick and %stick are
1287 * not allowed.
1288 */
1289 if (tlb_type != hypervisor)
1290 smp_synchronize_one_tick(cpu);
1da177e4
LT
1291 }
1292 }
1293 return ret;
1294}
1295
4f0234f4
DM
1296#ifdef CONFIG_HOTPLUG_CPU
1297int __cpu_disable(void)
1298{
1299 printk(KERN_ERR "SMP: __cpu_disable() on cpu %d\n",
1300 smp_processor_id());
1301 return -ENODEV;
1302}
1303
1304void __cpu_die(unsigned int cpu)
1305{
1306 printk(KERN_ERR "SMP: __cpu_die(%u)\n", cpu);
1307}
1308#endif
1309
1da177e4
LT
1310void __init smp_cpus_done(unsigned int max_cpus)
1311{
1da177e4
LT
1312}
1313
1da177e4
LT
1314void smp_send_reschedule(int cpu)
1315{
64c7c8f8 1316 smp_receive_signal(cpu);
1da177e4
LT
1317}
1318
1319/* This is a nop because we capture all other cpus
1320 * anyways when making the PROM active.
1321 */
1322void smp_send_stop(void)
1323{
1324}
1325
d369ddd2
DM
1326unsigned long __per_cpu_base __read_mostly;
1327unsigned long __per_cpu_shift __read_mostly;
1da177e4
LT
1328
1329EXPORT_SYMBOL(__per_cpu_base);
1330EXPORT_SYMBOL(__per_cpu_shift);
1331
5cbc3073 1332void __init real_setup_per_cpu_areas(void)
1da177e4
LT
1333{
1334 unsigned long goal, size, i;
1335 char *ptr;
1da177e4
LT
1336
1337 /* Copy section for each CPU (we discard the original) */
5a089006
DM
1338 goal = PERCPU_ENOUGH_ROOM;
1339
b6e3590f
JF
1340 __per_cpu_shift = PAGE_SHIFT;
1341 for (size = PAGE_SIZE; size < goal; size <<= 1UL)
1da177e4
LT
1342 __per_cpu_shift++;
1343
b6e3590f 1344 ptr = alloc_bootmem_pages(size * NR_CPUS);
1da177e4
LT
1345
1346 __per_cpu_base = ptr - __per_cpu_start;
1347
1da177e4
LT
1348 for (i = 0; i < NR_CPUS; i++, ptr += size)
1349 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
951bc82c
DM
1350
1351 /* Setup %g5 for the boot cpu. */
1352 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1da177e4 1353}