Merge tag 'for-linus-4.7b-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / arch / sparc / mm / init_64.c
CommitLineData
b00dc837 1/*
1da177e4
LT
2 * arch/sparc64/mm/init.c
3 *
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
c4bce90e 8#include <linux/module.h>
1da177e4
LT
9#include <linux/kernel.h>
10#include <linux/sched.h>
11#include <linux/string.h>
12#include <linux/init.h>
13#include <linux/bootmem.h>
14#include <linux/mm.h>
15#include <linux/hugetlb.h>
1da177e4
LT
16#include <linux/initrd.h>
17#include <linux/swap.h>
18#include <linux/pagemap.h>
c9cf5528 19#include <linux/poison.h>
1da177e4
LT
20#include <linux/fs.h>
21#include <linux/seq_file.h>
05e14cb3 22#include <linux/kprobes.h>
1ac4f5eb 23#include <linux/cache.h>
13edad7a 24#include <linux/sort.h>
f6d4fb5c 25#include <linux/ioport.h>
5cbc3073 26#include <linux/percpu.h>
95f72d1e 27#include <linux/memblock.h>
919ee677 28#include <linux/mmzone.h>
5a0e3ad6 29#include <linux/gfp.h>
1da177e4
LT
30
31#include <asm/head.h>
1da177e4
LT
32#include <asm/page.h>
33#include <asm/pgalloc.h>
34#include <asm/pgtable.h>
35#include <asm/oplib.h>
36#include <asm/iommu.h>
37#include <asm/io.h>
38#include <asm/uaccess.h>
39#include <asm/mmu_context.h>
40#include <asm/tlbflush.h>
41#include <asm/dma.h>
42#include <asm/starfire.h>
43#include <asm/tlb.h>
44#include <asm/spitfire.h>
45#include <asm/sections.h>
517af332 46#include <asm/tsb.h>
481295f9 47#include <asm/hypervisor.h>
372b07bb 48#include <asm/prom.h>
5cbc3073 49#include <asm/mdesc.h>
3d5ae6b6 50#include <asm/cpudata.h>
59dec13b 51#include <asm/setup.h>
4f70f7a9 52#include <asm/irq.h>
1da177e4 53
27137e52 54#include "init_64.h"
9cc3a1ac 55
4f93d21d 56unsigned long kern_linear_pte_xor[4] __read_mostly;
494e5b6f 57static unsigned long page_cache4v_flag;
9cc3a1ac 58
4f93d21d
DM
59/* A bitmap, two bits for every 256MB of physical memory. These two
60 * bits determine what page size we use for kernel linear
61 * translations. They form an index into kern_linear_pte_xor[]. The
62 * value in the indexed slot is XOR'd with the TLB miss virtual
63 * address to form the resulting TTE. The mapping is:
64 *
65 * 0 ==> 4MB
66 * 1 ==> 256MB
67 * 2 ==> 2GB
68 * 3 ==> 16GB
69 *
70 * All sun4v chips support 256MB pages. Only SPARC-T4 and later
71 * support 2GB pages, and hopefully future cpus will support the 16GB
72 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
73 * if these larger page sizes are not supported by the cpu.
74 *
75 * It would be nice to determine this from the machine description
76 * 'cpu' properties, but we need to have this table setup before the
77 * MDESC is initialized.
9cc3a1ac 78 */
9cc3a1ac 79
d1acb421 80#ifndef CONFIG_DEBUG_PAGEALLOC
4f93d21d
DM
81/* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82 * Space is allocated for this right after the trap table in
83 * arch/sparc64/kernel/head.S
2d9e2763
DM
84 */
85extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
d1acb421 86#endif
0dd5b7b0 87extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
d7744a09 88
ce33fdc5
DM
89static unsigned long cpu_pgsz_mask;
90
d195b71b 91#define MAX_BANKS 1024
13edad7a 92
7c9503b8
GKH
93static struct linux_prom64_registers pavail[MAX_BANKS];
94static int pavail_ents;
13edad7a 95
52708d69
NG
96u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97
13edad7a
DM
98static int cmp_p64(const void *a, const void *b)
99{
100 const struct linux_prom64_registers *x = a, *y = b;
101
102 if (x->phys_addr > y->phys_addr)
103 return 1;
104 if (x->phys_addr < y->phys_addr)
105 return -1;
106 return 0;
107}
108
109static void __init read_obp_memory(const char *property,
110 struct linux_prom64_registers *regs,
111 int *num_ents)
112{
8d125562 113 phandle node = prom_finddevice("/memory");
13edad7a
DM
114 int prop_size = prom_getproplen(node, property);
115 int ents, ret, i;
116
117 ents = prop_size / sizeof(struct linux_prom64_registers);
118 if (ents > MAX_BANKS) {
119 prom_printf("The machine has more %s property entries than "
120 "this kernel can support (%d).\n",
121 property, MAX_BANKS);
122 prom_halt();
123 }
124
125 ret = prom_getproperty(node, property, (char *) regs, prop_size);
126 if (ret == -1) {
5da444aa
AM
127 prom_printf("Couldn't get %s property from /memory.\n",
128 property);
13edad7a
DM
129 prom_halt();
130 }
131
13edad7a
DM
132 /* Sanitize what we got from the firmware, by page aligning
133 * everything.
134 */
135 for (i = 0; i < ents; i++) {
136 unsigned long base, size;
137
138 base = regs[i].phys_addr;
139 size = regs[i].reg_size;
10147570 140
13edad7a
DM
141 size &= PAGE_MASK;
142 if (base & ~PAGE_MASK) {
143 unsigned long new_base = PAGE_ALIGN(base);
144
145 size -= new_base - base;
146 if ((long) size < 0L)
147 size = 0UL;
148 base = new_base;
149 }
0015d3d6
DM
150 if (size == 0UL) {
151 /* If it is empty, simply get rid of it.
152 * This simplifies the logic of the other
153 * functions that process these arrays.
154 */
155 memmove(&regs[i], &regs[i + 1],
156 (ents - i - 1) * sizeof(regs[0]));
486ad10a 157 i--;
0015d3d6
DM
158 ents--;
159 continue;
486ad10a 160 }
0015d3d6
DM
161 regs[i].phys_addr = base;
162 regs[i].reg_size = size;
486ad10a
DM
163 }
164
165 *num_ents = ents;
166
c9c10830 167 sort(regs, ents, sizeof(struct linux_prom64_registers),
13edad7a
DM
168 cmp_p64, NULL);
169}
1da177e4 170
d1112018 171/* Kernel physical address base and size in bytes. */
1ac4f5eb
DM
172unsigned long kern_base __read_mostly;
173unsigned long kern_size __read_mostly;
1da177e4 174
1da177e4
LT
175/* Initial ramdisk setup */
176extern unsigned long sparc_ramdisk_image64;
177extern unsigned int sparc_ramdisk_image;
178extern unsigned int sparc_ramdisk_size;
179
1ac4f5eb 180struct page *mem_map_zero __read_mostly;
35802c0b 181EXPORT_SYMBOL(mem_map_zero);
1da177e4 182
0835ae0f
DM
183unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184
185unsigned long sparc64_kern_pri_context __read_mostly;
186unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187unsigned long sparc64_kern_sec_context __read_mostly;
188
64658743 189int num_kernel_image_mappings;
1da177e4 190
1da177e4
LT
191#ifdef CONFIG_DEBUG_DCFLUSH
192atomic_t dcpage_flushes = ATOMIC_INIT(0);
193#ifdef CONFIG_SMP
194atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195#endif
196#endif
197
7a591cfe 198inline void flush_dcache_page_impl(struct page *page)
1da177e4 199{
7a591cfe 200 BUG_ON(tlb_type == hypervisor);
1da177e4
LT
201#ifdef CONFIG_DEBUG_DCFLUSH
202 atomic_inc(&dcpage_flushes);
203#endif
204
205#ifdef DCACHE_ALIASING_POSSIBLE
206 __flush_dcache_page(page_address(page),
207 ((tlb_type == spitfire) &&
208 page_mapping(page) != NULL));
209#else
210 if (page_mapping(page) != NULL &&
211 tlb_type == spitfire)
212 __flush_icache_page(__pa(page_address(page)));
213#endif
214}
215
216#define PG_dcache_dirty PG_arch_1
22adb358
DM
217#define PG_dcache_cpu_shift 32UL
218#define PG_dcache_cpu_mask \
219 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
1da177e4
LT
220
221#define dcache_dirty_cpu(page) \
48b0e548 222 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
1da177e4 223
d979f179 224static inline void set_dcache_dirty(struct page *page, int this_cpu)
1da177e4
LT
225{
226 unsigned long mask = this_cpu;
48b0e548
DM
227 unsigned long non_cpu_bits;
228
229 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231
1da177e4
LT
232 __asm__ __volatile__("1:\n\t"
233 "ldx [%2], %%g7\n\t"
234 "and %%g7, %1, %%g1\n\t"
235 "or %%g1, %0, %%g1\n\t"
236 "casx [%2], %%g7, %%g1\n\t"
237 "cmp %%g7, %%g1\n\t"
238 "bne,pn %%xcc, 1b\n\t"
b445e26c 239 " nop"
1da177e4
LT
240 : /* no outputs */
241 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242 : "g1", "g7");
243}
244
d979f179 245static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
1da177e4
LT
246{
247 unsigned long mask = (1UL << PG_dcache_dirty);
248
249 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250 "1:\n\t"
251 "ldx [%2], %%g7\n\t"
48b0e548 252 "srlx %%g7, %4, %%g1\n\t"
1da177e4
LT
253 "and %%g1, %3, %%g1\n\t"
254 "cmp %%g1, %0\n\t"
255 "bne,pn %%icc, 2f\n\t"
256 " andn %%g7, %1, %%g1\n\t"
257 "casx [%2], %%g7, %%g1\n\t"
258 "cmp %%g7, %%g1\n\t"
259 "bne,pn %%xcc, 1b\n\t"
b445e26c 260 " nop\n"
1da177e4
LT
261 "2:"
262 : /* no outputs */
263 : "r" (cpu), "r" (mask), "r" (&page->flags),
48b0e548
DM
264 "i" (PG_dcache_cpu_mask),
265 "i" (PG_dcache_cpu_shift)
1da177e4
LT
266 : "g1", "g7");
267}
268
517af332
DM
269static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270{
271 unsigned long tsb_addr = (unsigned long) ent;
272
3b3ab2eb 273 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
517af332
DM
274 tsb_addr = __pa(tsb_addr);
275
276 __tsb_insert(tsb_addr, tag, pte);
277}
278
c4bce90e 279unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
c4bce90e 280
ff9aefbf 281static void flush_dcache(unsigned long pfn)
1da177e4 282{
ff9aefbf 283 struct page *page;
7a591cfe 284
ff9aefbf 285 page = pfn_to_page(pfn);
1a78cedb 286 if (page) {
7a591cfe 287 unsigned long pg_flags;
7a591cfe 288
ff9aefbf
SR
289 pg_flags = page->flags;
290 if (pg_flags & (1UL << PG_dcache_dirty)) {
7a591cfe
DM
291 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292 PG_dcache_cpu_mask);
293 int this_cpu = get_cpu();
294
295 /* This is just to optimize away some function calls
296 * in the SMP case.
297 */
298 if (cpu == this_cpu)
299 flush_dcache_page_impl(page);
300 else
301 smp_flush_dcache_page_impl(page, cpu);
302
303 clear_dcache_dirty_cpu(page, cpu);
304
305 put_cpu();
306 }
1da177e4 307 }
ff9aefbf
SR
308}
309
9e695d2e
DM
310/* mm->context.lock must be held */
311static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312 unsigned long tsb_hash_shift, unsigned long address,
313 unsigned long tte)
314{
315 struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316 unsigned long tag;
317
bcd896ba
DM
318 if (unlikely(!tsb))
319 return;
320
9e695d2e
DM
321 tsb += ((address >> tsb_hash_shift) &
322 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323 tag = (address >> 22UL);
324 tsb_insert(tsb, tag, tte);
325}
326
4b3073e1 327void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
ff9aefbf
SR
328{
329 struct mm_struct *mm;
bcd896ba 330 unsigned long flags;
4b3073e1 331 pte_t pte = *ptep;
ff9aefbf
SR
332
333 if (tlb_type != hypervisor) {
334 unsigned long pfn = pte_pfn(pte);
335
336 if (pfn_valid(pfn))
337 flush_dcache(pfn);
338 }
bd40791e
DM
339
340 mm = vma->vm_mm;
7a1ac526 341
18f38132
DM
342 /* Don't insert a non-valid PTE into the TSB, we'll deadlock. */
343 if (!pte_accessible(mm, pte))
344 return;
345
7a1ac526
DM
346 spin_lock_irqsave(&mm->context.lock, flags);
347
9e695d2e 348#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
bcd896ba 349 if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
37b3a8ff 350 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
bcd896ba
DM
351 address, pte_val(pte));
352 else
dcc1e8dd 353#endif
bcd896ba
DM
354 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
355 address, pte_val(pte));
7a1ac526
DM
356
357 spin_unlock_irqrestore(&mm->context.lock, flags);
1da177e4
LT
358}
359
360void flush_dcache_page(struct page *page)
361{
a9546f59
DM
362 struct address_space *mapping;
363 int this_cpu;
1da177e4 364
7a591cfe
DM
365 if (tlb_type == hypervisor)
366 return;
367
a9546f59
DM
368 /* Do not bother with the expensive D-cache flush if it
369 * is merely the zero page. The 'bigcore' testcase in GDB
370 * causes this case to run millions of times.
371 */
372 if (page == ZERO_PAGE(0))
373 return;
374
375 this_cpu = get_cpu();
376
377 mapping = page_mapping(page);
1da177e4 378 if (mapping && !mapping_mapped(mapping)) {
a9546f59 379 int dirty = test_bit(PG_dcache_dirty, &page->flags);
1da177e4 380 if (dirty) {
a9546f59
DM
381 int dirty_cpu = dcache_dirty_cpu(page);
382
1da177e4
LT
383 if (dirty_cpu == this_cpu)
384 goto out;
385 smp_flush_dcache_page_impl(page, dirty_cpu);
386 }
387 set_dcache_dirty(page, this_cpu);
388 } else {
389 /* We could delay the flush for the !page_mapping
390 * case too. But that case is for exec env/arg
391 * pages and those are %99 certainly going to get
392 * faulted into the tlb (and thus flushed) anyways.
393 */
394 flush_dcache_page_impl(page);
395 }
396
397out:
398 put_cpu();
399}
917c3660 400EXPORT_SYMBOL(flush_dcache_page);
1da177e4 401
05e14cb3 402void __kprobes flush_icache_range(unsigned long start, unsigned long end)
1da177e4 403{
a43fe0e7 404 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
1da177e4
LT
405 if (tlb_type == spitfire) {
406 unsigned long kaddr;
407
a94aa253
DM
408 /* This code only runs on Spitfire cpus so this is
409 * why we can assume _PAGE_PADDR_4U.
410 */
411 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
412 unsigned long paddr, mask = _PAGE_PADDR_4U;
413
414 if (kaddr >= PAGE_OFFSET)
415 paddr = kaddr & mask;
416 else {
417 pgd_t *pgdp = pgd_offset_k(kaddr);
418 pud_t *pudp = pud_offset(pgdp, kaddr);
419 pmd_t *pmdp = pmd_offset(pudp, kaddr);
420 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
421
422 paddr = pte_val(*ptep) & mask;
423 }
424 __flush_icache_page(paddr);
425 }
1da177e4
LT
426 }
427}
917c3660 428EXPORT_SYMBOL(flush_icache_range);
1da177e4 429
1da177e4
LT
430void mmu_info(struct seq_file *m)
431{
ce33fdc5
DM
432 static const char *pgsz_strings[] = {
433 "8K", "64K", "512K", "4MB", "32MB",
434 "256MB", "2GB", "16GB",
435 };
436 int i, printed;
437
1da177e4
LT
438 if (tlb_type == cheetah)
439 seq_printf(m, "MMU Type\t: Cheetah\n");
440 else if (tlb_type == cheetah_plus)
441 seq_printf(m, "MMU Type\t: Cheetah+\n");
442 else if (tlb_type == spitfire)
443 seq_printf(m, "MMU Type\t: Spitfire\n");
a43fe0e7
DM
444 else if (tlb_type == hypervisor)
445 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
1da177e4
LT
446 else
447 seq_printf(m, "MMU Type\t: ???\n");
448
ce33fdc5
DM
449 seq_printf(m, "MMU PGSZs\t: ");
450 printed = 0;
451 for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
452 if (cpu_pgsz_mask & (1UL << i)) {
453 seq_printf(m, "%s%s",
454 printed ? "," : "", pgsz_strings[i]);
455 printed++;
456 }
457 }
458 seq_putc(m, '\n');
459
1da177e4
LT
460#ifdef CONFIG_DEBUG_DCFLUSH
461 seq_printf(m, "DCPageFlushes\t: %d\n",
462 atomic_read(&dcpage_flushes));
463#ifdef CONFIG_SMP
464 seq_printf(m, "DCPageFlushesXC\t: %d\n",
465 atomic_read(&dcpage_flushes_xcall));
466#endif /* CONFIG_SMP */
467#endif /* CONFIG_DEBUG_DCFLUSH */
468}
469
a94aa253
DM
470struct linux_prom_translation prom_trans[512] __read_mostly;
471unsigned int prom_trans_ents __read_mostly;
472
1da177e4
LT
473unsigned long kern_locked_tte_data;
474
c9c10830
DM
475/* The obp translations are saved based on 8k pagesize, since obp can
476 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
74bf4312 477 * HI_OBP_ADDRESS range are handled in ktlb.S.
c9c10830 478 */
5085b4a5
DM
479static inline int in_obp_range(unsigned long vaddr)
480{
481 return (vaddr >= LOW_OBP_ADDRESS &&
482 vaddr < HI_OBP_ADDRESS);
483}
484
c9c10830 485static int cmp_ptrans(const void *a, const void *b)
405599bd 486{
c9c10830 487 const struct linux_prom_translation *x = a, *y = b;
405599bd 488
c9c10830
DM
489 if (x->virt > y->virt)
490 return 1;
491 if (x->virt < y->virt)
492 return -1;
493 return 0;
405599bd
DM
494}
495
c9c10830 496/* Read OBP translations property into 'prom_trans[]'. */
9ad98c5b 497static void __init read_obp_translations(void)
405599bd 498{
c9c10830 499 int n, node, ents, first, last, i;
1da177e4
LT
500
501 node = prom_finddevice("/virtual-memory");
502 n = prom_getproplen(node, "translations");
405599bd 503 if (unlikely(n == 0 || n == -1)) {
b206fc4c 504 prom_printf("prom_mappings: Couldn't get size.\n");
1da177e4
LT
505 prom_halt();
506 }
405599bd 507 if (unlikely(n > sizeof(prom_trans))) {
5da444aa 508 prom_printf("prom_mappings: Size %d is too big.\n", n);
1da177e4
LT
509 prom_halt();
510 }
405599bd 511
b206fc4c 512 if ((n = prom_getproperty(node, "translations",
405599bd
DM
513 (char *)&prom_trans[0],
514 sizeof(prom_trans))) == -1) {
b206fc4c 515 prom_printf("prom_mappings: Couldn't get property.\n");
1da177e4
LT
516 prom_halt();
517 }
9ad98c5b 518
b206fc4c 519 n = n / sizeof(struct linux_prom_translation);
9ad98c5b 520
c9c10830
DM
521 ents = n;
522
523 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
524 cmp_ptrans, NULL);
525
526 /* Now kick out all the non-OBP entries. */
527 for (i = 0; i < ents; i++) {
528 if (in_obp_range(prom_trans[i].virt))
529 break;
530 }
531 first = i;
532 for (; i < ents; i++) {
533 if (!in_obp_range(prom_trans[i].virt))
534 break;
535 }
536 last = i;
537
538 for (i = 0; i < (last - first); i++) {
539 struct linux_prom_translation *src = &prom_trans[i + first];
540 struct linux_prom_translation *dest = &prom_trans[i];
541
542 *dest = *src;
543 }
544 for (; i < ents; i++) {
545 struct linux_prom_translation *dest = &prom_trans[i];
546 dest->virt = dest->size = dest->data = 0x0UL;
547 }
548
549 prom_trans_ents = last - first;
550
551 if (tlb_type == spitfire) {
552 /* Clear diag TTE bits. */
553 for (i = 0; i < prom_trans_ents; i++)
554 prom_trans[i].data &= ~0x0003fe0000000000UL;
555 }
f4142cba
DM
556
557 /* Force execute bit on. */
558 for (i = 0; i < prom_trans_ents; i++)
559 prom_trans[i].data |= (tlb_type == hypervisor ?
560 _PAGE_EXEC_4V : _PAGE_EXEC_4U);
405599bd 561}
1da177e4 562
d82ace7d
DM
563static void __init hypervisor_tlb_lock(unsigned long vaddr,
564 unsigned long pte,
565 unsigned long mmu)
566{
7db35f31
DM
567 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
568
569 if (ret != 0) {
5da444aa 570 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
7db35f31 571 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
12e126ad
DM
572 prom_halt();
573 }
d82ace7d
DM
574}
575
c4bce90e
DM
576static unsigned long kern_large_tte(unsigned long paddr);
577
898cf0ec 578static void __init remap_kernel(void)
405599bd
DM
579{
580 unsigned long phys_page, tte_vaddr, tte_data;
64658743 581 int i, tlb_ent = sparc64_highest_locked_tlbent();
405599bd 582
1da177e4 583 tte_vaddr = (unsigned long) KERNBASE;
0eef331a 584 phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
c4bce90e 585 tte_data = kern_large_tte(phys_page);
1da177e4
LT
586
587 kern_locked_tte_data = tte_data;
588
d82ace7d
DM
589 /* Now lock us into the TLBs via Hypervisor or OBP. */
590 if (tlb_type == hypervisor) {
64658743 591 for (i = 0; i < num_kernel_image_mappings; i++) {
d82ace7d
DM
592 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
593 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
64658743
DM
594 tte_vaddr += 0x400000;
595 tte_data += 0x400000;
d82ace7d
DM
596 }
597 } else {
64658743
DM
598 for (i = 0; i < num_kernel_image_mappings; i++) {
599 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
600 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
601 tte_vaddr += 0x400000;
602 tte_data += 0x400000;
d82ace7d 603 }
64658743 604 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
1da177e4 605 }
0835ae0f
DM
606 if (tlb_type == cheetah_plus) {
607 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
608 CTX_CHEETAH_PLUS_NUC);
609 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
610 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
611 }
405599bd 612}
1da177e4 613
405599bd 614
c9c10830 615static void __init inherit_prom_mappings(void)
9ad98c5b 616{
405599bd 617 /* Now fixup OBP's idea about where we really are mapped. */
3c62a2d3 618 printk("Remapping the kernel... ");
405599bd 619 remap_kernel();
3c62a2d3 620 printk("done.\n");
1da177e4
LT
621}
622
1da177e4
LT
623void prom_world(int enter)
624{
1da177e4 625 if (!enter)
dff933da 626 set_fs(get_fs());
1da177e4 627
3487d1d4 628 __asm__ __volatile__("flushw");
1da177e4
LT
629}
630
1da177e4
LT
631void __flush_dcache_range(unsigned long start, unsigned long end)
632{
633 unsigned long va;
634
635 if (tlb_type == spitfire) {
636 int n = 0;
637
638 for (va = start; va < end; va += 32) {
639 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
640 if (++n >= 512)
641 break;
642 }
a43fe0e7 643 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
644 start = __pa(start);
645 end = __pa(end);
646 for (va = start; va < end; va += 32)
647 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
648 "membar #Sync"
649 : /* no outputs */
650 : "r" (va),
651 "i" (ASI_DCACHE_INVALIDATE));
652 }
653}
917c3660 654EXPORT_SYMBOL(__flush_dcache_range);
1da177e4 655
85f1e1f6
DM
656/* get_new_mmu_context() uses "cache + 1". */
657DEFINE_SPINLOCK(ctx_alloc_lock);
658unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
659#define MAX_CTX_NR (1UL << CTX_NR_BITS)
660#define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
661DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
662
1da177e4
LT
663/* Caller does TLB context flushing on local CPU if necessary.
664 * The caller also ensures that CTX_VALID(mm->context) is false.
665 *
666 * We must be careful about boundary cases so that we never
667 * let the user have CTX 0 (nucleus) or we ever use a CTX
668 * version of zero (and thus NO_CONTEXT would not be caught
669 * by version mis-match tests in mmu_context.h).
a0663a79
DM
670 *
671 * Always invoked with interrupts disabled.
1da177e4
LT
672 */
673void get_new_mmu_context(struct mm_struct *mm)
674{
675 unsigned long ctx, new_ctx;
676 unsigned long orig_pgsz_bits;
a0663a79 677 int new_version;
1da177e4 678
07df8418 679 spin_lock(&ctx_alloc_lock);
1da177e4
LT
680 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
681 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
682 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
a0663a79 683 new_version = 0;
1da177e4
LT
684 if (new_ctx >= (1 << CTX_NR_BITS)) {
685 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
686 if (new_ctx >= ctx) {
687 int i;
688 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
689 CTX_FIRST_VERSION;
690 if (new_ctx == 1)
691 new_ctx = CTX_FIRST_VERSION;
692
693 /* Don't call memset, for 16 entries that's just
694 * plain silly...
695 */
696 mmu_context_bmap[0] = 3;
697 mmu_context_bmap[1] = 0;
698 mmu_context_bmap[2] = 0;
699 mmu_context_bmap[3] = 0;
700 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
701 mmu_context_bmap[i + 0] = 0;
702 mmu_context_bmap[i + 1] = 0;
703 mmu_context_bmap[i + 2] = 0;
704 mmu_context_bmap[i + 3] = 0;
705 }
a0663a79 706 new_version = 1;
1da177e4
LT
707 goto out;
708 }
709 }
710 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
711 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
712out:
713 tlb_context_cache = new_ctx;
714 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
07df8418 715 spin_unlock(&ctx_alloc_lock);
a0663a79
DM
716
717 if (unlikely(new_version))
718 smp_new_mmu_context_version();
1da177e4
LT
719}
720
919ee677
DM
721static int numa_enabled = 1;
722static int numa_debug;
723
724static int __init early_numa(char *p)
1da177e4 725{
919ee677
DM
726 if (!p)
727 return 0;
728
729 if (strstr(p, "off"))
730 numa_enabled = 0;
d1112018 731
919ee677
DM
732 if (strstr(p, "debug"))
733 numa_debug = 1;
d1112018 734
919ee677 735 return 0;
d1112018 736}
919ee677
DM
737early_param("numa", early_numa);
738
739#define numadbg(f, a...) \
740do { if (numa_debug) \
741 printk(KERN_INFO f, ## a); \
742} while (0)
d1112018 743
4e82c9a6
DM
744static void __init find_ramdisk(unsigned long phys_base)
745{
746#ifdef CONFIG_BLK_DEV_INITRD
747 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
748 unsigned long ramdisk_image;
749
750 /* Older versions of the bootloader only supported a
751 * 32-bit physical address for the ramdisk image
752 * location, stored at sparc_ramdisk_image. Newer
753 * SILO versions set sparc_ramdisk_image to zero and
754 * provide a full 64-bit physical address at
755 * sparc_ramdisk_image64.
756 */
757 ramdisk_image = sparc_ramdisk_image;
758 if (!ramdisk_image)
759 ramdisk_image = sparc_ramdisk_image64;
760
761 /* Another bootloader quirk. The bootloader normalizes
762 * the physical address to KERNBASE, so we have to
763 * factor that back out and add in the lowest valid
764 * physical page address to get the true physical address.
765 */
766 ramdisk_image -= KERNBASE;
767 ramdisk_image += phys_base;
768
919ee677
DM
769 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
770 ramdisk_image, sparc_ramdisk_size);
771
4e82c9a6
DM
772 initrd_start = ramdisk_image;
773 initrd_end = ramdisk_image + sparc_ramdisk_size;
3b2a7e23 774
95f72d1e 775 memblock_reserve(initrd_start, sparc_ramdisk_size);
d45100f7
DM
776
777 initrd_start += PAGE_OFFSET;
778 initrd_end += PAGE_OFFSET;
4e82c9a6
DM
779 }
780#endif
781}
782
919ee677
DM
783struct node_mem_mask {
784 unsigned long mask;
785 unsigned long val;
919ee677
DM
786};
787static struct node_mem_mask node_masks[MAX_NUMNODES];
788static int num_node_masks;
789
48d37216
SR
790#ifdef CONFIG_NEED_MULTIPLE_NODES
791
919ee677
DM
792int numa_cpu_lookup_table[NR_CPUS];
793cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
794
919ee677
DM
795struct mdesc_mblock {
796 u64 base;
797 u64 size;
798 u64 offset; /* RA-to-PA */
799};
800static struct mdesc_mblock *mblocks;
801static int num_mblocks;
802
803static unsigned long ra_to_pa(unsigned long addr)
804{
805 int i;
806
807 for (i = 0; i < num_mblocks; i++) {
808 struct mdesc_mblock *m = &mblocks[i];
809
810 if (addr >= m->base &&
811 addr < (m->base + m->size)) {
812 addr += m->offset;
813 break;
814 }
815 }
816 return addr;
817}
818
819static int find_node(unsigned long addr)
820{
821 int i;
822
823 addr = ra_to_pa(addr);
824 for (i = 0; i < num_node_masks; i++) {
825 struct node_mem_mask *p = &node_masks[i];
826
827 if ((addr & p->mask) == p->val)
828 return i;
829 }
3dee9df5 830 /* The following condition has been observed on LDOM guests.*/
831 WARN_ONCE(1, "find_node: A physical address doesn't match a NUMA node"
832 " rule. Some physical memory will be owned by node 0.");
833 return 0;
919ee677
DM
834}
835
f9b18db3 836static u64 memblock_nid_range(u64 start, u64 end, int *nid)
919ee677
DM
837{
838 *nid = find_node(start);
839 start += PAGE_SIZE;
840 while (start < end) {
841 int n = find_node(start);
842
843 if (n != *nid)
844 break;
845 start += PAGE_SIZE;
846 }
847
c918dcce
DM
848 if (start > end)
849 start = end;
850
919ee677
DM
851 return start;
852}
919ee677
DM
853#endif
854
855/* This must be invoked after performing all of the necessary
2a4814df 856 * memblock_set_node() calls for 'nid'. We need to be able to get
919ee677 857 * correct data from get_pfn_range_for_nid().
f1cfdb55 858 */
919ee677
DM
859static void __init allocate_node_data(int nid)
860{
919ee677 861 struct pglist_data *p;
aa6f0790 862 unsigned long start_pfn, end_pfn;
919ee677 863#ifdef CONFIG_NEED_MULTIPLE_NODES
aa6f0790
PG
864 unsigned long paddr;
865
9d1e2492 866 paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
919ee677
DM
867 if (!paddr) {
868 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
869 prom_halt();
870 }
871 NODE_DATA(nid) = __va(paddr);
872 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
873
625d693e 874 NODE_DATA(nid)->node_id = nid;
919ee677
DM
875#endif
876
877 p = NODE_DATA(nid);
878
879 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
880 p->node_start_pfn = start_pfn;
881 p->node_spanned_pages = end_pfn - start_pfn;
919ee677
DM
882}
883
884static void init_node_masks_nonnuma(void)
d1112018 885{
48d37216 886#ifdef CONFIG_NEED_MULTIPLE_NODES
1da177e4 887 int i;
48d37216 888#endif
1da177e4 889
919ee677 890 numadbg("Initializing tables for non-numa.\n");
6fc5bae7 891
919ee677
DM
892 node_masks[0].mask = node_masks[0].val = 0;
893 num_node_masks = 1;
d1112018 894
48d37216 895#ifdef CONFIG_NEED_MULTIPLE_NODES
919ee677
DM
896 for (i = 0; i < NR_CPUS; i++)
897 numa_cpu_lookup_table[i] = 0;
1da177e4 898
fb1fece5 899 cpumask_setall(&numa_cpumask_lookup_table[0]);
48d37216 900#endif
919ee677
DM
901}
902
903#ifdef CONFIG_NEED_MULTIPLE_NODES
904struct pglist_data *node_data[MAX_NUMNODES];
905
906EXPORT_SYMBOL(numa_cpu_lookup_table);
907EXPORT_SYMBOL(numa_cpumask_lookup_table);
908EXPORT_SYMBOL(node_data);
909
910struct mdesc_mlgroup {
911 u64 node;
912 u64 latency;
913 u64 match;
914 u64 mask;
915};
916static struct mdesc_mlgroup *mlgroups;
917static int num_mlgroups;
918
919static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
920 u32 cfg_handle)
921{
922 u64 arc;
923
924 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
925 u64 target = mdesc_arc_target(md, arc);
926 const u64 *val;
927
928 val = mdesc_get_property(md, target,
929 "cfg-handle", NULL);
930 if (val && *val == cfg_handle)
931 return 0;
932 }
933 return -ENODEV;
934}
935
936static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
937 u32 cfg_handle)
938{
939 u64 arc, candidate, best_latency = ~(u64)0;
940
941 candidate = MDESC_NODE_NULL;
942 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
943 u64 target = mdesc_arc_target(md, arc);
944 const char *name = mdesc_node_name(md, target);
945 const u64 *val;
946
947 if (strcmp(name, "pio-latency-group"))
948 continue;
949
950 val = mdesc_get_property(md, target, "latency", NULL);
951 if (!val)
952 continue;
953
954 if (*val < best_latency) {
955 candidate = target;
956 best_latency = *val;
957 }
958 }
959
960 if (candidate == MDESC_NODE_NULL)
961 return -ENODEV;
962
963 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
964}
965
966int of_node_to_nid(struct device_node *dp)
967{
968 const struct linux_prom64_registers *regs;
969 struct mdesc_handle *md;
970 u32 cfg_handle;
971 int count, nid;
972 u64 grp;
973
072bd413
DM
974 /* This is the right thing to do on currently supported
975 * SUN4U NUMA platforms as well, as the PCI controller does
976 * not sit behind any particular memory controller.
977 */
919ee677
DM
978 if (!mlgroups)
979 return -1;
980
981 regs = of_get_property(dp, "reg", NULL);
982 if (!regs)
983 return -1;
984
985 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
986
987 md = mdesc_grab();
988
989 count = 0;
990 nid = -1;
991 mdesc_for_each_node_by_name(md, grp, "group") {
992 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
993 nid = count;
994 break;
995 }
996 count++;
997 }
998
999 mdesc_release(md);
1000
1001 return nid;
1002}
1003
01c45381 1004static void __init add_node_ranges(void)
919ee677 1005{
08b84798 1006 struct memblock_region *reg;
919ee677 1007
08b84798
BH
1008 for_each_memblock(memory, reg) {
1009 unsigned long size = reg->size;
919ee677
DM
1010 unsigned long start, end;
1011
08b84798 1012 start = reg->base;
919ee677
DM
1013 end = start + size;
1014 while (start < end) {
1015 unsigned long this_end;
1016 int nid;
1017
35a1f0bd 1018 this_end = memblock_nid_range(start, end, &nid);
919ee677 1019
2a4814df 1020 numadbg("Setting memblock NUMA node nid[%d] "
919ee677
DM
1021 "start[%lx] end[%lx]\n",
1022 nid, start, this_end);
1023
e7e8de59
TC
1024 memblock_set_node(start, this_end - start,
1025 &memblock.memory, nid);
919ee677
DM
1026 start = this_end;
1027 }
1028 }
1029}
1030
1031static int __init grab_mlgroups(struct mdesc_handle *md)
1032{
1033 unsigned long paddr;
1034 int count = 0;
1035 u64 node;
1036
1037 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1038 count++;
1039 if (!count)
1040 return -ENOENT;
1041
95f72d1e 1042 paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
919ee677
DM
1043 SMP_CACHE_BYTES);
1044 if (!paddr)
1045 return -ENOMEM;
1046
1047 mlgroups = __va(paddr);
1048 num_mlgroups = count;
1049
1050 count = 0;
1051 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1052 struct mdesc_mlgroup *m = &mlgroups[count++];
1053 const u64 *val;
1054
1055 m->node = node;
1056
1057 val = mdesc_get_property(md, node, "latency", NULL);
1058 m->latency = *val;
1059 val = mdesc_get_property(md, node, "address-match", NULL);
1060 m->match = *val;
1061 val = mdesc_get_property(md, node, "address-mask", NULL);
1062 m->mask = *val;
1063
90181136
SR
1064 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1065 "match[%llx] mask[%llx]\n",
919ee677
DM
1066 count - 1, m->node, m->latency, m->match, m->mask);
1067 }
1068
1069 return 0;
1070}
1071
1072static int __init grab_mblocks(struct mdesc_handle *md)
1073{
1074 unsigned long paddr;
1075 int count = 0;
1076 u64 node;
1077
1078 mdesc_for_each_node_by_name(md, node, "mblock")
1079 count++;
1080 if (!count)
1081 return -ENOENT;
1082
95f72d1e 1083 paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
919ee677
DM
1084 SMP_CACHE_BYTES);
1085 if (!paddr)
1086 return -ENOMEM;
1087
1088 mblocks = __va(paddr);
1089 num_mblocks = count;
1090
1091 count = 0;
1092 mdesc_for_each_node_by_name(md, node, "mblock") {
1093 struct mdesc_mblock *m = &mblocks[count++];
1094 const u64 *val;
1095
1096 val = mdesc_get_property(md, node, "base", NULL);
1097 m->base = *val;
1098 val = mdesc_get_property(md, node, "size", NULL);
1099 m->size = *val;
1100 val = mdesc_get_property(md, node,
1101 "address-congruence-offset", NULL);
771a37ff 1102
1103 /* The address-congruence-offset property is optional.
1104 * Explicity zero it be identifty this.
1105 */
1106 if (val)
1107 m->offset = *val;
1108 else
1109 m->offset = 0UL;
919ee677 1110
90181136 1111 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
919ee677
DM
1112 count - 1, m->base, m->size, m->offset);
1113 }
1114
1115 return 0;
1116}
1117
1118static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1119 u64 grp, cpumask_t *mask)
1120{
1121 u64 arc;
1122
fb1fece5 1123 cpumask_clear(mask);
919ee677
DM
1124
1125 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1126 u64 target = mdesc_arc_target(md, arc);
1127 const char *name = mdesc_node_name(md, target);
1128 const u64 *id;
1129
1130 if (strcmp(name, "cpu"))
1131 continue;
1132 id = mdesc_get_property(md, target, "id", NULL);
e305cb8f 1133 if (*id < nr_cpu_ids)
fb1fece5 1134 cpumask_set_cpu(*id, mask);
919ee677
DM
1135 }
1136}
1137
1138static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1139{
1140 int i;
1141
1142 for (i = 0; i < num_mlgroups; i++) {
1143 struct mdesc_mlgroup *m = &mlgroups[i];
1144 if (m->node == node)
1145 return m;
1146 }
1147 return NULL;
1148}
1149
52708d69
NG
1150int __node_distance(int from, int to)
1151{
1152 if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1153 pr_warn("Returning default NUMA distance value for %d->%d\n",
1154 from, to);
1155 return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1156 }
1157 return numa_latency[from][to];
1158}
1159
1160static int find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1161{
1162 int i;
1163
1164 for (i = 0; i < MAX_NUMNODES; i++) {
1165 struct node_mem_mask *n = &node_masks[i];
1166
1167 if ((grp->mask == n->mask) && (grp->match == n->val))
1168 break;
1169 }
1170 return i;
1171}
1172
1173static void find_numa_latencies_for_group(struct mdesc_handle *md, u64 grp,
1174 int index)
1175{
1176 u64 arc;
1177
1178 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1179 int tnode;
1180 u64 target = mdesc_arc_target(md, arc);
1181 struct mdesc_mlgroup *m = find_mlgroup(target);
1182
1183 if (!m)
1184 continue;
1185 tnode = find_best_numa_node_for_mlgroup(m);
1186 if (tnode == MAX_NUMNODES)
1187 continue;
1188 numa_latency[index][tnode] = m->latency;
1189 }
1190}
1191
919ee677
DM
1192static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1193 int index)
1194{
1195 struct mdesc_mlgroup *candidate = NULL;
1196 u64 arc, best_latency = ~(u64)0;
1197 struct node_mem_mask *n;
1198
1199 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1200 u64 target = mdesc_arc_target(md, arc);
1201 struct mdesc_mlgroup *m = find_mlgroup(target);
1202 if (!m)
1203 continue;
1204 if (m->latency < best_latency) {
1205 candidate = m;
1206 best_latency = m->latency;
1207 }
1208 }
1209 if (!candidate)
1210 return -ENOENT;
1211
1212 if (num_node_masks != index) {
1213 printk(KERN_ERR "Inconsistent NUMA state, "
1214 "index[%d] != num_node_masks[%d]\n",
1215 index, num_node_masks);
1216 return -EINVAL;
1217 }
1218
1219 n = &node_masks[num_node_masks++];
1220
1221 n->mask = candidate->mask;
1222 n->val = candidate->match;
1da177e4 1223
90181136 1224 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
919ee677 1225 index, n->mask, n->val, candidate->latency);
1da177e4 1226
919ee677
DM
1227 return 0;
1228}
1229
1230static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1231 int index)
1232{
1233 cpumask_t mask;
1234 int cpu;
1235
1236 numa_parse_mdesc_group_cpus(md, grp, &mask);
1237
fb1fece5 1238 for_each_cpu(cpu, &mask)
919ee677 1239 numa_cpu_lookup_table[cpu] = index;
fb1fece5 1240 cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
919ee677
DM
1241
1242 if (numa_debug) {
1243 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
fb1fece5 1244 for_each_cpu(cpu, &mask)
919ee677
DM
1245 printk("%d ", cpu);
1246 printk("]\n");
1247 }
1248
1249 return numa_attach_mlgroup(md, grp, index);
1250}
1251
1252static int __init numa_parse_mdesc(void)
1253{
1254 struct mdesc_handle *md = mdesc_grab();
52708d69 1255 int i, j, err, count;
919ee677
DM
1256 u64 node;
1257
1258 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1259 if (node == MDESC_NODE_NULL) {
1260 mdesc_release(md);
1261 return -ENOENT;
1262 }
1263
1264 err = grab_mblocks(md);
1265 if (err < 0)
1266 goto out;
1267
1268 err = grab_mlgroups(md);
1269 if (err < 0)
1270 goto out;
1271
1272 count = 0;
1273 mdesc_for_each_node_by_name(md, node, "group") {
1274 err = numa_parse_mdesc_group(md, node, count);
1275 if (err < 0)
1276 break;
1277 count++;
1278 }
1279
52708d69
NG
1280 count = 0;
1281 mdesc_for_each_node_by_name(md, node, "group") {
1282 find_numa_latencies_for_group(md, node, count);
1283 count++;
1284 }
1285
1286 /* Normalize numa latency matrix according to ACPI SLIT spec. */
1287 for (i = 0; i < MAX_NUMNODES; i++) {
1288 u64 self_latency = numa_latency[i][i];
1289
1290 for (j = 0; j < MAX_NUMNODES; j++) {
1291 numa_latency[i][j] =
1292 (numa_latency[i][j] * LOCAL_DISTANCE) /
1293 self_latency;
1294 }
1295 }
1296
919ee677
DM
1297 add_node_ranges();
1298
1299 for (i = 0; i < num_node_masks; i++) {
1300 allocate_node_data(i);
1301 node_set_online(i);
1302 }
1303
1304 err = 0;
1305out:
1306 mdesc_release(md);
1307 return err;
1308}
1309
072bd413
DM
1310static int __init numa_parse_jbus(void)
1311{
1312 unsigned long cpu, index;
1313
1314 /* NUMA node id is encoded in bits 36 and higher, and there is
1315 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1316 */
1317 index = 0;
1318 for_each_present_cpu(cpu) {
1319 numa_cpu_lookup_table[cpu] = index;
fb1fece5 1320 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
072bd413
DM
1321 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1322 node_masks[index].val = cpu << 36UL;
1323
1324 index++;
1325 }
1326 num_node_masks = index;
1327
1328 add_node_ranges();
1329
1330 for (index = 0; index < num_node_masks; index++) {
1331 allocate_node_data(index);
1332 node_set_online(index);
1333 }
1334
1335 return 0;
1336}
1337
919ee677
DM
1338static int __init numa_parse_sun4u(void)
1339{
072bd413
DM
1340 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1341 unsigned long ver;
1342
1343 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1344 if ((ver >> 32UL) == __JALAPENO_ID ||
1345 (ver >> 32UL) == __SERRANO_ID)
1346 return numa_parse_jbus();
1347 }
919ee677
DM
1348 return -1;
1349}
1350
1351static int __init bootmem_init_numa(void)
1352{
36beca65 1353 int i, j;
919ee677
DM
1354 int err = -1;
1355
1356 numadbg("bootmem_init_numa()\n");
1357
36beca65
NG
1358 /* Some sane defaults for numa latency values */
1359 for (i = 0; i < MAX_NUMNODES; i++) {
1360 for (j = 0; j < MAX_NUMNODES; j++)
1361 numa_latency[i][j] = (i == j) ?
1362 LOCAL_DISTANCE : REMOTE_DISTANCE;
1363 }
1364
919ee677
DM
1365 if (numa_enabled) {
1366 if (tlb_type == hypervisor)
1367 err = numa_parse_mdesc();
1368 else
1369 err = numa_parse_sun4u();
1370 }
1371 return err;
1372}
1373
1374#else
1da177e4 1375
919ee677
DM
1376static int bootmem_init_numa(void)
1377{
1378 return -1;
1379}
1380
1381#endif
1382
1383static void __init bootmem_init_nonnuma(void)
1384{
95f72d1e
YL
1385 unsigned long top_of_ram = memblock_end_of_DRAM();
1386 unsigned long total_ram = memblock_phys_mem_size();
919ee677
DM
1387
1388 numadbg("bootmem_init_nonnuma()\n");
1389
1390 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1391 top_of_ram, total_ram);
1392 printk(KERN_INFO "Memory hole size: %ldMB\n",
1393 (top_of_ram - total_ram) >> 20);
1394
1395 init_node_masks_nonnuma();
e7e8de59 1396 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
919ee677 1397 allocate_node_data(0);
919ee677
DM
1398 node_set_online(0);
1399}
1400
919ee677
DM
1401static unsigned long __init bootmem_init(unsigned long phys_base)
1402{
1403 unsigned long end_pfn;
919ee677 1404
95f72d1e 1405 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
919ee677
DM
1406 max_pfn = max_low_pfn = end_pfn;
1407 min_low_pfn = (phys_base >> PAGE_SHIFT);
1408
1409 if (bootmem_init_numa() < 0)
1410 bootmem_init_nonnuma();
1411
625d693e
DM
1412 /* Dump memblock with node info. */
1413 memblock_dump_all();
919ee677 1414
625d693e 1415 /* XXX cpu notifier XXX */
d1112018 1416
625d693e 1417 sparse_memory_present_with_active_regions(MAX_NUMNODES);
d1112018
DM
1418 sparse_init();
1419
1da177e4
LT
1420 return end_pfn;
1421}
1422
9cc3a1ac
DM
1423static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1424static int pall_ents __initdata;
1425
0dd5b7b0
DM
1426static unsigned long max_phys_bits = 40;
1427
1428bool kern_addr_valid(unsigned long addr)
1429{
0dd5b7b0
DM
1430 pgd_t *pgd;
1431 pud_t *pud;
1432 pmd_t *pmd;
1433 pte_t *pte;
1434
bb4e6e85 1435 if ((long)addr < 0L) {
0dd5b7b0
DM
1436 unsigned long pa = __pa(addr);
1437
bb4e6e85
DM
1438 if ((addr >> max_phys_bits) != 0UL)
1439 return false;
1440
0dd5b7b0
DM
1441 return pfn_valid(pa >> PAGE_SHIFT);
1442 }
1443
bb4e6e85
DM
1444 if (addr >= (unsigned long) KERNBASE &&
1445 addr < (unsigned long)&_end)
1446 return true;
1447
0dd5b7b0
DM
1448 pgd = pgd_offset_k(addr);
1449 if (pgd_none(*pgd))
1450 return 0;
1451
1452 pud = pud_offset(pgd, addr);
1453 if (pud_none(*pud))
1454 return 0;
1455
1456 if (pud_large(*pud))
1457 return pfn_valid(pud_pfn(*pud));
1458
1459 pmd = pmd_offset(pud, addr);
1460 if (pmd_none(*pmd))
1461 return 0;
1462
1463 if (pmd_large(*pmd))
1464 return pfn_valid(pmd_pfn(*pmd));
1465
1466 pte = pte_offset_kernel(pmd, addr);
1467 if (pte_none(*pte))
1468 return 0;
1469
1470 return pfn_valid(pte_pfn(*pte));
1471}
1472EXPORT_SYMBOL(kern_addr_valid);
1473
1474static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1475 unsigned long vend,
1476 pud_t *pud)
1477{
1478 const unsigned long mask16gb = (1UL << 34) - 1UL;
1479 u64 pte_val = vstart;
1480
1481 /* Each PUD is 8GB */
1482 if ((vstart & mask16gb) ||
1483 (vend - vstart <= mask16gb)) {
1484 pte_val ^= kern_linear_pte_xor[2];
1485 pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1486
1487 return vstart + PUD_SIZE;
1488 }
1489
1490 pte_val ^= kern_linear_pte_xor[3];
1491 pte_val |= _PAGE_PUD_HUGE;
1492
1493 vend = vstart + mask16gb + 1UL;
1494 while (vstart < vend) {
1495 pud_val(*pud) = pte_val;
1496
1497 pte_val += PUD_SIZE;
1498 vstart += PUD_SIZE;
1499 pud++;
1500 }
1501 return vstart;
1502}
1503
1504static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1505 bool guard)
1506{
1507 if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1508 return true;
1509
1510 return false;
1511}
1512
1513static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1514 unsigned long vend,
1515 pmd_t *pmd)
1516{
1517 const unsigned long mask256mb = (1UL << 28) - 1UL;
1518 const unsigned long mask2gb = (1UL << 31) - 1UL;
1519 u64 pte_val = vstart;
1520
1521 /* Each PMD is 8MB */
1522 if ((vstart & mask256mb) ||
1523 (vend - vstart <= mask256mb)) {
1524 pte_val ^= kern_linear_pte_xor[0];
1525 pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1526
1527 return vstart + PMD_SIZE;
1528 }
1529
1530 if ((vstart & mask2gb) ||
1531 (vend - vstart <= mask2gb)) {
1532 pte_val ^= kern_linear_pte_xor[1];
1533 pte_val |= _PAGE_PMD_HUGE;
1534 vend = vstart + mask256mb + 1UL;
1535 } else {
1536 pte_val ^= kern_linear_pte_xor[2];
1537 pte_val |= _PAGE_PMD_HUGE;
1538 vend = vstart + mask2gb + 1UL;
1539 }
1540
1541 while (vstart < vend) {
1542 pmd_val(*pmd) = pte_val;
1543
1544 pte_val += PMD_SIZE;
1545 vstart += PMD_SIZE;
1546 pmd++;
1547 }
1548
1549 return vstart;
1550}
1551
1552static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1553 bool guard)
1554{
1555 if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1556 return true;
1557
1558 return false;
1559}
1560
896aef43 1561static unsigned long __ref kernel_map_range(unsigned long pstart,
0dd5b7b0
DM
1562 unsigned long pend, pgprot_t prot,
1563 bool use_huge)
56425306
DM
1564{
1565 unsigned long vstart = PAGE_OFFSET + pstart;
1566 unsigned long vend = PAGE_OFFSET + pend;
1567 unsigned long alloc_bytes = 0UL;
1568
1569 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
13edad7a 1570 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
56425306
DM
1571 vstart, vend);
1572 prom_halt();
1573 }
1574
1575 while (vstart < vend) {
1576 unsigned long this_end, paddr = __pa(vstart);
1577 pgd_t *pgd = pgd_offset_k(vstart);
1578 pud_t *pud;
1579 pmd_t *pmd;
1580 pte_t *pte;
1581
ac55c768
DM
1582 if (pgd_none(*pgd)) {
1583 pud_t *new;
1584
1585 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1586 alloc_bytes += PAGE_SIZE;
1587 pgd_populate(&init_mm, pgd, new);
1588 }
56425306
DM
1589 pud = pud_offset(pgd, vstart);
1590 if (pud_none(*pud)) {
1591 pmd_t *new;
1592
0dd5b7b0
DM
1593 if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1594 vstart = kernel_map_hugepud(vstart, vend, pud);
1595 continue;
1596 }
56425306
DM
1597 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1598 alloc_bytes += PAGE_SIZE;
1599 pud_populate(&init_mm, pud, new);
1600 }
1601
1602 pmd = pmd_offset(pud, vstart);
0dd5b7b0 1603 if (pmd_none(*pmd)) {
56425306
DM
1604 pte_t *new;
1605
0dd5b7b0
DM
1606 if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1607 vstart = kernel_map_hugepmd(vstart, vend, pmd);
1608 continue;
1609 }
56425306
DM
1610 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1611 alloc_bytes += PAGE_SIZE;
1612 pmd_populate_kernel(&init_mm, pmd, new);
1613 }
1614
1615 pte = pte_offset_kernel(pmd, vstart);
1616 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1617 if (this_end > vend)
1618 this_end = vend;
1619
1620 while (vstart < this_end) {
1621 pte_val(*pte) = (paddr | pgprot_val(prot));
1622
1623 vstart += PAGE_SIZE;
1624 paddr += PAGE_SIZE;
1625 pte++;
1626 }
1627 }
1628
1629 return alloc_bytes;
1630}
1631
0dd5b7b0 1632static void __init flush_all_kernel_tsbs(void)
4f93d21d 1633{
0dd5b7b0 1634 int i;
4f93d21d 1635
0dd5b7b0
DM
1636 for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1637 struct tsb *ent = &swapper_tsb[i];
4f93d21d 1638
0dd5b7b0 1639 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
4f93d21d 1640 }
0dd5b7b0
DM
1641#ifndef CONFIG_DEBUG_PAGEALLOC
1642 for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1643 struct tsb *ent = &swapper_4m_tsb[i];
4f93d21d 1644
0dd5b7b0 1645 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
9cc3a1ac 1646 }
0dd5b7b0 1647#endif
9cc3a1ac 1648}
56425306 1649
0dd5b7b0 1650extern unsigned int kvmap_linear_patch[1];
9cc3a1ac 1651
8f361453
DM
1652static void __init kernel_physical_mapping_init(void)
1653{
8f361453 1654 unsigned long i, mem_alloced = 0UL;
0dd5b7b0 1655 bool use_huge = true;
8f361453 1656
0dd5b7b0
DM
1657#ifdef CONFIG_DEBUG_PAGEALLOC
1658 use_huge = false;
1659#endif
8f361453
DM
1660 for (i = 0; i < pall_ents; i++) {
1661 unsigned long phys_start, phys_end;
1662
1663 phys_start = pall[i].phys_addr;
1664 phys_end = phys_start + pall[i].reg_size;
1665
56425306 1666 mem_alloced += kernel_map_range(phys_start, phys_end,
0dd5b7b0 1667 PAGE_KERNEL, use_huge);
56425306
DM
1668 }
1669
1670 printk("Allocated %ld bytes for kernel page tables.\n",
1671 mem_alloced);
1672
1673 kvmap_linear_patch[0] = 0x01000000; /* nop */
1674 flushi(&kvmap_linear_patch[0]);
1675
0dd5b7b0
DM
1676 flush_all_kernel_tsbs();
1677
56425306
DM
1678 __flush_tlb_all();
1679}
1680
9cc3a1ac 1681#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574 1682void __kernel_map_pages(struct page *page, int numpages, int enable)
56425306
DM
1683{
1684 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1685 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1686
1687 kernel_map_range(phys_start, phys_end,
0dd5b7b0 1688 (enable ? PAGE_KERNEL : __pgprot(0)), false);
56425306 1689
74bf4312
DM
1690 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1691 PAGE_OFFSET + phys_end);
1692
56425306
DM
1693 /* we should perform an IPI and flush all tlbs,
1694 * but that can deadlock->flush only current cpu.
1695 */
1696 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1697 PAGE_OFFSET + phys_end);
1698}
1699#endif
1700
10147570
DM
1701unsigned long __init find_ecache_flush_span(unsigned long size)
1702{
0836a0eb
DM
1703 int i;
1704
13edad7a
DM
1705 for (i = 0; i < pavail_ents; i++) {
1706 if (pavail[i].reg_size >= size)
1707 return pavail[i].phys_addr;
0836a0eb
DM
1708 }
1709
13edad7a 1710 return ~0UL;
0836a0eb
DM
1711}
1712
b2d43834
DM
1713unsigned long PAGE_OFFSET;
1714EXPORT_SYMBOL(PAGE_OFFSET);
1715
bb4e6e85
DM
1716unsigned long VMALLOC_END = 0x0000010000000000UL;
1717EXPORT_SYMBOL(VMALLOC_END);
1718
4397bed0
DM
1719unsigned long sparc64_va_hole_top = 0xfffff80000000000UL;
1720unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1721
b2d43834
DM
1722static void __init setup_page_offset(void)
1723{
b2d43834 1724 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
4397bed0
DM
1725 /* Cheetah/Panther support a full 64-bit virtual
1726 * address, so we can use all that our page tables
1727 * support.
1728 */
1729 sparc64_va_hole_top = 0xfff0000000000000UL;
1730 sparc64_va_hole_bottom = 0x0010000000000000UL;
1731
b2d43834
DM
1732 max_phys_bits = 42;
1733 } else if (tlb_type == hypervisor) {
1734 switch (sun4v_chip_type) {
1735 case SUN4V_CHIP_NIAGARA1:
1736 case SUN4V_CHIP_NIAGARA2:
4397bed0
DM
1737 /* T1 and T2 support 48-bit virtual addresses. */
1738 sparc64_va_hole_top = 0xffff800000000000UL;
1739 sparc64_va_hole_bottom = 0x0000800000000000UL;
1740
b2d43834
DM
1741 max_phys_bits = 39;
1742 break;
1743 case SUN4V_CHIP_NIAGARA3:
4397bed0
DM
1744 /* T3 supports 48-bit virtual addresses. */
1745 sparc64_va_hole_top = 0xffff800000000000UL;
1746 sparc64_va_hole_bottom = 0x0000800000000000UL;
1747
b2d43834
DM
1748 max_phys_bits = 43;
1749 break;
1750 case SUN4V_CHIP_NIAGARA4:
1751 case SUN4V_CHIP_NIAGARA5:
1752 case SUN4V_CHIP_SPARC64X:
7c0fa0f2 1753 case SUN4V_CHIP_SPARC_M6:
4397bed0
DM
1754 /* T4 and later support 52-bit virtual addresses. */
1755 sparc64_va_hole_top = 0xfff8000000000000UL;
1756 sparc64_va_hole_bottom = 0x0008000000000000UL;
b2d43834
DM
1757 max_phys_bits = 47;
1758 break;
7c0fa0f2 1759 case SUN4V_CHIP_SPARC_M7:
c5b8b5be 1760 case SUN4V_CHIP_SPARC_SN:
7c0fa0f2
DM
1761 default:
1762 /* M7 and later support 52-bit virtual addresses. */
1763 sparc64_va_hole_top = 0xfff8000000000000UL;
1764 sparc64_va_hole_bottom = 0x0008000000000000UL;
1765 max_phys_bits = 49;
1766 break;
b2d43834
DM
1767 }
1768 }
1769
1770 if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1771 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1772 max_phys_bits);
1773 prom_halt();
1774 }
1775
bb4e6e85
DM
1776 PAGE_OFFSET = sparc64_va_hole_top;
1777 VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
1778 (sparc64_va_hole_bottom >> 2));
b2d43834 1779
bb4e6e85 1780 pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
b2d43834 1781 PAGE_OFFSET, max_phys_bits);
bb4e6e85
DM
1782 pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
1783 VMALLOC_START, VMALLOC_END);
1784 pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
1785 VMEMMAP_BASE, VMEMMAP_BASE << 1);
b2d43834
DM
1786}
1787
517af332
DM
1788static void __init tsb_phys_patch(void)
1789{
d257d5da 1790 struct tsb_ldquad_phys_patch_entry *pquad;
517af332
DM
1791 struct tsb_phys_patch_entry *p;
1792
d257d5da
DM
1793 pquad = &__tsb_ldquad_phys_patch;
1794 while (pquad < &__tsb_ldquad_phys_patch_end) {
1795 unsigned long addr = pquad->addr;
1796
1797 if (tlb_type == hypervisor)
1798 *(unsigned int *) addr = pquad->sun4v_insn;
1799 else
1800 *(unsigned int *) addr = pquad->sun4u_insn;
1801 wmb();
1802 __asm__ __volatile__("flush %0"
1803 : /* no outputs */
1804 : "r" (addr));
1805
1806 pquad++;
1807 }
1808
517af332
DM
1809 p = &__tsb_phys_patch;
1810 while (p < &__tsb_phys_patch_end) {
1811 unsigned long addr = p->addr;
1812
1813 *(unsigned int *) addr = p->insn;
1814 wmb();
1815 __asm__ __volatile__("flush %0"
1816 : /* no outputs */
1817 : "r" (addr));
1818
1819 p++;
1820 }
1821}
1822
490384e7 1823/* Don't mark as init, we give this to the Hypervisor. */
d1acb421
DM
1824#ifndef CONFIG_DEBUG_PAGEALLOC
1825#define NUM_KTSB_DESCR 2
1826#else
1827#define NUM_KTSB_DESCR 1
1828#endif
1829static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
490384e7 1830
8c82dc0e
DM
1831/* The swapper TSBs are loaded with a base sequence of:
1832 *
1833 * sethi %uhi(SYMBOL), REG1
1834 * sethi %hi(SYMBOL), REG2
1835 * or REG1, %ulo(SYMBOL), REG1
1836 * or REG2, %lo(SYMBOL), REG2
1837 * sllx REG1, 32, REG1
1838 * or REG1, REG2, REG1
1839 *
1840 * When we use physical addressing for the TSB accesses, we patch the
1841 * first four instructions in the above sequence.
1842 */
1843
9076d0e7
DM
1844static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1845{
8c82dc0e
DM
1846 unsigned long high_bits, low_bits;
1847
1848 high_bits = (pa >> 32) & 0xffffffff;
1849 low_bits = (pa >> 0) & 0xffffffff;
9076d0e7
DM
1850
1851 while (start < end) {
1852 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1853
8c82dc0e 1854 ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
9076d0e7
DM
1855 __asm__ __volatile__("flush %0" : : "r" (ia));
1856
8c82dc0e 1857 ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
9076d0e7
DM
1858 __asm__ __volatile__("flush %0" : : "r" (ia + 1));
1859
8c82dc0e
DM
1860 ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
1861 __asm__ __volatile__("flush %0" : : "r" (ia + 2));
1862
1863 ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
1864 __asm__ __volatile__("flush %0" : : "r" (ia + 3));
1865
9076d0e7
DM
1866 start++;
1867 }
1868}
1869
1870static void ktsb_phys_patch(void)
1871{
1872 extern unsigned int __swapper_tsb_phys_patch;
1873 extern unsigned int __swapper_tsb_phys_patch_end;
9076d0e7
DM
1874 unsigned long ktsb_pa;
1875
1876 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1877 patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1878 &__swapper_tsb_phys_patch_end, ktsb_pa);
1879#ifndef CONFIG_DEBUG_PAGEALLOC
0785a8e8
DM
1880 {
1881 extern unsigned int __swapper_4m_tsb_phys_patch;
1882 extern unsigned int __swapper_4m_tsb_phys_patch_end;
9076d0e7
DM
1883 ktsb_pa = (kern_base +
1884 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1885 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1886 &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
0785a8e8 1887 }
9076d0e7
DM
1888#endif
1889}
1890
490384e7
DM
1891static void __init sun4v_ktsb_init(void)
1892{
1893 unsigned long ktsb_pa;
1894
d7744a09 1895 /* First KTSB for PAGE_SIZE mappings. */
490384e7
DM
1896 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1897
1898 switch (PAGE_SIZE) {
1899 case 8 * 1024:
1900 default:
1901 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1902 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1903 break;
1904
1905 case 64 * 1024:
1906 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1907 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1908 break;
1909
1910 case 512 * 1024:
1911 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1912 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1913 break;
1914
1915 case 4 * 1024 * 1024:
1916 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1917 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1918 break;
6cb79b3f 1919 }
490384e7 1920
3f19a84e 1921 ktsb_descr[0].assoc = 1;
490384e7
DM
1922 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1923 ktsb_descr[0].ctx_idx = 0;
1924 ktsb_descr[0].tsb_base = ktsb_pa;
1925 ktsb_descr[0].resv = 0;
1926
d1acb421 1927#ifndef CONFIG_DEBUG_PAGEALLOC
4f93d21d 1928 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
d7744a09
DM
1929 ktsb_pa = (kern_base +
1930 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1931
1932 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
c69ad0a3
DM
1933 ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1934 HV_PGSZ_MASK_256MB |
1935 HV_PGSZ_MASK_2GB |
1936 HV_PGSZ_MASK_16GB) &
1937 cpu_pgsz_mask);
d7744a09
DM
1938 ktsb_descr[1].assoc = 1;
1939 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1940 ktsb_descr[1].ctx_idx = 0;
1941 ktsb_descr[1].tsb_base = ktsb_pa;
1942 ktsb_descr[1].resv = 0;
d1acb421 1943#endif
490384e7
DM
1944}
1945
2066aadd 1946void sun4v_ktsb_register(void)
490384e7 1947{
7db35f31 1948 unsigned long pa, ret;
490384e7
DM
1949
1950 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1951
7db35f31
DM
1952 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1953 if (ret != 0) {
1954 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1955 "errors with %lx\n", pa, ret);
1956 prom_halt();
1957 }
490384e7
DM
1958}
1959
c69ad0a3
DM
1960static void __init sun4u_linear_pte_xor_finalize(void)
1961{
1962#ifndef CONFIG_DEBUG_PAGEALLOC
1963 /* This is where we would add Panther support for
1964 * 32MB and 256MB pages.
1965 */
1966#endif
1967}
1968
1969static void __init sun4v_linear_pte_xor_finalize(void)
1970{
494e5b6f
KA
1971 unsigned long pagecv_flag;
1972
1973 /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
1974 * enables MCD error. Do not set bit 9 on M7 processor.
1975 */
1976 switch (sun4v_chip_type) {
1977 case SUN4V_CHIP_SPARC_M7:
c5b8b5be 1978 case SUN4V_CHIP_SPARC_SN:
494e5b6f
KA
1979 pagecv_flag = 0x00;
1980 break;
1981 default:
1982 pagecv_flag = _PAGE_CV_4V;
1983 break;
1984 }
c69ad0a3
DM
1985#ifndef CONFIG_DEBUG_PAGEALLOC
1986 if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1987 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
922631b9 1988 PAGE_OFFSET;
494e5b6f 1989 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
c69ad0a3
DM
1990 _PAGE_P_4V | _PAGE_W_4V);
1991 } else {
1992 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1993 }
1994
1995 if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
1996 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
922631b9 1997 PAGE_OFFSET;
494e5b6f 1998 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
c69ad0a3
DM
1999 _PAGE_P_4V | _PAGE_W_4V);
2000 } else {
2001 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2002 }
2003
2004 if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2005 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
922631b9 2006 PAGE_OFFSET;
494e5b6f 2007 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
c69ad0a3
DM
2008 _PAGE_P_4V | _PAGE_W_4V);
2009 } else {
2010 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2011 }
2012#endif
2013}
2014
1da177e4
LT
2015/* paging_init() sets up the page tables */
2016
1da177e4 2017static unsigned long last_valid_pfn;
ac55c768 2018
c4bce90e
DM
2019static void sun4u_pgprot_init(void);
2020static void sun4v_pgprot_init(void);
2021
7c21d533 2022static phys_addr_t __init available_memory(void)
2023{
2024 phys_addr_t available = 0ULL;
2025 phys_addr_t pa_start, pa_end;
2026 u64 i;
2027
fc6daaf9
TL
2028 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2029 &pa_end, NULL)
7c21d533 2030 available = available + (pa_end - pa_start);
2031
2032 return available;
2033}
2034
494e5b6f
KA
2035#define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2036#define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2037#define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2038#define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2039#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2040#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2041
7c21d533 2042/* We need to exclude reserved regions. This exclusion will include
2043 * vmlinux and initrd. To be more precise the initrd size could be used to
2044 * compute a new lower limit because it is freed later during initialization.
2045 */
2046static void __init reduce_memory(phys_addr_t limit_ram)
2047{
2048 phys_addr_t avail_ram = available_memory();
2049 phys_addr_t pa_start, pa_end;
2050 u64 i;
2051
2052 if (limit_ram >= avail_ram)
2053 return;
2054
fc6daaf9
TL
2055 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2056 &pa_end, NULL) {
7c21d533 2057 phys_addr_t region_size = pa_end - pa_start;
2058 phys_addr_t clip_start = pa_start;
2059
2060 avail_ram = avail_ram - region_size;
2061 /* Are we consuming too much? */
2062 if (avail_ram < limit_ram) {
2063 phys_addr_t give_back = limit_ram - avail_ram;
2064
2065 region_size = region_size - give_back;
2066 clip_start = clip_start + give_back;
2067 }
2068
2069 memblock_remove(clip_start, region_size);
2070
2071 if (avail_ram <= limit_ram)
2072 break;
2073 i = 0UL;
2074 }
2075}
2076
1da177e4
LT
2077void __init paging_init(void)
2078{
919ee677 2079 unsigned long end_pfn, shift, phys_base;
0836a0eb 2080 unsigned long real_end, i;
aa6f0790 2081 int node;
0836a0eb 2082
b2d43834
DM
2083 setup_page_offset();
2084
22adb358
DM
2085 /* These build time checkes make sure that the dcache_dirty_cpu()
2086 * page->flags usage will work.
2087 *
2088 * When a page gets marked as dcache-dirty, we store the
2089 * cpu number starting at bit 32 in the page->flags. Also,
2090 * functions like clear_dcache_dirty_cpu use the cpu mask
2091 * in 13-bit signed-immediate instruction fields.
2092 */
9223b419
CL
2093
2094 /*
2095 * Page flags must not reach into upper 32 bits that are used
2096 * for the cpu number
2097 */
2098 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2099
2100 /*
2101 * The bit fields placed in the high range must not reach below
2102 * the 32 bit boundary. Otherwise we cannot place the cpu field
2103 * at the 32 bit boundary.
2104 */
22adb358 2105 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
9223b419
CL
2106 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2107
22adb358
DM
2108 BUILD_BUG_ON(NR_CPUS > 4096);
2109
0eef331a 2110 kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
481295f9
DM
2111 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2112
d7744a09 2113 /* Invalidate both kernel TSBs. */
8b234274 2114 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
d1acb421 2115#ifndef CONFIG_DEBUG_PAGEALLOC
d7744a09 2116 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
d1acb421 2117#endif
8b234274 2118
494e5b6f
KA
2119 /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2120 * bit on M7 processor. This is a conflicting usage of the same
2121 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2122 * Detection error on all pages and this will lead to problems
2123 * later. Kernel does not run with MCD enabled and hence rest
2124 * of the required steps to fully configure memory corruption
2125 * detection are not taken. We need to ensure TTE.mcde is not
2126 * set on M7 processor. Compute the value of cacheability
2127 * flag for use later taking this into consideration.
2128 */
2129 switch (sun4v_chip_type) {
2130 case SUN4V_CHIP_SPARC_M7:
c5b8b5be 2131 case SUN4V_CHIP_SPARC_SN:
494e5b6f
KA
2132 page_cache4v_flag = _PAGE_CP_4V;
2133 break;
2134 default:
2135 page_cache4v_flag = _PAGE_CACHE_4V;
2136 break;
2137 }
2138
c4bce90e
DM
2139 if (tlb_type == hypervisor)
2140 sun4v_pgprot_init();
2141 else
2142 sun4u_pgprot_init();
2143
d257d5da 2144 if (tlb_type == cheetah_plus ||
9076d0e7 2145 tlb_type == hypervisor) {
517af332 2146 tsb_phys_patch();
9076d0e7
DM
2147 ktsb_phys_patch();
2148 }
517af332 2149
c69ad0a3 2150 if (tlb_type == hypervisor)
d257d5da
DM
2151 sun4v_patch_tlb_handlers();
2152
a94a172d
DM
2153 /* Find available physical memory...
2154 *
2155 * Read it twice in order to work around a bug in openfirmware.
2156 * The call to grab this table itself can cause openfirmware to
2157 * allocate memory, which in turn can take away some space from
2158 * the list of available memory. Reading it twice makes sure
2159 * we really do get the final value.
2160 */
2161 read_obp_translations();
2162 read_obp_memory("reg", &pall[0], &pall_ents);
2163 read_obp_memory("available", &pavail[0], &pavail_ents);
13edad7a 2164 read_obp_memory("available", &pavail[0], &pavail_ents);
0836a0eb
DM
2165
2166 phys_base = 0xffffffffffffffffUL;
3b2a7e23 2167 for (i = 0; i < pavail_ents; i++) {
13edad7a 2168 phys_base = min(phys_base, pavail[i].phys_addr);
95f72d1e 2169 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
3b2a7e23
DM
2170 }
2171
95f72d1e 2172 memblock_reserve(kern_base, kern_size);
0836a0eb 2173
4e82c9a6
DM
2174 find_ramdisk(phys_base);
2175
7c21d533 2176 if (cmdline_memory_size)
2177 reduce_memory(cmdline_memory_size);
25b0c659 2178
1aadc056 2179 memblock_allow_resize();
95f72d1e 2180 memblock_dump_all();
3b2a7e23 2181
1da177e4
LT
2182 set_bit(0, mmu_context_bmap);
2183
2bdb3cb2
DM
2184 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2185
1da177e4 2186 real_end = (unsigned long)_end;
0eef331a 2187 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
64658743
DM
2188 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2189 num_kernel_image_mappings);
2bdb3cb2
DM
2190
2191 /* Set kernel pgd to upper alias so physical page computations
1da177e4
LT
2192 * work.
2193 */
2194 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2195
d195b71b 2196 memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
0dd5b7b0 2197
c9c10830 2198 inherit_prom_mappings();
5085b4a5 2199
a8b900d8
DM
2200 /* Ok, we can use our TLB miss and window trap handlers safely. */
2201 setup_tba();
1da177e4 2202
c9c10830 2203 __flush_tlb_all();
9ad98c5b 2204
ad072004 2205 prom_build_devicetree();
b696fdc2 2206 of_populate_present_mask();
b99c6ebe
DM
2207#ifndef CONFIG_SMP
2208 of_fill_in_cpu_data();
2209#endif
ad072004 2210
890db403 2211 if (tlb_type == hypervisor) {
4a283339 2212 sun4v_mdesc_init();
6ac5c610 2213 mdesc_populate_present_mask(cpu_all_mask);
b99c6ebe
DM
2214#ifndef CONFIG_SMP
2215 mdesc_fill_in_cpu_data(cpu_all_mask);
2216#endif
ce33fdc5 2217 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
c69ad0a3
DM
2218
2219 sun4v_linear_pte_xor_finalize();
2220
2221 sun4v_ktsb_init();
2222 sun4v_ktsb_register();
ce33fdc5
DM
2223 } else {
2224 unsigned long impl, ver;
2225
2226 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2227 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2228
2229 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2230 impl = ((ver >> 32) & 0xffff);
2231 if (impl == PANTHER_IMPL)
2232 cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2233 HV_PGSZ_MASK_256MB);
c69ad0a3
DM
2234
2235 sun4u_linear_pte_xor_finalize();
890db403 2236 }
4a283339 2237
c69ad0a3
DM
2238 /* Flush the TLBs and the 4M TSB so that the updated linear
2239 * pte XOR settings are realized for all mappings.
2240 */
2241 __flush_tlb_all();
2242#ifndef CONFIG_DEBUG_PAGEALLOC
2243 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2244#endif
2245 __flush_tlb_all();
2246
5ed56f1a
DM
2247 /* Setup bootmem... */
2248 last_valid_pfn = end_pfn = bootmem_init(phys_base);
2249
4f70f7a9
DM
2250 /* Once the OF device tree and MDESC have been setup, we know
2251 * the list of possible cpus. Therefore we can allocate the
2252 * IRQ stacks.
2253 */
2254 for_each_possible_cpu(i) {
aa6f0790 2255 node = cpu_to_node(i);
5ed56f1a
DM
2256
2257 softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2258 THREAD_SIZE,
2259 THREAD_SIZE, 0);
2260 hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2261 THREAD_SIZE,
2262 THREAD_SIZE, 0);
4f70f7a9
DM
2263 }
2264
56425306 2265 kernel_physical_mapping_init();
56425306 2266
1da177e4 2267 {
919ee677 2268 unsigned long max_zone_pfns[MAX_NR_ZONES];
1da177e4 2269
919ee677 2270 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1da177e4 2271
919ee677 2272 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1da177e4 2273
919ee677 2274 free_area_init_nodes(max_zone_pfns);
1da177e4
LT
2275 }
2276
3c62a2d3 2277 printk("Booting Linux...\n");
1da177e4
LT
2278}
2279
7c9503b8 2280int page_in_phys_avail(unsigned long paddr)
919ee677
DM
2281{
2282 int i;
2283
2284 paddr &= PAGE_MASK;
2285
2286 for (i = 0; i < pavail_ents; i++) {
2287 unsigned long start, end;
2288
2289 start = pavail[i].phys_addr;
2290 end = start + pavail[i].reg_size;
2291
2292 if (paddr >= start && paddr < end)
2293 return 1;
2294 }
2295 if (paddr >= kern_base && paddr < (kern_base + kern_size))
2296 return 1;
2297#ifdef CONFIG_BLK_DEV_INITRD
2298 if (paddr >= __pa(initrd_start) &&
2299 paddr < __pa(PAGE_ALIGN(initrd_end)))
2300 return 1;
2301#endif
2302
2303 return 0;
2304}
2305
961f8fa0
YL
2306static void __init register_page_bootmem_info(void)
2307{
2308#ifdef CONFIG_NEED_MULTIPLE_NODES
2309 int i;
2310
2311 for_each_online_node(i)
2312 if (NODE_DATA(i)->node_spanned_pages)
2313 register_page_bootmem_info_node(NODE_DATA(i));
2314#endif
2315}
1da177e4
LT
2316void __init mem_init(void)
2317{
1da177e4
LT
2318 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2319
961f8fa0 2320 register_page_bootmem_info();
0c988534 2321 free_all_bootmem();
919ee677 2322
1da177e4
LT
2323 /*
2324 * Set up the zero page, mark it reserved, so that page count
2325 * is not manipulated when freeing the page from user ptes.
2326 */
2327 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2328 if (mem_map_zero == NULL) {
2329 prom_printf("paging_init: Cannot alloc zero page.\n");
2330 prom_halt();
2331 }
70affe45 2332 mark_page_reserved(mem_map_zero);
1da177e4 2333
dceccbe9 2334 mem_init_print_info(NULL);
1da177e4
LT
2335
2336 if (tlb_type == cheetah || tlb_type == cheetah_plus)
2337 cheetah_ecache_flush_init();
2338}
2339
898cf0ec 2340void free_initmem(void)
1da177e4
LT
2341{
2342 unsigned long addr, initend;
f2b60794
DM
2343 int do_free = 1;
2344
2345 /* If the physical memory maps were trimmed by kernel command
2346 * line options, don't even try freeing this initmem stuff up.
2347 * The kernel image could have been in the trimmed out region
2348 * and if so the freeing below will free invalid page structs.
2349 */
2350 if (cmdline_memory_size)
2351 do_free = 0;
1da177e4
LT
2352
2353 /*
2354 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2355 */
2356 addr = PAGE_ALIGN((unsigned long)(__init_begin));
2357 initend = (unsigned long)(__init_end) & PAGE_MASK;
2358 for (; addr < initend; addr += PAGE_SIZE) {
2359 unsigned long page;
1da177e4
LT
2360
2361 page = (addr +
2362 ((unsigned long) __va(kern_base)) -
2363 ((unsigned long) KERNBASE));
c9cf5528 2364 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1da177e4 2365
70affe45
JL
2366 if (do_free)
2367 free_reserved_page(virt_to_page(page));
1da177e4
LT
2368 }
2369}
2370
2371#ifdef CONFIG_BLK_DEV_INITRD
2372void free_initrd_mem(unsigned long start, unsigned long end)
2373{
dceccbe9
JL
2374 free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2375 "initrd");
1da177e4
LT
2376}
2377#endif
c4bce90e 2378
c4bce90e
DM
2379pgprot_t PAGE_KERNEL __read_mostly;
2380EXPORT_SYMBOL(PAGE_KERNEL);
2381
2382pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2383pgprot_t PAGE_COPY __read_mostly;
0f15952a
DM
2384
2385pgprot_t PAGE_SHARED __read_mostly;
2386EXPORT_SYMBOL(PAGE_SHARED);
2387
c4bce90e
DM
2388unsigned long pg_iobits __read_mostly;
2389
2390unsigned long _PAGE_IE __read_mostly;
987c74fc 2391EXPORT_SYMBOL(_PAGE_IE);
b2bef442 2392
c4bce90e 2393unsigned long _PAGE_E __read_mostly;
b2bef442
DM
2394EXPORT_SYMBOL(_PAGE_E);
2395
c4bce90e 2396unsigned long _PAGE_CACHE __read_mostly;
b2bef442 2397EXPORT_SYMBOL(_PAGE_CACHE);
c4bce90e 2398
46644c24 2399#ifdef CONFIG_SPARSEMEM_VMEMMAP
0aad818b
JW
2400int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2401 int node)
46644c24 2402{
46644c24
DM
2403 unsigned long pte_base;
2404
2405 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2406 _PAGE_CP_4U | _PAGE_CV_4U |
2407 _PAGE_P_4U | _PAGE_W_4U);
2408 if (tlb_type == hypervisor)
2409 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
494e5b6f 2410 page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
46644c24 2411
c06240c7 2412 pte_base |= _PAGE_PMD_HUGE;
46644c24 2413
c06240c7
DM
2414 vstart = vstart & PMD_MASK;
2415 vend = ALIGN(vend, PMD_SIZE);
2416 for (; vstart < vend; vstart += PMD_SIZE) {
2417 pgd_t *pgd = pgd_offset_k(vstart);
2418 unsigned long pte;
2419 pud_t *pud;
2420 pmd_t *pmd;
2421
2422 if (pgd_none(*pgd)) {
2423 pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2424
2425 if (!new)
46644c24 2426 return -ENOMEM;
c06240c7
DM
2427 pgd_populate(&init_mm, pgd, new);
2428 }
46644c24 2429
c06240c7
DM
2430 pud = pud_offset(pgd, vstart);
2431 if (pud_none(*pud)) {
2432 pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
46644c24 2433
c06240c7
DM
2434 if (!new)
2435 return -ENOMEM;
2436 pud_populate(&init_mm, pud, new);
46644c24 2437 }
2856cc2e 2438
c06240c7
DM
2439 pmd = pmd_offset(pud, vstart);
2440
2441 pte = pmd_val(*pmd);
2442 if (!(pte & _PAGE_VALID)) {
2443 void *block = vmemmap_alloc_block(PMD_SIZE, node);
2444
2445 if (!block)
2446 return -ENOMEM;
2447
2448 pmd_val(*pmd) = pte_base | __pa(block);
2449 }
2856cc2e 2450 }
c06240c7
DM
2451
2452 return 0;
2856cc2e 2453}
46723bfa 2454
0aad818b 2455void vmemmap_free(unsigned long start, unsigned long end)
0197518c
TC
2456{
2457}
46644c24
DM
2458#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2459
c4bce90e
DM
2460static void prot_init_common(unsigned long page_none,
2461 unsigned long page_shared,
2462 unsigned long page_copy,
2463 unsigned long page_readonly,
2464 unsigned long page_exec_bit)
2465{
2466 PAGE_COPY = __pgprot(page_copy);
0f15952a 2467 PAGE_SHARED = __pgprot(page_shared);
c4bce90e
DM
2468
2469 protection_map[0x0] = __pgprot(page_none);
2470 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2471 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2472 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2473 protection_map[0x4] = __pgprot(page_readonly);
2474 protection_map[0x5] = __pgprot(page_readonly);
2475 protection_map[0x6] = __pgprot(page_copy);
2476 protection_map[0x7] = __pgprot(page_copy);
2477 protection_map[0x8] = __pgprot(page_none);
2478 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2479 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2480 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2481 protection_map[0xc] = __pgprot(page_readonly);
2482 protection_map[0xd] = __pgprot(page_readonly);
2483 protection_map[0xe] = __pgprot(page_shared);
2484 protection_map[0xf] = __pgprot(page_shared);
2485}
2486
2487static void __init sun4u_pgprot_init(void)
2488{
2489 unsigned long page_none, page_shared, page_copy, page_readonly;
2490 unsigned long page_exec_bit;
4f93d21d 2491 int i;
c4bce90e
DM
2492
2493 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2494 _PAGE_CACHE_4U | _PAGE_P_4U |
2495 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2496 _PAGE_EXEC_4U);
2497 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2498 _PAGE_CACHE_4U | _PAGE_P_4U |
2499 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2500 _PAGE_EXEC_4U | _PAGE_L_4U);
c4bce90e
DM
2501
2502 _PAGE_IE = _PAGE_IE_4U;
2503 _PAGE_E = _PAGE_E_4U;
2504 _PAGE_CACHE = _PAGE_CACHE_4U;
2505
2506 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2507 __ACCESS_BITS_4U | _PAGE_E_4U);
2508
d1acb421 2509#ifdef CONFIG_DEBUG_PAGEALLOC
922631b9 2510 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
d1acb421 2511#else
9cc3a1ac 2512 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
922631b9 2513 PAGE_OFFSET;
d1acb421 2514#endif
9cc3a1ac
DM
2515 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2516 _PAGE_P_4U | _PAGE_W_4U);
2517
4f93d21d
DM
2518 for (i = 1; i < 4; i++)
2519 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
c4bce90e 2520
c4bce90e
DM
2521 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2522 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2523 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2524
2525
2526 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2527 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2528 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2529 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2530 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2531 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2532 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2533
2534 page_exec_bit = _PAGE_EXEC_4U;
2535
2536 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2537 page_exec_bit);
2538}
2539
2540static void __init sun4v_pgprot_init(void)
2541{
2542 unsigned long page_none, page_shared, page_copy, page_readonly;
2543 unsigned long page_exec_bit;
4f93d21d 2544 int i;
c4bce90e
DM
2545
2546 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
494e5b6f 2547 page_cache4v_flag | _PAGE_P_4V |
c4bce90e
DM
2548 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2549 _PAGE_EXEC_4V);
2550 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
c4bce90e
DM
2551
2552 _PAGE_IE = _PAGE_IE_4V;
2553 _PAGE_E = _PAGE_E_4V;
494e5b6f 2554 _PAGE_CACHE = page_cache4v_flag;
c4bce90e 2555
d1acb421 2556#ifdef CONFIG_DEBUG_PAGEALLOC
922631b9 2557 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
d1acb421 2558#else
9cc3a1ac 2559 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
922631b9 2560 PAGE_OFFSET;
d1acb421 2561#endif
494e5b6f
KA
2562 kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2563 _PAGE_W_4V);
9cc3a1ac 2564
c69ad0a3
DM
2565 for (i = 1; i < 4; i++)
2566 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
4f93d21d 2567
c4bce90e
DM
2568 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2569 __ACCESS_BITS_4V | _PAGE_E_4V);
2570
c4bce90e
DM
2571 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2572 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2573 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2574 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2575
494e5b6f
KA
2576 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2577 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
c4bce90e 2578 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
494e5b6f 2579 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
c4bce90e 2580 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
494e5b6f 2581 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
c4bce90e
DM
2582 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2583
2584 page_exec_bit = _PAGE_EXEC_4V;
2585
2586 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2587 page_exec_bit);
2588}
2589
2590unsigned long pte_sz_bits(unsigned long sz)
2591{
2592 if (tlb_type == hypervisor) {
2593 switch (sz) {
2594 case 8 * 1024:
2595 default:
2596 return _PAGE_SZ8K_4V;
2597 case 64 * 1024:
2598 return _PAGE_SZ64K_4V;
2599 case 512 * 1024:
2600 return _PAGE_SZ512K_4V;
2601 case 4 * 1024 * 1024:
2602 return _PAGE_SZ4MB_4V;
6cb79b3f 2603 }
c4bce90e
DM
2604 } else {
2605 switch (sz) {
2606 case 8 * 1024:
2607 default:
2608 return _PAGE_SZ8K_4U;
2609 case 64 * 1024:
2610 return _PAGE_SZ64K_4U;
2611 case 512 * 1024:
2612 return _PAGE_SZ512K_4U;
2613 case 4 * 1024 * 1024:
2614 return _PAGE_SZ4MB_4U;
6cb79b3f 2615 }
c4bce90e
DM
2616 }
2617}
2618
2619pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2620{
2621 pte_t pte;
cf627156
DM
2622
2623 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
c4bce90e
DM
2624 pte_val(pte) |= (((unsigned long)space) << 32);
2625 pte_val(pte) |= pte_sz_bits(page_size);
c4bce90e 2626
cf627156 2627 return pte;
c4bce90e
DM
2628}
2629
2630static unsigned long kern_large_tte(unsigned long paddr)
2631{
2632 unsigned long val;
2633
2634 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2635 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2636 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2637 if (tlb_type == hypervisor)
2638 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
494e5b6f 2639 page_cache4v_flag | _PAGE_P_4V |
c4bce90e
DM
2640 _PAGE_EXEC_4V | _PAGE_W_4V);
2641
2642 return val | paddr;
2643}
2644
c4bce90e
DM
2645/* If not locked, zap it. */
2646void __flush_tlb_all(void)
2647{
2648 unsigned long pstate;
2649 int i;
2650
2651 __asm__ __volatile__("flushw\n\t"
2652 "rdpr %%pstate, %0\n\t"
2653 "wrpr %0, %1, %%pstate"
2654 : "=r" (pstate)
2655 : "i" (PSTATE_IE));
8f361453
DM
2656 if (tlb_type == hypervisor) {
2657 sun4v_mmu_demap_all();
2658 } else if (tlb_type == spitfire) {
c4bce90e
DM
2659 for (i = 0; i < 64; i++) {
2660 /* Spitfire Errata #32 workaround */
2661 /* NOTE: Always runs on spitfire, so no
2662 * cheetah+ page size encodings.
2663 */
2664 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2665 "flush %%g6"
2666 : /* No outputs */
2667 : "r" (0),
2668 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2669
2670 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2671 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2672 "membar #Sync"
2673 : /* no outputs */
2674 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2675 spitfire_put_dtlb_data(i, 0x0UL);
2676 }
2677
2678 /* Spitfire Errata #32 workaround */
2679 /* NOTE: Always runs on spitfire, so no
2680 * cheetah+ page size encodings.
2681 */
2682 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2683 "flush %%g6"
2684 : /* No outputs */
2685 : "r" (0),
2686 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2687
2688 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2689 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2690 "membar #Sync"
2691 : /* no outputs */
2692 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2693 spitfire_put_itlb_data(i, 0x0UL);
2694 }
2695 }
2696 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2697 cheetah_flush_dtlb_all();
2698 cheetah_flush_itlb_all();
2699 }
2700 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2701 : : "r" (pstate));
2702}
c460bec7 2703
c460bec7
DM
2704pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2705 unsigned long address)
2706{
32d6bd90 2707 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
37b3a8ff 2708 pte_t *pte = NULL;
c460bec7 2709
c460bec7
DM
2710 if (page)
2711 pte = (pte_t *) page_address(page);
2712
2713 return pte;
2714}
2715
2716pgtable_t pte_alloc_one(struct mm_struct *mm,
2717 unsigned long address)
2718{
32d6bd90 2719 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
1ae9ae5f
KS
2720 if (!page)
2721 return NULL;
2722 if (!pgtable_page_ctor(page)) {
2723 free_hot_cold_page(page, 0);
2724 return NULL;
c460bec7 2725 }
1ae9ae5f 2726 return (pte_t *) page_address(page);
c460bec7
DM
2727}
2728
2729void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2730{
37b3a8ff 2731 free_page((unsigned long)pte);
c460bec7
DM
2732}
2733
2734static void __pte_free(pgtable_t pte)
2735{
2736 struct page *page = virt_to_page(pte);
37b3a8ff
DM
2737
2738 pgtable_page_dtor(page);
2739 __free_page(page);
c460bec7
DM
2740}
2741
2742void pte_free(struct mm_struct *mm, pgtable_t pte)
2743{
2744 __pte_free(pte);
2745}
2746
2747void pgtable_free(void *table, bool is_page)
2748{
2749 if (is_page)
2750 __pte_free(table);
2751 else
2752 kmem_cache_free(pgtable_cache, table);
2753}
9e695d2e
DM
2754
2755#ifdef CONFIG_TRANSPARENT_HUGEPAGE
9e695d2e
DM
2756void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2757 pmd_t *pmd)
2758{
2759 unsigned long pte, flags;
2760 struct mm_struct *mm;
2761 pmd_t entry = *pmd;
9e695d2e
DM
2762
2763 if (!pmd_large(entry) || !pmd_young(entry))
2764 return;
2765
a7b9403f 2766 pte = pmd_val(entry);
9e695d2e 2767
18f38132
DM
2768 /* Don't insert a non-valid PMD into the TSB, we'll deadlock. */
2769 if (!(pte & _PAGE_VALID))
2770 return;
2771
37b3a8ff
DM
2772 /* We are fabricating 8MB pages using 4MB real hw pages. */
2773 pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
9e695d2e
DM
2774
2775 mm = vma->vm_mm;
2776
2777 spin_lock_irqsave(&mm->context.lock, flags);
2778
2779 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
37b3a8ff 2780 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
9e695d2e
DM
2781 addr, pte);
2782
2783 spin_unlock_irqrestore(&mm->context.lock, flags);
2784}
2785#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2786
2787#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2788static void context_reload(void *__data)
2789{
2790 struct mm_struct *mm = __data;
2791
2792 if (mm == current->mm)
2793 load_secondary_context(mm);
2794}
2795
0fbebed6 2796void hugetlb_setup(struct pt_regs *regs)
9e695d2e 2797{
0fbebed6
DM
2798 struct mm_struct *mm = current->mm;
2799 struct tsb_config *tp;
9e695d2e 2800
70ffdb93 2801 if (faulthandler_disabled() || !mm) {
0fbebed6
DM
2802 const struct exception_table_entry *entry;
2803
2804 entry = search_exception_tables(regs->tpc);
2805 if (entry) {
2806 regs->tpc = entry->fixup;
2807 regs->tnpc = regs->tpc + 4;
2808 return;
2809 }
2810 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2811 die_if_kernel("HugeTSB in atomic", regs);
2812 }
2813
2814 tp = &mm->context.tsb_block[MM_TSB_HUGE];
2815 if (likely(tp->tsb == NULL))
2816 tsb_grow(mm, MM_TSB_HUGE, 0);
9e695d2e 2817
9e695d2e
DM
2818 tsb_context_switch(mm);
2819 smp_tsb_sync(mm);
2820
2821 /* On UltraSPARC-III+ and later, configure the second half of
2822 * the Data-TLB for huge pages.
2823 */
2824 if (tlb_type == cheetah_plus) {
9ea46abe 2825 bool need_context_reload = false;
9e695d2e
DM
2826 unsigned long ctx;
2827
9ea46abe 2828 spin_lock_irq(&ctx_alloc_lock);
9e695d2e
DM
2829 ctx = mm->context.sparc64_ctx_val;
2830 ctx &= ~CTX_PGSZ_MASK;
2831 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2832 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2833
2834 if (ctx != mm->context.sparc64_ctx_val) {
2835 /* When changing the page size fields, we
2836 * must perform a context flush so that no
2837 * stale entries match. This flush must
2838 * occur with the original context register
2839 * settings.
2840 */
2841 do_flush_tlb_mm(mm);
2842
2843 /* Reload the context register of all processors
2844 * also executing in this address space.
2845 */
2846 mm->context.sparc64_ctx_val = ctx;
9ea46abe 2847 need_context_reload = true;
9e695d2e 2848 }
9ea46abe
DM
2849 spin_unlock_irq(&ctx_alloc_lock);
2850
2851 if (need_context_reload)
2852 on_each_cpu(context_reload, mm, 0);
9e695d2e
DM
2853 }
2854}
2855#endif
f6d4fb5c 2856
2857static struct resource code_resource = {
2858 .name = "Kernel code",
35d98e93 2859 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
f6d4fb5c 2860};
2861
2862static struct resource data_resource = {
2863 .name = "Kernel data",
35d98e93 2864 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
f6d4fb5c 2865};
2866
2867static struct resource bss_resource = {
2868 .name = "Kernel bss",
35d98e93 2869 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
f6d4fb5c 2870};
2871
2872static inline resource_size_t compute_kern_paddr(void *addr)
2873{
2874 return (resource_size_t) (addr - KERNBASE + kern_base);
2875}
2876
2877static void __init kernel_lds_init(void)
2878{
2879 code_resource.start = compute_kern_paddr(_text);
2880 code_resource.end = compute_kern_paddr(_etext - 1);
2881 data_resource.start = compute_kern_paddr(_etext);
2882 data_resource.end = compute_kern_paddr(_edata - 1);
2883 bss_resource.start = compute_kern_paddr(__bss_start);
2884 bss_resource.end = compute_kern_paddr(_end - 1);
2885}
2886
2887static int __init report_memory(void)
2888{
2889 int i;
2890 struct resource *res;
2891
2892 kernel_lds_init();
2893
2894 for (i = 0; i < pavail_ents; i++) {
2895 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
2896
2897 if (!res) {
2898 pr_warn("Failed to allocate source.\n");
2899 break;
2900 }
2901
2902 res->name = "System RAM";
2903 res->start = pavail[i].phys_addr;
2904 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
35d98e93 2905 res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
f6d4fb5c 2906
2907 if (insert_resource(&iomem_resource, res) < 0) {
2908 pr_warn("Resource insertion failed.\n");
2909 break;
2910 }
2911
2912 insert_resource(res, &code_resource);
2913 insert_resource(res, &data_resource);
2914 insert_resource(res, &bss_resource);
2915 }
2916
2917 return 0;
2918}
3c08158e 2919arch_initcall(report_memory);
e9011d08 2920
4ca9a237
DM
2921#ifdef CONFIG_SMP
2922#define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range
2923#else
2924#define do_flush_tlb_kernel_range __flush_tlb_kernel_range
2925#endif
2926
2927void flush_tlb_kernel_range(unsigned long start, unsigned long end)
2928{
2929 if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
2930 if (start < LOW_OBP_ADDRESS) {
2931 flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
2932 do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
2933 }
2934 if (end > HI_OBP_ADDRESS) {
473ad7f4
DM
2935 flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
2936 do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
4ca9a237
DM
2937 }
2938 } else {
2939 flush_tsb_kernel_range(start, end);
2940 do_flush_tlb_kernel_range(start, end);
2941 }
2942}