Merge tag 'soc-drivers-6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-block.git] / arch / sparc / kernel / smp_64.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/* smp.c: Sparc64 SMP support.
3 *
cf3d7c1e 4 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
1da177e4
LT
5 */
6
066bcaca 7#include <linux/export.h>
1da177e4 8#include <linux/kernel.h>
68e21be2 9#include <linux/sched/mm.h>
ef8bd77f 10#include <linux/sched/hotplug.h>
1da177e4
LT
11#include <linux/mm.h>
12#include <linux/pagemap.h>
13#include <linux/threads.h>
14#include <linux/smp.h>
1da177e4
LT
15#include <linux/interrupt.h>
16#include <linux/kernel_stat.h>
17#include <linux/delay.h>
18#include <linux/init.h>
19#include <linux/spinlock.h>
20#include <linux/fs.h>
21#include <linux/seq_file.h>
22#include <linux/cache.h>
23#include <linux/jiffies.h>
24#include <linux/profile.h>
57c8a661 25#include <linux/memblock.h>
4fd78a5f 26#include <linux/vmalloc.h>
9960e9e8 27#include <linux/ftrace.h>
82960b85 28#include <linux/cpu.h>
5a0e3ad6 29#include <linux/slab.h>
d3091298 30#include <linux/kgdb.h>
1da177e4
LT
31
32#include <asm/head.h>
33#include <asm/ptrace.h>
60063497 34#include <linux/atomic.h>
1da177e4
LT
35#include <asm/tlbflush.h>
36#include <asm/mmu_context.h>
37#include <asm/cpudata.h>
27a2ef38
DM
38#include <asm/hvtramp.h>
39#include <asm/io.h>
cf3d7c1e 40#include <asm/timer.h>
59dec13b 41#include <asm/setup.h>
1da177e4
LT
42
43#include <asm/irq.h>
6d24c8dc 44#include <asm/irq_regs.h>
1da177e4 45#include <asm/page.h>
1da177e4 46#include <asm/oplib.h>
7c0f6ba6 47#include <linux/uaccess.h>
1da177e4
LT
48#include <asm/starfire.h>
49#include <asm/tlb.h>
ca15ca40 50#include <asm/pgalloc.h>
56fb4df6 51#include <asm/sections.h>
07f8e5f3 52#include <asm/prom.h>
5cbc3073 53#include <asm/mdesc.h>
4f0234f4 54#include <asm/ldc.h>
e0204409 55#include <asm/hypervisor.h>
b62818e5 56#include <asm/pcr.h>
1da177e4 57
280ff974 58#include "cpumap.h"
a0c54a21 59#include "kernel.h"
280ff974 60
d5a7430d 61DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
f78eae2e
DM
62cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
63 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
4f0234f4 64
acc455cf 65cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
66 [0 ... NR_CPUS-1] = CPU_MASK_NONE };
67
d624716b
AP
68cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
69 [0 ... NR_CPUS - 1] = CPU_MASK_NONE };
70
d5a7430d 71EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
4f0234f4 72EXPORT_SYMBOL(cpu_core_map);
acc455cf 73EXPORT_SYMBOL(cpu_core_sib_map);
d624716b 74EXPORT_SYMBOL(cpu_core_sib_cache_map);
4f0234f4 75
1da177e4 76static cpumask_t smp_commenced_mask;
1da177e4 77
8536e02e
VK
78static DEFINE_PER_CPU(bool, poke);
79static bool cpu_poke;
80
1da177e4
LT
81void smp_info(struct seq_file *m)
82{
83 int i;
84
85 seq_printf(m, "State:\n");
394e3902
AM
86 for_each_online_cpu(i)
87 seq_printf(m, "CPU%d:\t\tonline\n", i);
1da177e4
LT
88}
89
90void smp_bogo(struct seq_file *m)
91{
92 int i;
93
394e3902
AM
94 for_each_online_cpu(i)
95 seq_printf(m,
394e3902 96 "Cpu%dClkTck\t: %016lx\n",
394e3902 97 i, cpu_data(i).clock_tick);
1da177e4
LT
98}
99
112f4871 100extern void setup_sparc64_timer(void);
1da177e4
LT
101
102static volatile unsigned long callin_flag = 0;
103
2066aadd 104void smp_callin(void)
1da177e4
LT
105{
106 int cpuid = hard_smp_processor_id();
107
56fb4df6 108 __local_per_cpu_offset = __per_cpu_offset(cpuid);
1da177e4 109
4a07e646 110 if (tlb_type == hypervisor)
490384e7 111 sun4v_ktsb_register();
481295f9 112
56fb4df6 113 __flush_tlb_all();
1da177e4 114
112f4871 115 setup_sparc64_timer();
1da177e4 116
816242da
DM
117 if (cheetah_pcache_forced_on)
118 cheetah_enable_pcache();
119
1da177e4
LT
120 callin_flag = 1;
121 __asm__ __volatile__("membar #Sync\n\t"
122 "flush %%g6" : : : "memory");
123
124 /* Clear this or we will die instantly when we
125 * schedule back to this idler...
126 */
db7d9a4e 127 current_thread_info()->new_child = 0;
1da177e4
LT
128
129 /* Attach to the address space of init_task. */
f1f10076 130 mmgrab(&init_mm);
1da177e4
LT
131 current->active_mm = &init_mm;
132
82960b85
DM
133 /* inform the notifiers about the new cpu */
134 notify_cpu_starting(cpuid);
135
fb1fece5 136 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
4f07118f 137 rmb();
1da177e4 138
fb1fece5 139 set_cpu_online(cpuid, true);
5bfb5d69 140
ce2521bf
KT
141 local_irq_enable();
142
fc6d73d6 143 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1da177e4
LT
144}
145
146void cpu_panic(void)
147{
148 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
149 panic("SMP bolixed\n");
150}
151
1da177e4
LT
152/* This tick register synchronization scheme is taken entirely from
153 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
154 *
155 * The only change I've made is to rework it so that the master
156 * initiates the synchonization instead of the slave. -DaveM
157 */
158
159#define MASTER 0
160#define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
161
162#define NUM_ROUNDS 64 /* magic value */
163#define NUM_ITERS 5 /* likewise */
164
49b6c01f 165static DEFINE_RAW_SPINLOCK(itc_sync_lock);
1da177e4
LT
166static unsigned long go[SLAVE + 1];
167
168#define DEBUG_TICK_SYNC 0
169
170static inline long get_delta (long *rt, long *master)
171{
172 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
173 unsigned long tcenter, t0, t1, tm;
174 unsigned long i;
175
176 for (i = 0; i < NUM_ITERS; i++) {
177 t0 = tick_ops->get_tick();
178 go[MASTER] = 1;
293666b7 179 membar_safe("#StoreLoad");
1da177e4 180 while (!(tm = go[SLAVE]))
4f07118f 181 rmb();
1da177e4 182 go[SLAVE] = 0;
4f07118f 183 wmb();
1da177e4
LT
184 t1 = tick_ops->get_tick();
185
186 if (t1 - t0 < best_t1 - best_t0)
187 best_t0 = t0, best_t1 = t1, best_tm = tm;
188 }
189
190 *rt = best_t1 - best_t0;
191 *master = best_tm - best_t0;
192
193 /* average best_t0 and best_t1 without overflow: */
194 tcenter = (best_t0/2 + best_t1/2);
195 if (best_t0 % 2 + best_t1 % 2 == 2)
196 tcenter++;
197 return tcenter - best_tm;
198}
199
200void smp_synchronize_tick_client(void)
201{
202 long i, delta, adj, adjust_latency = 0, done = 0;
c6fee081 203 unsigned long flags, rt, master_time_stamp;
1da177e4
LT
204#if DEBUG_TICK_SYNC
205 struct {
206 long rt; /* roundtrip time */
207 long master; /* master's timestamp */
208 long diff; /* difference between midpoint and master's timestamp */
209 long lat; /* estimate of itc adjustment latency */
210 } t[NUM_ROUNDS];
211#endif
212
213 go[MASTER] = 1;
214
215 while (go[MASTER])
4f07118f 216 rmb();
1da177e4
LT
217
218 local_irq_save(flags);
219 {
220 for (i = 0; i < NUM_ROUNDS; i++) {
221 delta = get_delta(&rt, &master_time_stamp);
c6fee081 222 if (delta == 0)
1da177e4 223 done = 1; /* let's lock on to this... */
1da177e4
LT
224
225 if (!done) {
226 if (i > 0) {
227 adjust_latency += -delta;
228 adj = -delta + adjust_latency/4;
229 } else
230 adj = -delta;
231
112f4871 232 tick_ops->add_tick(adj);
1da177e4
LT
233 }
234#if DEBUG_TICK_SYNC
235 t[i].rt = rt;
236 t[i].master = master_time_stamp;
237 t[i].diff = delta;
238 t[i].lat = adjust_latency/4;
239#endif
240 }
241 }
242 local_irq_restore(flags);
243
244#if DEBUG_TICK_SYNC
245 for (i = 0; i < NUM_ROUNDS; i++)
246 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
247 t[i].rt, t[i].master, t[i].diff, t[i].lat);
248#endif
249
519c4d2d
JP
250 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
251 "(last diff %ld cycles, maxerr %lu cycles)\n",
252 smp_processor_id(), delta, rt);
1da177e4
LT
253}
254
255static void smp_start_sync_tick_client(int cpu);
256
257static void smp_synchronize_one_tick(int cpu)
258{
259 unsigned long flags, i;
260
261 go[MASTER] = 0;
262
263 smp_start_sync_tick_client(cpu);
264
265 /* wait for client to be ready */
266 while (!go[MASTER])
4f07118f 267 rmb();
1da177e4
LT
268
269 /* now let the client proceed into his loop */
270 go[MASTER] = 0;
293666b7 271 membar_safe("#StoreLoad");
1da177e4 272
49b6c01f 273 raw_spin_lock_irqsave(&itc_sync_lock, flags);
1da177e4
LT
274 {
275 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
276 while (!go[MASTER])
4f07118f 277 rmb();
1da177e4 278 go[MASTER] = 0;
4f07118f 279 wmb();
1da177e4 280 go[SLAVE] = tick_ops->get_tick();
293666b7 281 membar_safe("#StoreLoad");
1da177e4
LT
282 }
283 }
49b6c01f 284 raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
1da177e4
LT
285}
286
b14f5c10 287#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
2066aadd
PG
288static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
289 void **descrp)
b14f5c10
DM
290{
291 extern unsigned long sparc64_ttable_tl0;
292 extern unsigned long kern_locked_tte_data;
b14f5c10
DM
293 struct hvtramp_descr *hdesc;
294 unsigned long trampoline_ra;
295 struct trap_per_cpu *tb;
296 u64 tte_vaddr, tte_data;
297 unsigned long hv_err;
64658743 298 int i;
b14f5c10 299
64658743
DM
300 hdesc = kzalloc(sizeof(*hdesc) +
301 (sizeof(struct hvtramp_mapping) *
302 num_kernel_image_mappings - 1),
303 GFP_KERNEL);
b14f5c10 304 if (!hdesc) {
27a2ef38 305 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
b14f5c10
DM
306 "hvtramp_descr.\n");
307 return;
308 }
557fe0e8 309 *descrp = hdesc;
b14f5c10
DM
310
311 hdesc->cpu = cpu;
64658743 312 hdesc->num_mappings = num_kernel_image_mappings;
b14f5c10
DM
313
314 tb = &trap_block[cpu];
b14f5c10
DM
315
316 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
317 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
318
319 hdesc->thread_reg = thread_reg;
320
321 tte_vaddr = (unsigned long) KERNBASE;
322 tte_data = kern_locked_tte_data;
323
64658743
DM
324 for (i = 0; i < hdesc->num_mappings; i++) {
325 hdesc->maps[i].vaddr = tte_vaddr;
326 hdesc->maps[i].tte = tte_data;
b14f5c10
DM
327 tte_vaddr += 0x400000;
328 tte_data += 0x400000;
b14f5c10
DM
329 }
330
331 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
332
333 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
334 kimage_addr_to_ra(&sparc64_ttable_tl0),
335 __pa(hdesc));
e0204409
DM
336 if (hv_err)
337 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
338 "gives error %lu\n", hv_err);
b14f5c10
DM
339}
340#endif
341
1da177e4
LT
342extern unsigned long sparc64_cpu_startup;
343
344/* The OBP cpu startup callback truncates the 3rd arg cookie to
345 * 32-bits (I think) so to be safe we have it read the pointer
346 * contained here so we work on >4GB machines. -DaveM
347 */
348static struct thread_info *cpu_new_thread = NULL;
349
2066aadd 350static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
1da177e4
LT
351{
352 unsigned long entry =
353 (unsigned long)(&sparc64_cpu_startup);
354 unsigned long cookie =
355 (unsigned long)(&cpu_new_thread);
557fe0e8 356 void *descr = NULL;
7890f794 357 int timeout, ret;
1da177e4 358
1da177e4 359 callin_flag = 0;
f0a2bc7e 360 cpu_new_thread = task_thread_info(idle);
1da177e4 361
7890f794 362 if (tlb_type == hypervisor) {
b14f5c10 363#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
4f0234f4
DM
364 if (ldom_domaining_enabled)
365 ldom_startcpu_cpuid(cpu,
557fe0e8
DM
366 (unsigned long) cpu_new_thread,
367 &descr);
4f0234f4
DM
368 else
369#endif
370 prom_startcpu_cpuid(cpu, entry, cookie);
7890f794 371 } else {
5cbc3073 372 struct device_node *dp = of_find_node_by_cpuid(cpu);
7890f794 373
6016a363 374 prom_startcpu(dp->phandle, entry, cookie);
7890f794 375 }
1da177e4 376
4f0234f4 377 for (timeout = 0; timeout < 50000; timeout++) {
1da177e4
LT
378 if (callin_flag)
379 break;
380 udelay(100);
381 }
72aff53f 382
1da177e4
LT
383 if (callin_flag) {
384 ret = 0;
385 } else {
386 printk("Processor %d is stuck.\n", cpu);
1da177e4
LT
387 ret = -ENODEV;
388 }
389 cpu_new_thread = NULL;
390
557fe0e8 391 kfree(descr);
b37d40d1 392
1da177e4
LT
393 return ret;
394}
395
396static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
397{
398 u64 result, target;
399 int stuck, tmp;
400
401 if (this_is_starfire) {
402 /* map to real upaid */
403 cpu = (((cpu & 0x3c) << 1) |
404 ((cpu & 0x40) >> 4) |
405 (cpu & 0x3));
406 }
407
408 target = (cpu << 14) | 0x70;
409again:
410 /* Ok, this is the real Spitfire Errata #54.
411 * One must read back from a UDB internal register
412 * after writes to the UDB interrupt dispatch, but
413 * before the membar Sync for that write.
414 * So we use the high UDB control register (ASI 0x7f,
415 * ADDR 0x20) for the dummy read. -DaveM
416 */
417 tmp = 0x40;
418 __asm__ __volatile__(
419 "wrpr %1, %2, %%pstate\n\t"
420 "stxa %4, [%0] %3\n\t"
421 "stxa %5, [%0+%8] %3\n\t"
422 "add %0, %8, %0\n\t"
423 "stxa %6, [%0+%8] %3\n\t"
424 "membar #Sync\n\t"
425 "stxa %%g0, [%7] %3\n\t"
426 "membar #Sync\n\t"
427 "mov 0x20, %%g1\n\t"
428 "ldxa [%%g1] 0x7f, %%g0\n\t"
429 "membar #Sync"
430 : "=r" (tmp)
431 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
432 "r" (data0), "r" (data1), "r" (data2), "r" (target),
433 "r" (0x10), "0" (tmp)
434 : "g1");
435
436 /* NOTE: PSTATE_IE is still clear. */
437 stuck = 100000;
438 do {
439 __asm__ __volatile__("ldxa [%%g0] %1, %0"
440 : "=r" (result)
441 : "i" (ASI_INTR_DISPATCH_STAT));
442 if (result == 0) {
443 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
444 : : "r" (pstate));
445 return;
446 }
447 stuck -= 1;
448 if (stuck == 0)
449 break;
450 } while (result & 0x1);
451 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
452 : : "r" (pstate));
453 if (stuck == 0) {
90181136 454 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
1da177e4
LT
455 smp_processor_id(), result);
456 } else {
457 udelay(2);
458 goto again;
459 }
460}
461
90f7ae8a 462static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
1da177e4 463{
90f7ae8a
DM
464 u64 *mondo, data0, data1, data2;
465 u16 *cpu_list;
1da177e4
LT
466 u64 pstate;
467 int i;
468
469 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
90f7ae8a
DM
470 cpu_list = __va(tb->cpu_list_pa);
471 mondo = __va(tb->cpu_mondo_block_pa);
472 data0 = mondo[0];
473 data1 = mondo[1];
474 data2 = mondo[2];
475 for (i = 0; i < cnt; i++)
476 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
1da177e4
LT
477}
478
479/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
480 * packet, but we have no use for that. However we do take advantage of
481 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
482 */
90f7ae8a 483static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
1da177e4 484{
22adb358 485 int nack_busy_id, is_jbus, need_more;
90f7ae8a
DM
486 u64 *mondo, pstate, ver, busy_mask;
487 u16 *cpu_list;
1da177e4 488
90f7ae8a
DM
489 cpu_list = __va(tb->cpu_list_pa);
490 mondo = __va(tb->cpu_mondo_block_pa);
cd5bc89d 491
1da177e4
LT
492 /* Unfortunately, someone at Sun had the brilliant idea to make the
493 * busy/nack fields hard-coded by ITID number for this Ultra-III
494 * derivative processor.
495 */
496 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
92704a1c
DM
497 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
498 (ver >> 32) == __SERRANO_ID);
1da177e4
LT
499
500 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
501
502retry:
22adb358 503 need_more = 0;
1da177e4
LT
504 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
505 : : "r" (pstate), "i" (PSTATE_IE));
506
507 /* Setup the dispatch data registers. */
508 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
509 "stxa %1, [%4] %6\n\t"
510 "stxa %2, [%5] %6\n\t"
511 "membar #Sync\n\t"
512 : /* no outputs */
90f7ae8a 513 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
1da177e4
LT
514 "r" (0x40), "r" (0x50), "r" (0x60),
515 "i" (ASI_INTR_W));
516
517 nack_busy_id = 0;
0de56d1a 518 busy_mask = 0;
1da177e4
LT
519 {
520 int i;
521
90f7ae8a
DM
522 for (i = 0; i < cnt; i++) {
523 u64 target, nr;
524
525 nr = cpu_list[i];
526 if (nr == 0xffff)
527 continue;
1da177e4 528
90f7ae8a 529 target = (nr << 14) | 0x70;
0de56d1a 530 if (is_jbus) {
90f7ae8a 531 busy_mask |= (0x1UL << (nr * 2));
0de56d1a 532 } else {
1da177e4 533 target |= (nack_busy_id << 24);
0de56d1a
DM
534 busy_mask |= (0x1UL <<
535 (nack_busy_id * 2));
536 }
1da177e4
LT
537 __asm__ __volatile__(
538 "stxa %%g0, [%0] %1\n\t"
539 "membar #Sync\n\t"
540 : /* no outputs */
541 : "r" (target), "i" (ASI_INTR_W));
542 nack_busy_id++;
22adb358
DM
543 if (nack_busy_id == 32) {
544 need_more = 1;
545 break;
546 }
1da177e4
LT
547 }
548 }
549
550 /* Now, poll for completion. */
551 {
0de56d1a 552 u64 dispatch_stat, nack_mask;
1da177e4
LT
553 long stuck;
554
555 stuck = 100000 * nack_busy_id;
0de56d1a 556 nack_mask = busy_mask << 1;
1da177e4
LT
557 do {
558 __asm__ __volatile__("ldxa [%%g0] %1, %0"
559 : "=r" (dispatch_stat)
560 : "i" (ASI_INTR_DISPATCH_STAT));
0de56d1a 561 if (!(dispatch_stat & (busy_mask | nack_mask))) {
1da177e4
LT
562 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
563 : : "r" (pstate));
22adb358 564 if (unlikely(need_more)) {
90f7ae8a
DM
565 int i, this_cnt = 0;
566 for (i = 0; i < cnt; i++) {
567 if (cpu_list[i] == 0xffff)
568 continue;
569 cpu_list[i] = 0xffff;
570 this_cnt++;
571 if (this_cnt == 32)
22adb358
DM
572 break;
573 }
574 goto retry;
575 }
1da177e4
LT
576 return;
577 }
578 if (!--stuck)
579 break;
0de56d1a 580 } while (dispatch_stat & busy_mask);
1da177e4
LT
581
582 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
583 : : "r" (pstate));
584
0de56d1a 585 if (dispatch_stat & busy_mask) {
1da177e4
LT
586 /* Busy bits will not clear, continue instead
587 * of freezing up on this cpu.
588 */
90181136 589 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
1da177e4
LT
590 smp_processor_id(), dispatch_stat);
591 } else {
592 int i, this_busy_nack = 0;
593
594 /* Delay some random time with interrupts enabled
595 * to prevent deadlock.
596 */
597 udelay(2 * nack_busy_id);
598
599 /* Clear out the mask bits for cpus which did not
600 * NACK us.
601 */
90f7ae8a
DM
602 for (i = 0; i < cnt; i++) {
603 u64 check_mask, nr;
604
605 nr = cpu_list[i];
606 if (nr == 0xffff)
607 continue;
1da177e4 608
92704a1c 609 if (is_jbus)
90f7ae8a 610 check_mask = (0x2UL << (2*nr));
1da177e4
LT
611 else
612 check_mask = (0x2UL <<
613 this_busy_nack);
614 if ((dispatch_stat & check_mask) == 0)
90f7ae8a 615 cpu_list[i] = 0xffff;
1da177e4 616 this_busy_nack += 2;
22adb358
DM
617 if (this_busy_nack == 64)
618 break;
1da177e4
LT
619 }
620
621 goto retry;
622 }
623 }
624}
625
9d53caec
JC
626#define CPU_MONDO_COUNTER(cpuid) (cpu_mondo_counter[cpuid])
627#define MONDO_USEC_WAIT_MIN 2
628#define MONDO_USEC_WAIT_MAX 100
629#define MONDO_RETRY_LIMIT 500000
630
631/* Multi-cpu list version.
632 *
633 * Deliver xcalls to 'cnt' number of cpus in 'cpu_list'.
634 * Sometimes not all cpus receive the mondo, requiring us to re-send
635 * the mondo until all cpus have received, or cpus are truly stuck
636 * unable to receive mondo, and we timeout.
637 * Occasionally a target cpu strand is borrowed briefly by hypervisor to
638 * perform guest service, such as PCIe error handling. Consider the
639 * service time, 1 second overall wait is reasonable for 1 cpu.
640 * Here two in-between mondo check wait time are defined: 2 usec for
641 * single cpu quick turn around and up to 100usec for large cpu count.
642 * Deliver mondo to large number of cpus could take longer, we adjusts
643 * the retry count as long as target cpus are making forward progress.
644 */
90f7ae8a 645static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
a43fe0e7 646{
9d53caec
JC
647 int this_cpu, tot_cpus, prev_sent, i, rem;
648 int usec_wait, retries, tot_retries;
649 u16 first_cpu = 0xffff;
650 unsigned long xc_rcvd = 0;
c02a5119 651 unsigned long status;
9d53caec
JC
652 int ecpuerror_id = 0;
653 int enocpu_id = 0;
b830ab66 654 u16 *cpu_list;
9d53caec 655 u16 cpu;
17f34f0e 656
b830ab66 657 this_cpu = smp_processor_id();
b830ab66 658 cpu_list = __va(tb->cpu_list_pa);
9d53caec
JC
659 usec_wait = cnt * MONDO_USEC_WAIT_MIN;
660 if (usec_wait > MONDO_USEC_WAIT_MAX)
661 usec_wait = MONDO_USEC_WAIT_MAX;
662 retries = tot_retries = 0;
663 tot_cpus = cnt;
3cab0c3e 664 prev_sent = 0;
9d53caec 665
1d2f1f90 666 do {
9d53caec 667 int n_sent, mondo_delivered, target_cpu_busy;
1d2f1f90 668
b830ab66
DM
669 status = sun4v_cpu_mondo_send(cnt,
670 tb->cpu_list_pa,
671 tb->cpu_mondo_block_pa);
672
673 /* HV_EOK means all cpus received the xcall, we're done. */
674 if (likely(status == HV_EOK))
9d53caec
JC
675 goto xcall_done;
676
677 /* If not these non-fatal errors, panic */
678 if (unlikely((status != HV_EWOULDBLOCK) &&
679 (status != HV_ECPUERROR) &&
680 (status != HV_ENOCPU)))
681 goto fatal_errors;
b830ab66 682
3cab0c3e 683 /* First, see if we made any forward progress.
9d53caec
JC
684 *
685 * Go through the cpu_list, count the target cpus that have
686 * received our mondo (n_sent), and those that did not (rem).
687 * Re-pack cpu_list with the cpus remain to be retried in the
688 * front - this simplifies tracking the truly stalled cpus.
3cab0c3e
DM
689 *
690 * The hypervisor indicates successful sends by setting
691 * cpu list entries to the value 0xffff.
9d53caec
JC
692 *
693 * EWOULDBLOCK means some target cpus did not receive the
694 * mondo and retry usually helps.
695 *
696 * ECPUERROR means at least one target cpu is in error state,
697 * it's usually safe to skip the faulty cpu and retry.
698 *
699 * ENOCPU means one of the target cpu doesn't belong to the
700 * domain, perhaps offlined which is unexpected, but not
701 * fatal and it's okay to skip the offlined cpu.
b830ab66 702 */
9d53caec 703 rem = 0;
3cab0c3e 704 n_sent = 0;
b830ab66 705 for (i = 0; i < cnt; i++) {
9d53caec
JC
706 cpu = cpu_list[i];
707 if (likely(cpu == 0xffff)) {
3cab0c3e 708 n_sent++;
9d53caec
JC
709 } else if ((status == HV_ECPUERROR) &&
710 (sun4v_cpu_state(cpu) == HV_CPU_STATE_ERROR)) {
711 ecpuerror_id = cpu + 1;
712 } else if (status == HV_ENOCPU && !cpu_online(cpu)) {
713 enocpu_id = cpu + 1;
714 } else {
715 cpu_list[rem++] = cpu;
716 }
1d2f1f90
DM
717 }
718
9d53caec
JC
719 /* No cpu remained, we're done. */
720 if (rem == 0)
721 break;
3cab0c3e 722
9d53caec
JC
723 /* Otherwise, update the cpu count for retry. */
724 cnt = rem;
3cab0c3e 725
9d53caec
JC
726 /* Record the overall number of mondos received by the
727 * first of the remaining cpus.
b830ab66 728 */
9d53caec
JC
729 if (first_cpu != cpu_list[0]) {
730 first_cpu = cpu_list[0];
731 xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
732 }
b830ab66 733
9d53caec
JC
734 /* Was any mondo delivered successfully? */
735 mondo_delivered = (n_sent > prev_sent);
736 prev_sent = n_sent;
b830ab66 737
9d53caec
JC
738 /* or, was any target cpu busy processing other mondos? */
739 target_cpu_busy = (xc_rcvd < CPU_MONDO_COUNTER(first_cpu));
740 xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
b830ab66 741
9d53caec
JC
742 /* Retry count is for no progress. If we're making progress,
743 * reset the retry count.
3cab0c3e 744 */
9d53caec
JC
745 if (likely(mondo_delivered || target_cpu_busy)) {
746 tot_retries += retries;
747 retries = 0;
748 } else if (unlikely(retries > MONDO_RETRY_LIMIT)) {
749 goto fatal_mondo_timeout;
b830ab66 750 }
1d2f1f90 751
9d53caec
JC
752 /* Delay a little bit to let other cpus catch up on
753 * their cpu mondo queue work.
754 */
755 if (!mondo_delivered)
756 udelay(usec_wait);
b830ab66 757
9d53caec
JC
758 retries++;
759 } while (1);
b830ab66 760
9d53caec
JC
761xcall_done:
762 if (unlikely(ecpuerror_id > 0)) {
763 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) was in error state\n",
764 this_cpu, ecpuerror_id - 1);
765 } else if (unlikely(enocpu_id > 0)) {
766 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) does not belong to the domain\n",
767 this_cpu, enocpu_id - 1);
768 }
b830ab66
DM
769 return;
770
9d53caec
JC
771fatal_errors:
772 /* fatal errors include bad alignment, etc */
773 pr_crit("CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) mondo_block_pa(%lx)\n",
774 this_cpu, tot_cpus, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
775 panic("Unexpected SUN4V mondo error %lu\n", status);
776
b830ab66 777fatal_mondo_timeout:
9d53caec
JC
778 /* some cpus being non-responsive to the cpu mondo */
779 pr_crit("CPU[%d]: SUN4V mondo timeout, cpu(%d) made no forward progress after %d retries. Total target cpus(%d).\n",
780 this_cpu, first_cpu, (tot_retries + retries), tot_cpus);
781 panic("SUN4V mondo timeout panic\n");
1d2f1f90 782}
a43fe0e7 783
90f7ae8a 784static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
deb16999
DM
785
786static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
787{
90f7ae8a
DM
788 struct trap_per_cpu *tb;
789 int this_cpu, i, cnt;
c02a5119 790 unsigned long flags;
90f7ae8a
DM
791 u16 *cpu_list;
792 u64 *mondo;
c02a5119
DM
793
794 /* We have to do this whole thing with interrupts fully disabled.
795 * Otherwise if we send an xcall from interrupt context it will
796 * corrupt both our mondo block and cpu list state.
797 *
798 * One consequence of this is that we cannot use timeout mechanisms
799 * that depend upon interrupts being delivered locally. So, for
800 * example, we cannot sample jiffies and expect it to advance.
801 *
802 * Fortunately, udelay() uses %stick/%tick so we can use that.
803 */
804 local_irq_save(flags);
90f7ae8a
DM
805
806 this_cpu = smp_processor_id();
807 tb = &trap_block[this_cpu];
808
809 mondo = __va(tb->cpu_mondo_block_pa);
810 mondo[0] = data0;
811 mondo[1] = data1;
812 mondo[2] = data2;
813 wmb();
814
815 cpu_list = __va(tb->cpu_list_pa);
816
817 /* Setup the initial cpu list. */
818 cnt = 0;
8e757281 819 for_each_cpu(i, mask) {
90f7ae8a
DM
820 if (i == this_cpu || !cpu_online(i))
821 continue;
822 cpu_list[cnt++] = i;
823 }
824
825 if (cnt)
826 xcall_deliver_impl(tb, cnt);
827
c02a5119 828 local_irq_restore(flags);
deb16999 829}
5e0797e5 830
91a4231c
DM
831/* Send cross call to all processors mentioned in MASK_P
832 * except self. Really, there are only two cases currently,
fb1fece5 833 * "cpu_online_mask" and "mm_cpumask(mm)".
1da177e4 834 */
ae583885 835static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
1da177e4
LT
836{
837 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
1da177e4 838
ae583885
DM
839 xcall_deliver(data0, data1, data2, mask);
840}
1da177e4 841
ae583885
DM
842/* Send cross call to all processors except self. */
843static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
844{
fb1fece5 845 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
1da177e4
LT
846}
847
848extern unsigned long xcall_sync_tick;
849
850static void smp_start_sync_tick_client(int cpu)
851{
24445a4a 852 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
fb1fece5 853 cpumask_of(cpu));
1da177e4
LT
854}
855
1da177e4
LT
856extern unsigned long xcall_call_function;
857
f46df02a 858void arch_send_call_function_ipi_mask(const struct cpumask *mask)
1da177e4 859{
f46df02a 860 xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
d172ad18 861}
1da177e4 862
d172ad18 863extern unsigned long xcall_call_function_single;
1da177e4 864
d172ad18
DM
865void arch_send_call_function_single_ipi(int cpu)
866{
19926630 867 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
fb1fece5 868 cpumask_of(cpu));
1da177e4
LT
869}
870
9960e9e8 871void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
1da177e4 872{
d172ad18 873 clear_softint(1 << irq);
ab5c7809 874 irq_enter();
d172ad18 875 generic_smp_call_function_interrupt();
ab5c7809 876 irq_exit();
d172ad18 877}
1da177e4 878
9960e9e8 879void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
d172ad18 880{
1da177e4 881 clear_softint(1 << irq);
ab5c7809 882 irq_enter();
d172ad18 883 generic_smp_call_function_single_interrupt();
ab5c7809 884 irq_exit();
1da177e4
LT
885}
886
bd40791e
DM
887static void tsb_sync(void *info)
888{
6f25f398 889 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
bd40791e
DM
890 struct mm_struct *mm = info;
891
42b2aa86 892 /* It is not valid to test "current->active_mm == mm" here.
6f25f398
DM
893 *
894 * The value of "current" is not changed atomically with
895 * switch_mm(). But that's OK, we just need to check the
896 * current cpu's trap block PGD physical address.
897 */
898 if (tp->pgd_paddr == __pa(mm->pgd))
bd40791e
DM
899 tsb_context_switch(mm);
900}
901
902void smp_tsb_sync(struct mm_struct *mm)
903{
81f1adf0 904 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
bd40791e
DM
905}
906
1da177e4 907extern unsigned long xcall_flush_tlb_mm;
f36391d2 908extern unsigned long xcall_flush_tlb_page;
1da177e4 909extern unsigned long xcall_flush_tlb_kernel_range;
93dae5b7 910extern unsigned long xcall_fetch_glob_regs;
916ca14a
DM
911extern unsigned long xcall_fetch_glob_pmu;
912extern unsigned long xcall_fetch_glob_pmu_n4;
1da177e4 913extern unsigned long xcall_receive_signal;
ee29074d 914extern unsigned long xcall_new_mmu_context_version;
e2fdd7fd
DM
915#ifdef CONFIG_KGDB
916extern unsigned long xcall_kgdb_capture;
917#endif
1da177e4
LT
918
919#ifdef DCACHE_ALIASING_POSSIBLE
920extern unsigned long xcall_flush_dcache_page_cheetah;
921#endif
922extern unsigned long xcall_flush_dcache_page_spitfire;
923
1a10a44d 924static inline void __local_flush_dcache_folio(struct folio *folio)
1da177e4 925{
1a10a44d
MWO
926 unsigned int i, nr = folio_nr_pages(folio);
927
1da177e4 928#ifdef DCACHE_ALIASING_POSSIBLE
1a10a44d
MWO
929 for (i = 0; i < nr; i++)
930 __flush_dcache_page(folio_address(folio) + i * PAGE_SIZE,
1da177e4 931 ((tlb_type == spitfire) &&
1a10a44d 932 folio_flush_mapping(folio) != NULL));
1da177e4 933#else
1a10a44d
MWO
934 if (folio_flush_mapping(folio) != NULL &&
935 tlb_type == spitfire) {
936 unsigned long pfn = folio_pfn(folio)
937 for (i = 0; i < nr; i++)
938 __flush_icache_page((pfn + i) * PAGE_SIZE);
939 }
1da177e4
LT
940#endif
941}
942
1a10a44d 943void smp_flush_dcache_folio_impl(struct folio *folio, int cpu)
1da177e4 944{
a43fe0e7
DM
945 int this_cpu;
946
947 if (tlb_type == hypervisor)
948 return;
1da177e4
LT
949
950#ifdef CONFIG_DEBUG_DCFLUSH
951 atomic_inc(&dcpage_flushes);
952#endif
a43fe0e7
DM
953
954 this_cpu = get_cpu();
955
1da177e4 956 if (cpu == this_cpu) {
1a10a44d 957 __local_flush_dcache_folio(folio);
1da177e4 958 } else if (cpu_online(cpu)) {
1a10a44d 959 void *pg_addr = folio_address(folio);
622824db 960 u64 data0 = 0;
1da177e4
LT
961
962 if (tlb_type == spitfire) {
622824db 963 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
1a10a44d 964 if (folio_flush_mapping(folio) != NULL)
1da177e4 965 data0 |= ((u64)1 << 32);
a43fe0e7 966 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4 967#ifdef DCACHE_ALIASING_POSSIBLE
622824db 968 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1da177e4
LT
969#endif
970 }
622824db 971 if (data0) {
1a10a44d
MWO
972 unsigned int i, nr = folio_nr_pages(folio);
973
974 for (i = 0; i < nr; i++) {
975 xcall_deliver(data0, __pa(pg_addr),
976 (u64) pg_addr, cpumask_of(cpu));
1da177e4 977#ifdef CONFIG_DEBUG_DCFLUSH
1a10a44d 978 atomic_inc(&dcpage_flushes_xcall);
1da177e4 979#endif
1a10a44d
MWO
980 pg_addr += PAGE_SIZE;
981 }
622824db 982 }
1da177e4
LT
983 }
984
985 put_cpu();
986}
987
1a10a44d 988void flush_dcache_folio_all(struct mm_struct *mm, struct folio *folio)
1da177e4 989{
622824db 990 void *pg_addr;
622824db 991 u64 data0;
a43fe0e7
DM
992
993 if (tlb_type == hypervisor)
994 return;
995
c6fee081 996 preempt_disable();
1da177e4 997
1da177e4
LT
998#ifdef CONFIG_DEBUG_DCFLUSH
999 atomic_inc(&dcpage_flushes);
1000#endif
622824db 1001 data0 = 0;
1a10a44d 1002 pg_addr = folio_address(folio);
1da177e4
LT
1003 if (tlb_type == spitfire) {
1004 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
1a10a44d 1005 if (folio_flush_mapping(folio) != NULL)
1da177e4 1006 data0 |= ((u64)1 << 32);
a43fe0e7 1007 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
1008#ifdef DCACHE_ALIASING_POSSIBLE
1009 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1da177e4
LT
1010#endif
1011 }
622824db 1012 if (data0) {
1a10a44d
MWO
1013 unsigned int i, nr = folio_nr_pages(folio);
1014
1015 for (i = 0; i < nr; i++) {
1016 xcall_deliver(data0, __pa(pg_addr),
1017 (u64) pg_addr, cpu_online_mask);
1da177e4 1018#ifdef CONFIG_DEBUG_DCFLUSH
1a10a44d 1019 atomic_inc(&dcpage_flushes_xcall);
1da177e4 1020#endif
1a10a44d
MWO
1021 pg_addr += PAGE_SIZE;
1022 }
622824db 1023 }
1a10a44d 1024 __local_flush_dcache_folio(folio);
1da177e4 1025
c6fee081 1026 preempt_enable();
1da177e4
LT
1027}
1028
e2fdd7fd 1029#ifdef CONFIG_KGDB
9ef7fa50 1030void kgdb_roundup_cpus(void)
e2fdd7fd
DM
1031{
1032 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1033}
1034#endif
1035
93dae5b7
DM
1036void smp_fetch_global_regs(void)
1037{
1038 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1039}
93dae5b7 1040
916ca14a
DM
1041void smp_fetch_global_pmu(void)
1042{
1043 if (tlb_type == hypervisor &&
1044 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1045 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1046 else
1047 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1048}
1049
1da177e4
LT
1050/* We know that the window frames of the user have been flushed
1051 * to the stack before we get here because all callers of us
1052 * are flush_tlb_*() routines, and these run after flush_cache_*()
1053 * which performs the flushw.
1054 *
bafb056c
NP
1055 * mm->cpu_vm_mask is a bit mask of which cpus an address
1056 * space has (potentially) executed on, this is the heuristic
1057 * we use to limit cross calls.
1da177e4 1058 */
62dbec78
DM
1059
1060/* This currently is only used by the hugetlb arch pre-fault
1061 * hook on UltraSPARC-III+ and later when changing the pagesize
1062 * bits of the context register for an address space.
1063 */
1da177e4
LT
1064void smp_flush_tlb_mm(struct mm_struct *mm)
1065{
62dbec78 1066 u32 ctx = CTX_HWBITS(mm->context);
1da177e4 1067
bafb056c 1068 get_cpu();
1da177e4 1069
62dbec78
DM
1070 smp_cross_call_masked(&xcall_flush_tlb_mm,
1071 ctx, 0, 0,
81f1adf0 1072 mm_cpumask(mm));
1da177e4 1073
62dbec78 1074 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1da177e4 1075
62dbec78 1076 put_cpu();
1da177e4
LT
1077}
1078
f36391d2
DM
1079struct tlb_pending_info {
1080 unsigned long ctx;
1081 unsigned long nr;
1082 unsigned long *vaddrs;
1083};
1084
1085static void tlb_pending_func(void *info)
1086{
1087 struct tlb_pending_info *t = info;
1088
1089 __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1090}
1091
1da177e4
LT
1092void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1093{
1094 u32 ctx = CTX_HWBITS(mm->context);
f36391d2 1095 struct tlb_pending_info info;
bafb056c
NP
1096
1097 get_cpu();
1da177e4 1098
f36391d2
DM
1099 info.ctx = ctx;
1100 info.nr = nr;
1101 info.vaddrs = vaddrs;
1102
bafb056c
NP
1103 smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1104 &info, 1);
1da177e4 1105
1da177e4
LT
1106 __flush_tlb_pending(ctx, nr, vaddrs);
1107
1108 put_cpu();
1109}
1110
f36391d2
DM
1111void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1112{
1113 unsigned long context = CTX_HWBITS(mm->context);
f36391d2 1114
bafb056c
NP
1115 get_cpu();
1116
1117 smp_cross_call_masked(&xcall_flush_tlb_page,
1118 context, vaddr, 0,
1119 mm_cpumask(mm));
1120
f36391d2
DM
1121 __flush_tlb_page(context, vaddr);
1122
1123 put_cpu();
1124}
1125
1da177e4
LT
1126void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1127{
1128 start &= PAGE_MASK;
1129 end = PAGE_ALIGN(end);
1130 if (start != end) {
1131 smp_cross_call(&xcall_flush_tlb_kernel_range,
1132 0, start, end);
1133
1134 __flush_tlb_kernel_range(start, end);
1135 }
1136}
1137
1138/* CPU capture. */
1139/* #define CAPTURE_DEBUG */
1140extern unsigned long xcall_capture;
1141
1142static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1143static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1144static unsigned long penguins_are_doing_time;
1145
1146void smp_capture(void)
1147{
4f3316c2 1148 int result = atomic_add_return(1, &smp_capture_depth);
1da177e4
LT
1149
1150 if (result == 1) {
1151 int ncpus = num_online_cpus();
1152
1153#ifdef CAPTURE_DEBUG
1154 printk("CPU[%d]: Sending penguins to jail...",
1155 smp_processor_id());
1156#endif
1157 penguins_are_doing_time = 1;
1da177e4
LT
1158 atomic_inc(&smp_capture_registry);
1159 smp_cross_call(&xcall_capture, 0, 0, 0);
1160 while (atomic_read(&smp_capture_registry) != ncpus)
4f07118f 1161 rmb();
1da177e4
LT
1162#ifdef CAPTURE_DEBUG
1163 printk("done\n");
1164#endif
1165 }
1166}
1167
1168void smp_release(void)
1169{
1170 if (atomic_dec_and_test(&smp_capture_depth)) {
1171#ifdef CAPTURE_DEBUG
1172 printk("CPU[%d]: Giving pardon to "
1173 "imprisoned penguins\n",
1174 smp_processor_id());
1175#endif
1176 penguins_are_doing_time = 0;
293666b7 1177 membar_safe("#StoreLoad");
1da177e4
LT
1178 atomic_dec(&smp_capture_registry);
1179 }
1180}
1181
b4f4372f
DM
1182/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1183 * set, so they can service tlb flush xcalls...
1da177e4
LT
1184 */
1185extern void prom_world(int);
96c6e0d8 1186
9960e9e8 1187void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1da177e4 1188{
1da177e4
LT
1189 clear_softint(1 << irq);
1190
1191 preempt_disable();
1192
1193 __asm__ __volatile__("flushw");
1da177e4
LT
1194 prom_world(1);
1195 atomic_inc(&smp_capture_registry);
293666b7 1196 membar_safe("#StoreLoad");
1da177e4 1197 while (penguins_are_doing_time)
4f07118f 1198 rmb();
1da177e4
LT
1199 atomic_dec(&smp_capture_registry);
1200 prom_world(0);
1201
1202 preempt_enable();
1203}
1204
1da177e4
LT
1205void __init smp_prepare_cpus(unsigned int max_cpus)
1206{
1da177e4
LT
1207}
1208
5e0797e5
DM
1209void __init smp_setup_processor_id(void)
1210{
1211 if (tlb_type == spitfire)
deb16999 1212 xcall_deliver_impl = spitfire_xcall_deliver;
5e0797e5 1213 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
deb16999 1214 xcall_deliver_impl = cheetah_xcall_deliver;
5e0797e5 1215 else
deb16999 1216 xcall_deliver_impl = hypervisor_xcall_deliver;
5e0797e5
DM
1217}
1218
9b2f753e
AP
1219void __init smp_fill_in_cpu_possible_map(void)
1220{
1221 int possible_cpus = num_possible_cpus();
1222 int i;
1223
1224 if (possible_cpus > nr_cpu_ids)
1225 possible_cpus = nr_cpu_ids;
1226
1227 for (i = 0; i < possible_cpus; i++)
1228 set_cpu_possible(i, true);
1229 for (; i < NR_CPUS; i++)
1230 set_cpu_possible(i, false);
1231}
1232
7c9503b8 1233void smp_fill_in_sib_core_maps(void)
1da177e4 1234{
5cbc3073
DM
1235 unsigned int i;
1236
e0204409 1237 for_each_present_cpu(i) {
5cbc3073
DM
1238 unsigned int j;
1239
fb1fece5 1240 cpumask_clear(&cpu_core_map[i]);
5cbc3073 1241 if (cpu_data(i).core_id == 0) {
fb1fece5 1242 cpumask_set_cpu(i, &cpu_core_map[i]);
5cbc3073
DM
1243 continue;
1244 }
1245
e0204409 1246 for_each_present_cpu(j) {
5cbc3073
DM
1247 if (cpu_data(i).core_id ==
1248 cpu_data(j).core_id)
fb1fece5 1249 cpumask_set_cpu(j, &cpu_core_map[i]);
f78eae2e
DM
1250 }
1251 }
1252
acc455cf 1253 for_each_present_cpu(i) {
1254 unsigned int j;
1255
1256 for_each_present_cpu(j) {
d624716b
AP
1257 if (cpu_data(i).max_cache_id ==
1258 cpu_data(j).max_cache_id)
1259 cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1260
acc455cf 1261 if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1262 cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1263 }
1264 }
1265
e0204409 1266 for_each_present_cpu(i) {
f78eae2e
DM
1267 unsigned int j;
1268
fb1fece5 1269 cpumask_clear(&per_cpu(cpu_sibling_map, i));
f78eae2e 1270 if (cpu_data(i).proc_id == -1) {
fb1fece5 1271 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
f78eae2e
DM
1272 continue;
1273 }
1274
e0204409 1275 for_each_present_cpu(j) {
f78eae2e
DM
1276 if (cpu_data(i).proc_id ==
1277 cpu_data(j).proc_id)
fb1fece5 1278 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
5cbc3073
DM
1279 }
1280 }
1da177e4
LT
1281}
1282
2066aadd 1283int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1da177e4 1284{
f0a2bc7e 1285 int ret = smp_boot_one_cpu(cpu, tidle);
1da177e4
LT
1286
1287 if (!ret) {
fb1fece5
KM
1288 cpumask_set_cpu(cpu, &smp_commenced_mask);
1289 while (!cpu_online(cpu))
1da177e4 1290 mb();
fb1fece5 1291 if (!cpu_online(cpu)) {
1da177e4
LT
1292 ret = -ENODEV;
1293 } else {
02fead75
DM
1294 /* On SUN4V, writes to %tick and %stick are
1295 * not allowed.
1296 */
1297 if (tlb_type != hypervisor)
1298 smp_synchronize_one_tick(cpu);
1da177e4
LT
1299 }
1300 }
1301 return ret;
1302}
1303
4f0234f4 1304#ifdef CONFIG_HOTPLUG_CPU
e0204409
DM
1305void cpu_play_dead(void)
1306{
1307 int cpu = smp_processor_id();
1308 unsigned long pstate;
1309
1310 idle_task_exit();
1311
1312 if (tlb_type == hypervisor) {
1313 struct trap_per_cpu *tb = &trap_block[cpu];
1314
1315 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1316 tb->cpu_mondo_pa, 0);
1317 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1318 tb->dev_mondo_pa, 0);
1319 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1320 tb->resum_mondo_pa, 0);
1321 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1322 tb->nonresum_mondo_pa, 0);
1323 }
1324
fb1fece5 1325 cpumask_clear_cpu(cpu, &smp_commenced_mask);
e0204409
DM
1326 membar_safe("#Sync");
1327
1328 local_irq_disable();
1329
1330 __asm__ __volatile__(
1331 "rdpr %%pstate, %0\n\t"
1332 "wrpr %0, %1, %%pstate"
1333 : "=r" (pstate)
1334 : "i" (PSTATE_IE));
1335
1336 while (1)
1337 barrier();
1338}
1339
4f0234f4
DM
1340int __cpu_disable(void)
1341{
e0204409
DM
1342 int cpu = smp_processor_id();
1343 cpuinfo_sparc *c;
1344 int i;
1345
fb1fece5
KM
1346 for_each_cpu(i, &cpu_core_map[cpu])
1347 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1348 cpumask_clear(&cpu_core_map[cpu]);
e0204409 1349
fb1fece5
KM
1350 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1351 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1352 cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
e0204409
DM
1353
1354 c = &cpu_data(cpu);
1355
1356 c->core_id = 0;
1357 c->proc_id = -1;
1358
e0204409
DM
1359 smp_wmb();
1360
1361 /* Make sure no interrupts point to this cpu. */
1362 fixup_irqs();
1363
1364 local_irq_enable();
1365 mdelay(1);
1366 local_irq_disable();
1367
fb1fece5 1368 set_cpu_online(cpu, false);
4d084617 1369
280ff974
HP
1370 cpu_map_rebuild();
1371
e0204409 1372 return 0;
4f0234f4
DM
1373}
1374
1375void __cpu_die(unsigned int cpu)
1376{
e0204409
DM
1377 int i;
1378
1379 for (i = 0; i < 100; i++) {
1380 smp_rmb();
fb1fece5 1381 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
e0204409
DM
1382 break;
1383 msleep(100);
1384 }
fb1fece5 1385 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
e0204409
DM
1386 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1387 } else {
1388#if defined(CONFIG_SUN_LDOMS)
1389 unsigned long hv_err;
1390 int limit = 100;
1391
1392 do {
1393 hv_err = sun4v_cpu_stop(cpu);
1394 if (hv_err == HV_EOK) {
fb1fece5 1395 set_cpu_present(cpu, false);
e0204409
DM
1396 break;
1397 }
1398 } while (--limit > 0);
1399 if (limit <= 0) {
1400 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1401 hv_err);
1402 }
1403#endif
1404 }
4f0234f4
DM
1405}
1406#endif
1407
1da177e4
LT
1408void __init smp_cpus_done(unsigned int max_cpus)
1409{
1da177e4
LT
1410}
1411
8536e02e
VK
1412static void send_cpu_ipi(int cpu)
1413{
1414 xcall_deliver((u64) &xcall_receive_signal,
1415 0, 0, cpumask_of(cpu));
1416}
1417
1418void scheduler_poke(void)
1419{
1420 if (!cpu_poke)
1421 return;
1422
1423 if (!__this_cpu_read(poke))
1424 return;
1425
1426 __this_cpu_write(poke, false);
1427 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1428}
1429
1430static unsigned long send_cpu_poke(int cpu)
1431{
1432 unsigned long hv_err;
1433
1434 per_cpu(poke, cpu) = true;
1435 hv_err = sun4v_cpu_poke(cpu);
1436 if (hv_err != HV_EOK) {
1437 per_cpu(poke, cpu) = false;
1438 pr_err_ratelimited("%s: sun4v_cpu_poke() fails err=%lu\n",
1439 __func__, hv_err);
1440 }
1441
1442 return hv_err;
1443}
1444
4c8c3c7f 1445void arch_smp_send_reschedule(int cpu)
1da177e4 1446{
1a36265b
KT
1447 if (cpu == smp_processor_id()) {
1448 WARN_ON_ONCE(preemptible());
1449 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
8536e02e
VK
1450 return;
1451 }
1452
1453 /* Use cpu poke to resume idle cpu if supported. */
1454 if (cpu_poke && idle_cpu(cpu)) {
1455 unsigned long ret;
1456
1457 ret = send_cpu_poke(cpu);
1458 if (ret == HV_EOK)
1459 return;
1a36265b 1460 }
8536e02e
VK
1461
1462 /* Use IPI in following cases:
1463 * - cpu poke not supported
1464 * - cpu not idle
1465 * - send_cpu_poke() returns with error
1466 */
1467 send_cpu_ipi(cpu);
1468}
1469
1470void smp_init_cpu_poke(void)
1471{
1472 unsigned long major;
1473 unsigned long minor;
1474 int ret;
1475
1476 if (tlb_type != hypervisor)
1477 return;
1478
1479 ret = sun4v_hvapi_get(HV_GRP_CORE, &major, &minor);
1480 if (ret) {
1481 pr_debug("HV_GRP_CORE is not registered\n");
1482 return;
1483 }
1484
1485 if (major == 1 && minor >= 6) {
1486 /* CPU POKE is registered. */
1487 cpu_poke = true;
1488 return;
1489 }
1490
1491 pr_debug("CPU_POKE not supported\n");
19926630
DM
1492}
1493
9960e9e8 1494void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
19926630
DM
1495{
1496 clear_softint(1 << irq);
184748cc 1497 scheduler_ipi();
1da177e4
LT
1498}
1499
94ab5990
DK
1500static void stop_this_cpu(void *dummy)
1501{
cffb3e76 1502 set_cpu_online(smp_processor_id(), false);
94ab5990
DK
1503 prom_stopself();
1504}
1505
1da177e4
LT
1506void smp_send_stop(void)
1507{
94ab5990
DK
1508 int cpu;
1509
1510 if (tlb_type == hypervisor) {
7dd4fcf5
VK
1511 int this_cpu = smp_processor_id();
1512#ifdef CONFIG_SERIAL_SUNHV
1513 sunhv_migrate_hvcons_irq(this_cpu);
1514#endif
94ab5990 1515 for_each_online_cpu(cpu) {
7dd4fcf5 1516 if (cpu == this_cpu)
94ab5990 1517 continue;
cffb3e76
VK
1518
1519 set_cpu_online(cpu, false);
94ab5990
DK
1520#ifdef CONFIG_SUN_LDOMS
1521 if (ldom_domaining_enabled) {
1522 unsigned long hv_err;
1523 hv_err = sun4v_cpu_stop(cpu);
1524 if (hv_err)
1525 printk(KERN_ERR "sun4v_cpu_stop() "
1526 "failed err=%lu\n", hv_err);
1527 } else
1528#endif
1529 prom_stopcpu_cpuid(cpu);
1530 }
1531 } else
1532 smp_call_function(stop_this_cpu, NULL, 0);
1da177e4
LT
1533}
1534
a70c6913 1535static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
bcb2107f
TH
1536{
1537 if (cpu_to_node(from) == cpu_to_node(to))
1538 return LOCAL_DISTANCE;
1539 else
1540 return REMOTE_DISTANCE;
4fd78a5f
DM
1541}
1542
1ca3fb3a
KW
1543static int __init pcpu_cpu_to_node(int cpu)
1544{
1545 return cpu_to_node(cpu);
1546}
1547
73fffc03 1548void __init setup_per_cpu_areas(void)
1da177e4 1549{
bcb2107f
TH
1550 unsigned long delta;
1551 unsigned int cpu;
a70c6913
TH
1552 int rc = -EINVAL;
1553
1554 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1555 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1556 PERCPU_DYNAMIC_RESERVE, 4 << 20,
1557 pcpu_cpu_distance,
23f91716 1558 pcpu_cpu_to_node);
a70c6913 1559 if (rc)
eb1414ec
KW
1560 pr_warn("PERCPU: %s allocator failed (%d), "
1561 "falling back to page size\n",
1562 pcpu_fc_names[pcpu_chosen_fc], rc);
a70c6913
TH
1563 }
1564 if (rc < 0)
1565 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
20c03576 1566 pcpu_cpu_to_node);
a70c6913
TH
1567 if (rc < 0)
1568 panic("cannot initialize percpu area (err=%d)", rc);
5a089006 1569
4fd78a5f 1570 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
fb435d52
TH
1571 for_each_possible_cpu(cpu)
1572 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
951bc82c
DM
1573
1574 /* Setup %g5 for the boot cpu. */
1575 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
b696fdc2
DM
1576
1577 of_fill_in_cpu_data();
1578 if (tlb_type == hypervisor)
6ac5c610 1579 mdesc_fill_in_cpu_data(cpu_all_mask);
1da177e4 1580}