[SPARC64]: Sun4v interrupt handling.
[linux-2.6-block.git] / arch / sparc64 / kernel / smp.c
CommitLineData
1da177e4
LT
1/* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
4 */
5
6#include <linux/module.h>
7#include <linux/kernel.h>
8#include <linux/sched.h>
9#include <linux/mm.h>
10#include <linux/pagemap.h>
11#include <linux/threads.h>
12#include <linux/smp.h>
13#include <linux/smp_lock.h>
14#include <linux/interrupt.h>
15#include <linux/kernel_stat.h>
16#include <linux/delay.h>
17#include <linux/init.h>
18#include <linux/spinlock.h>
19#include <linux/fs.h>
20#include <linux/seq_file.h>
21#include <linux/cache.h>
22#include <linux/jiffies.h>
23#include <linux/profile.h>
24#include <linux/bootmem.h>
25
26#include <asm/head.h>
27#include <asm/ptrace.h>
28#include <asm/atomic.h>
29#include <asm/tlbflush.h>
30#include <asm/mmu_context.h>
31#include <asm/cpudata.h>
32
33#include <asm/irq.h>
34#include <asm/page.h>
35#include <asm/pgtable.h>
36#include <asm/oplib.h>
37#include <asm/uaccess.h>
38#include <asm/timer.h>
39#include <asm/starfire.h>
40#include <asm/tlb.h>
56fb4df6 41#include <asm/sections.h>
1da177e4 42
1da177e4
LT
43extern void calibrate_delay(void);
44
45/* Please don't make this stuff initdata!!! --DaveM */
46static unsigned char boot_cpu_id;
47
c12a8289
AM
48cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
49cpumask_t phys_cpu_present_map __read_mostly = CPU_MASK_NONE;
1da177e4
LT
50static cpumask_t smp_commenced_mask;
51static cpumask_t cpu_callout_map;
52
53void smp_info(struct seq_file *m)
54{
55 int i;
56
57 seq_printf(m, "State:\n");
58 for (i = 0; i < NR_CPUS; i++) {
59 if (cpu_online(i))
60 seq_printf(m,
61 "CPU%d:\t\tonline\n", i);
62 }
63}
64
65void smp_bogo(struct seq_file *m)
66{
67 int i;
68
69 for (i = 0; i < NR_CPUS; i++)
70 if (cpu_online(i))
71 seq_printf(m,
72 "Cpu%dBogo\t: %lu.%02lu\n"
73 "Cpu%dClkTck\t: %016lx\n",
74 i, cpu_data(i).udelay_val / (500000/HZ),
75 (cpu_data(i).udelay_val / (5000/HZ)) % 100,
76 i, cpu_data(i).clock_tick);
77}
78
79void __init smp_store_cpu_info(int id)
80{
81 int cpu_node;
82
83 /* multiplier and counter set by
84 smp_setup_percpu_timer() */
85 cpu_data(id).udelay_val = loops_per_jiffy;
86
87 cpu_find_by_mid(id, &cpu_node);
88 cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
89 "clock-frequency", 0);
90
1da177e4 91 cpu_data(id).idle_volume = 1;
80dc0d6b
DM
92
93 cpu_data(id).dcache_size = prom_getintdefault(cpu_node, "dcache-size",
94 16 * 1024);
95 cpu_data(id).dcache_line_size =
96 prom_getintdefault(cpu_node, "dcache-line-size", 32);
97 cpu_data(id).icache_size = prom_getintdefault(cpu_node, "icache-size",
98 16 * 1024);
99 cpu_data(id).icache_line_size =
100 prom_getintdefault(cpu_node, "icache-line-size", 32);
101 cpu_data(id).ecache_size = prom_getintdefault(cpu_node, "ecache-size",
102 4 * 1024 * 1024);
103 cpu_data(id).ecache_line_size =
104 prom_getintdefault(cpu_node, "ecache-line-size", 64);
105 printk("CPU[%d]: Caches "
106 "D[sz(%d):line_sz(%d)] "
107 "I[sz(%d):line_sz(%d)] "
108 "E[sz(%d):line_sz(%d)]\n",
109 id,
110 cpu_data(id).dcache_size, cpu_data(id).dcache_line_size,
111 cpu_data(id).icache_size, cpu_data(id).icache_line_size,
112 cpu_data(id).ecache_size, cpu_data(id).ecache_line_size);
1da177e4
LT
113}
114
115static void smp_setup_percpu_timer(void);
116
117static volatile unsigned long callin_flag = 0;
118
1da177e4
LT
119void __init smp_callin(void)
120{
121 int cpuid = hard_smp_processor_id();
122
56fb4df6 123 __local_per_cpu_offset = __per_cpu_offset(cpuid);
1da177e4 124
481295f9
DM
125 if (tlb_type == hypervisor)
126 sun4v_register_fault_status();
127
56fb4df6 128 __flush_tlb_all();
1da177e4
LT
129
130 smp_setup_percpu_timer();
131
816242da
DM
132 if (cheetah_pcache_forced_on)
133 cheetah_enable_pcache();
134
1da177e4
LT
135 local_irq_enable();
136
137 calibrate_delay();
138 smp_store_cpu_info(cpuid);
139 callin_flag = 1;
140 __asm__ __volatile__("membar #Sync\n\t"
141 "flush %%g6" : : : "memory");
142
143 /* Clear this or we will die instantly when we
144 * schedule back to this idler...
145 */
db7d9a4e 146 current_thread_info()->new_child = 0;
1da177e4
LT
147
148 /* Attach to the address space of init_task. */
149 atomic_inc(&init_mm.mm_count);
150 current->active_mm = &init_mm;
151
152 while (!cpu_isset(cpuid, smp_commenced_mask))
4f07118f 153 rmb();
1da177e4
LT
154
155 cpu_set(cpuid, cpu_online_map);
5bfb5d69
NP
156
157 /* idle thread is expected to have preempt disabled */
158 preempt_disable();
1da177e4
LT
159}
160
161void cpu_panic(void)
162{
163 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
164 panic("SMP bolixed\n");
165}
166
d369ddd2 167static unsigned long current_tick_offset __read_mostly;
1da177e4
LT
168
169/* This tick register synchronization scheme is taken entirely from
170 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
171 *
172 * The only change I've made is to rework it so that the master
173 * initiates the synchonization instead of the slave. -DaveM
174 */
175
176#define MASTER 0
177#define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
178
179#define NUM_ROUNDS 64 /* magic value */
180#define NUM_ITERS 5 /* likewise */
181
182static DEFINE_SPINLOCK(itc_sync_lock);
183static unsigned long go[SLAVE + 1];
184
185#define DEBUG_TICK_SYNC 0
186
187static inline long get_delta (long *rt, long *master)
188{
189 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
190 unsigned long tcenter, t0, t1, tm;
191 unsigned long i;
192
193 for (i = 0; i < NUM_ITERS; i++) {
194 t0 = tick_ops->get_tick();
195 go[MASTER] = 1;
4f07118f 196 membar_storeload();
1da177e4 197 while (!(tm = go[SLAVE]))
4f07118f 198 rmb();
1da177e4 199 go[SLAVE] = 0;
4f07118f 200 wmb();
1da177e4
LT
201 t1 = tick_ops->get_tick();
202
203 if (t1 - t0 < best_t1 - best_t0)
204 best_t0 = t0, best_t1 = t1, best_tm = tm;
205 }
206
207 *rt = best_t1 - best_t0;
208 *master = best_tm - best_t0;
209
210 /* average best_t0 and best_t1 without overflow: */
211 tcenter = (best_t0/2 + best_t1/2);
212 if (best_t0 % 2 + best_t1 % 2 == 2)
213 tcenter++;
214 return tcenter - best_tm;
215}
216
217void smp_synchronize_tick_client(void)
218{
219 long i, delta, adj, adjust_latency = 0, done = 0;
220 unsigned long flags, rt, master_time_stamp, bound;
221#if DEBUG_TICK_SYNC
222 struct {
223 long rt; /* roundtrip time */
224 long master; /* master's timestamp */
225 long diff; /* difference between midpoint and master's timestamp */
226 long lat; /* estimate of itc adjustment latency */
227 } t[NUM_ROUNDS];
228#endif
229
230 go[MASTER] = 1;
231
232 while (go[MASTER])
4f07118f 233 rmb();
1da177e4
LT
234
235 local_irq_save(flags);
236 {
237 for (i = 0; i < NUM_ROUNDS; i++) {
238 delta = get_delta(&rt, &master_time_stamp);
239 if (delta == 0) {
240 done = 1; /* let's lock on to this... */
241 bound = rt;
242 }
243
244 if (!done) {
245 if (i > 0) {
246 adjust_latency += -delta;
247 adj = -delta + adjust_latency/4;
248 } else
249 adj = -delta;
250
251 tick_ops->add_tick(adj, current_tick_offset);
252 }
253#if DEBUG_TICK_SYNC
254 t[i].rt = rt;
255 t[i].master = master_time_stamp;
256 t[i].diff = delta;
257 t[i].lat = adjust_latency/4;
258#endif
259 }
260 }
261 local_irq_restore(flags);
262
263#if DEBUG_TICK_SYNC
264 for (i = 0; i < NUM_ROUNDS; i++)
265 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
266 t[i].rt, t[i].master, t[i].diff, t[i].lat);
267#endif
268
269 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
270 "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
271}
272
273static void smp_start_sync_tick_client(int cpu);
274
275static void smp_synchronize_one_tick(int cpu)
276{
277 unsigned long flags, i;
278
279 go[MASTER] = 0;
280
281 smp_start_sync_tick_client(cpu);
282
283 /* wait for client to be ready */
284 while (!go[MASTER])
4f07118f 285 rmb();
1da177e4
LT
286
287 /* now let the client proceed into his loop */
288 go[MASTER] = 0;
4f07118f 289 membar_storeload();
1da177e4
LT
290
291 spin_lock_irqsave(&itc_sync_lock, flags);
292 {
293 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
294 while (!go[MASTER])
4f07118f 295 rmb();
1da177e4 296 go[MASTER] = 0;
4f07118f 297 wmb();
1da177e4 298 go[SLAVE] = tick_ops->get_tick();
4f07118f 299 membar_storeload();
1da177e4
LT
300 }
301 }
302 spin_unlock_irqrestore(&itc_sync_lock, flags);
303}
304
305extern unsigned long sparc64_cpu_startup;
306
307/* The OBP cpu startup callback truncates the 3rd arg cookie to
308 * 32-bits (I think) so to be safe we have it read the pointer
309 * contained here so we work on >4GB machines. -DaveM
310 */
311static struct thread_info *cpu_new_thread = NULL;
312
313static int __devinit smp_boot_one_cpu(unsigned int cpu)
314{
315 unsigned long entry =
316 (unsigned long)(&sparc64_cpu_startup);
317 unsigned long cookie =
318 (unsigned long)(&cpu_new_thread);
319 struct task_struct *p;
320 int timeout, ret, cpu_node;
321
322 p = fork_idle(cpu);
323 callin_flag = 0;
f3169641 324 cpu_new_thread = task_thread_info(p);
1da177e4
LT
325 cpu_set(cpu, cpu_callout_map);
326
327 cpu_find_by_mid(cpu, &cpu_node);
328 prom_startcpu(cpu_node, entry, cookie);
329
330 for (timeout = 0; timeout < 5000000; timeout++) {
331 if (callin_flag)
332 break;
333 udelay(100);
334 }
335 if (callin_flag) {
336 ret = 0;
337 } else {
338 printk("Processor %d is stuck.\n", cpu);
339 cpu_clear(cpu, cpu_callout_map);
340 ret = -ENODEV;
341 }
342 cpu_new_thread = NULL;
343
344 return ret;
345}
346
347static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
348{
349 u64 result, target;
350 int stuck, tmp;
351
352 if (this_is_starfire) {
353 /* map to real upaid */
354 cpu = (((cpu & 0x3c) << 1) |
355 ((cpu & 0x40) >> 4) |
356 (cpu & 0x3));
357 }
358
359 target = (cpu << 14) | 0x70;
360again:
361 /* Ok, this is the real Spitfire Errata #54.
362 * One must read back from a UDB internal register
363 * after writes to the UDB interrupt dispatch, but
364 * before the membar Sync for that write.
365 * So we use the high UDB control register (ASI 0x7f,
366 * ADDR 0x20) for the dummy read. -DaveM
367 */
368 tmp = 0x40;
369 __asm__ __volatile__(
370 "wrpr %1, %2, %%pstate\n\t"
371 "stxa %4, [%0] %3\n\t"
372 "stxa %5, [%0+%8] %3\n\t"
373 "add %0, %8, %0\n\t"
374 "stxa %6, [%0+%8] %3\n\t"
375 "membar #Sync\n\t"
376 "stxa %%g0, [%7] %3\n\t"
377 "membar #Sync\n\t"
378 "mov 0x20, %%g1\n\t"
379 "ldxa [%%g1] 0x7f, %%g0\n\t"
380 "membar #Sync"
381 : "=r" (tmp)
382 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
383 "r" (data0), "r" (data1), "r" (data2), "r" (target),
384 "r" (0x10), "0" (tmp)
385 : "g1");
386
387 /* NOTE: PSTATE_IE is still clear. */
388 stuck = 100000;
389 do {
390 __asm__ __volatile__("ldxa [%%g0] %1, %0"
391 : "=r" (result)
392 : "i" (ASI_INTR_DISPATCH_STAT));
393 if (result == 0) {
394 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
395 : : "r" (pstate));
396 return;
397 }
398 stuck -= 1;
399 if (stuck == 0)
400 break;
401 } while (result & 0x1);
402 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
403 : : "r" (pstate));
404 if (stuck == 0) {
405 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
406 smp_processor_id(), result);
407 } else {
408 udelay(2);
409 goto again;
410 }
411}
412
413static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
414{
415 u64 pstate;
416 int i;
417
418 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
419 for_each_cpu_mask(i, mask)
420 spitfire_xcall_helper(data0, data1, data2, pstate, i);
421}
422
423/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
424 * packet, but we have no use for that. However we do take advantage of
425 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
426 */
427static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
428{
429 u64 pstate, ver;
92704a1c 430 int nack_busy_id, is_jbus;
1da177e4
LT
431
432 if (cpus_empty(mask))
433 return;
434
435 /* Unfortunately, someone at Sun had the brilliant idea to make the
436 * busy/nack fields hard-coded by ITID number for this Ultra-III
437 * derivative processor.
438 */
439 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
92704a1c
DM
440 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
441 (ver >> 32) == __SERRANO_ID);
1da177e4
LT
442
443 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
444
445retry:
446 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
447 : : "r" (pstate), "i" (PSTATE_IE));
448
449 /* Setup the dispatch data registers. */
450 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
451 "stxa %1, [%4] %6\n\t"
452 "stxa %2, [%5] %6\n\t"
453 "membar #Sync\n\t"
454 : /* no outputs */
455 : "r" (data0), "r" (data1), "r" (data2),
456 "r" (0x40), "r" (0x50), "r" (0x60),
457 "i" (ASI_INTR_W));
458
459 nack_busy_id = 0;
460 {
461 int i;
462
463 for_each_cpu_mask(i, mask) {
464 u64 target = (i << 14) | 0x70;
465
92704a1c 466 if (!is_jbus)
1da177e4
LT
467 target |= (nack_busy_id << 24);
468 __asm__ __volatile__(
469 "stxa %%g0, [%0] %1\n\t"
470 "membar #Sync\n\t"
471 : /* no outputs */
472 : "r" (target), "i" (ASI_INTR_W));
473 nack_busy_id++;
474 }
475 }
476
477 /* Now, poll for completion. */
478 {
479 u64 dispatch_stat;
480 long stuck;
481
482 stuck = 100000 * nack_busy_id;
483 do {
484 __asm__ __volatile__("ldxa [%%g0] %1, %0"
485 : "=r" (dispatch_stat)
486 : "i" (ASI_INTR_DISPATCH_STAT));
487 if (dispatch_stat == 0UL) {
488 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
489 : : "r" (pstate));
490 return;
491 }
492 if (!--stuck)
493 break;
494 } while (dispatch_stat & 0x5555555555555555UL);
495
496 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
497 : : "r" (pstate));
498
499 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
500 /* Busy bits will not clear, continue instead
501 * of freezing up on this cpu.
502 */
503 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
504 smp_processor_id(), dispatch_stat);
505 } else {
506 int i, this_busy_nack = 0;
507
508 /* Delay some random time with interrupts enabled
509 * to prevent deadlock.
510 */
511 udelay(2 * nack_busy_id);
512
513 /* Clear out the mask bits for cpus which did not
514 * NACK us.
515 */
516 for_each_cpu_mask(i, mask) {
517 u64 check_mask;
518
92704a1c 519 if (is_jbus)
1da177e4
LT
520 check_mask = (0x2UL << (2*i));
521 else
522 check_mask = (0x2UL <<
523 this_busy_nack);
524 if ((dispatch_stat & check_mask) == 0)
525 cpu_clear(i, mask);
526 this_busy_nack += 2;
527 }
528
529 goto retry;
530 }
531 }
532}
533
a43fe0e7
DM
534static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
535{
536 /* XXX implement me */
537}
538
1da177e4
LT
539/* Send cross call to all processors mentioned in MASK
540 * except self.
541 */
542static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
543{
544 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
545 int this_cpu = get_cpu();
546
547 cpus_and(mask, mask, cpu_online_map);
548 cpu_clear(this_cpu, mask);
549
550 if (tlb_type == spitfire)
551 spitfire_xcall_deliver(data0, data1, data2, mask);
a43fe0e7 552 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1da177e4 553 cheetah_xcall_deliver(data0, data1, data2, mask);
a43fe0e7
DM
554 else
555 hypervisor_xcall_deliver(data0, data1, data2, mask);
1da177e4
LT
556 /* NOTE: Caller runs local copy on master. */
557
558 put_cpu();
559}
560
561extern unsigned long xcall_sync_tick;
562
563static void smp_start_sync_tick_client(int cpu)
564{
565 cpumask_t mask = cpumask_of_cpu(cpu);
566
567 smp_cross_call_masked(&xcall_sync_tick,
568 0, 0, 0, mask);
569}
570
571/* Send cross call to all processors except self. */
572#define smp_cross_call(func, ctx, data1, data2) \
573 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
574
575struct call_data_struct {
576 void (*func) (void *info);
577 void *info;
578 atomic_t finished;
579 int wait;
580};
581
582static DEFINE_SPINLOCK(call_lock);
583static struct call_data_struct *call_data;
584
585extern unsigned long xcall_call_function;
586
587/*
588 * You must not call this function with disabled interrupts or from a
589 * hardware interrupt handler or from a bottom half handler.
590 */
bd40791e
DM
591static int smp_call_function_mask(void (*func)(void *info), void *info,
592 int nonatomic, int wait, cpumask_t mask)
1da177e4
LT
593{
594 struct call_data_struct data;
bd40791e 595 int cpus = cpus_weight(mask) - 1;
1da177e4
LT
596 long timeout;
597
598 if (!cpus)
599 return 0;
600
601 /* Can deadlock when called with interrupts disabled */
602 WARN_ON(irqs_disabled());
603
604 data.func = func;
605 data.info = info;
606 atomic_set(&data.finished, 0);
607 data.wait = wait;
608
609 spin_lock(&call_lock);
610
611 call_data = &data;
612
bd40791e 613 smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
1da177e4
LT
614
615 /*
616 * Wait for other cpus to complete function or at
617 * least snap the call data.
618 */
619 timeout = 1000000;
620 while (atomic_read(&data.finished) != cpus) {
621 if (--timeout <= 0)
622 goto out_timeout;
623 barrier();
624 udelay(1);
625 }
626
627 spin_unlock(&call_lock);
628
629 return 0;
630
631out_timeout:
632 spin_unlock(&call_lock);
633 printk("XCALL: Remote cpus not responding, ncpus=%ld finished=%ld\n",
634 (long) num_online_cpus() - 1L,
635 (long) atomic_read(&data.finished));
636 return 0;
637}
638
bd40791e
DM
639int smp_call_function(void (*func)(void *info), void *info,
640 int nonatomic, int wait)
641{
642 return smp_call_function_mask(func, info, nonatomic, wait,
643 cpu_online_map);
644}
645
1da177e4
LT
646void smp_call_function_client(int irq, struct pt_regs *regs)
647{
648 void (*func) (void *info) = call_data->func;
649 void *info = call_data->info;
650
651 clear_softint(1 << irq);
652 if (call_data->wait) {
653 /* let initiator proceed only after completion */
654 func(info);
655 atomic_inc(&call_data->finished);
656 } else {
657 /* let initiator proceed after getting data */
658 atomic_inc(&call_data->finished);
659 func(info);
660 }
661}
662
bd40791e
DM
663static void tsb_sync(void *info)
664{
665 struct mm_struct *mm = info;
666
667 if (current->active_mm == mm)
668 tsb_context_switch(mm);
669}
670
671void smp_tsb_sync(struct mm_struct *mm)
672{
673 smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
674}
675
1da177e4
LT
676extern unsigned long xcall_flush_tlb_mm;
677extern unsigned long xcall_flush_tlb_pending;
678extern unsigned long xcall_flush_tlb_kernel_range;
1da177e4
LT
679extern unsigned long xcall_report_regs;
680extern unsigned long xcall_receive_signal;
681
682#ifdef DCACHE_ALIASING_POSSIBLE
683extern unsigned long xcall_flush_dcache_page_cheetah;
684#endif
685extern unsigned long xcall_flush_dcache_page_spitfire;
686
687#ifdef CONFIG_DEBUG_DCFLUSH
688extern atomic_t dcpage_flushes;
689extern atomic_t dcpage_flushes_xcall;
690#endif
691
692static __inline__ void __local_flush_dcache_page(struct page *page)
693{
694#ifdef DCACHE_ALIASING_POSSIBLE
695 __flush_dcache_page(page_address(page),
696 ((tlb_type == spitfire) &&
697 page_mapping(page) != NULL));
698#else
699 if (page_mapping(page) != NULL &&
700 tlb_type == spitfire)
701 __flush_icache_page(__pa(page_address(page)));
702#endif
703}
704
705void smp_flush_dcache_page_impl(struct page *page, int cpu)
706{
707 cpumask_t mask = cpumask_of_cpu(cpu);
a43fe0e7
DM
708 int this_cpu;
709
710 if (tlb_type == hypervisor)
711 return;
1da177e4
LT
712
713#ifdef CONFIG_DEBUG_DCFLUSH
714 atomic_inc(&dcpage_flushes);
715#endif
a43fe0e7
DM
716
717 this_cpu = get_cpu();
718
1da177e4
LT
719 if (cpu == this_cpu) {
720 __local_flush_dcache_page(page);
721 } else if (cpu_online(cpu)) {
722 void *pg_addr = page_address(page);
723 u64 data0;
724
725 if (tlb_type == spitfire) {
726 data0 =
727 ((u64)&xcall_flush_dcache_page_spitfire);
728 if (page_mapping(page) != NULL)
729 data0 |= ((u64)1 << 32);
730 spitfire_xcall_deliver(data0,
731 __pa(pg_addr),
732 (u64) pg_addr,
733 mask);
a43fe0e7 734 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
735#ifdef DCACHE_ALIASING_POSSIBLE
736 data0 =
737 ((u64)&xcall_flush_dcache_page_cheetah);
738 cheetah_xcall_deliver(data0,
739 __pa(pg_addr),
740 0, mask);
741#endif
742 }
743#ifdef CONFIG_DEBUG_DCFLUSH
744 atomic_inc(&dcpage_flushes_xcall);
745#endif
746 }
747
748 put_cpu();
749}
750
751void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
752{
753 void *pg_addr = page_address(page);
754 cpumask_t mask = cpu_online_map;
755 u64 data0;
a43fe0e7
DM
756 int this_cpu;
757
758 if (tlb_type == hypervisor)
759 return;
760
761 this_cpu = get_cpu();
1da177e4
LT
762
763 cpu_clear(this_cpu, mask);
764
765#ifdef CONFIG_DEBUG_DCFLUSH
766 atomic_inc(&dcpage_flushes);
767#endif
768 if (cpus_empty(mask))
769 goto flush_self;
770 if (tlb_type == spitfire) {
771 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
772 if (page_mapping(page) != NULL)
773 data0 |= ((u64)1 << 32);
774 spitfire_xcall_deliver(data0,
775 __pa(pg_addr),
776 (u64) pg_addr,
777 mask);
a43fe0e7 778 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
779#ifdef DCACHE_ALIASING_POSSIBLE
780 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
781 cheetah_xcall_deliver(data0,
782 __pa(pg_addr),
783 0, mask);
784#endif
785 }
786#ifdef CONFIG_DEBUG_DCFLUSH
787 atomic_inc(&dcpage_flushes_xcall);
788#endif
789 flush_self:
790 __local_flush_dcache_page(page);
791
792 put_cpu();
793}
794
795void smp_receive_signal(int cpu)
796{
797 cpumask_t mask = cpumask_of_cpu(cpu);
798
799 if (cpu_online(cpu)) {
800 u64 data0 = (((u64)&xcall_receive_signal) & 0xffffffff);
801
802 if (tlb_type == spitfire)
803 spitfire_xcall_deliver(data0, 0, 0, mask);
a43fe0e7 804 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1da177e4 805 cheetah_xcall_deliver(data0, 0, 0, mask);
a43fe0e7
DM
806 else if (tlb_type == hypervisor)
807 hypervisor_xcall_deliver(data0, 0, 0, mask);
1da177e4
LT
808 }
809}
810
811void smp_receive_signal_client(int irq, struct pt_regs *regs)
812{
813 /* Just return, rtrap takes care of the rest. */
814 clear_softint(1 << irq);
815}
816
817void smp_report_regs(void)
818{
819 smp_cross_call(&xcall_report_regs, 0, 0, 0);
820}
821
1da177e4
LT
822/* We know that the window frames of the user have been flushed
823 * to the stack before we get here because all callers of us
824 * are flush_tlb_*() routines, and these run after flush_cache_*()
825 * which performs the flushw.
826 *
827 * The SMP TLB coherency scheme we use works as follows:
828 *
829 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
830 * space has (potentially) executed on, this is the heuristic
831 * we use to avoid doing cross calls.
832 *
833 * Also, for flushing from kswapd and also for clones, we
834 * use cpu_vm_mask as the list of cpus to make run the TLB.
835 *
836 * 2) TLB context numbers are shared globally across all processors
837 * in the system, this allows us to play several games to avoid
838 * cross calls.
839 *
840 * One invariant is that when a cpu switches to a process, and
841 * that processes tsk->active_mm->cpu_vm_mask does not have the
842 * current cpu's bit set, that tlb context is flushed locally.
843 *
844 * If the address space is non-shared (ie. mm->count == 1) we avoid
845 * cross calls when we want to flush the currently running process's
846 * tlb state. This is done by clearing all cpu bits except the current
847 * processor's in current->active_mm->cpu_vm_mask and performing the
848 * flush locally only. This will force any subsequent cpus which run
849 * this task to flush the context from the local tlb if the process
850 * migrates to another cpu (again).
851 *
852 * 3) For shared address spaces (threads) and swapping we bite the
853 * bullet for most cases and perform the cross call (but only to
854 * the cpus listed in cpu_vm_mask).
855 *
856 * The performance gain from "optimizing" away the cross call for threads is
857 * questionable (in theory the big win for threads is the massive sharing of
858 * address space state across processors).
859 */
62dbec78
DM
860
861/* This currently is only used by the hugetlb arch pre-fault
862 * hook on UltraSPARC-III+ and later when changing the pagesize
863 * bits of the context register for an address space.
864 */
1da177e4
LT
865void smp_flush_tlb_mm(struct mm_struct *mm)
866{
62dbec78
DM
867 u32 ctx = CTX_HWBITS(mm->context);
868 int cpu = get_cpu();
1da177e4 869
62dbec78
DM
870 if (atomic_read(&mm->mm_users) == 1) {
871 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
872 goto local_flush_and_out;
873 }
1da177e4 874
62dbec78
DM
875 smp_cross_call_masked(&xcall_flush_tlb_mm,
876 ctx, 0, 0,
877 mm->cpu_vm_mask);
1da177e4 878
62dbec78
DM
879local_flush_and_out:
880 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1da177e4 881
62dbec78 882 put_cpu();
1da177e4
LT
883}
884
885void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
886{
887 u32 ctx = CTX_HWBITS(mm->context);
888 int cpu = get_cpu();
889
dedeb002 890 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1da177e4 891 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
dedeb002
HD
892 else
893 smp_cross_call_masked(&xcall_flush_tlb_pending,
894 ctx, nr, (unsigned long) vaddrs,
895 mm->cpu_vm_mask);
1da177e4 896
1da177e4
LT
897 __flush_tlb_pending(ctx, nr, vaddrs);
898
899 put_cpu();
900}
901
902void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
903{
904 start &= PAGE_MASK;
905 end = PAGE_ALIGN(end);
906 if (start != end) {
907 smp_cross_call(&xcall_flush_tlb_kernel_range,
908 0, start, end);
909
910 __flush_tlb_kernel_range(start, end);
911 }
912}
913
914/* CPU capture. */
915/* #define CAPTURE_DEBUG */
916extern unsigned long xcall_capture;
917
918static atomic_t smp_capture_depth = ATOMIC_INIT(0);
919static atomic_t smp_capture_registry = ATOMIC_INIT(0);
920static unsigned long penguins_are_doing_time;
921
922void smp_capture(void)
923{
924 int result = atomic_add_ret(1, &smp_capture_depth);
925
926 if (result == 1) {
927 int ncpus = num_online_cpus();
928
929#ifdef CAPTURE_DEBUG
930 printk("CPU[%d]: Sending penguins to jail...",
931 smp_processor_id());
932#endif
933 penguins_are_doing_time = 1;
4f07118f 934 membar_storestore_loadstore();
1da177e4
LT
935 atomic_inc(&smp_capture_registry);
936 smp_cross_call(&xcall_capture, 0, 0, 0);
937 while (atomic_read(&smp_capture_registry) != ncpus)
4f07118f 938 rmb();
1da177e4
LT
939#ifdef CAPTURE_DEBUG
940 printk("done\n");
941#endif
942 }
943}
944
945void smp_release(void)
946{
947 if (atomic_dec_and_test(&smp_capture_depth)) {
948#ifdef CAPTURE_DEBUG
949 printk("CPU[%d]: Giving pardon to "
950 "imprisoned penguins\n",
951 smp_processor_id());
952#endif
953 penguins_are_doing_time = 0;
4f07118f 954 membar_storeload_storestore();
1da177e4
LT
955 atomic_dec(&smp_capture_registry);
956 }
957}
958
959/* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
960 * can service tlb flush xcalls...
961 */
962extern void prom_world(int);
96c6e0d8 963
1da177e4
LT
964void smp_penguin_jailcell(int irq, struct pt_regs *regs)
965{
1da177e4
LT
966 clear_softint(1 << irq);
967
968 preempt_disable();
969
970 __asm__ __volatile__("flushw");
1da177e4
LT
971 prom_world(1);
972 atomic_inc(&smp_capture_registry);
4f07118f 973 membar_storeload_storestore();
1da177e4 974 while (penguins_are_doing_time)
4f07118f 975 rmb();
1da177e4
LT
976 atomic_dec(&smp_capture_registry);
977 prom_world(0);
978
979 preempt_enable();
980}
981
1da177e4
LT
982#define prof_multiplier(__cpu) cpu_data(__cpu).multiplier
983#define prof_counter(__cpu) cpu_data(__cpu).counter
984
985void smp_percpu_timer_interrupt(struct pt_regs *regs)
986{
987 unsigned long compare, tick, pstate;
988 int cpu = smp_processor_id();
989 int user = user_mode(regs);
990
991 /*
992 * Check for level 14 softint.
993 */
994 {
995 unsigned long tick_mask = tick_ops->softint_mask;
996
997 if (!(get_softint() & tick_mask)) {
998 extern void handler_irq(int, struct pt_regs *);
999
1000 handler_irq(14, regs);
1001 return;
1002 }
1003 clear_softint(tick_mask);
1004 }
1005
1006 do {
1007 profile_tick(CPU_PROFILING, regs);
1008 if (!--prof_counter(cpu)) {
1009 irq_enter();
1010
1011 if (cpu == boot_cpu_id) {
1012 kstat_this_cpu.irqs[0]++;
1013 timer_tick_interrupt(regs);
1014 }
1015
1016 update_process_times(user);
1017
1018 irq_exit();
1019
1020 prof_counter(cpu) = prof_multiplier(cpu);
1021 }
1022
1023 /* Guarantee that the following sequences execute
1024 * uninterrupted.
1025 */
1026 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1027 "wrpr %0, %1, %%pstate"
1028 : "=r" (pstate)
1029 : "i" (PSTATE_IE));
1030
1031 compare = tick_ops->add_compare(current_tick_offset);
1032 tick = tick_ops->get_tick();
1033
1034 /* Restore PSTATE_IE. */
1035 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1036 : /* no outputs */
1037 : "r" (pstate));
1038 } while (time_after_eq(tick, compare));
1039}
1040
1041static void __init smp_setup_percpu_timer(void)
1042{
1043 int cpu = smp_processor_id();
1044 unsigned long pstate;
1045
1046 prof_counter(cpu) = prof_multiplier(cpu) = 1;
1047
1048 /* Guarantee that the following sequences execute
1049 * uninterrupted.
1050 */
1051 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1052 "wrpr %0, %1, %%pstate"
1053 : "=r" (pstate)
1054 : "i" (PSTATE_IE));
1055
1056 tick_ops->init_tick(current_tick_offset);
1057
1058 /* Restore PSTATE_IE. */
1059 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1060 : /* no outputs */
1061 : "r" (pstate));
1062}
1063
1064void __init smp_tick_init(void)
1065{
1066 boot_cpu_id = hard_smp_processor_id();
1067 current_tick_offset = timer_tick_offset;
1068
1069 cpu_set(boot_cpu_id, cpu_online_map);
1070 prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1;
1071}
1072
1073/* /proc/profile writes can call this, don't __init it please. */
1074static DEFINE_SPINLOCK(prof_setup_lock);
1075
1076int setup_profiling_timer(unsigned int multiplier)
1077{
1078 unsigned long flags;
1079 int i;
1080
1081 if ((!multiplier) || (timer_tick_offset / multiplier) < 1000)
1082 return -EINVAL;
1083
1084 spin_lock_irqsave(&prof_setup_lock, flags);
1085 for (i = 0; i < NR_CPUS; i++)
1086 prof_multiplier(i) = multiplier;
1087 current_tick_offset = (timer_tick_offset / multiplier);
1088 spin_unlock_irqrestore(&prof_setup_lock, flags);
1089
1090 return 0;
1091}
1092
7abea921 1093/* Constrain the number of cpus to max_cpus. */
1da177e4
LT
1094void __init smp_prepare_cpus(unsigned int max_cpus)
1095{
1da177e4 1096 if (num_possible_cpus() > max_cpus) {
7abea921
DM
1097 int instance, mid;
1098
1da177e4
LT
1099 instance = 0;
1100 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1101 if (mid != boot_cpu_id) {
1102 cpu_clear(mid, phys_cpu_present_map);
1103 if (num_possible_cpus() <= max_cpus)
1104 break;
1105 }
1106 instance++;
1107 }
1108 }
1109
1110 smp_store_cpu_info(boot_cpu_id);
1111}
1112
7abea921
DM
1113/* Set this up early so that things like the scheduler can init
1114 * properly. We use the same cpu mask for both the present and
1115 * possible cpu map.
1116 */
1117void __init smp_setup_cpu_possible_map(void)
1118{
1119 int instance, mid;
1120
1121 instance = 0;
1122 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1123 if (mid < NR_CPUS)
1124 cpu_set(mid, phys_cpu_present_map);
1125 instance++;
1126 }
1127}
1128
1da177e4
LT
1129void __devinit smp_prepare_boot_cpu(void)
1130{
56fb4df6
DM
1131 int cpu = hard_smp_processor_id();
1132
1133 if (cpu >= NR_CPUS) {
1da177e4
LT
1134 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
1135 prom_halt();
1136 }
1137
56fb4df6
DM
1138 current_thread_info()->cpu = cpu;
1139 __local_per_cpu_offset = __per_cpu_offset(cpu);
1da177e4
LT
1140
1141 cpu_set(smp_processor_id(), cpu_online_map);
1142 cpu_set(smp_processor_id(), phys_cpu_present_map);
1143}
1144
1145int __devinit __cpu_up(unsigned int cpu)
1146{
1147 int ret = smp_boot_one_cpu(cpu);
1148
1149 if (!ret) {
1150 cpu_set(cpu, smp_commenced_mask);
1151 while (!cpu_isset(cpu, cpu_online_map))
1152 mb();
1153 if (!cpu_isset(cpu, cpu_online_map)) {
1154 ret = -ENODEV;
1155 } else {
1156 smp_synchronize_one_tick(cpu);
1157 }
1158 }
1159 return ret;
1160}
1161
1162void __init smp_cpus_done(unsigned int max_cpus)
1163{
1164 unsigned long bogosum = 0;
1165 int i;
1166
1167 for (i = 0; i < NR_CPUS; i++) {
1168 if (cpu_online(i))
1169 bogosum += cpu_data(i).udelay_val;
1170 }
1171 printk("Total of %ld processors activated "
1172 "(%lu.%02lu BogoMIPS).\n",
1173 (long) num_online_cpus(),
1174 bogosum/(500000/HZ),
1175 (bogosum/(5000/HZ))%100);
1176}
1177
1da177e4
LT
1178void smp_send_reschedule(int cpu)
1179{
64c7c8f8 1180 smp_receive_signal(cpu);
1da177e4
LT
1181}
1182
1183/* This is a nop because we capture all other cpus
1184 * anyways when making the PROM active.
1185 */
1186void smp_send_stop(void)
1187{
1188}
1189
d369ddd2
DM
1190unsigned long __per_cpu_base __read_mostly;
1191unsigned long __per_cpu_shift __read_mostly;
1da177e4
LT
1192
1193EXPORT_SYMBOL(__per_cpu_base);
1194EXPORT_SYMBOL(__per_cpu_shift);
1195
1196void __init setup_per_cpu_areas(void)
1197{
1198 unsigned long goal, size, i;
1199 char *ptr;
1da177e4
LT
1200
1201 /* Copy section for each CPU (we discard the original) */
56fb4df6 1202 goal = ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES);
1da177e4
LT
1203#ifdef CONFIG_MODULES
1204 if (goal < PERCPU_ENOUGH_ROOM)
1205 goal = PERCPU_ENOUGH_ROOM;
1206#endif
1207 __per_cpu_shift = 0;
1208 for (size = 1UL; size < goal; size <<= 1UL)
1209 __per_cpu_shift++;
1210
56fb4df6 1211 ptr = alloc_bootmem(size * NR_CPUS);
1da177e4
LT
1212
1213 __per_cpu_base = ptr - __per_cpu_start;
1214
1da177e4
LT
1215 for (i = 0; i < NR_CPUS; i++, ptr += size)
1216 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1da177e4 1217}