Merge tag 'probes-fixes-v6.16-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / arch / s390 / include / asm / pgtable.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4 2/*
1da177e4 3 * S390 version
a53c8fab 4 * Copyright IBM Corp. 1999, 2000
1da177e4
LT
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 *
9 * Derived from "include/asm-i386/pgtable.h"
10 */
11
12#ifndef _ASM_S390_PGTABLE_H
13#define _ASM_S390_PGTABLE_H
14
9789db08 15#include <linux/sched.h>
2dcea57a 16#include <linux/mm_types.h>
15a36036 17#include <linux/cpufeature.h>
abf09bed 18#include <linux/page-flags.h>
527e30b4 19#include <linux/radix-tree.h>
37cd944c 20#include <linux/atomic.h>
527618ab 21#include <asm/ctlreg.h>
1da177e4 22#include <asm/bug.h>
b2fa47e6 23#include <asm/page.h>
214d9bbc 24#include <asm/uv.h>
1da177e4 25
0ccb32c9 26extern pgd_t swapper_pg_dir[];
bb1520d5 27extern pgd_t invalid_pg_dir[];
1da177e4 28extern void paging_init(void);
527618ab 29extern struct ctlreg s390_invalid_asce;
1da177e4 30
37cd944c
HC
31enum {
32 PG_DIRECT_MAP_4K = 0,
33 PG_DIRECT_MAP_1M,
34 PG_DIRECT_MAP_2G,
35 PG_DIRECT_MAP_MAX
36};
37
912a0d35 38extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
37cd944c
HC
39
40static inline void update_page_count(int level, long count)
41{
42 if (IS_ENABLED(CONFIG_PROC_FS))
43 atomic_long_add(count, &direct_pages_count[level]);
44}
45
1da177e4
LT
46/*
47 * The S390 doesn't have any external MMU info: the kernel page
48 * tables contain all the necessary information.
49 */
4b3073e1 50#define update_mmu_cache(vma, address, ptep) do { } while (0)
843f9310 51#define update_mmu_cache_range(vmf, vma, addr, ptep, nr) do { } while (0)
b113da65 52#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
1da177e4
LT
53
54/*
238ec4ef 55 * ZERO_PAGE is a global shared page that is always zero; used
1da177e4
LT
56 * for zero-mapped memory areas etc..
57 */
238ec4ef
MS
58
59extern unsigned long empty_zero_page;
60extern unsigned long zero_page_mask;
61
62#define ZERO_PAGE(vaddr) \
63 (virt_to_page((void *)(empty_zero_page + \
64 (((unsigned long)(vaddr)) &zero_page_mask))))
816422ad 65#define __HAVE_COLOR_ZERO_PAGE
238ec4ef 66
4f2e2903 67/* TODO: s390 cannot support io_remap_pfn_range... */
1da177e4 68
1da177e4 69#define pte_ERROR(e) \
bb50655b 70 pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
1da177e4 71#define pmd_ERROR(e) \
bb50655b 72 pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
190a1d72 73#define pud_ERROR(e) \
bb50655b 74 pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
1aea9b3f 75#define p4d_ERROR(e) \
bb50655b 76 pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
1da177e4 77#define pgd_ERROR(e) \
bb50655b 78 pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
1da177e4 79
1da177e4 80/*
a1c843b8 81 * The vmalloc and module area will always be on the topmost area of the
fc67c880
HC
82 * kernel mapping. 512GB are reserved for vmalloc by default.
83 * At the top of the vmalloc area a 2GB area is reserved where modules
84 * will reside. That makes sure that inter module branches always
85 * happen without trampolines and in addition the placement within a
86 * 2GB frame is branch prediction unit friendly.
8b62bc96 87 */
912a0d35
VG
88extern unsigned long VMALLOC_START;
89extern unsigned long VMALLOC_END;
fc67c880 90#define VMALLOC_DEFAULT_SIZE ((512UL << 30) - MODULES_LEN)
912a0d35
VG
91extern struct page *vmemmap;
92extern unsigned long vmemmap_size;
239a6425 93
912a0d35
VG
94extern unsigned long MODULES_VADDR;
95extern unsigned long MODULES_END;
c972cc60
HC
96#define MODULES_VADDR MODULES_VADDR
97#define MODULES_END MODULES_END
98#define MODULES_LEN (1UL << 31)
c972cc60 99
c933146a
HC
100static inline int is_module_addr(void *addr)
101{
c933146a
HC
102 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
103 if (addr < (void *)MODULES_VADDR)
104 return 0;
105 if (addr > (void *)MODULES_END)
106 return 0;
c933146a
HC
107 return 1;
108}
109
65ca73f9
IL
110#ifdef CONFIG_KMSAN
111#define KMSAN_VMALLOC_SIZE (VMALLOC_END - VMALLOC_START)
112#define KMSAN_VMALLOC_SHADOW_START VMALLOC_END
113#define KMSAN_VMALLOC_SHADOW_END (KMSAN_VMALLOC_SHADOW_START + KMSAN_VMALLOC_SIZE)
114#define KMSAN_VMALLOC_ORIGIN_START KMSAN_VMALLOC_SHADOW_END
115#define KMSAN_VMALLOC_ORIGIN_END (KMSAN_VMALLOC_ORIGIN_START + KMSAN_VMALLOC_SIZE)
116#define KMSAN_MODULES_SHADOW_START KMSAN_VMALLOC_ORIGIN_END
117#define KMSAN_MODULES_SHADOW_END (KMSAN_MODULES_SHADOW_START + MODULES_LEN)
118#define KMSAN_MODULES_ORIGIN_START KMSAN_MODULES_SHADOW_END
119#define KMSAN_MODULES_ORIGIN_END (KMSAN_MODULES_ORIGIN_START + MODULES_LEN)
120#endif
121
c98d2eca
AG
122#ifdef CONFIG_RANDOMIZE_BASE
123#define KASLR_LEN (1UL << 31)
124#else
125#define KASLR_LEN 0UL
126#endif
127
f8107a8b
HC
128void setup_protection_map(void);
129
1da177e4 130/*
1da177e4 131 * A 64 bit pagetable entry of S390 has following format:
6a985c61 132 * | PFRA |0IPC| OS |
1da177e4
LT
133 * 0000000000111111111122222222223333333333444444444455555555556666
134 * 0123456789012345678901234567890123456789012345678901234567890123
135 *
136 * I Page-Invalid Bit: Page is not available for address-translation
137 * P Page-Protection Bit: Store access not possible for page
6a985c61 138 * C Change-bit override: HW is not required to set change bit
1da177e4
LT
139 *
140 * A 64 bit segmenttable entry of S390 has following format:
141 * | P-table origin | TT
142 * 0000000000111111111122222222223333333333444444444455555555556666
143 * 0123456789012345678901234567890123456789012345678901234567890123
144 *
145 * I Segment-Invalid Bit: Segment is not available for address-translation
146 * C Common-Segment Bit: Segment is not private (PoP 3-30)
147 * P Page-Protection Bit: Store access not possible for page
148 * TT Type 00
149 *
150 * A 64 bit region table entry of S390 has following format:
151 * | S-table origin | TF TTTL
152 * 0000000000111111111122222222223333333333444444444455555555556666
153 * 0123456789012345678901234567890123456789012345678901234567890123
154 *
155 * I Segment-Invalid Bit: Segment is not available for address-translation
156 * TT Type 01
157 * TF
190a1d72 158 * TL Table length
1da177e4
LT
159 *
160 * The 64 bit regiontable origin of S390 has following format:
161 * | region table origon | DTTL
162 * 0000000000111111111122222222223333333333444444444455555555556666
163 * 0123456789012345678901234567890123456789012345678901234567890123
164 *
165 * X Space-Switch event:
166 * G Segment-Invalid Bit:
167 * P Private-Space Bit:
168 * S Storage-Alteration:
169 * R Real space
170 * TL Table-Length:
171 *
172 * A storage key has the following format:
173 * | ACC |F|R|C|0|
174 * 0 3 4 5 6 7
175 * ACC: access key
176 * F : fetch protection bit
177 * R : referenced bit
178 * C : changed bit
179 */
180
181/* Hardware bits in the page table entry */
57d7f939 182#define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
e5098611 183#define _PAGE_PROTECT 0x200 /* HW read-only bit */
83377484 184#define _PAGE_INVALID 0x400 /* HW invalid bit */
e5098611 185#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
3610cce8
MS
186
187/* Software bits in the page table entry */
e5098611 188#define _PAGE_PRESENT 0x001 /* SW pte present bit */
e5098611
MS
189#define _PAGE_YOUNG 0x004 /* SW pte young bit */
190#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
0944fe3f
MS
191#define _PAGE_READ 0x010 /* SW pte read bit */
192#define _PAGE_WRITE 0x020 /* SW pte write bit */
193#define _PAGE_SPECIAL 0x040 /* SW associated with special page */
b31288fa 194#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
1da177e4 195
5614dd92
MS
196#ifdef CONFIG_MEM_SOFT_DIRTY
197#define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
198#else
199#define _PAGE_SOFT_DIRTY 0x000
200#endif
201
0807b856
GS
202#define _PAGE_SW_BITS 0xffUL /* All SW bits */
203
92cd58bd
DH
204#define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE /* SW pte exclusive swap bit */
205
138c9021 206/* Set of bits not changed in pte_modify */
6a5c1482 207#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
5614dd92 208 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
53492b1d 209
0807b856
GS
210/*
211 * Mask of bits that must not be changed with RDP. Allow only _PAGE_PROTECT
212 * HW bit and all SW bits.
213 */
214#define _PAGE_RDP_MASK ~(_PAGE_PROTECT | _PAGE_SW_BITS)
215
83377484 216/*
6e76d4b2
KS
217 * handle_pte_fault uses pte_present and pte_none to find out the pte type
218 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
219 * distinguish present from not-present ptes. It is changed only with the page
220 * table lock held.
83377484 221 *
e5098611 222 * The following table gives the different possible bit combinations for
a1c843b8
MS
223 * the pte hardware and software bits in the last 12 bits of a pte
224 * (. unassigned bit, x don't care, t swap type):
83377484 225 *
0944fe3f
MS
226 * 842100000000
227 * 000084210000
228 * 000000008421
a1c843b8
MS
229 * .IR.uswrdy.p
230 * empty .10.00000000
231 * swap .11..ttttt.0
232 * prot-none, clean, old .11.xx0000.1
233 * prot-none, clean, young .11.xx0001.1
bc29b7ac
GS
234 * prot-none, dirty, old .11.xx0010.1
235 * prot-none, dirty, young .11.xx0011.1
a1c843b8
MS
236 * read-only, clean, old .11.xx0100.1
237 * read-only, clean, young .01.xx0101.1
238 * read-only, dirty, old .11.xx0110.1
239 * read-only, dirty, young .01.xx0111.1
240 * read-write, clean, old .11.xx1100.1
241 * read-write, clean, young .01.xx1101.1
242 * read-write, dirty, old .10.xx1110.1
243 * read-write, dirty, young .00.xx1111.1
244 * HW-bits: R read-only, I invalid
245 * SW-bits: p present, y young, d dirty, r read, w write, s special,
246 * u unused, l large
e5098611 247 *
a1c843b8
MS
248 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
249 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
250 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
83377484
MS
251 */
252
3610cce8 253/* Bits in the segment/region table address-space-control-element */
8457d775 254#define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
3610cce8
MS
255#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
256#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
257#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
258#define _ASCE_REAL_SPACE 0x20 /* real space control */
259#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
260#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
261#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
262#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
263#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
264#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
265
266/* Bits in the region table entry */
267#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
e5098611 268#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
57d7f939 269#define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
4be130a0 270#define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
e5098611 271#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
c9f62152 272#define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */
3610cce8
MS
273#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
274#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
275#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
276#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
277
278#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
e5098611 279#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
3610cce8 280#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
e5098611 281#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
03e6db16
GS
282#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH | \
283 _REGION3_ENTRY_PRESENT)
e5098611 284#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
3610cce8 285
712c5d5f
CI
286#define _REGION3_ENTRY_HARDWARE_BITS 0xfffffffffffff6ffUL
287#define _REGION3_ENTRY_HARDWARE_BITS_LARGE 0xffffffff8001073cUL
9e20b4da 288#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
2dffdcba
HC
289#define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
290#define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
f934f6be 291#define _REGION3_ENTRY_COMM 0x0010 /* Common-Region, marks swap entry */
2dffdcba 292#define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
ae1b9fb2
GS
293#define _REGION3_ENTRY_WRITE 0x8000 /* SW region write bit */
294#define _REGION3_ENTRY_READ 0x4000 /* SW region read bit */
2dffdcba
HC
295
296#ifdef CONFIG_MEM_SOFT_DIRTY
ae1b9fb2 297#define _REGION3_ENTRY_SOFT_DIRTY 0x0002 /* SW region soft dirty bit */
2dffdcba
HC
298#else
299#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
300#endif
301
1aea9b3f 302#define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
d08de8e2 303
03e6db16
GS
304/*
305 * SW region present bit. For non-leaf region-third-table entries, bits 62-63
306 * indicate the TABLE LENGTH and both must be set to 1. But such entries
307 * would always be considered as present, so it is safe to use bit 63 as
308 * PRESENT bit for PUD.
309 */
310#define _REGION3_ENTRY_PRESENT 0x0001
311
1da177e4 312/* Bits in the segment table entry */
712c5d5f
CI
313#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe3fUL
314#define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe3cUL
315#define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff1073cUL
ea81531d 316#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
8457d775
HC
317#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
318#define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
319#define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
e5098611 320#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
c9f62152 321#define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */
1da177e4 322
03e6db16 323#define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PRESENT)
e5098611 324#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
3610cce8 325
152125b7
MS
326#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
327#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
ae1b9fb2 328
f934f6be 329#define _SEGMENT_ENTRY_COMM 0x0010 /* Common-Segment, marks swap entry */
152125b7 330#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
ae1b9fb2
GS
331#define _SEGMENT_ENTRY_WRITE 0x8000 /* SW segment write bit */
332#define _SEGMENT_ENTRY_READ 0x4000 /* SW segment read bit */
0944fe3f 333
5614dd92 334#ifdef CONFIG_MEM_SOFT_DIRTY
ae1b9fb2 335#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0002 /* SW segment soft dirty bit */
5614dd92
MS
336#else
337#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
338#endif
339
03e6db16
GS
340#define _SEGMENT_ENTRY_PRESENT 0x0001 /* SW segment present bit */
341
f934f6be
GS
342/* Common bits in region and segment table entries, for swap entries */
343#define _RST_ENTRY_COMM 0x0010 /* Common-Region/Segment, marks swap entry */
344#define _RST_ENTRY_INVALID 0x0020 /* invalid region/segment table entry */
345
c67da7c7
HC
346#define _CRST_ENTRIES 2048 /* number of region/segment table entries */
347#define _PAGE_ENTRIES 256 /* number of page table entries */
348
349#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
350#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
351
352#define _REGION1_SHIFT 53
353#define _REGION2_SHIFT 42
354#define _REGION3_SHIFT 31
355#define _SEGMENT_SHIFT 20
356
357#define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
358#define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
359#define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
360#define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
6febe0ef 361#define _PAGE_INDEX (0xffUL << PAGE_SHIFT)
c67da7c7
HC
362
363#define _REGION1_SIZE (1UL << _REGION1_SHIFT)
364#define _REGION2_SIZE (1UL << _REGION2_SHIFT)
365#define _REGION3_SIZE (1UL << _REGION3_SHIFT)
366#define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
367
368#define _REGION1_MASK (~(_REGION1_SIZE - 1))
369#define _REGION2_MASK (~(_REGION2_SIZE - 1))
370#define _REGION3_MASK (~(_REGION3_SIZE - 1))
371#define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
372
373#define PMD_SHIFT _SEGMENT_SHIFT
374#define PUD_SHIFT _REGION3_SHIFT
375#define P4D_SHIFT _REGION2_SHIFT
376#define PGDIR_SHIFT _REGION1_SHIFT
377
378#define PMD_SIZE _SEGMENT_SIZE
379#define PUD_SIZE _REGION3_SIZE
380#define P4D_SIZE _REGION2_SIZE
381#define PGDIR_SIZE _REGION1_SIZE
382
383#define PMD_MASK _SEGMENT_MASK
384#define PUD_MASK _REGION3_MASK
385#define P4D_MASK _REGION2_MASK
386#define PGDIR_MASK _REGION1_MASK
387
388#define PTRS_PER_PTE _PAGE_ENTRIES
389#define PTRS_PER_PMD _CRST_ENTRIES
390#define PTRS_PER_PUD _CRST_ENTRIES
391#define PTRS_PER_P4D _CRST_ENTRIES
392#define PTRS_PER_PGD _CRST_ENTRIES
393
0944fe3f 394/*
2dffdcba
HC
395 * Segment table and region3 table entry encoding
396 * (R = read-only, I = invalid, y = young bit):
bc29b7ac 397 * dy..R...I...wr
152125b7
MS
398 * prot-none, clean, old 00..1...1...00
399 * prot-none, clean, young 01..1...1...00
400 * prot-none, dirty, old 10..1...1...00
401 * prot-none, dirty, young 11..1...1...00
bc29b7ac
GS
402 * read-only, clean, old 00..1...1...01
403 * read-only, clean, young 01..1...0...01
404 * read-only, dirty, old 10..1...1...01
405 * read-only, dirty, young 11..1...0...01
152125b7
MS
406 * read-write, clean, old 00..1...1...11
407 * read-write, clean, young 01..1...0...11
408 * read-write, dirty, old 10..0...1...11
409 * read-write, dirty, young 11..0...0...11
0944fe3f
MS
410 * The segment table origin is used to distinguish empty (origin==0) from
411 * read-write, old segment table entries (origin!=0)
a1c843b8
MS
412 * HW-bits: R read-only, I invalid
413 * SW-bits: y young, d dirty, r read, w write
0944fe3f 414 */
e5098611 415
6c61cfe9 416/* Page status table bits for virtualization */
0d0dafc1
MS
417#define PGSTE_ACC_BITS 0xf000000000000000UL
418#define PGSTE_FP_BIT 0x0800000000000000UL
419#define PGSTE_PCL_BIT 0x0080000000000000UL
420#define PGSTE_HR_BIT 0x0040000000000000UL
421#define PGSTE_HC_BIT 0x0020000000000000UL
422#define PGSTE_GR_BIT 0x0004000000000000UL
423#define PGSTE_GC_BIT 0x0002000000000000UL
84b73876 424#define PGSTE_ST2_MASK 0x0000ffff00000000UL
1f438993
CI
425#define PGSTE_UC_BIT 0x0000000000008000UL /* user dirty (migration) */
426#define PGSTE_IN_BIT 0x0000000000004000UL /* IPTE notify bit */
427#define PGSTE_VSIE_BIT 0x0000000000002000UL /* ref'd in a shadow table */
6c61cfe9 428
b31288fa 429/* Guest Page State used for virtualization */
2d42f947 430#define _PGSTE_GPS_ZERO 0x0000000080000000UL
cd774b90 431#define _PGSTE_GPS_NODAT 0x0000000040000000UL
2d42f947
CI
432#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
433#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
434#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
435#define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
436#define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
b31288fa 437
1da177e4 438/*
3610cce8
MS
439 * A user page table pointer has the space-switch-event bit, the
440 * private-space-control bit and the storage-alteration-event-control
441 * bit set. A kernel page table pointer doesn't need them.
1da177e4 442 */
3610cce8
MS
443#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
444 _ASCE_ALT_EVENT)
1da177e4 445
1da177e4 446/*
9282ed92 447 * Page protection definitions.
1da177e4 448 */
f8107a8b
HC
449#define __PAGE_NONE (_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
450#define __PAGE_RO (_PAGE_PRESENT | _PAGE_READ | \
57d7f939 451 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
f8107a8b 452#define __PAGE_RX (_PAGE_PRESENT | _PAGE_READ | \
0944fe3f 453 _PAGE_INVALID | _PAGE_PROTECT)
f8107a8b 454#define __PAGE_RW (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
57d7f939 455 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
f8107a8b 456#define __PAGE_RWX (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
0944fe3f 457 _PAGE_INVALID | _PAGE_PROTECT)
f8107a8b 458#define __PAGE_SHARED (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
57d7f939 459 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
f8107a8b 460#define __PAGE_KERNEL (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
57d7f939 461 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
f8107a8b 462#define __PAGE_KERNEL_RO (_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
57d7f939 463 _PAGE_PROTECT | _PAGE_NOEXEC)
1da177e4 464
f8107a8b
HC
465extern unsigned long page_noexec_mask;
466
467#define __pgprot_page_mask(x) __pgprot((x) & page_noexec_mask)
468
469#define PAGE_NONE __pgprot_page_mask(__PAGE_NONE)
470#define PAGE_RO __pgprot_page_mask(__PAGE_RO)
471#define PAGE_RX __pgprot_page_mask(__PAGE_RX)
472#define PAGE_RW __pgprot_page_mask(__PAGE_RW)
473#define PAGE_RWX __pgprot_page_mask(__PAGE_RWX)
474#define PAGE_SHARED __pgprot_page_mask(__PAGE_SHARED)
475#define PAGE_KERNEL __pgprot_page_mask(__PAGE_KERNEL)
476#define PAGE_KERNEL_RO __pgprot_page_mask(__PAGE_KERNEL_RO)
477
106c992a
GS
478/*
479 * Segment entry (large page) protection definitions.
480 */
f8107a8b 481#define __SEGMENT_NONE (_SEGMENT_ENTRY_PRESENT | \
03e6db16 482 _SEGMENT_ENTRY_INVALID | \
e5098611 483 _SEGMENT_ENTRY_PROTECT)
f8107a8b 484#define __SEGMENT_RO (_SEGMENT_ENTRY_PRESENT | \
03e6db16 485 _SEGMENT_ENTRY_PROTECT | \
57d7f939
MS
486 _SEGMENT_ENTRY_READ | \
487 _SEGMENT_ENTRY_NOEXEC)
f8107a8b 488#define __SEGMENT_RX (_SEGMENT_ENTRY_PRESENT | \
03e6db16 489 _SEGMENT_ENTRY_PROTECT | \
152125b7 490 _SEGMENT_ENTRY_READ)
f8107a8b 491#define __SEGMENT_RW (_SEGMENT_ENTRY_PRESENT | \
03e6db16 492 _SEGMENT_ENTRY_READ | \
57d7f939
MS
493 _SEGMENT_ENTRY_WRITE | \
494 _SEGMENT_ENTRY_NOEXEC)
f8107a8b 495#define __SEGMENT_RWX (_SEGMENT_ENTRY_PRESENT | \
03e6db16 496 _SEGMENT_ENTRY_READ | \
152125b7 497 _SEGMENT_ENTRY_WRITE)
f8107a8b 498#define __SEGMENT_KERNEL (_SEGMENT_ENTRY | \
2dffdcba
HC
499 _SEGMENT_ENTRY_LARGE | \
500 _SEGMENT_ENTRY_READ | \
501 _SEGMENT_ENTRY_WRITE | \
502 _SEGMENT_ENTRY_YOUNG | \
57d7f939
MS
503 _SEGMENT_ENTRY_DIRTY | \
504 _SEGMENT_ENTRY_NOEXEC)
f8107a8b 505#define __SEGMENT_KERNEL_RO (_SEGMENT_ENTRY | \
2dffdcba
HC
506 _SEGMENT_ENTRY_LARGE | \
507 _SEGMENT_ENTRY_READ | \
508 _SEGMENT_ENTRY_YOUNG | \
57d7f939
MS
509 _SEGMENT_ENTRY_PROTECT | \
510 _SEGMENT_ENTRY_NOEXEC)
2dffdcba 511
f8107a8b
HC
512extern unsigned long segment_noexec_mask;
513
514#define __pgprot_segment_mask(x) __pgprot((x) & segment_noexec_mask)
515
516#define SEGMENT_NONE __pgprot_segment_mask(__SEGMENT_NONE)
517#define SEGMENT_RO __pgprot_segment_mask(__SEGMENT_RO)
518#define SEGMENT_RX __pgprot_segment_mask(__SEGMENT_RX)
519#define SEGMENT_RW __pgprot_segment_mask(__SEGMENT_RW)
520#define SEGMENT_RWX __pgprot_segment_mask(__SEGMENT_RWX)
521#define SEGMENT_KERNEL __pgprot_segment_mask(__SEGMENT_KERNEL)
522#define SEGMENT_KERNEL_RO __pgprot_segment_mask(__SEGMENT_KERNEL_RO)
523
2dffdcba
HC
524/*
525 * Region3 entry (large page) protection definitions.
526 */
527
f8107a8b 528#define __REGION3_KERNEL (_REGION_ENTRY_TYPE_R3 | \
03e6db16 529 _REGION3_ENTRY_PRESENT | \
f8107a8b
HC
530 _REGION3_ENTRY_LARGE | \
531 _REGION3_ENTRY_READ | \
532 _REGION3_ENTRY_WRITE | \
533 _REGION3_ENTRY_YOUNG | \
57d7f939
MS
534 _REGION3_ENTRY_DIRTY | \
535 _REGION_ENTRY_NOEXEC)
f8107a8b
HC
536#define __REGION3_KERNEL_RO (_REGION_ENTRY_TYPE_R3 | \
537 _REGION3_ENTRY_PRESENT | \
538 _REGION3_ENTRY_LARGE | \
539 _REGION3_ENTRY_READ | \
540 _REGION3_ENTRY_YOUNG | \
541 _REGION_ENTRY_PROTECT | \
542 _REGION_ENTRY_NOEXEC)
543
544extern unsigned long region_noexec_mask;
545
546#define __pgprot_region_mask(x) __pgprot((x) & region_noexec_mask)
547
548#define REGION3_KERNEL __pgprot_region_mask(__REGION3_KERNEL)
549#define REGION3_KERNEL_RO __pgprot_region_mask(__REGION3_KERNEL_RO)
106c992a 550
e12e4044
MS
551static inline bool mm_p4d_folded(struct mm_struct *mm)
552{
553 return mm->context.asce_limit <= _REGION1_SIZE;
554}
555#define mm_p4d_folded(mm) mm_p4d_folded(mm)
556
557static inline bool mm_pud_folded(struct mm_struct *mm)
558{
559 return mm->context.asce_limit <= _REGION2_SIZE;
560}
561#define mm_pud_folded(mm) mm_pud_folded(mm)
562
563static inline bool mm_pmd_folded(struct mm_struct *mm)
564{
565 return mm->context.asce_limit <= _REGION3_SIZE;
566}
567#define mm_pmd_folded(mm) mm_pmd_folded(mm)
568
b2fa47e6
MS
569static inline int mm_has_pgste(struct mm_struct *mm)
570{
571#ifdef CONFIG_PGSTE
572 if (unlikely(mm->context.has_pgste))
573 return 1;
574#endif
575 return 0;
576}
65eef335 577
214d9bbc
CI
578static inline int mm_is_protected(struct mm_struct *mm)
579{
580#ifdef CONFIG_PGSTE
07fbdf7f 581 if (unlikely(atomic_read(&mm->context.protected_count)))
214d9bbc
CI
582 return 1;
583#endif
584 return 0;
585}
586
94d553ce
HC
587static inline pgste_t clear_pgste_bit(pgste_t pgste, unsigned long mask)
588{
589 return __pgste(pgste_val(pgste) & ~mask);
590}
591
592static inline pgste_t set_pgste_bit(pgste_t pgste, unsigned long mask)
593{
594 return __pgste(pgste_val(pgste) | mask);
595}
596
f29111f1
HC
597static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
598{
599 return __pte(pte_val(pte) & ~pgprot_val(prot));
600}
601
602static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
603{
604 return __pte(pte_val(pte) | pgprot_val(prot));
605}
606
607static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
608{
609 return __pmd(pmd_val(pmd) & ~pgprot_val(prot));
610}
611
612static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
613{
614 return __pmd(pmd_val(pmd) | pgprot_val(prot));
615}
616
617static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot)
618{
619 return __pud(pud_val(pud) & ~pgprot_val(prot));
620}
621
622static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot)
623{
624 return __pud(pud_val(pud) | pgprot_val(prot));
625}
626
2faee8ff 627/*
06201e00
DH
628 * As soon as the guest uses storage keys or enables PV, we deduplicate all
629 * mapped shared zeropages and prevent new shared zeropages from getting
630 * mapped.
2faee8ff 631 */
06201e00
DH
632#define mm_forbids_zeropage mm_forbids_zeropage
633static inline int mm_forbids_zeropage(struct mm_struct *mm)
634{
635#ifdef CONFIG_PGSTE
636 if (!mm->context.allow_cow_sharing)
637 return 1;
638#endif
639 return 0;
640}
641
55531b74 642static inline int mm_uses_skeys(struct mm_struct *mm)
65eef335
DD
643{
644#ifdef CONFIG_PGSTE
55531b74 645 if (mm->context.uses_skeys)
65eef335
DD
646 return 1;
647#endif
648 return 0;
649}
650
4ccccc52
HC
651static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
652{
53c1c250 653 union register_pair r1 = { .even = old, .odd = new, };
4ccccc52
HC
654 unsigned long address = (unsigned long)ptr | 1;
655
656 asm volatile(
53c1c250
HC
657 " csp %[r1],%[address]"
658 : [r1] "+&d" (r1.pair), "+m" (*ptr)
659 : [address] "d" (address)
4ccccc52
HC
660 : "cc");
661}
662
02ee1491
CI
663/**
664 * cspg() - Compare and Swap and Purge (CSPG)
665 * @ptr: Pointer to the value to be exchanged
666 * @old: The expected old value
667 * @new: The new value
668 *
669 * Return: True if compare and swap was successful, otherwise false.
670 */
671static inline bool cspg(unsigned long *ptr, unsigned long old, unsigned long new)
e8a97e42 672{
53c1c250 673 union register_pair r1 = { .even = old, .odd = new, };
e8a97e42
HC
674 unsigned long address = (unsigned long)ptr | 1;
675
676 asm volatile(
731efc96 677 " cspg %[r1],%[address]"
53c1c250
HC
678 : [r1] "+&d" (r1.pair), "+m" (*ptr)
679 : [address] "d" (address)
e8a97e42 680 : "cc");
02ee1491 681 return old == r1.even;
e8a97e42
HC
682}
683
684#define CRDTE_DTT_PAGE 0x00UL
685#define CRDTE_DTT_SEGMENT 0x10UL
686#define CRDTE_DTT_REGION3 0x14UL
687#define CRDTE_DTT_REGION2 0x18UL
688#define CRDTE_DTT_REGION1 0x1cUL
689
02ee1491
CI
690/**
691 * crdte() - Compare and Replace DAT Table Entry
692 * @old: The expected old value
693 * @new: The new value
694 * @table: Pointer to the value to be exchanged
695 * @dtt: Table type of the table to be exchanged
696 * @address: The address mapped by the entry to be replaced
697 * @asce: The ASCE of this entry
698 *
699 * Return: True if compare and replace was successful, otherwise false.
700 */
701static inline bool crdte(unsigned long old, unsigned long new,
273cd173 702 unsigned long *table, unsigned long dtt,
e8a97e42
HC
703 unsigned long address, unsigned long asce)
704{
53c1c250 705 union register_pair r1 = { .even = old, .odd = new, };
273cd173 706 union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, };
e8a97e42 707
53c1c250
HC
708 asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
709 : [r1] "+&d" (r1.pair)
710 : [r2] "d" (r2.pair), [asce] "a" (asce)
e8a97e42 711 : "memory", "cc");
02ee1491 712 return old == r1.even;
e8a97e42
HC
713}
714
1da177e4 715/*
cc18b460 716 * pgd/p4d/pud/pmd/pte query functions
1da177e4 717 */
cc18b460
HC
718static inline int pgd_folded(pgd_t pgd)
719{
720 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
721}
722
5a216a20
MS
723static inline int pgd_present(pgd_t pgd)
724{
cc18b460 725 if (pgd_folded(pgd))
6252d702 726 return 1;
5a216a20
MS
727 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
728}
729
730static inline int pgd_none(pgd_t pgd)
731{
cc18b460 732 if (pgd_folded(pgd))
6252d702 733 return 0;
e5098611 734 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
5a216a20
MS
735}
736
737static inline int pgd_bad(pgd_t pgd)
738{
c9f62152
MS
739 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
740 return 0;
741 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
5a216a20 742}
190a1d72 743
d0e2eb0a
VG
744static inline unsigned long pgd_pfn(pgd_t pgd)
745{
746 unsigned long origin_mask;
747
748 origin_mask = _REGION_ENTRY_ORIGIN;
749 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
750}
751
cc18b460
HC
752static inline int p4d_folded(p4d_t p4d)
753{
754 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
755}
756
1aea9b3f
MS
757static inline int p4d_present(p4d_t p4d)
758{
cc18b460 759 if (p4d_folded(p4d))
1aea9b3f
MS
760 return 1;
761 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
762}
763
764static inline int p4d_none(p4d_t p4d)
765{
cc18b460 766 if (p4d_folded(p4d))
1aea9b3f
MS
767 return 0;
768 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
769}
770
771static inline unsigned long p4d_pfn(p4d_t p4d)
772{
773 unsigned long origin_mask;
774
775 origin_mask = _REGION_ENTRY_ORIGIN;
776 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
777}
778
cc18b460
HC
779static inline int pud_folded(pud_t pud)
780{
781 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
782}
783
190a1d72 784static inline int pud_present(pud_t pud)
1da177e4 785{
cc18b460 786 if (pud_folded(pud))
6252d702 787 return 1;
03e6db16 788 return (pud_val(pud) & _REGION3_ENTRY_PRESENT) != 0;
1da177e4
LT
789}
790
190a1d72 791static inline int pud_none(pud_t pud)
1da177e4 792{
cc18b460 793 if (pud_folded(pud))
6252d702 794 return 0;
d08de8e2 795 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
1da177e4
LT
796}
797
e72c7c2b 798#define pud_leaf pud_leaf
c05995b7 799static inline bool pud_leaf(pud_t pud)
18da2369
HC
800{
801 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
802 return 0;
03e6db16
GS
803 return (pud_present(pud) && (pud_val(pud) & _REGION3_ENTRY_LARGE) != 0);
804}
805
806static inline int pmd_present(pmd_t pmd)
807{
808 return (pmd_val(pmd) & _SEGMENT_ENTRY_PRESENT) != 0;
18da2369
HC
809}
810
e72c7c2b 811#define pmd_leaf pmd_leaf
c05995b7 812static inline bool pmd_leaf(pmd_t pmd)
d08de8e2 813{
03e6db16 814 return (pmd_present(pmd) && (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0);
d08de8e2
GS
815}
816
817static inline int pmd_bad(pmd_t pmd)
818{
2f709f7b 819 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_leaf(pmd))
c9f62152 820 return 1;
d08de8e2
GS
821 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
822}
823
190a1d72 824static inline int pud_bad(pud_t pud)
1da177e4 825{
c9f62152
MS
826 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
827
0a845e0f 828 if (type > _REGION_ENTRY_TYPE_R3 || pud_leaf(pud))
c9f62152
MS
829 return 1;
830 if (type < _REGION_ENTRY_TYPE_R3)
831 return 0;
d08de8e2 832 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
1da177e4
LT
833}
834
1aea9b3f
MS
835static inline int p4d_bad(p4d_t p4d)
836{
c9f62152
MS
837 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
838
839 if (type > _REGION_ENTRY_TYPE_R2)
840 return 1;
841 if (type < _REGION_ENTRY_TYPE_R2)
842 return 0;
1aea9b3f
MS
843 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
844}
845
4448aaf0 846static inline int pmd_none(pmd_t pmd)
1da177e4 847{
54397bb0 848 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
1da177e4
LT
849}
850
e4e40e02 851#define pmd_write pmd_write
1ae1c1d0
GS
852static inline int pmd_write(pmd_t pmd)
853{
152125b7
MS
854 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
855}
856
582b4e55
GS
857#define pud_write pud_write
858static inline int pud_write(pud_t pud)
859{
860 return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
861}
862
533c67e6 863#define pmd_dirty pmd_dirty
152125b7
MS
864static inline int pmd_dirty(pmd_t pmd)
865{
2d1fc1eb 866 return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
1ae1c1d0
GS
867}
868
6617da8f 869#define pmd_young pmd_young
1ae1c1d0
GS
870static inline int pmd_young(pmd_t pmd)
871{
2d1fc1eb 872 return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
1ae1c1d0
GS
873}
874
e5098611 875static inline int pte_present(pte_t pte)
1da177e4 876{
e5098611
MS
877 /* Bit pattern: (pte & 0x001) == 0x001 */
878 return (pte_val(pte) & _PAGE_PRESENT) != 0;
1da177e4
LT
879}
880
e5098611 881static inline int pte_none(pte_t pte)
1da177e4 882{
e5098611
MS
883 /* Bit pattern: pte == 0x400 */
884 return pte_val(pte) == _PAGE_INVALID;
1da177e4
LT
885}
886
b31288fa
KW
887static inline int pte_swap(pte_t pte)
888{
a1c843b8
MS
889 /* Bit pattern: (pte & 0x201) == 0x200 */
890 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
891 == _PAGE_PROTECT;
b31288fa
KW
892}
893
7e675137
NP
894static inline int pte_special(pte_t pte)
895{
a08cb629 896 return (pte_val(pte) & _PAGE_SPECIAL);
7e675137
NP
897}
898
ba8a9229 899#define __HAVE_ARCH_PTE_SAME
b2fa47e6
MS
900static inline int pte_same(pte_t a, pte_t b)
901{
902 return pte_val(a) == pte_val(b);
903}
1da177e4 904
b54565b8
MS
905#ifdef CONFIG_NUMA_BALANCING
906static inline int pte_protnone(pte_t pte)
907{
908 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
909}
910
911static inline int pmd_protnone(pmd_t pmd)
912{
2f709f7b
PX
913 /* pmd_leaf(pmd) implies pmd_present(pmd) */
914 return pmd_leaf(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
b54565b8
MS
915}
916#endif
917
403d1338 918static inline bool pte_swp_exclusive(pte_t pte)
92cd58bd
DH
919{
920 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
921}
922
923static inline pte_t pte_swp_mkexclusive(pte_t pte)
924{
925 return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
926}
927
928static inline pte_t pte_swp_clear_exclusive(pte_t pte)
929{
930 return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
931}
932
5614dd92
MS
933static inline int pte_soft_dirty(pte_t pte)
934{
935 return pte_val(pte) & _PAGE_SOFT_DIRTY;
936}
937#define pte_swp_soft_dirty pte_soft_dirty
938
939static inline pte_t pte_mksoft_dirty(pte_t pte)
940{
4a366f51 941 return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
5614dd92
MS
942}
943#define pte_swp_mksoft_dirty pte_mksoft_dirty
944
945static inline pte_t pte_clear_soft_dirty(pte_t pte)
946{
4a366f51 947 return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
5614dd92
MS
948}
949#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
950
951static inline int pmd_soft_dirty(pmd_t pmd)
952{
953 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
954}
955
956static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
957{
4a366f51 958 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
5614dd92
MS
959}
960
961static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
962{
4a366f51 963 return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
5614dd92
MS
964}
965
1da177e4
LT
966/*
967 * query functions pte_write/pte_dirty/pte_young only work if
968 * pte_present() is true. Undefined behaviour if not..
969 */
4448aaf0 970static inline int pte_write(pte_t pte)
1da177e4 971{
e5098611 972 return (pte_val(pte) & _PAGE_WRITE) != 0;
1da177e4
LT
973}
974
4448aaf0 975static inline int pte_dirty(pte_t pte)
1da177e4 976{
e5098611 977 return (pte_val(pte) & _PAGE_DIRTY) != 0;
1da177e4
LT
978}
979
4448aaf0 980static inline int pte_young(pte_t pte)
1da177e4 981{
0944fe3f 982 return (pte_val(pte) & _PAGE_YOUNG) != 0;
1da177e4
LT
983}
984
b31288fa
KW
985#define __HAVE_ARCH_PTE_UNUSED
986static inline int pte_unused(pte_t pte)
987{
988 return pte_val(pte) & _PAGE_UNUSED;
989}
990
d460bb6c
NS
991/*
992 * Extract the pgprot value from the given pte while at the same time making it
993 * usable for kernel address space mappings where fault driven dirty and
994 * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
995 * must not be set.
996 */
0515e022 997#define pte_pgprot pte_pgprot
d460bb6c
NS
998static inline pgprot_t pte_pgprot(pte_t pte)
999{
1000 unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
1001
1002 if (pte_write(pte))
1003 pte_flags |= pgprot_val(PAGE_KERNEL);
1004 else
1005 pte_flags |= pgprot_val(PAGE_KERNEL_RO);
1006 pte_flags |= pte_val(pte) & mio_wb_bit_mask;
1007
1008 return __pgprot(pte_flags);
1009}
1010
1da177e4
LT
1011/*
1012 * pgd/pmd/pte modification functions
1013 */
1014
e2aaae2d
HC
1015static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
1016{
1017 WRITE_ONCE(*pgdp, pgd);
1018}
1019
1020static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
1021{
1022 WRITE_ONCE(*p4dp, p4d);
1023}
1024
1025static inline void set_pud(pud_t *pudp, pud_t pud)
1026{
1027 WRITE_ONCE(*pudp, pud);
1028}
1029
1030static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
1031{
1032 WRITE_ONCE(*pmdp, pmd);
1033}
1034
1035static inline void set_pte(pte_t *ptep, pte_t pte)
1036{
1037 WRITE_ONCE(*ptep, pte);
1038}
1039
b2fa47e6 1040static inline void pgd_clear(pgd_t *pgd)
5a216a20 1041{
1aea9b3f 1042 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
b8e3b379 1043 set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY));
1aea9b3f
MS
1044}
1045
1046static inline void p4d_clear(p4d_t *p4d)
1047{
1048 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
b8e3b379 1049 set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY));
5a216a20
MS
1050}
1051
b2fa47e6 1052static inline void pud_clear(pud_t *pud)
1da177e4 1053{
6252d702 1054 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
b8e3b379 1055 set_pud(pud, __pud(_REGION3_ENTRY_EMPTY));
1da177e4
LT
1056}
1057
b2fa47e6 1058static inline void pmd_clear(pmd_t *pmdp)
1da177e4 1059{
b8e3b379 1060 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1da177e4
LT
1061}
1062
4448aaf0 1063static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
1da177e4 1064{
b8e3b379 1065 set_pte(ptep, __pte(_PAGE_INVALID));
1da177e4
LT
1066}
1067
1068/*
1069 * The following pte modification functions only work if
1070 * pte_present() is true. Undefined behaviour if not..
1071 */
4448aaf0 1072static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1da177e4 1073{
4a366f51
HC
1074 pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK));
1075 pte = set_pte_bit(pte, newprot);
0944fe3f 1076 /*
57d7f939
MS
1077 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
1078 * has the invalid bit set, clear it again for readable, young pages
0944fe3f
MS
1079 */
1080 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
4a366f51 1081 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
0944fe3f 1082 /*
57d7f939
MS
1083 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
1084 * protection bit set, clear it again for writable, dirty pages
0944fe3f 1085 */
e5098611 1086 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
4a366f51 1087 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1da177e4
LT
1088 return pte;
1089}
1090
4448aaf0 1091static inline pte_t pte_wrprotect(pte_t pte)
1da177e4 1092{
4a366f51
HC
1093 pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE));
1094 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1da177e4
LT
1095}
1096
2f0584f3 1097static inline pte_t pte_mkwrite_novma(pte_t pte)
1da177e4 1098{
4a366f51 1099 pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE));
e5098611 1100 if (pte_val(pte) & _PAGE_DIRTY)
4a366f51 1101 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1da177e4
LT
1102 return pte;
1103}
1104
4448aaf0 1105static inline pte_t pte_mkclean(pte_t pte)
1da177e4 1106{
4a366f51
HC
1107 pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY));
1108 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1da177e4
LT
1109}
1110
4448aaf0 1111static inline pte_t pte_mkdirty(pte_t pte)
1da177e4 1112{
4a366f51 1113 pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
e5098611 1114 if (pte_val(pte) & _PAGE_WRITE)
4a366f51 1115 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1da177e4
LT
1116 return pte;
1117}
1118
4448aaf0 1119static inline pte_t pte_mkold(pte_t pte)
1da177e4 1120{
4a366f51
HC
1121 pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1122 return set_pte_bit(pte, __pgprot(_PAGE_INVALID));
1da177e4
LT
1123}
1124
4448aaf0 1125static inline pte_t pte_mkyoung(pte_t pte)
1da177e4 1126{
4a366f51 1127 pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG));
0944fe3f 1128 if (pte_val(pte) & _PAGE_READ)
4a366f51 1129 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1da177e4
LT
1130 return pte;
1131}
1132
7e675137
NP
1133static inline pte_t pte_mkspecial(pte_t pte)
1134{
4a366f51 1135 return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL));
7e675137
NP
1136}
1137
84afdcee
HC
1138#ifdef CONFIG_HUGETLB_PAGE
1139static inline pte_t pte_mkhuge(pte_t pte)
1140{
4a366f51 1141 return set_pte_bit(pte, __pgprot(_PAGE_LARGE));
84afdcee
HC
1142}
1143#endif
1144
34eeaf37
MS
1145#define IPTE_GLOBAL 0
1146#define IPTE_LOCAL 1
53e857f3 1147
118bd31b 1148#define IPTE_NODAT 0x400
28c807e5 1149#define IPTE_GUEST_ASCE 0x800
118bd31b 1150
0807b856
GS
1151static __always_inline void __ptep_rdp(unsigned long addr, pte_t *ptep,
1152 unsigned long opt, unsigned long asce,
1153 int local)
1154{
1155 unsigned long pto;
1156
1157 pto = __pa(ptep) & ~(PTRS_PER_PTE * sizeof(pte_t) - 1);
1158 asm volatile(".insn rrf,0xb98b0000,%[r1],%[r2],%[asce],%[m4]"
1159 : "+m" (*ptep)
1160 : [r1] "a" (pto), [r2] "a" ((addr & PAGE_MASK) | opt),
1161 [asce] "a" (asce), [m4] "i" (local));
1162}
1163
6818b542
HC
1164static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1165 unsigned long opt, unsigned long asce,
1166 int local)
1b948d6c 1167{
273cd173 1168 unsigned long pto = __pa(ptep);
1b948d6c 1169
118bd31b
MS
1170 if (__builtin_constant_p(opt) && opt == 0) {
1171 /* Invalidation + TLB flush for the pte */
1172 asm volatile(
731efc96 1173 " ipte %[r1],%[r2],0,%[m4]"
118bd31b
MS
1174 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1175 [m4] "i" (local));
1176 return;
1177 }
1178
1179 /* Invalidate ptes with options + TLB flush of the ptes */
28c807e5 1180 opt = opt | (asce & _ASCE_ORIGIN);
1b948d6c 1181 asm volatile(
731efc96 1182 " ipte %[r1],%[r2],%[r3],%[m4]"
118bd31b
MS
1183 : [r2] "+a" (address), [r3] "+a" (opt)
1184 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1b948d6c
MS
1185}
1186
6818b542
HC
1187static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1188 pte_t *ptep, int local)
cfb0b241 1189{
273cd173 1190 unsigned long pto = __pa(ptep);
cfb0b241 1191
34eeaf37 1192 /* Invalidate a range of ptes + TLB flush of the ptes */
cfb0b241
HC
1193 do {
1194 asm volatile(
731efc96 1195 " ipte %[r1],%[r2],%[r3],%[m4]"
34eeaf37
MS
1196 : [r2] "+a" (address), [r3] "+a" (nr)
1197 : [r1] "a" (pto), [m4] "i" (local) : "memory");
cfb0b241
HC
1198 } while (nr != 255);
1199}
1200
0a61b222 1201/*
ebde765c
MS
1202 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1203 * both clear the TLB for the unmapped pte. The reason is that
1204 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1205 * to modify an active pte. The sequence is
1206 * 1) ptep_get_and_clear
1207 * 2) set_pte_at
1208 * 3) flush_tlb_range
1209 * On s390 the tlb needs to get flushed with the modification of the pte
1210 * if the pte is active. The only way how this can be implemented is to
1211 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1212 * is a nop.
0a61b222 1213 */
ebde765c
MS
1214pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1215pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
0a61b222 1216
0944fe3f
MS
1217#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1218static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1219 unsigned long addr, pte_t *ptep)
1220{
ebde765c 1221 pte_t pte = *ptep;
0944fe3f 1222
ebde765c
MS
1223 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1224 return pte_young(pte);
0944fe3f
MS
1225}
1226
1227#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1228static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1229 unsigned long address, pte_t *ptep)
1230{
1231 return ptep_test_and_clear_young(vma, address, ptep);
1232}
1233
ba8a9229 1234#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
b2fa47e6 1235static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
ebde765c 1236 unsigned long addr, pte_t *ptep)
b2fa47e6 1237{
214d9bbc
CI
1238 pte_t res;
1239
1240 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
380d97bd 1241 /* At this point the reference through the mapping is still present */
214d9bbc 1242 if (mm_is_protected(mm) && pte_present(res))
7d171434 1243 uv_convert_from_secure_pte(res);
214d9bbc 1244 return res;
b2fa47e6
MS
1245}
1246
1247#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
0cbe3e26 1248pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
04a86453
AK
1249void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1250 pte_t *, pte_t, pte_t);
ba8a9229
MS
1251
1252#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
f0e47c22 1253static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
ebde765c 1254 unsigned long addr, pte_t *ptep)
f0e47c22 1255{
214d9bbc
CI
1256 pte_t res;
1257
1258 res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
380d97bd 1259 /* At this point the reference through the mapping is still present */
214d9bbc 1260 if (mm_is_protected(vma->vm_mm) && pte_present(res))
7d171434 1261 uv_convert_from_secure_pte(res);
214d9bbc 1262 return res;
1da177e4
LT
1263}
1264
ba8a9229
MS
1265/*
1266 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1267 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1268 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1269 * cannot be accessed while the batched unmap is running. In this case
1270 * full==1 and a simple pte_clear is enough. See tlb.h.
1271 */
1272#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1273static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
ebde765c 1274 unsigned long addr,
ba8a9229 1275 pte_t *ptep, int full)
1da177e4 1276{
214d9bbc
CI
1277 pte_t res;
1278
ebde765c 1279 if (full) {
214d9bbc 1280 res = *ptep;
b8e3b379 1281 set_pte(ptep, __pte(_PAGE_INVALID));
214d9bbc
CI
1282 } else {
1283 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
b2fa47e6 1284 }
9bf811da
CI
1285 /* Nothing to do */
1286 if (!mm_is_protected(mm) || !pte_present(res))
1287 return res;
1288 /*
1289 * At this point the reference through the mapping is still present.
1290 * The notifier should have destroyed all protected vCPUs at this
1291 * point, so the destroy should be successful.
1292 */
70631506 1293 if (full && !uv_destroy_pte(res))
9bf811da
CI
1294 return res;
1295 /*
1296 * If something went wrong and the page could not be destroyed, or
1297 * if this is not a mm teardown, the slower export is used as
1298 * fallback instead.
1299 */
7d171434 1300 uv_convert_from_secure_pte(res);
214d9bbc 1301 return res;
1da177e4
LT
1302}
1303
ba8a9229 1304#define __HAVE_ARCH_PTEP_SET_WRPROTECT
ebde765c
MS
1305static inline void ptep_set_wrprotect(struct mm_struct *mm,
1306 unsigned long addr, pte_t *ptep)
b2fa47e6 1307{
b2fa47e6
MS
1308 pte_t pte = *ptep;
1309
ebde765c
MS
1310 if (pte_write(pte))
1311 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
b2fa47e6 1312}
ba8a9229 1313
0807b856
GS
1314/*
1315 * Check if PTEs only differ in _PAGE_PROTECT HW bit, but also allow SW PTE
1316 * bits in the comparison. Those might change e.g. because of dirty and young
1317 * tracking.
1318 */
1319static inline int pte_allow_rdp(pte_t old, pte_t new)
1320{
1321 /*
1322 * Only allow changes from RO to RW
1323 */
1324 if (!(pte_val(old) & _PAGE_PROTECT) || pte_val(new) & _PAGE_PROTECT)
1325 return 0;
1326
1327 return (pte_val(old) & _PAGE_RDP_MASK) == (pte_val(new) & _PAGE_RDP_MASK);
1328}
1329
1330static inline void flush_tlb_fix_spurious_fault(struct vm_area_struct *vma,
99c29133
GS
1331 unsigned long address,
1332 pte_t *ptep)
0807b856
GS
1333{
1334 /*
1335 * RDP might not have propagated the PTE protection reset to all CPUs,
1336 * so there could be spurious TLB protection faults.
1337 * NOTE: This will also be called when a racing pagetable update on
1338 * another thread already installed the correct PTE. Both cases cannot
1339 * really be distinguished.
99c29133
GS
1340 * Therefore, only do the local TLB flush when RDP can be used, and the
1341 * PTE does not have _PAGE_PROTECT set, to avoid unnecessary overhead.
1342 * A local RDP can be used to do the flush.
0807b856 1343 */
15a36036 1344 if (cpu_has_rdp() && !(pte_val(*ptep) & _PAGE_PROTECT))
99c29133 1345 __ptep_rdp(address, ptep, 0, 0, 1);
0807b856
GS
1346}
1347#define flush_tlb_fix_spurious_fault flush_tlb_fix_spurious_fault
1348
1349void ptep_reset_dat_prot(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
1350 pte_t new);
1351
ba8a9229 1352#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
b2fa47e6 1353static inline int ptep_set_access_flags(struct vm_area_struct *vma,
ebde765c 1354 unsigned long addr, pte_t *ptep,
b2fa47e6
MS
1355 pte_t entry, int dirty)
1356{
ebde765c 1357 if (pte_same(*ptep, entry))
b2fa47e6 1358 return 0;
15a36036 1359 if (cpu_has_rdp() && !mm_has_pgste(vma->vm_mm) && pte_allow_rdp(*ptep, entry))
0807b856
GS
1360 ptep_reset_dat_prot(vma->vm_mm, addr, ptep, entry);
1361 else
1362 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
ebde765c
MS
1363 return 1;
1364}
b2fa47e6 1365
1e133ab2
MS
1366/*
1367 * Additional functions to handle KVM guest page tables
1368 */
1369void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1370 pte_t *ptep, pte_t entry);
1371void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
4be130a0
MS
1372void ptep_notify(struct mm_struct *mm, unsigned long addr,
1373 pte_t *ptep, unsigned long bits);
b2d73b2a 1374int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
4be130a0 1375 pte_t *ptep, int prot, unsigned long bit);
1e133ab2
MS
1376void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1377 pte_t *ptep , int reset);
1378void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
4be130a0 1379int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
a9d23e71 1380 pte_t *sptep, pte_t *tptep, pte_t pte);
4be130a0 1381void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1e133ab2 1382
0959e168
JF
1383bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1384 pte_t *ptep);
1e133ab2
MS
1385int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1386 unsigned char key, bool nq);
1824c723
DH
1387int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1388 unsigned char key, unsigned char *oldkey,
1389 bool nq, bool mr, bool mc);
a7e19ab5 1390int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
154c8c19
DH
1391int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1392 unsigned char *key);
b2fa47e6 1393
2d42f947
CI
1394int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1395 unsigned long bits, unsigned long value);
1396int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1397int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1398 unsigned long *oldpte, unsigned long *oldpgste);
6a376277
JF
1399void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1400void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1401void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1402void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
2d42f947 1403
b02002cc
NS
1404#define pgprot_writecombine pgprot_writecombine
1405pgprot_t pgprot_writecombine(pgprot_t prot);
1406
4555ac8b
DH
1407#define PFN_PTE_SHIFT PAGE_SHIFT
1408
ebde765c 1409/*
843f9310
MWO
1410 * Set multiple PTEs to consecutive pages with a single call. All PTEs
1411 * are within the same folio, PMD and VMA.
ebde765c 1412 */
843f9310
MWO
1413static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1414 pte_t *ptep, pte_t entry, unsigned int nr)
ebde765c 1415{
a8f60d1f 1416 if (pte_present(entry))
4a366f51 1417 entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED));
843f9310
MWO
1418 if (mm_has_pgste(mm)) {
1419 for (;;) {
1420 ptep_set_pte_at(mm, addr, ptep, entry);
1421 if (--nr == 0)
1422 break;
1423 ptep++;
1424 entry = __pte(pte_val(entry) + PAGE_SIZE);
1425 addr += PAGE_SIZE;
1426 }
1427 } else {
1428 for (;;) {
1429 set_pte(ptep, entry);
1430 if (--nr == 0)
1431 break;
1432 ptep++;
1433 entry = __pte(pte_val(entry) + PAGE_SIZE);
1434 }
1435 }
b2fa47e6 1436}
843f9310 1437#define set_ptes set_ptes
1da177e4 1438
1da177e4
LT
1439/*
1440 * Conversion functions: convert a page and protection to a page entry,
1441 * and a page entry and page directory to the page they refer to.
1442 */
1443static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1444{
1445 pte_t __pte;
b02002cc 1446
4a366f51 1447 __pte = __pte(physpage | pgprot_val(pgprot));
0944fe3f 1448 return pte_mkyoung(__pte);
1da177e4
LT
1449}
1450
190a1d72 1451#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1aea9b3f 1452#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
190a1d72
MS
1453#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1454#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1da177e4 1455
86c827b3
AG
1456#define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1457#define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1da177e4 1458
b0e98aa9
GS
1459static inline unsigned long pmd_deref(pmd_t pmd)
1460{
1461 unsigned long origin_mask;
1462
1463 origin_mask = _SEGMENT_ENTRY_ORIGIN;
2f709f7b 1464 if (pmd_leaf(pmd))
b0e98aa9 1465 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
86c827b3 1466 return (unsigned long)__va(pmd_val(pmd) & origin_mask);
b0e98aa9
GS
1467}
1468
1469static inline unsigned long pmd_pfn(pmd_t pmd)
1470{
86c827b3 1471 return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
b0e98aa9
GS
1472}
1473
1474static inline unsigned long pud_deref(pud_t pud)
1475{
1476 unsigned long origin_mask;
1477
1478 origin_mask = _REGION_ENTRY_ORIGIN;
0a845e0f 1479 if (pud_leaf(pud))
b0e98aa9 1480 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
86c827b3 1481 return (unsigned long)__va(pud_val(pud) & origin_mask);
b0e98aa9
GS
1482}
1483
35a76f5c 1484#define pud_pfn pud_pfn
b0e98aa9
GS
1485static inline unsigned long pud_pfn(pud_t pud)
1486{
86c827b3 1487 return __pa(pud_deref(pud)) >> PAGE_SHIFT;
b0e98aa9
GS
1488}
1489
d1874a0c
MS
1490/*
1491 * The pgd_offset function *always* adds the index for the top-level
1492 * region/segment table. This is done to get a sequence like the
1493 * following to work:
1494 * pgdp = pgd_offset(current->mm, addr);
1495 * pgd = READ_ONCE(*pgdp);
1496 * p4dp = p4d_offset(&pgd, addr);
1497 * ...
1498 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1499 * only add an index if they dereferenced the pointer.
1500 */
1501static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
5a216a20 1502{
d1874a0c
MS
1503 unsigned long rste;
1504 unsigned int shift;
1aea9b3f 1505
d1874a0c
MS
1506 /* Get the first entry of the top level table */
1507 rste = pgd_val(*pgd);
1508 /* Pick up the shift from the table type of the first entry */
1509 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1510 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1aea9b3f
MS
1511}
1512
d1874a0c 1513#define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
d1874a0c 1514
d3f7b1bb 1515static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1aea9b3f 1516{
d3f7b1bb
VG
1517 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1518 return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1519 return (p4d_t *) pgdp;
d1874a0c 1520}
d3f7b1bb 1521#define p4d_offset_lockless p4d_offset_lockless
1aea9b3f 1522
d3f7b1bb 1523static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
d1874a0c 1524{
d3f7b1bb
VG
1525 return p4d_offset_lockless(pgdp, *pgdp, address);
1526}
1527
1528static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1529{
1530 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1531 return (pud_t *) p4d_deref(p4d) + pud_index(address);
1532 return (pud_t *) p4dp;
1533}
1534#define pud_offset_lockless pud_offset_lockless
1535
1536static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1537{
1538 return pud_offset_lockless(p4dp, *p4dp, address);
5a216a20 1539}
974b9b2c 1540#define pud_offset pud_offset
1da177e4 1541
d3f7b1bb
VG
1542static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1543{
1544 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1545 return (pmd_t *) pud_deref(pud) + pmd_index(address);
1546 return (pmd_t *) pudp;
1547}
1548#define pmd_offset_lockless pmd_offset_lockless
1549
1550static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1da177e4 1551{
d3f7b1bb 1552 return pmd_offset_lockless(pudp, *pudp, address);
d1874a0c 1553}
974b9b2c 1554#define pmd_offset pmd_offset
1aea9b3f 1555
974b9b2c 1556static inline unsigned long pmd_page_vaddr(pmd_t pmd)
d1874a0c 1557{
974b9b2c 1558 return (unsigned long) pmd_deref(pmd);
1da177e4
LT
1559}
1560
26f4c328 1561static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1a42010c 1562{
1a42010c
MS
1563 return end <= current->mm->context.asce_limit;
1564}
1565#define gup_fast_permitted gup_fast_permitted
1566
0f3bf303 1567#define pfn_pte(pfn, pgprot) mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
190a1d72
MS
1568#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1569#define pte_page(x) pfn_to_page(pte_pfn(x))
1da177e4 1570
152125b7 1571#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
d08de8e2 1572#define pud_page(pud) pfn_to_page(pud_pfn(pud))
d0e2eb0a
VG
1573#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1574#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1da177e4 1575
152125b7 1576static inline pmd_t pmd_wrprotect(pmd_t pmd)
0944fe3f 1577{
4a366f51
HC
1578 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1579 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
152125b7
MS
1580}
1581
2f0584f3 1582static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
152125b7 1583{
4a366f51 1584 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
2d1fc1eb 1585 if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
4a366f51 1586 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
152125b7
MS
1587 return pmd;
1588}
1589
1590static inline pmd_t pmd_mkclean(pmd_t pmd)
1591{
4a366f51
HC
1592 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY));
1593 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
152125b7
MS
1594}
1595
1596static inline pmd_t pmd_mkdirty(pmd_t pmd)
1597{
4a366f51 1598 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY));
2d1fc1eb 1599 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
4a366f51 1600 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
152125b7
MS
1601 return pmd;
1602}
1603
9e20b4da
HC
1604static inline pud_t pud_wrprotect(pud_t pud)
1605{
4a366f51
HC
1606 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1607 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
9e20b4da
HC
1608}
1609
1610static inline pud_t pud_mkwrite(pud_t pud)
1611{
4a366f51 1612 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
2d1fc1eb 1613 if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
4a366f51 1614 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
9e20b4da
HC
1615 return pud;
1616}
1617
1618static inline pud_t pud_mkclean(pud_t pud)
1619{
4a366f51
HC
1620 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY));
1621 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
9e20b4da
HC
1622}
1623
1624static inline pud_t pud_mkdirty(pud_t pud)
1625{
4a366f51 1626 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY));
2d1fc1eb 1627 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
4a366f51 1628 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
9e20b4da
HC
1629 return pud;
1630}
1631
1632#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1633static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1634{
1635 /*
57d7f939
MS
1636 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1637 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
9e20b4da
HC
1638 */
1639 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1640 return pgprot_val(SEGMENT_NONE);
57d7f939
MS
1641 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1642 return pgprot_val(SEGMENT_RO);
1643 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1644 return pgprot_val(SEGMENT_RX);
1645 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1646 return pgprot_val(SEGMENT_RW);
1647 return pgprot_val(SEGMENT_RWX);
9e20b4da
HC
1648}
1649
152125b7
MS
1650static inline pmd_t pmd_mkyoung(pmd_t pmd)
1651{
4a366f51 1652 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
2d1fc1eb 1653 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
4a366f51 1654 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
0944fe3f
MS
1655 return pmd;
1656}
1657
1658static inline pmd_t pmd_mkold(pmd_t pmd)
1659{
4a366f51
HC
1660 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1661 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
0944fe3f
MS
1662}
1663
1ae1c1d0
GS
1664static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1665{
4a366f51
HC
1666 unsigned long mask;
1667
1668 mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1669 mask |= _SEGMENT_ENTRY_DIRTY;
1670 mask |= _SEGMENT_ENTRY_YOUNG;
1671 mask |= _SEGMENT_ENTRY_LARGE;
1672 mask |= _SEGMENT_ENTRY_SOFT_DIRTY;
1673 pmd = __pmd(pmd_val(pmd) & mask);
1674 pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot)));
2d1fc1eb 1675 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
4a366f51 1676 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
2d1fc1eb 1677 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
4a366f51 1678 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1ae1c1d0
GS
1679 return pmd;
1680}
1681
106c992a 1682static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1ae1c1d0 1683{
4a366f51 1684 return __pmd(physpage + massage_pgprot_pmd(pgprot));
1ae1c1d0
GS
1685}
1686
106c992a
GS
1687#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1688
1b948d6c
MS
1689static inline void __pmdp_csp(pmd_t *pmdp)
1690{
4ccccc52
HC
1691 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1692 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1b948d6c
MS
1693}
1694
47e4d851
MS
1695#define IDTE_GLOBAL 0
1696#define IDTE_LOCAL 1
d08de8e2 1697
118bd31b
MS
1698#define IDTE_PTOA 0x0800
1699#define IDTE_NODAT 0x1000
28c807e5 1700#define IDTE_GUEST_ASCE 0x2000
118bd31b 1701
6818b542
HC
1702static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1703 unsigned long opt, unsigned long asce,
1704 int local)
1b948d6c
MS
1705{
1706 unsigned long sto;
1707
273cd173 1708 sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t);
28c807e5
MS
1709 if (__builtin_constant_p(opt) && opt == 0) {
1710 /* flush without guest asce */
1711 asm volatile(
731efc96 1712 " idte %[r1],0,%[r2],%[m4]"
28c807e5
MS
1713 : "+m" (*pmdp)
1714 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1715 [m4] "i" (local)
1716 : "cc" );
1717 } else {
1718 /* flush with guest asce */
1719 asm volatile(
731efc96 1720 " idte %[r1],%[r3],%[r2],%[m4]"
28c807e5
MS
1721 : "+m" (*pmdp)
1722 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1723 [r3] "a" (asce), [m4] "i" (local)
1724 : "cc" );
1725 }
1b948d6c
MS
1726}
1727
6818b542
HC
1728static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1729 unsigned long opt, unsigned long asce,
1730 int local)
d08de8e2
GS
1731{
1732 unsigned long r3o;
1733
273cd173 1734 r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t);
d08de8e2 1735 r3o |= _ASCE_TYPE_REGION3;
28c807e5
MS
1736 if (__builtin_constant_p(opt) && opt == 0) {
1737 /* flush without guest asce */
1738 asm volatile(
731efc96 1739 " idte %[r1],0,%[r2],%[m4]"
28c807e5
MS
1740 : "+m" (*pudp)
1741 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1742 [m4] "i" (local)
1743 : "cc");
1744 } else {
1745 /* flush with guest asce */
1746 asm volatile(
731efc96 1747 " idte %[r1],%[r3],%[r2],%[m4]"
28c807e5
MS
1748 : "+m" (*pudp)
1749 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1750 [r3] "a" (asce), [m4] "i" (local)
1751 : "cc" );
1752 }
d08de8e2
GS
1753}
1754
227be799
MS
1755pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1756pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
d08de8e2 1757pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1b948d6c 1758
227be799
MS
1759#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1760
1761#define __HAVE_ARCH_PGTABLE_DEPOSIT
1762void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1763 pgtable_t pgtable);
1764
1765#define __HAVE_ARCH_PGTABLE_WITHDRAW
1766pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1b948d6c 1767
227be799
MS
1768#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1769static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1770 unsigned long addr, pmd_t *pmdp,
1771 pmd_t entry, int dirty)
3eabaee9 1772{
227be799 1773 VM_BUG_ON(addr & ~HPAGE_MASK);
3eabaee9 1774
227be799
MS
1775 entry = pmd_mkyoung(entry);
1776 if (dirty)
1777 entry = pmd_mkdirty(entry);
1778 if (pmd_val(*pmdp) == pmd_val(entry))
1779 return 0;
1780 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1781 return 1;
3eabaee9
MS
1782}
1783
227be799
MS
1784#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1785static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1786 unsigned long addr, pmd_t *pmdp)
1787{
1788 pmd_t pmd = *pmdp;
106c992a 1789
227be799
MS
1790 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1791 return pmd_young(pmd);
1792}
106c992a 1793
227be799
MS
1794#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1795static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1796 unsigned long addr, pmd_t *pmdp)
1797{
1798 VM_BUG_ON(addr & ~HPAGE_MASK);
1799 return pmdp_test_and_clear_young(vma, addr, pmdp);
1800}
106c992a 1801
106c992a
GS
1802static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1803 pmd_t *pmdp, pmd_t entry)
1804{
b8e3b379 1805 set_pmd(pmdp, entry);
106c992a
GS
1806}
1807
1808static inline pmd_t pmd_mkhuge(pmd_t pmd)
1809{
4a366f51
HC
1810 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE));
1811 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1812 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1ae1c1d0
GS
1813}
1814
8809aa2d
AK
1815#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1816static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
227be799 1817 unsigned long addr, pmd_t *pmdp)
1ae1c1d0 1818{
54397bb0 1819 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1ae1c1d0
GS
1820}
1821
8809aa2d 1822#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
93a98695 1823static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
227be799 1824 unsigned long addr,
8809aa2d 1825 pmd_t *pmdp, int full)
fcbe08d6 1826{
227be799
MS
1827 if (full) {
1828 pmd_t pmd = *pmdp;
b8e3b379 1829 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
227be799
MS
1830 return pmd;
1831 }
93a98695 1832 return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
fcbe08d6
MS
1833}
1834
8809aa2d
AK
1835#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1836static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
227be799 1837 unsigned long addr, pmd_t *pmdp)
1ae1c1d0 1838{
227be799 1839 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1ae1c1d0
GS
1840}
1841
1842#define __HAVE_ARCH_PMDP_INVALIDATE
9c4563f1 1843static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
227be799 1844 unsigned long addr, pmd_t *pmdp)
1ae1c1d0 1845{
3a5a8d34 1846 pmd_t pmd;
91c575b3 1847
3a5a8d34
RR
1848 VM_WARN_ON_ONCE(!pmd_present(*pmdp));
1849 pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
9c4563f1 1850 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1ae1c1d0
GS
1851}
1852
be328650
GS
1853#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1854static inline void pmdp_set_wrprotect(struct mm_struct *mm,
227be799 1855 unsigned long addr, pmd_t *pmdp)
be328650
GS
1856{
1857 pmd_t pmd = *pmdp;
1858
227be799
MS
1859 if (pmd_write(pmd))
1860 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
be328650
GS
1861}
1862
f28b6ff8
AK
1863static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1864 unsigned long address,
1865 pmd_t *pmdp)
1866{
8809aa2d 1867 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
f28b6ff8
AK
1868}
1869#define pmdp_collapse_flush pmdp_collapse_flush
1870
0f3bf303 1871#define pfn_pmd(pfn, pgprot) mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1ae1c1d0
GS
1872
1873static inline int pmd_trans_huge(pmd_t pmd)
1874{
03e6db16 1875 return pmd_leaf(pmd);
1ae1c1d0
GS
1876}
1877
fd8cfd30 1878#define has_transparent_hugepage has_transparent_hugepage
1ae1c1d0
GS
1879static inline int has_transparent_hugepage(void)
1880{
2e2ff71f 1881 return cpu_has_edat1() ? 1 : 0;
1ae1c1d0 1882}
75077afb
GS
1883#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1884
1da177e4 1885/*
1da177e4
LT
1886 * 64 bit swap entry format:
1887 * A page-table entry has some bits we have to treat in a special way.
8043d26c
DH
1888 * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte
1889 * as invalid.
a1c843b8 1890 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
92cd58bd 1891 * | offset |E11XX|type |S0|
a1c843b8
MS
1892 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1893 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
8043d26c
DH
1894 *
1895 * Bits 0-51 store the offset.
92cd58bd 1896 * Bit 52 (E) is used to remember PG_anon_exclusive.
8043d26c
DH
1897 * Bits 57-61 store the type.
1898 * Bit 62 (S) is used for softdirty tracking.
92cd58bd 1899 * Bits 55 and 56 (X) are unused.
1da177e4 1900 */
5a79859a 1901
a1c843b8
MS
1902#define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1903#define __SWP_OFFSET_SHIFT 12
1904#define __SWP_TYPE_MASK ((1UL << 5) - 1)
1905#define __SWP_TYPE_SHIFT 2
5a79859a 1906
4448aaf0 1907static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1da177e4 1908{
4a366f51 1909 unsigned long pteval;
a1c843b8 1910
4a366f51
HC
1911 pteval = _PAGE_INVALID | _PAGE_PROTECT;
1912 pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1913 pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1914 return __pte(pteval);
1da177e4
LT
1915}
1916
a1c843b8
MS
1917static inline unsigned long __swp_type(swp_entry_t entry)
1918{
1919 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1920}
1921
1922static inline unsigned long __swp_offset(swp_entry_t entry)
1923{
1924 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1925}
1926
1927static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1928{
1929 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1930}
1da177e4
LT
1931
1932#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1933#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1934
f934f6be
GS
1935/*
1936 * 64 bit swap entry format for REGION3 and SEGMENT table entries (RSTE)
1937 * Bits 59 and 63 are used to indicate the swap entry. Bit 58 marks the rste
1938 * as invalid.
1939 * A swap entry is indicated by bit pattern (rste & 0x011) == 0x010
1940 * | offset |Xtype |11TT|S0|
1941 * |0000000000111111111122222222223333333333444444444455|555555|5566|66|
1942 * |0123456789012345678901234567890123456789012345678901|234567|8901|23|
1943 *
1944 * Bits 0-51 store the offset.
1945 * Bits 53-57 store the type.
1946 * Bit 62 (S) is used for softdirty tracking.
1947 * Bits 60-61 (TT) indicate the table type: 0x01 for REGION3 and 0x00 for SEGMENT.
1948 * Bit 52 (X) is unused.
1949 */
1950
1951#define __SWP_OFFSET_MASK_RSTE ((1UL << 52) - 1)
1952#define __SWP_OFFSET_SHIFT_RSTE 12
1953#define __SWP_TYPE_MASK_RSTE ((1UL << 5) - 1)
1954#define __SWP_TYPE_SHIFT_RSTE 6
1955
1956/*
1957 * TT bits set to 0x00 == SEGMENT. For REGION3 entries, caller must add R3
1958 * bits 0x01. See also __set_huge_pte_at().
1959 */
1960static inline unsigned long mk_swap_rste(unsigned long type, unsigned long offset)
1961{
1962 unsigned long rste;
1963
1964 rste = _RST_ENTRY_INVALID | _RST_ENTRY_COMM;
1965 rste |= (offset & __SWP_OFFSET_MASK_RSTE) << __SWP_OFFSET_SHIFT_RSTE;
1966 rste |= (type & __SWP_TYPE_MASK_RSTE) << __SWP_TYPE_SHIFT_RSTE;
1967 return rste;
1968}
1969
1970static inline unsigned long __swp_type_rste(swp_entry_t entry)
1971{
1972 return (entry.val >> __SWP_TYPE_SHIFT_RSTE) & __SWP_TYPE_MASK_RSTE;
1973}
1974
1975static inline unsigned long __swp_offset_rste(swp_entry_t entry)
1976{
1977 return (entry.val >> __SWP_OFFSET_SHIFT_RSTE) & __SWP_OFFSET_MASK_RSTE;
1978}
1979
1980#define __rste_to_swp_entry(rste) ((swp_entry_t) { rste })
1981
17f34580 1982extern int vmem_add_mapping(unsigned long start, unsigned long size);
f05f62d0 1983extern void vmem_remove_mapping(unsigned long start, unsigned long size);
4df29d2b
AG
1984extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc);
1985extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot);
1986extern void vmem_unmap_4k_page(unsigned long addr);
2f0e8aae 1987extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc);
402b0862 1988extern int s390_enable_sie(void);
3ac8e380 1989extern int s390_enable_skey(void);
a13cff31 1990extern void s390_reset_cmma(struct mm_struct *mm);
f4eb07c1 1991
1f6b83e5
MS
1992/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1993#define HAVE_ARCH_UNMAPPED_AREA
1994#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1995
1c2f7d14
AK
1996#define pmd_pgtable(pmd) \
1997 ((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
1998
84b73876
CI
1999static inline unsigned long gmap_pgste_get_pgt_addr(unsigned long *pgt)
2000{
2001 unsigned long *pgstes, res;
2002
2003 pgstes = pgt + _PAGE_ENTRIES;
2004
2005 res = (pgstes[0] & PGSTE_ST2_MASK) << 16;
2006 res |= pgstes[1] & PGSTE_ST2_MASK;
2007 res |= (pgstes[2] & PGSTE_ST2_MASK) >> 16;
2008 res |= (pgstes[3] & PGSTE_ST2_MASK) >> 32;
2009
2010 return res;
2011}
2012
1da177e4 2013#endif /* _S390_PAGE_H */