sparc32: fix coding-style in srmmu.c
[linux-block.git] / arch / sparc / mm / srmmu.c
CommitLineData
1da177e4
LT
1/*
2 * srmmu.c: SRMMU specific routines for memory management.
3 *
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
10
4a049b03 11#include <linux/seq_file.h>
1da177e4
LT
12#include <linux/spinlock.h>
13#include <linux/bootmem.h>
4a049b03
SR
14#include <linux/pagemap.h>
15#include <linux/vmalloc.h>
1eeb66a1 16#include <linux/kdebug.h>
4a049b03
SR
17#include <linux/kernel.h>
18#include <linux/init.h>
949e8274 19#include <linux/log2.h>
5a0e3ad6 20#include <linux/gfp.h>
4a049b03
SR
21#include <linux/fs.h>
22#include <linux/mm.h>
1da177e4 23
4a049b03
SR
24#include <asm/mmu_context.h>
25#include <asm/cacheflush.h>
26#include <asm/tlbflush.h>
27#include <asm/io-unit.h>
1da177e4
LT
28#include <asm/pgalloc.h>
29#include <asm/pgtable.h>
4a049b03 30#include <asm/bitext.h>
1da177e4 31#include <asm/vaddrs.h>
1da177e4 32#include <asm/cache.h>
4a049b03 33#include <asm/traps.h>
1da177e4 34#include <asm/oplib.h>
4a049b03
SR
35#include <asm/mbus.h>
36#include <asm/page.h>
1da177e4
LT
37#include <asm/asi.h>
38#include <asm/msi.h>
4a049b03
SR
39#include <asm/smp.h>
40#include <asm/io.h>
1da177e4
LT
41
42/* Now the cpu specific definitions. */
4a049b03 43#include <asm/turbosparc.h>
1da177e4 44#include <asm/tsunami.h>
4a049b03 45#include <asm/viking.h>
1da177e4 46#include <asm/swift.h>
75d9e346 47#include <asm/leon.h>
4a049b03
SR
48#include <asm/mxcc.h>
49#include <asm/ross.h>
1da177e4 50
accf032c
SR
51#include "srmmu.h"
52
1da177e4 53enum mbus_module srmmu_modtype;
50215d65 54static unsigned int hwbug_bitmask;
1da177e4
LT
55int vac_cache_size;
56int vac_line_size;
57
a3c5c663
SR
58struct ctx_list *ctx_list_pool;
59struct ctx_list ctx_free;
60struct ctx_list ctx_used;
61
1da177e4
LT
62extern struct resource sparc_iomap;
63
64extern unsigned long last_valid_pfn;
65
50215d65 66static pgd_t *srmmu_swapper_pg_dir;
1da177e4 67
5d83d666
DM
68const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
69
1da177e4 70#ifdef CONFIG_SMP
5d83d666
DM
71const struct sparc32_cachetlb_ops *local_ops;
72
1da177e4
LT
73#define FLUSH_BEGIN(mm)
74#define FLUSH_END
75#else
5d83d666 76#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
1da177e4
LT
77#define FLUSH_END }
78#endif
79
1da177e4
LT
80int flush_page_for_dma_global = 1;
81
1da177e4
LT
82char *srmmu_name;
83
84ctxd_t *srmmu_ctx_table_phys;
50215d65 85static ctxd_t *srmmu_context_table;
1da177e4
LT
86
87int viking_mxcc_present;
88static DEFINE_SPINLOCK(srmmu_context_spinlock);
89
50215d65 90static int is_hypersparc;
1da177e4 91
50215d65 92static int srmmu_cache_pagetables;
1da177e4
LT
93
94/* these will be initialized in srmmu_nocache_calcsize() */
50215d65
AB
95static unsigned long srmmu_nocache_size;
96static unsigned long srmmu_nocache_end;
1da177e4
LT
97
98/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
99#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
100
101/* The context table is a nocache user with the biggest alignment needs. */
102#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
103
104void *srmmu_nocache_pool;
105void *srmmu_nocache_bitmap;
106static struct bit_map srmmu_nocache_map;
107
1da177e4
LT
108static inline int srmmu_pmd_none(pmd_t pmd)
109{ return !(pmd_val(pmd) & 0xFFFFFFF); }
110
1da177e4
LT
111/* XXX should we hyper_flush_whole_icache here - Anton */
112static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
62875cff 113{ set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
1da177e4 114
642ea3ed 115void pmd_set(pmd_t *pmdp, pte_t *ptep)
1da177e4
LT
116{
117 unsigned long ptp; /* Physical address, shifted right by 4 */
118 int i;
119
120 ptp = __nocache_pa((unsigned long) ptep) >> 4;
121 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
62875cff 122 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
1da177e4
LT
123 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
124 }
125}
126
642ea3ed 127void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
1da177e4
LT
128{
129 unsigned long ptp; /* Physical address, shifted right by 4 */
130 int i;
131
132 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
133 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
62875cff 134 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
1da177e4
LT
135 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
136 }
137}
138
605ae962
SR
139/* Find an entry in the third-level page table.. */
140pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
1da177e4
LT
141{
142 void *pte;
143
144 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
145 return (pte_t *) pte +
146 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
147}
148
1da177e4
LT
149/*
150 * size: bytes to allocate in the nocache area.
151 * align: bytes, number to align at.
152 * Returns the virtual address of the allocated area.
153 */
154static unsigned long __srmmu_get_nocache(int size, int align)
155{
156 int offset;
157
158 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
159 printk("Size 0x%x too small for nocache request\n", size);
160 size = SRMMU_NOCACHE_BITMAP_SHIFT;
161 }
162 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
163 printk("Size 0x%x unaligned int nocache request\n", size);
164 size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
165 }
166 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
167
168 offset = bit_map_string_get(&srmmu_nocache_map,
605ae962 169 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
1da177e4
LT
170 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
171 if (offset == -1) {
172 printk("srmmu: out of nocache %d: %d/%d\n",
173 size, (int) srmmu_nocache_size,
174 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
175 return 0;
176 }
177
178 return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
179}
180
642ea3ed 181unsigned long srmmu_get_nocache(int size, int align)
1da177e4
LT
182{
183 unsigned long tmp;
184
185 tmp = __srmmu_get_nocache(size, align);
186
187 if (tmp)
188 memset((void *)tmp, 0, size);
189
190 return tmp;
191}
192
642ea3ed 193void srmmu_free_nocache(unsigned long vaddr, int size)
1da177e4
LT
194{
195 int offset;
196
197 if (vaddr < SRMMU_NOCACHE_VADDR) {
198 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
199 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
200 BUG();
201 }
605ae962 202 if (vaddr + size > srmmu_nocache_end) {
1da177e4
LT
203 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
204 vaddr, srmmu_nocache_end);
205 BUG();
206 }
949e8274 207 if (!is_power_of_2(size)) {
1da177e4
LT
208 printk("Size 0x%x is not a power of 2\n", size);
209 BUG();
210 }
211 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
212 printk("Size 0x%x is too small\n", size);
213 BUG();
214 }
605ae962 215 if (vaddr & (size - 1)) {
1da177e4
LT
216 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
217 BUG();
218 }
219
220 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
221 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
222
223 bit_map_clear(&srmmu_nocache_map, offset, size);
224}
225
50215d65
AB
226static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
227 unsigned long end);
1da177e4
LT
228
229extern unsigned long probe_memory(void); /* in fault.c */
230
231/*
232 * Reserve nocache dynamically proportionally to the amount of
233 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
234 */
32442467 235static void __init srmmu_nocache_calcsize(void)
1da177e4
LT
236{
237 unsigned long sysmemavail = probe_memory() / 1024;
238 int srmmu_nocache_npages;
239
240 srmmu_nocache_npages =
241 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
242
243 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
244 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
245 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
246 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
247
248 /* anything above 1280 blows up */
249 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
250 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
251
252 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
253 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
254}
255
50215d65 256static void __init srmmu_nocache_init(void)
1da177e4
LT
257{
258 unsigned int bitmap_bits;
259 pgd_t *pgd;
260 pmd_t *pmd;
261 pte_t *pte;
262 unsigned long paddr, vaddr;
263 unsigned long pteval;
264
265 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
266
267 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
268 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
269 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
270
271 srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
272 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
273
274 srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
275 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
276 init_mm.pgd = srmmu_swapper_pg_dir;
277
278 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
279
280 paddr = __pa((unsigned long)srmmu_nocache_pool);
281 vaddr = SRMMU_NOCACHE_VADDR;
282
283 while (vaddr < srmmu_nocache_end) {
284 pgd = pgd_offset_k(vaddr);
9701b264
SR
285 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
286 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
1da177e4
LT
287
288 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
289
290 if (srmmu_cache_pagetables)
291 pteval |= SRMMU_CACHE;
292
62875cff 293 set_pte(__nocache_fix(pte), __pte(pteval));
1da177e4
LT
294
295 vaddr += PAGE_SIZE;
296 paddr += PAGE_SIZE;
297 }
298
299 flush_cache_all();
300 flush_tlb_all();
301}
302
642ea3ed 303pgd_t *get_pgd_fast(void)
1da177e4
LT
304{
305 pgd_t *pgd = NULL;
306
307 pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
308 if (pgd) {
309 pgd_t *init = pgd_offset_k(0);
310 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
311 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
312 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
313 }
314
315 return pgd;
316}
317
1da177e4
LT
318/*
319 * Hardware needs alignment to 256 only, but we align to whole page size
320 * to reduce fragmentation problems due to the buddy principle.
321 * XXX Provide actual fragmentation statistics in /proc.
322 *
323 * Alignments up to the page size are the same for physical and virtual
324 * addresses of the nocache area.
325 */
642ea3ed 326pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
1da177e4
LT
327{
328 unsigned long pte;
2f569afd 329 struct page *page;
1da177e4 330
642ea3ed 331 if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
1da177e4 332 return NULL;
605ae962 333 page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
2f569afd
MS
334 pgtable_page_ctor(page);
335 return page;
1da177e4
LT
336}
337
642ea3ed 338void pte_free(struct mm_struct *mm, pgtable_t pte)
1da177e4
LT
339{
340 unsigned long p;
341
2f569afd 342 pgtable_page_dtor(pte);
1da177e4
LT
343 p = (unsigned long)page_address(pte); /* Cached address (for test) */
344 if (p == 0)
345 BUG();
346 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
347 p = (unsigned long) __nocache_va(p); /* Nocached virtual */
348 srmmu_free_nocache(p, PTE_SIZE);
349}
350
351/*
352 */
353static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
354{
355 struct ctx_list *ctxp;
356
357 ctxp = ctx_free.next;
605ae962 358 if (ctxp != &ctx_free) {
1da177e4
LT
359 remove_from_ctx_list(ctxp);
360 add_to_used_ctxlist(ctxp);
361 mm->context = ctxp->ctx_number;
362 ctxp->ctx_mm = mm;
363 return;
364 }
365 ctxp = ctx_used.next;
605ae962 366 if (ctxp->ctx_mm == old_mm)
1da177e4 367 ctxp = ctxp->next;
605ae962 368 if (ctxp == &ctx_used)
1da177e4
LT
369 panic("out of mmu contexts");
370 flush_cache_mm(ctxp->ctx_mm);
371 flush_tlb_mm(ctxp->ctx_mm);
372 remove_from_ctx_list(ctxp);
373 add_to_used_ctxlist(ctxp);
374 ctxp->ctx_mm->context = NO_CONTEXT;
375 ctxp->ctx_mm = mm;
376 mm->context = ctxp->ctx_number;
377}
378
379static inline void free_context(int context)
380{
381 struct ctx_list *ctx_old;
382
383 ctx_old = ctx_list_pool + context;
384 remove_from_ctx_list(ctx_old);
385 add_to_free_ctxlist(ctx_old);
386}
387
388
34d4accf
SR
389void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
390 struct task_struct *tsk)
1da177e4 391{
605ae962 392 if (mm->context == NO_CONTEXT) {
1da177e4
LT
393 spin_lock(&srmmu_context_spinlock);
394 alloc_context(old_mm, mm);
395 spin_unlock(&srmmu_context_spinlock);
396 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
397 }
398
75d9e346
KE
399 if (sparc_cpu_model == sparc_leon)
400 leon_switch_mm();
401
1da177e4
LT
402 if (is_hypersparc)
403 hyper_flush_whole_icache();
404
405 srmmu_set_context(mm->context);
406}
407
408/* Low level IO area allocation on the SRMMU. */
409static inline void srmmu_mapioaddr(unsigned long physaddr,
605ae962 410 unsigned long virt_addr, int bus_type)
1da177e4
LT
411{
412 pgd_t *pgdp;
413 pmd_t *pmdp;
414 pte_t *ptep;
415 unsigned long tmp;
416
417 physaddr &= PAGE_MASK;
418 pgdp = pgd_offset_k(virt_addr);
9701b264
SR
419 pmdp = pmd_offset(pgdp, virt_addr);
420 ptep = pte_offset_kernel(pmdp, virt_addr);
1da177e4
LT
421 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
422
605ae962 423 /* I need to test whether this is consistent over all
1da177e4
LT
424 * sun4m's. The bus_type represents the upper 4 bits of
425 * 36-bit physical address on the I/O space lines...
426 */
427 tmp |= (bus_type << 28);
428 tmp |= SRMMU_PRIV;
429 __flush_page_to_ram(virt_addr);
62875cff 430 set_pte(ptep, __pte(tmp));
1da177e4
LT
431}
432
9701b264
SR
433void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
434 unsigned long xva, unsigned int len)
1da177e4
LT
435{
436 while (len != 0) {
437 len -= PAGE_SIZE;
438 srmmu_mapioaddr(xpa, xva, bus);
439 xva += PAGE_SIZE;
440 xpa += PAGE_SIZE;
441 }
442 flush_tlb_all();
443}
444
445static inline void srmmu_unmapioaddr(unsigned long virt_addr)
446{
447 pgd_t *pgdp;
448 pmd_t *pmdp;
449 pte_t *ptep;
450
451 pgdp = pgd_offset_k(virt_addr);
9701b264
SR
452 pmdp = pmd_offset(pgdp, virt_addr);
453 ptep = pte_offset_kernel(pmdp, virt_addr);
1da177e4
LT
454
455 /* No need to flush uncacheable page. */
a46d6056 456 __pte_clear(ptep);
1da177e4
LT
457}
458
9701b264 459void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
1da177e4
LT
460{
461 while (len != 0) {
462 len -= PAGE_SIZE;
463 srmmu_unmapioaddr(virt_addr);
464 virt_addr += PAGE_SIZE;
465 }
466 flush_tlb_all();
467}
468
1da177e4
LT
469/* tsunami.S */
470extern void tsunami_flush_cache_all(void);
471extern void tsunami_flush_cache_mm(struct mm_struct *mm);
472extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
473extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
474extern void tsunami_flush_page_to_ram(unsigned long page);
475extern void tsunami_flush_page_for_dma(unsigned long page);
476extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
477extern void tsunami_flush_tlb_all(void);
478extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
479extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
480extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
481extern void tsunami_setup_blockops(void);
482
1da177e4
LT
483/* swift.S */
484extern void swift_flush_cache_all(void);
485extern void swift_flush_cache_mm(struct mm_struct *mm);
486extern void swift_flush_cache_range(struct vm_area_struct *vma,
487 unsigned long start, unsigned long end);
488extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
489extern void swift_flush_page_to_ram(unsigned long page);
490extern void swift_flush_page_for_dma(unsigned long page);
491extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
492extern void swift_flush_tlb_all(void);
493extern void swift_flush_tlb_mm(struct mm_struct *mm);
494extern void swift_flush_tlb_range(struct vm_area_struct *vma,
495 unsigned long start, unsigned long end);
496extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
497
498#if 0 /* P3: deadwood to debug precise flushes on Swift. */
499void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
500{
501 int cctx, ctx1;
502
503 page &= PAGE_MASK;
504 if ((ctx1 = vma->vm_mm->context) != -1) {
505 cctx = srmmu_get_context();
506/* Is context # ever different from current context? P3 */
507 if (cctx != ctx1) {
508 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
509 srmmu_set_context(ctx1);
510 swift_flush_page(page);
511 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
512 "r" (page), "i" (ASI_M_FLUSH_PROBE));
513 srmmu_set_context(cctx);
514 } else {
515 /* Rm. prot. bits from virt. c. */
516 /* swift_flush_cache_all(); */
517 /* swift_flush_cache_page(vma, page); */
518 swift_flush_page(page);
519
520 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
521 "r" (page), "i" (ASI_M_FLUSH_PROBE));
522 /* same as above: srmmu_flush_tlb_page() */
523 }
524 }
525}
526#endif
527
528/*
529 * The following are all MBUS based SRMMU modules, and therefore could
530 * be found in a multiprocessor configuration. On the whole, these
531 * chips seems to be much more touchy about DVMA and page tables
532 * with respect to cache coherency.
533 */
534
1da177e4
LT
535/* viking.S */
536extern void viking_flush_cache_all(void);
537extern void viking_flush_cache_mm(struct mm_struct *mm);
538extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
539 unsigned long end);
540extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
541extern void viking_flush_page_to_ram(unsigned long page);
542extern void viking_flush_page_for_dma(unsigned long page);
543extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
544extern void viking_flush_page(unsigned long page);
545extern void viking_mxcc_flush_page(unsigned long page);
546extern void viking_flush_tlb_all(void);
547extern void viking_flush_tlb_mm(struct mm_struct *mm);
548extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
549 unsigned long end);
550extern void viking_flush_tlb_page(struct vm_area_struct *vma,
551 unsigned long page);
552extern void sun4dsmp_flush_tlb_all(void);
553extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
554extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
555 unsigned long end);
556extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
557 unsigned long page);
558
559/* hypersparc.S */
560extern void hypersparc_flush_cache_all(void);
561extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
562extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
563extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
564extern void hypersparc_flush_page_to_ram(unsigned long page);
565extern void hypersparc_flush_page_for_dma(unsigned long page);
566extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
567extern void hypersparc_flush_tlb_all(void);
568extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
569extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
570extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
571extern void hypersparc_setup_blockops(void);
572
573/*
574 * NOTE: All of this startup code assumes the low 16mb (approx.) of
575 * kernel mappings are done with one single contiguous chunk of
576 * ram. On small ram machines (classics mainly) we only get
577 * around 8mb mapped for us.
578 */
579
50215d65 580static void __init early_pgtable_allocfail(char *type)
1da177e4
LT
581{
582 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
583 prom_halt();
584}
585
50215d65
AB
586static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
587 unsigned long end)
1da177e4
LT
588{
589 pgd_t *pgdp;
590 pmd_t *pmdp;
591 pte_t *ptep;
592
605ae962 593 while (start < end) {
1da177e4 594 pgdp = pgd_offset_k(start);
7d9fa4aa 595 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1da177e4
LT
596 pmdp = (pmd_t *) __srmmu_get_nocache(
597 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
598 if (pmdp == NULL)
599 early_pgtable_allocfail("pmd");
600 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
642ea3ed 601 pgd_set(__nocache_fix(pgdp), pmdp);
1da177e4 602 }
9701b264 603 pmdp = pmd_offset(__nocache_fix(pgdp), start);
605ae962 604 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1da177e4
LT
605 ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
606 if (ptep == NULL)
607 early_pgtable_allocfail("pte");
608 memset(__nocache_fix(ptep), 0, PTE_SIZE);
642ea3ed 609 pmd_set(__nocache_fix(pmdp), ptep);
1da177e4
LT
610 }
611 if (start > (0xffffffffUL - PMD_SIZE))
612 break;
613 start = (start + PMD_SIZE) & PMD_MASK;
614 }
615}
616
50215d65
AB
617static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
618 unsigned long end)
1da177e4
LT
619{
620 pgd_t *pgdp;
621 pmd_t *pmdp;
622 pte_t *ptep;
623
605ae962 624 while (start < end) {
1da177e4 625 pgdp = pgd_offset_k(start);
7d9fa4aa 626 if (pgd_none(*pgdp)) {
1da177e4
LT
627 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
628 if (pmdp == NULL)
629 early_pgtable_allocfail("pmd");
630 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
642ea3ed 631 pgd_set(pgdp, pmdp);
1da177e4 632 }
9701b264 633 pmdp = pmd_offset(pgdp, start);
605ae962 634 if (srmmu_pmd_none(*pmdp)) {
1da177e4
LT
635 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
636 PTE_SIZE);
637 if (ptep == NULL)
638 early_pgtable_allocfail("pte");
639 memset(ptep, 0, PTE_SIZE);
642ea3ed 640 pmd_set(pmdp, ptep);
1da177e4
LT
641 }
642 if (start > (0xffffffffUL - PMD_SIZE))
643 break;
644 start = (start + PMD_SIZE) & PMD_MASK;
645 }
646}
647
805918f8
SR
648/* These flush types are not available on all chips... */
649static inline unsigned long srmmu_probe(unsigned long vaddr)
650{
651 unsigned long retval;
652
653 if (sparc_cpu_model != sparc_leon) {
654
655 vaddr &= PAGE_MASK;
656 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
657 "=r" (retval) :
658 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
659 } else {
660 retval = leon_swprobe(vaddr, 0);
661 }
662 return retval;
663}
664
1da177e4
LT
665/*
666 * This is much cleaner than poking around physical address space
667 * looking at the prom's page table directly which is what most
668 * other OS's do. Yuck... this is much better.
669 */
50215d65
AB
670static void __init srmmu_inherit_prom_mappings(unsigned long start,
671 unsigned long end)
1da177e4
LT
672{
673 pgd_t *pgdp;
674 pmd_t *pmdp;
675 pte_t *ptep;
676 int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
677 unsigned long prompte;
678
605ae962 679 while (start <= end) {
1da177e4
LT
680 if (start == 0)
681 break; /* probably wrap around */
605ae962 682 if (start == 0xfef00000)
1da177e4 683 start = KADB_DEBUGGER_BEGVM;
605ae962 684 if (!(prompte = srmmu_probe(start))) {
1da177e4
LT
685 start += PAGE_SIZE;
686 continue;
687 }
605ae962 688
1da177e4
LT
689 /* A red snapper, see what it really is. */
690 what = 0;
605ae962
SR
691
692 if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
693 if (srmmu_probe((start - PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
1da177e4
LT
694 what = 1;
695 }
605ae962
SR
696
697 if (!(start & ~(SRMMU_PGDIR_MASK))) {
698 if (srmmu_probe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1da177e4
LT
699 prompte)
700 what = 2;
701 }
605ae962 702
1da177e4 703 pgdp = pgd_offset_k(start);
605ae962 704 if (what == 2) {
1da177e4
LT
705 *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
706 start += SRMMU_PGDIR_SIZE;
707 continue;
708 }
7d9fa4aa 709 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1da177e4
LT
710 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
711 if (pmdp == NULL)
712 early_pgtable_allocfail("pmd");
713 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
642ea3ed 714 pgd_set(__nocache_fix(pgdp), pmdp);
1da177e4 715 }
9701b264 716 pmdp = pmd_offset(__nocache_fix(pgdp), start);
605ae962
SR
717 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
718 ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1da177e4
LT
719 if (ptep == NULL)
720 early_pgtable_allocfail("pte");
721 memset(__nocache_fix(ptep), 0, PTE_SIZE);
642ea3ed 722 pmd_set(__nocache_fix(pmdp), ptep);
1da177e4 723 }
605ae962
SR
724 if (what == 1) {
725 /* We bend the rule where all 16 PTPs in a pmd_t point
1da177e4
LT
726 * inside the same PTE page, and we leak a perfectly
727 * good hardware PTE piece. Alternatives seem worse.
728 */
729 unsigned int x; /* Index of HW PMD in soft cluster */
730 x = (start >> PMD_SHIFT) & 15;
731 *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
732 start += SRMMU_REAL_PMD_SIZE;
733 continue;
734 }
9701b264 735 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
1da177e4
LT
736 *(pte_t *)__nocache_fix(ptep) = __pte(prompte);
737 start += PAGE_SIZE;
738 }
739}
740
741#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
742
743/* Create a third-level SRMMU 16MB page mapping. */
744static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
745{
746 pgd_t *pgdp = pgd_offset_k(vaddr);
747 unsigned long big_pte;
748
749 big_pte = KERNEL_PTE(phys_base >> 4);
750 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
751}
752
753/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
754static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
755{
756 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
757 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
758 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
759 /* Map "low" memory only */
760 const unsigned long min_vaddr = PAGE_OFFSET;
761 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
762
763 if (vstart < min_vaddr || vstart >= max_vaddr)
764 return vstart;
605ae962 765
1da177e4
LT
766 if (vend > max_vaddr || vend < min_vaddr)
767 vend = max_vaddr;
768
605ae962 769 while (vstart < vend) {
1da177e4
LT
770 do_large_mapping(vstart, pstart);
771 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
772 }
773 return vstart;
774}
775
32442467 776static void __init map_kernel(void)
1da177e4
LT
777{
778 int i;
779
780 if (phys_base > 0) {
781 do_large_mapping(PAGE_OFFSET, phys_base);
782 }
783
784 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
785 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
786 }
1da177e4
LT
787}
788
789/* Paging initialization on the Sparc Reference MMU. */
790extern void sparc_context_init(int);
791
409832f5 792void (*poke_srmmu)(void) __cpuinitdata = NULL;
1da177e4
LT
793
794extern unsigned long bootmem_init(unsigned long *pages_avail);
795
796void __init srmmu_paging_init(void)
797{
8d125562
AS
798 int i;
799 phandle cpunode;
1da177e4
LT
800 char node_str[128];
801 pgd_t *pgd;
802 pmd_t *pmd;
803 pte_t *pte;
804 unsigned long pages_avail;
805
806 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
807
808 if (sparc_cpu_model == sun4d)
809 num_contexts = 65536; /* We know it is Viking */
810 else {
811 /* Find the number of contexts on the srmmu. */
812 cpunode = prom_getchild(prom_root_node);
813 num_contexts = 0;
605ae962 814 while (cpunode != 0) {
1da177e4 815 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
605ae962 816 if (!strcmp(node_str, "cpu")) {
1da177e4
LT
817 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
818 break;
819 }
820 cpunode = prom_getsibling(cpunode);
821 }
822 }
823
605ae962 824 if (!num_contexts) {
1da177e4
LT
825 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
826 prom_halt();
827 }
828
829 pages_avail = 0;
830 last_valid_pfn = bootmem_init(&pages_avail);
831
832 srmmu_nocache_calcsize();
833 srmmu_nocache_init();
605ae962 834 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM-PAGE_SIZE));
1da177e4
LT
835 map_kernel();
836
837 /* ctx table has to be physically aligned to its size */
838 srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
839 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
840
605ae962 841 for (i = 0; i < num_contexts; i++)
1da177e4
LT
842 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
843
844 flush_cache_all();
845 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
a54123e2
BB
846#ifdef CONFIG_SMP
847 /* Stop from hanging here... */
5d83d666 848 local_ops->tlb_all();
a54123e2 849#else
1da177e4 850 flush_tlb_all();
a54123e2 851#endif
1da177e4
LT
852 poke_srmmu();
853
1da177e4
LT
854 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
855 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1da177e4
LT
856
857 srmmu_allocate_ptable_skeleton(
858 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
859 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
860
861 pgd = pgd_offset_k(PKMAP_BASE);
9701b264
SR
862 pmd = pmd_offset(pgd, PKMAP_BASE);
863 pte = pte_offset_kernel(pmd, PKMAP_BASE);
1da177e4
LT
864 pkmap_page_table = pte;
865
866 flush_cache_all();
867 flush_tlb_all();
868
869 sparc_context_init(num_contexts);
870
871 kmap_init();
872
873 {
874 unsigned long zones_size[MAX_NR_ZONES];
875 unsigned long zholes_size[MAX_NR_ZONES];
876 unsigned long npages;
877 int znum;
878
879 for (znum = 0; znum < MAX_NR_ZONES; znum++)
880 zones_size[znum] = zholes_size[znum] = 0;
881
882 npages = max_low_pfn - pfn_base;
883
884 zones_size[ZONE_DMA] = npages;
885 zholes_size[ZONE_DMA] = npages - pages_avail;
886
887 npages = highend_pfn - max_low_pfn;
888 zones_size[ZONE_HIGHMEM] = npages;
889 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
890
9109fb7b 891 free_area_init_node(0, zones_size, pfn_base, zholes_size);
1da177e4
LT
892 }
893}
894
9701b264 895void mmu_info(struct seq_file *m)
1da177e4 896{
605ae962 897 seq_printf(m,
1da177e4
LT
898 "MMU type\t: %s\n"
899 "contexts\t: %d\n"
900 "nocache total\t: %ld\n"
901 "nocache used\t: %d\n",
902 srmmu_name,
903 num_contexts,
904 srmmu_nocache_size,
905 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
906}
907
b796c6da 908void destroy_context(struct mm_struct *mm)
1da177e4
LT
909{
910
605ae962 911 if (mm->context != NO_CONTEXT) {
1da177e4
LT
912 flush_cache_mm(mm);
913 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
914 flush_tlb_mm(mm);
915 spin_lock(&srmmu_context_spinlock);
916 free_context(mm->context);
917 spin_unlock(&srmmu_context_spinlock);
918 mm->context = NO_CONTEXT;
919 }
920}
921
922/* Init various srmmu chip types. */
923static void __init srmmu_is_bad(void)
924{
925 prom_printf("Could not determine SRMMU chip type.\n");
926 prom_halt();
927}
928
929static void __init init_vac_layout(void)
930{
8d125562
AS
931 phandle nd;
932 int cache_lines;
1da177e4
LT
933 char node_str[128];
934#ifdef CONFIG_SMP
935 int cpu = 0;
936 unsigned long max_size = 0;
937 unsigned long min_line_size = 0x10000000;
938#endif
939
940 nd = prom_getchild(prom_root_node);
605ae962 941 while ((nd = prom_getsibling(nd)) != 0) {
1da177e4 942 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
605ae962 943 if (!strcmp(node_str, "cpu")) {
1da177e4
LT
944 vac_line_size = prom_getint(nd, "cache-line-size");
945 if (vac_line_size == -1) {
605ae962 946 prom_printf("can't determine cache-line-size, halting.\n");
1da177e4
LT
947 prom_halt();
948 }
949 cache_lines = prom_getint(nd, "cache-nlines");
950 if (cache_lines == -1) {
951 prom_printf("can't determine cache-nlines, halting.\n");
952 prom_halt();
953 }
954
955 vac_cache_size = cache_lines * vac_line_size;
956#ifdef CONFIG_SMP
605ae962 957 if (vac_cache_size > max_size)
1da177e4 958 max_size = vac_cache_size;
605ae962 959 if (vac_line_size < min_line_size)
1da177e4 960 min_line_size = vac_line_size;
a54123e2 961 //FIXME: cpus not contiguous!!
1da177e4 962 cpu++;
ec7c14bd 963 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1da177e4
LT
964 break;
965#else
966 break;
967#endif
968 }
969 }
605ae962 970 if (nd == 0) {
1da177e4
LT
971 prom_printf("No CPU nodes found, halting.\n");
972 prom_halt();
973 }
974#ifdef CONFIG_SMP
975 vac_cache_size = max_size;
976 vac_line_size = min_line_size;
977#endif
978 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
979 (int)vac_cache_size, (int)vac_line_size);
980}
981
409832f5 982static void __cpuinit poke_hypersparc(void)
1da177e4
LT
983{
984 volatile unsigned long clear;
985 unsigned long mreg = srmmu_get_mmureg();
986
987 hyper_flush_unconditional_combined();
988
989 mreg &= ~(HYPERSPARC_CWENABLE);
990 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
991 mreg |= (HYPERSPARC_CMODE);
992
993 srmmu_set_mmureg(mreg);
994
995#if 0 /* XXX I think this is bad news... -DaveM */
996 hyper_clear_all_tags();
997#endif
998
999 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1000 hyper_flush_whole_icache();
1001 clear = srmmu_get_faddr();
1002 clear = srmmu_get_fstatus();
1003}
1004
5d83d666
DM
1005static const struct sparc32_cachetlb_ops hypersparc_ops = {
1006 .cache_all = hypersparc_flush_cache_all,
1007 .cache_mm = hypersparc_flush_cache_mm,
1008 .cache_page = hypersparc_flush_cache_page,
1009 .cache_range = hypersparc_flush_cache_range,
1010 .tlb_all = hypersparc_flush_tlb_all,
1011 .tlb_mm = hypersparc_flush_tlb_mm,
1012 .tlb_page = hypersparc_flush_tlb_page,
1013 .tlb_range = hypersparc_flush_tlb_range,
1014 .page_to_ram = hypersparc_flush_page_to_ram,
1015 .sig_insns = hypersparc_flush_sig_insns,
1016 .page_for_dma = hypersparc_flush_page_for_dma,
1017};
1018
1da177e4
LT
1019static void __init init_hypersparc(void)
1020{
1021 srmmu_name = "ROSS HyperSparc";
1022 srmmu_modtype = HyperSparc;
1023
1024 init_vac_layout();
1025
1026 is_hypersparc = 1;
5d83d666 1027 sparc32_cachetlb_ops = &hypersparc_ops;
1da177e4
LT
1028
1029 poke_srmmu = poke_hypersparc;
1030
1031 hypersparc_setup_blockops();
1032}
1033
409832f5 1034static void __cpuinit poke_swift(void)
1da177e4
LT
1035{
1036 unsigned long mreg;
1037
1038 /* Clear any crap from the cache or else... */
1039 swift_flush_cache_all();
1040
1041 /* Enable I & D caches */
1042 mreg = srmmu_get_mmureg();
1043 mreg |= (SWIFT_IE | SWIFT_DE);
1044 /*
1045 * The Swift branch folding logic is completely broken. At
1046 * trap time, if things are just right, if can mistakenly
1047 * think that a trap is coming from kernel mode when in fact
1048 * it is coming from user mode (it mis-executes the branch in
1049 * the trap code). So you see things like crashme completely
1050 * hosing your machine which is completely unacceptable. Turn
1051 * this shit off... nice job Fujitsu.
1052 */
1053 mreg &= ~(SWIFT_BF);
1054 srmmu_set_mmureg(mreg);
1055}
1056
5d83d666
DM
1057static const struct sparc32_cachetlb_ops swift_ops = {
1058 .cache_all = swift_flush_cache_all,
1059 .cache_mm = swift_flush_cache_mm,
1060 .cache_page = swift_flush_cache_page,
1061 .cache_range = swift_flush_cache_range,
1062 .tlb_all = swift_flush_tlb_all,
1063 .tlb_mm = swift_flush_tlb_mm,
1064 .tlb_page = swift_flush_tlb_page,
1065 .tlb_range = swift_flush_tlb_range,
1066 .page_to_ram = swift_flush_page_to_ram,
1067 .sig_insns = swift_flush_sig_insns,
1068 .page_for_dma = swift_flush_page_for_dma,
1069};
1070
1da177e4
LT
1071#define SWIFT_MASKID_ADDR 0x10003018
1072static void __init init_swift(void)
1073{
1074 unsigned long swift_rev;
1075
1076 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1077 "srl %0, 0x18, %0\n\t" :
1078 "=r" (swift_rev) :
1079 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1080 srmmu_name = "Fujitsu Swift";
605ae962 1081 switch (swift_rev) {
1da177e4
LT
1082 case 0x11:
1083 case 0x20:
1084 case 0x23:
1085 case 0x30:
1086 srmmu_modtype = Swift_lots_o_bugs;
1087 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1088 /*
1089 * Gee george, I wonder why Sun is so hush hush about
1090 * this hardware bug... really braindamage stuff going
1091 * on here. However I think we can find a way to avoid
1092 * all of the workaround overhead under Linux. Basically,
1093 * any page fault can cause kernel pages to become user
1094 * accessible (the mmu gets confused and clears some of
1095 * the ACC bits in kernel ptes). Aha, sounds pretty
1096 * horrible eh? But wait, after extensive testing it appears
1097 * that if you use pgd_t level large kernel pte's (like the
1098 * 4MB pages on the Pentium) the bug does not get tripped
1099 * at all. This avoids almost all of the major overhead.
1100 * Welcome to a world where your vendor tells you to,
1101 * "apply this kernel patch" instead of "sorry for the
1102 * broken hardware, send it back and we'll give you
1103 * properly functioning parts"
1104 */
1105 break;
1106 case 0x25:
1107 case 0x31:
1108 srmmu_modtype = Swift_bad_c;
1109 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1110 /*
1111 * You see Sun allude to this hardware bug but never
1112 * admit things directly, they'll say things like,
1113 * "the Swift chip cache problems" or similar.
1114 */
1115 break;
1116 default:
1117 srmmu_modtype = Swift_ok;
1118 break;
6cb79b3f 1119 }
1da177e4 1120
5d83d666 1121 sparc32_cachetlb_ops = &swift_ops;
1da177e4
LT
1122 flush_page_for_dma_global = 0;
1123
1124 /*
1125 * Are you now convinced that the Swift is one of the
1126 * biggest VLSI abortions of all time? Bravo Fujitsu!
1127 * Fujitsu, the !#?!%$'d up processor people. I bet if
1128 * you examined the microcode of the Swift you'd find
1129 * XXX's all over the place.
1130 */
1131 poke_srmmu = poke_swift;
1132}
1133
1134static void turbosparc_flush_cache_all(void)
1135{
1136 flush_user_windows();
1137 turbosparc_idflash_clear();
1138}
1139
1140static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1141{
1142 FLUSH_BEGIN(mm)
1143 flush_user_windows();
1144 turbosparc_idflash_clear();
1145 FLUSH_END
1146}
1147
1148static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1149{
1150 FLUSH_BEGIN(vma->vm_mm)
1151 flush_user_windows();
1152 turbosparc_idflash_clear();
1153 FLUSH_END
1154}
1155
1156static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1157{
1158 FLUSH_BEGIN(vma->vm_mm)
1159 flush_user_windows();
1160 if (vma->vm_flags & VM_EXEC)
1161 turbosparc_flush_icache();
1162 turbosparc_flush_dcache();
1163 FLUSH_END
1164}
1165
1166/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1167static void turbosparc_flush_page_to_ram(unsigned long page)
1168{
1169#ifdef TURBOSPARC_WRITEBACK
1170 volatile unsigned long clear;
1171
805918f8 1172 if (srmmu_probe(page))
1da177e4
LT
1173 turbosparc_flush_page_cache(page);
1174 clear = srmmu_get_fstatus();
1175#endif
1176}
1177
1178static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1179{
1180}
1181
1182static void turbosparc_flush_page_for_dma(unsigned long page)
1183{
1184 turbosparc_flush_dcache();
1185}
1186
1187static void turbosparc_flush_tlb_all(void)
1188{
1189 srmmu_flush_whole_tlb();
1190}
1191
1192static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1193{
1194 FLUSH_BEGIN(mm)
1195 srmmu_flush_whole_tlb();
1196 FLUSH_END
1197}
1198
1199static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1200{
1201 FLUSH_BEGIN(vma->vm_mm)
1202 srmmu_flush_whole_tlb();
1203 FLUSH_END
1204}
1205
1206static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1207{
1208 FLUSH_BEGIN(vma->vm_mm)
1209 srmmu_flush_whole_tlb();
1210 FLUSH_END
1211}
1212
1213
409832f5 1214static void __cpuinit poke_turbosparc(void)
1da177e4
LT
1215{
1216 unsigned long mreg = srmmu_get_mmureg();
1217 unsigned long ccreg;
1218
1219 /* Clear any crap from the cache or else... */
1220 turbosparc_flush_cache_all();
605ae962
SR
1221 /* Temporarily disable I & D caches */
1222 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1da177e4
LT
1223 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1224 srmmu_set_mmureg(mreg);
605ae962 1225
1da177e4
LT
1226 ccreg = turbosparc_get_ccreg();
1227
1228#ifdef TURBOSPARC_WRITEBACK
1229 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1230 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1231 /* Write-back D-cache, emulate VLSI
1232 * abortion number three, not number one */
1233#else
1234 /* For now let's play safe, optimize later */
1235 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1236 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1237 ccreg &= ~(TURBOSPARC_uS2);
1238 /* Emulate VLSI abortion number three, not number one */
1239#endif
1240
1241 switch (ccreg & 7) {
1242 case 0: /* No SE cache */
1243 case 7: /* Test mode */
1244 break;
1245 default:
1246 ccreg |= (TURBOSPARC_SCENABLE);
1247 }
605ae962 1248 turbosparc_set_ccreg(ccreg);
1da177e4
LT
1249
1250 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1251 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1252 srmmu_set_mmureg(mreg);
1253}
1254
5d83d666
DM
1255static const struct sparc32_cachetlb_ops turbosparc_ops = {
1256 .cache_all = turbosparc_flush_cache_all,
1257 .cache_mm = turbosparc_flush_cache_mm,
1258 .cache_page = turbosparc_flush_cache_page,
1259 .cache_range = turbosparc_flush_cache_range,
1260 .tlb_all = turbosparc_flush_tlb_all,
1261 .tlb_mm = turbosparc_flush_tlb_mm,
1262 .tlb_page = turbosparc_flush_tlb_page,
1263 .tlb_range = turbosparc_flush_tlb_range,
1264 .page_to_ram = turbosparc_flush_page_to_ram,
1265 .sig_insns = turbosparc_flush_sig_insns,
1266 .page_for_dma = turbosparc_flush_page_for_dma,
1267};
1268
1da177e4
LT
1269static void __init init_turbosparc(void)
1270{
1271 srmmu_name = "Fujitsu TurboSparc";
1272 srmmu_modtype = TurboSparc;
5d83d666 1273 sparc32_cachetlb_ops = &turbosparc_ops;
1da177e4
LT
1274 poke_srmmu = poke_turbosparc;
1275}
1276
409832f5 1277static void __cpuinit poke_tsunami(void)
1da177e4
LT
1278{
1279 unsigned long mreg = srmmu_get_mmureg();
1280
1281 tsunami_flush_icache();
1282 tsunami_flush_dcache();
1283 mreg &= ~TSUNAMI_ITD;
1284 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1285 srmmu_set_mmureg(mreg);
1286}
1287
5d83d666
DM
1288static const struct sparc32_cachetlb_ops tsunami_ops = {
1289 .cache_all = tsunami_flush_cache_all,
1290 .cache_mm = tsunami_flush_cache_mm,
1291 .cache_page = tsunami_flush_cache_page,
1292 .cache_range = tsunami_flush_cache_range,
1293 .tlb_all = tsunami_flush_tlb_all,
1294 .tlb_mm = tsunami_flush_tlb_mm,
1295 .tlb_page = tsunami_flush_tlb_page,
1296 .tlb_range = tsunami_flush_tlb_range,
1297 .page_to_ram = tsunami_flush_page_to_ram,
1298 .sig_insns = tsunami_flush_sig_insns,
1299 .page_for_dma = tsunami_flush_page_for_dma,
1300};
1301
1da177e4
LT
1302static void __init init_tsunami(void)
1303{
1304 /*
1305 * Tsunami's pretty sane, Sun and TI actually got it
1306 * somewhat right this time. Fujitsu should have
1307 * taken some lessons from them.
1308 */
1309
1310 srmmu_name = "TI Tsunami";
1311 srmmu_modtype = Tsunami;
5d83d666 1312 sparc32_cachetlb_ops = &tsunami_ops;
1da177e4
LT
1313 poke_srmmu = poke_tsunami;
1314
1315 tsunami_setup_blockops();
1316}
1317
409832f5 1318static void __cpuinit poke_viking(void)
1da177e4
LT
1319{
1320 unsigned long mreg = srmmu_get_mmureg();
1321 static int smp_catch;
1322
5d83d666 1323 if (viking_mxcc_present) {
1da177e4
LT
1324 unsigned long mxcc_control = mxcc_get_creg();
1325
1326 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1327 mxcc_control &= ~(MXCC_CTL_RRC);
1328 mxcc_set_creg(mxcc_control);
1329
1330 /*
1331 * We don't need memory parity checks.
1332 * XXX This is a mess, have to dig out later. ecd.
1333 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1334 */
1335
1336 /* We do cache ptables on MXCC. */
1337 mreg |= VIKING_TCENABLE;
1338 } else {
1339 unsigned long bpreg;
1340
1341 mreg &= ~(VIKING_TCENABLE);
605ae962 1342 if (smp_catch++) {
1da177e4
LT
1343 /* Must disable mixed-cmd mode here for other cpu's. */
1344 bpreg = viking_get_bpreg();
1345 bpreg &= ~(VIKING_ACTION_MIX);
1346 viking_set_bpreg(bpreg);
1347
1348 /* Just in case PROM does something funny. */
1349 msi_set_sync();
1350 }
1351 }
1352
1353 mreg |= VIKING_SPENABLE;
1354 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1355 mreg |= VIKING_SBENABLE;
1356 mreg &= ~(VIKING_ACENABLE);
1357 srmmu_set_mmureg(mreg);
1da177e4
LT
1358}
1359
5d83d666
DM
1360static struct sparc32_cachetlb_ops viking_ops = {
1361 .cache_all = viking_flush_cache_all,
1362 .cache_mm = viking_flush_cache_mm,
1363 .cache_page = viking_flush_cache_page,
1364 .cache_range = viking_flush_cache_range,
1365 .tlb_all = viking_flush_tlb_all,
1366 .tlb_mm = viking_flush_tlb_mm,
1367 .tlb_page = viking_flush_tlb_page,
1368 .tlb_range = viking_flush_tlb_range,
1369 .page_to_ram = viking_flush_page_to_ram,
1370 .sig_insns = viking_flush_sig_insns,
1371 .page_for_dma = viking_flush_page_for_dma,
1372};
1373
1374#ifdef CONFIG_SMP
1375/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1376 * perform the local TLB flush and all the other cpus will see it.
1377 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1378 * that requires that we add some synchronization to these flushes.
1379 *
1380 * The bug is that the fifo which keeps track of all the pending TLB
1381 * broadcasts in the system is an entry or two too small, so if we
1382 * have too many going at once we'll overflow that fifo and lose a TLB
1383 * flush resulting in corruption.
1384 *
1385 * Our workaround is to take a global spinlock around the TLB flushes,
1386 * which guarentees we won't ever have too many pending. It's a big
1387 * hammer, but a semaphore like system to make sure we only have N TLB
1388 * flushes going at once will require SMP locking anyways so there's
1389 * no real value in trying any harder than this.
1390 */
1391static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
1392 .cache_all = viking_flush_cache_all,
1393 .cache_mm = viking_flush_cache_mm,
1394 .cache_page = viking_flush_cache_page,
1395 .cache_range = viking_flush_cache_range,
1396 .tlb_all = sun4dsmp_flush_tlb_all,
1397 .tlb_mm = sun4dsmp_flush_tlb_mm,
1398 .tlb_page = sun4dsmp_flush_tlb_page,
1399 .tlb_range = sun4dsmp_flush_tlb_range,
1400 .page_to_ram = viking_flush_page_to_ram,
1401 .sig_insns = viking_flush_sig_insns,
1402 .page_for_dma = viking_flush_page_for_dma,
1403};
1404#endif
1405
1da177e4
LT
1406static void __init init_viking(void)
1407{
1408 unsigned long mreg = srmmu_get_mmureg();
1409
1410 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
605ae962 1411 if (mreg & VIKING_MMODE) {
1da177e4
LT
1412 srmmu_name = "TI Viking";
1413 viking_mxcc_present = 0;
1414 msi_set_sync();
1415
1da177e4
LT
1416 /*
1417 * We need this to make sure old viking takes no hits
1418 * on it's cache for dma snoops to workaround the
1419 * "load from non-cacheable memory" interrupt bug.
1420 * This is only necessary because of the new way in
1421 * which we use the IOMMU.
1422 */
5d83d666
DM
1423 viking_ops.page_for_dma = viking_flush_page;
1424#ifdef CONFIG_SMP
1425 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1426#endif
1da177e4
LT
1427 flush_page_for_dma_global = 0;
1428 } else {
1429 srmmu_name = "TI Viking/MXCC";
1430 viking_mxcc_present = 1;
1da177e4 1431 srmmu_cache_pagetables = 1;
1da177e4
LT
1432 }
1433
5d83d666
DM
1434 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1435 &viking_ops;
1da177e4 1436#ifdef CONFIG_SMP
5d83d666
DM
1437 if (sparc_cpu_model == sun4d)
1438 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1439 &viking_sun4d_smp_ops;
1da177e4 1440#endif
1da177e4
LT
1441
1442 poke_srmmu = poke_viking;
1443}
1444
1445/* Probe for the srmmu chip version. */
1446static void __init get_srmmu_type(void)
1447{
1448 unsigned long mreg, psr;
1449 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1450
1451 srmmu_modtype = SRMMU_INVAL_MOD;
1452 hwbug_bitmask = 0;
1453
1454 mreg = srmmu_get_mmureg(); psr = get_psr();
1455 mod_typ = (mreg & 0xf0000000) >> 28;
1456 mod_rev = (mreg & 0x0f000000) >> 24;
1457 psr_typ = (psr >> 28) & 0xf;
1458 psr_vers = (psr >> 24) & 0xf;
1459
75d9e346
KE
1460 /* First, check for sparc-leon. */
1461 if (sparc_cpu_model == sparc_leon) {
75d9e346
KE
1462 init_leon();
1463 return;
1464 }
1465
1466 /* Second, check for HyperSparc or Cypress. */
605ae962
SR
1467 if (mod_typ == 1) {
1468 switch (mod_rev) {
1da177e4
LT
1469 case 7:
1470 /* UP or MP Hypersparc */
1471 init_hypersparc();
1472 break;
1473 case 0:
1474 case 2:
1da177e4
LT
1475 case 10:
1476 case 11:
1477 case 12:
1da177e4
LT
1478 case 13:
1479 case 14:
1480 case 15:
1da177e4 1481 default:
c7020eb4
DM
1482 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1483 prom_halt();
1da177e4 1484 break;
6cb79b3f 1485 }
1da177e4
LT
1486 return;
1487 }
605ae962
SR
1488
1489 /* Now Fujitsu TurboSparc. It might happen that it is
1da177e4
LT
1490 * in Swift emulation mode, so we will check later...
1491 */
1492 if (psr_typ == 0 && psr_vers == 5) {
1493 init_turbosparc();
1494 return;
1495 }
1496
1497 /* Next check for Fujitsu Swift. */
605ae962 1498 if (psr_typ == 0 && psr_vers == 4) {
8d125562 1499 phandle cpunode;
1da177e4
LT
1500 char node_str[128];
1501
1502 /* Look if it is not a TurboSparc emulating Swift... */
1503 cpunode = prom_getchild(prom_root_node);
605ae962 1504 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1da177e4 1505 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
605ae962 1506 if (!strcmp(node_str, "cpu")) {
1da177e4
LT
1507 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1508 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1509 init_turbosparc();
1510 return;
1511 }
1512 break;
1513 }
1514 }
605ae962 1515
1da177e4
LT
1516 init_swift();
1517 return;
1518 }
1519
1520 /* Now the Viking family of srmmu. */
605ae962 1521 if (psr_typ == 4 &&
1da177e4
LT
1522 ((psr_vers == 0) ||
1523 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1524 init_viking();
1525 return;
1526 }
1527
1528 /* Finally the Tsunami. */
605ae962 1529 if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1da177e4
LT
1530 init_tsunami();
1531 return;
1532 }
1533
1534 /* Oh well */
1535 srmmu_is_bad();
1536}
1537
1da177e4
LT
1538#ifdef CONFIG_SMP
1539/* Local cross-calls. */
1540static void smp_flush_page_for_dma(unsigned long page)
1541{
5d83d666
DM
1542 xc1((smpfunc_t) local_ops->page_for_dma, page);
1543 local_ops->page_for_dma(page);
1544}
1545
1546static void smp_flush_cache_all(void)
1547{
1548 xc0((smpfunc_t) local_ops->cache_all);
1549 local_ops->cache_all();
1550}
1551
1552static void smp_flush_tlb_all(void)
1553{
1554 xc0((smpfunc_t) local_ops->tlb_all);
1555 local_ops->tlb_all();
1556}
1557
1558static void smp_flush_cache_mm(struct mm_struct *mm)
1559{
1560 if (mm->context != NO_CONTEXT) {
1561 cpumask_t cpu_mask;
1562 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1563 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1564 if (!cpumask_empty(&cpu_mask))
1565 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1566 local_ops->cache_mm(mm);
1567 }
1568}
1569
1570static void smp_flush_tlb_mm(struct mm_struct *mm)
1571{
1572 if (mm->context != NO_CONTEXT) {
1573 cpumask_t cpu_mask;
1574 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1575 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1576 if (!cpumask_empty(&cpu_mask)) {
1577 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1578 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1579 cpumask_copy(mm_cpumask(mm),
1580 cpumask_of(smp_processor_id()));
1581 }
1582 local_ops->tlb_mm(mm);
1583 }
1584}
1585
1586static void smp_flush_cache_range(struct vm_area_struct *vma,
1587 unsigned long start,
1588 unsigned long end)
1589{
1590 struct mm_struct *mm = vma->vm_mm;
1591
1592 if (mm->context != NO_CONTEXT) {
1593 cpumask_t cpu_mask;
1594 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1595 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1596 if (!cpumask_empty(&cpu_mask))
1597 xc3((smpfunc_t) local_ops->cache_range,
1598 (unsigned long) vma, start, end);
1599 local_ops->cache_range(vma, start, end);
1600 }
1601}
1602
1603static void smp_flush_tlb_range(struct vm_area_struct *vma,
1604 unsigned long start,
1605 unsigned long end)
1606{
1607 struct mm_struct *mm = vma->vm_mm;
1608
1609 if (mm->context != NO_CONTEXT) {
1610 cpumask_t cpu_mask;
1611 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1612 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1613 if (!cpumask_empty(&cpu_mask))
1614 xc3((smpfunc_t) local_ops->tlb_range,
1615 (unsigned long) vma, start, end);
1616 local_ops->tlb_range(vma, start, end);
1617 }
1da177e4
LT
1618}
1619
5d83d666
DM
1620static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1621{
1622 struct mm_struct *mm = vma->vm_mm;
1623
1624 if (mm->context != NO_CONTEXT) {
1625 cpumask_t cpu_mask;
1626 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1627 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1628 if (!cpumask_empty(&cpu_mask))
1629 xc2((smpfunc_t) local_ops->cache_page,
1630 (unsigned long) vma, page);
1631 local_ops->cache_page(vma, page);
1632 }
1633}
1634
1635static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1636{
1637 struct mm_struct *mm = vma->vm_mm;
1638
1639 if (mm->context != NO_CONTEXT) {
1640 cpumask_t cpu_mask;
1641 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1642 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1643 if (!cpumask_empty(&cpu_mask))
1644 xc2((smpfunc_t) local_ops->tlb_page,
1645 (unsigned long) vma, page);
1646 local_ops->tlb_page(vma, page);
1647 }
1648}
1649
1650static void smp_flush_page_to_ram(unsigned long page)
1651{
1652 /* Current theory is that those who call this are the one's
1653 * who have just dirtied their cache with the pages contents
1654 * in kernel space, therefore we only run this on local cpu.
1655 *
1656 * XXX This experiment failed, research further... -DaveM
1657 */
1658#if 1
1659 xc1((smpfunc_t) local_ops->page_to_ram, page);
1660#endif
1661 local_ops->page_to_ram(page);
1662}
1663
1664static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1665{
1666 cpumask_t cpu_mask;
1667 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1668 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1669 if (!cpumask_empty(&cpu_mask))
1670 xc2((smpfunc_t) local_ops->sig_insns,
1671 (unsigned long) mm, insn_addr);
1672 local_ops->sig_insns(mm, insn_addr);
1673}
1674
1675static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
1676 .cache_all = smp_flush_cache_all,
1677 .cache_mm = smp_flush_cache_mm,
1678 .cache_page = smp_flush_cache_page,
1679 .cache_range = smp_flush_cache_range,
1680 .tlb_all = smp_flush_tlb_all,
1681 .tlb_mm = smp_flush_tlb_mm,
1682 .tlb_page = smp_flush_tlb_page,
1683 .tlb_range = smp_flush_tlb_range,
1684 .page_to_ram = smp_flush_page_to_ram,
1685 .sig_insns = smp_flush_sig_insns,
1686 .page_for_dma = smp_flush_page_for_dma,
1687};
1da177e4
LT
1688#endif
1689
1da177e4 1690/* Load up routines and constants for sun4m and sun4d mmu */
a3c5c663 1691void __init load_mmu(void)
1da177e4
LT
1692{
1693 extern void ld_mmu_iommu(void);
1694 extern void ld_mmu_iounit(void);
1da177e4 1695
1da177e4 1696 /* Functions */
1da177e4 1697 get_srmmu_type();
1da177e4
LT
1698
1699#ifdef CONFIG_SMP
1700 /* El switcheroo... */
5d83d666 1701 local_ops = sparc32_cachetlb_ops;
1da177e4 1702
5d83d666
DM
1703 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1704 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1705 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1706 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1707 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1da177e4 1708 }
64273d08
DM
1709
1710 if (poke_srmmu == poke_viking) {
1711 /* Avoid unnecessary cross calls. */
5d83d666
DM
1712 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1713 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1714 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1715 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1716
1717 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1718 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1719 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
64273d08 1720 }
5d83d666
DM
1721
1722 /* It really is const after this point. */
1723 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1724 &smp_cachetlb_ops;
1da177e4
LT
1725#endif
1726
1727 if (sparc_cpu_model == sun4d)
1728 ld_mmu_iounit();
1729 else
1730 ld_mmu_iommu();
1731#ifdef CONFIG_SMP
1732 if (sparc_cpu_model == sun4d)
1733 sun4d_init_smp();
8401707f
KE
1734 else if (sparc_cpu_model == sparc_leon)
1735 leon_init_smp();
1da177e4
LT
1736 else
1737 sun4m_init_smp();
1738#endif
1739}