Merge branch 'linux-next' of git://git.infradead.org/ubi-2.6
[linux-block.git] / arch / sh / kernel / kgdb.c
CommitLineData
ab6e570b
PM
1/*
2 * SuperH KGDB support
3 *
4 * Copyright (C) 2008 Paul Mundt
5 *
6 * Single stepping taken from the old stub by Henry Bell and Jeremy Siegel.
7 *
8 * This file is subject to the terms and conditions of the GNU General Public
9 * License. See the file "COPYING" in the main directory of this archive
10 * for more details.
11 */
12#include <linux/kgdb.h>
13#include <linux/kdebug.h>
14#include <linux/irq.h>
15#include <linux/io.h>
16#include <asm/cacheflush.h>
17
ab6e570b
PM
18/* Macros for single step instruction identification */
19#define OPCODE_BT(op) (((op) & 0xff00) == 0x8900)
20#define OPCODE_BF(op) (((op) & 0xff00) == 0x8b00)
21#define OPCODE_BTF_DISP(op) (((op) & 0x80) ? (((op) | 0xffffff80) << 1) : \
22 (((op) & 0x7f ) << 1))
23#define OPCODE_BFS(op) (((op) & 0xff00) == 0x8f00)
24#define OPCODE_BTS(op) (((op) & 0xff00) == 0x8d00)
25#define OPCODE_BRA(op) (((op) & 0xf000) == 0xa000)
26#define OPCODE_BRA_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
27 (((op) & 0x7ff) << 1))
28#define OPCODE_BRAF(op) (((op) & 0xf0ff) == 0x0023)
29#define OPCODE_BRAF_REG(op) (((op) & 0x0f00) >> 8)
30#define OPCODE_BSR(op) (((op) & 0xf000) == 0xb000)
31#define OPCODE_BSR_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
32 (((op) & 0x7ff) << 1))
33#define OPCODE_BSRF(op) (((op) & 0xf0ff) == 0x0003)
34#define OPCODE_BSRF_REG(op) (((op) >> 8) & 0xf)
35#define OPCODE_JMP(op) (((op) & 0xf0ff) == 0x402b)
36#define OPCODE_JMP_REG(op) (((op) >> 8) & 0xf)
37#define OPCODE_JSR(op) (((op) & 0xf0ff) == 0x400b)
38#define OPCODE_JSR_REG(op) (((op) >> 8) & 0xf)
39#define OPCODE_RTS(op) ((op) == 0xb)
40#define OPCODE_RTE(op) ((op) == 0x2b)
41
42#define SR_T_BIT_MASK 0x1
43#define STEP_OPCODE 0xc33d
44
45/* Calculate the new address for after a step */
46static short *get_step_address(struct pt_regs *linux_regs)
47{
2bcfffa4 48 insn_size_t op = __raw_readw(linux_regs->pc);
ab6e570b
PM
49 long addr;
50
51 /* BT */
52 if (OPCODE_BT(op)) {
53 if (linux_regs->sr & SR_T_BIT_MASK)
54 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
55 else
56 addr = linux_regs->pc + 2;
57 }
58
59 /* BTS */
60 else if (OPCODE_BTS(op)) {
61 if (linux_regs->sr & SR_T_BIT_MASK)
62 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
63 else
64 addr = linux_regs->pc + 4; /* Not in delay slot */
65 }
66
67 /* BF */
68 else if (OPCODE_BF(op)) {
69 if (!(linux_regs->sr & SR_T_BIT_MASK))
70 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
71 else
72 addr = linux_regs->pc + 2;
73 }
74
75 /* BFS */
76 else if (OPCODE_BFS(op)) {
77 if (!(linux_regs->sr & SR_T_BIT_MASK))
78 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
79 else
80 addr = linux_regs->pc + 4; /* Not in delay slot */
81 }
82
83 /* BRA */
84 else if (OPCODE_BRA(op))
85 addr = linux_regs->pc + 4 + OPCODE_BRA_DISP(op);
86
87 /* BRAF */
88 else if (OPCODE_BRAF(op))
89 addr = linux_regs->pc + 4
90 + linux_regs->regs[OPCODE_BRAF_REG(op)];
91
92 /* BSR */
93 else if (OPCODE_BSR(op))
94 addr = linux_regs->pc + 4 + OPCODE_BSR_DISP(op);
95
96 /* BSRF */
97 else if (OPCODE_BSRF(op))
98 addr = linux_regs->pc + 4
99 + linux_regs->regs[OPCODE_BSRF_REG(op)];
100
101 /* JMP */
102 else if (OPCODE_JMP(op))
103 addr = linux_regs->regs[OPCODE_JMP_REG(op)];
104
105 /* JSR */
106 else if (OPCODE_JSR(op))
107 addr = linux_regs->regs[OPCODE_JSR_REG(op)];
108
109 /* RTS */
110 else if (OPCODE_RTS(op))
111 addr = linux_regs->pr;
112
113 /* RTE */
114 else if (OPCODE_RTE(op))
115 addr = linux_regs->regs[15];
116
117 /* Other */
118 else
119 addr = linux_regs->pc + instruction_size(op);
120
121 flush_icache_range(addr, addr + instruction_size(op));
122 return (short *)addr;
123}
124
125/*
126 * Replace the instruction immediately after the current instruction
127 * (i.e. next in the expected flow of control) with a trap instruction,
128 * so that returning will cause only a single instruction to be executed.
129 * Note that this model is slightly broken for instructions with delay
130 * slots (e.g. B[TF]S, BSR, BRA etc), where both the branch and the
131 * instruction in the delay slot will be executed.
132 */
133
134static unsigned long stepped_address;
2bcfffa4 135static insn_size_t stepped_opcode;
ab6e570b
PM
136
137static void do_single_step(struct pt_regs *linux_regs)
138{
139 /* Determine where the target instruction will send us to */
140 unsigned short *addr = get_step_address(linux_regs);
141
142 stepped_address = (int)addr;
143
144 /* Replace it */
145 stepped_opcode = __raw_readw((long)addr);
146 *addr = STEP_OPCODE;
147
148 /* Flush and return */
149 flush_icache_range((long)addr, (long)addr +
150 instruction_size(stepped_opcode));
151}
152
153/* Undo a single step */
154static void undo_single_step(struct pt_regs *linux_regs)
155{
156 /* If we have stepped, put back the old instruction */
157 /* Use stepped_address in case we stopped elsewhere */
158 if (stepped_opcode != 0) {
159 __raw_writew(stepped_opcode, stepped_address);
160 flush_icache_range(stepped_address, stepped_address + 2);
161 }
162
163 stepped_opcode = 0;
164}
165
166void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
167{
168 int i;
169
170 for (i = 0; i < 16; i++)
171 gdb_regs[GDB_R0 + i] = regs->regs[i];
172
173 gdb_regs[GDB_PC] = regs->pc;
174 gdb_regs[GDB_PR] = regs->pr;
175 gdb_regs[GDB_SR] = regs->sr;
176 gdb_regs[GDB_GBR] = regs->gbr;
177 gdb_regs[GDB_MACH] = regs->mach;
178 gdb_regs[GDB_MACL] = regs->macl;
179
180 __asm__ __volatile__ ("stc vbr, %0" : "=r" (gdb_regs[GDB_VBR]));
181}
182
183void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs)
184{
185 int i;
186
187 for (i = 0; i < 16; i++)
188 regs->regs[GDB_R0 + i] = gdb_regs[GDB_R0 + i];
189
190 regs->pc = gdb_regs[GDB_PC];
191 regs->pr = gdb_regs[GDB_PR];
192 regs->sr = gdb_regs[GDB_SR];
193 regs->gbr = gdb_regs[GDB_GBR];
194 regs->mach = gdb_regs[GDB_MACH];
195 regs->macl = gdb_regs[GDB_MACL];
ab6e570b
PM
196}
197
198void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
199{
200 gdb_regs[GDB_R15] = p->thread.sp;
201 gdb_regs[GDB_PC] = p->thread.pc;
202}
203
204int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
205 char *remcomInBuffer, char *remcomOutBuffer,
206 struct pt_regs *linux_regs)
207{
208 unsigned long addr;
209 char *ptr;
210
211 /* Undo any stepping we may have done */
212 undo_single_step(linux_regs);
213
214 switch (remcomInBuffer[0]) {
215 case 'c':
216 case 's':
217 /* try to read optional parameter, pc unchanged if no parm */
218 ptr = &remcomInBuffer[1];
219 if (kgdb_hex2long(&ptr, &addr))
220 linux_regs->pc = addr;
221 case 'D':
222 case 'k':
223 atomic_set(&kgdb_cpu_doing_single_step, -1);
224
225 if (remcomInBuffer[0] == 's') {
226 do_single_step(linux_regs);
227 kgdb_single_step = 1;
228
229 atomic_set(&kgdb_cpu_doing_single_step,
230 raw_smp_processor_id());
231 }
232
233 return 0;
234 }
235
236 /* this means that we do not want to exit from the handler: */
237 return -1;
238}
239
240/*
241 * The primary entry points for the kgdb debug trap table entries.
242 */
243BUILD_TRAP_HANDLER(singlestep)
244{
245 unsigned long flags;
246 TRAP_HANDLER_DECL;
247
248 local_irq_save(flags);
249 regs->pc -= instruction_size(__raw_readw(regs->pc - 4));
250 kgdb_handle_exception(vec >> 2, SIGTRAP, 0, regs);
251 local_irq_restore(flags);
252}
253
254
255BUILD_TRAP_HANDLER(breakpoint)
256{
257 unsigned long flags;
258 TRAP_HANDLER_DECL;
259
260 local_irq_save(flags);
261 kgdb_handle_exception(vec >> 2, SIGTRAP, 0, regs);
262 local_irq_restore(flags);
263}
264
265int kgdb_arch_init(void)
266{
267 return 0;
268}
269
270void kgdb_arch_exit(void)
271{
272}
273
274struct kgdb_arch arch_kgdb_ops = {
275 /* Breakpoint instruction: trapa #0x3c */
276#ifdef CONFIG_CPU_LITTLE_ENDIAN
277 .gdb_bpt_instr = { 0x3c, 0xc3 },
278#else
279 .gdb_bpt_instr = { 0xc3, 0x3c },
280#endif
281};