Merge branch 'master' into next
[linux-2.6-block.git] / arch / s390 / include / asm / pgtable.h
CommitLineData
1da177e4
LT
1/*
2 * include/asm-s390/pgtable.h
3 *
4 * S390 version
5 * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
6 * Author(s): Hartmut Penner (hp@de.ibm.com)
7 * Ulrich Weigand (weigand@de.ibm.com)
8 * Martin Schwidefsky (schwidefsky@de.ibm.com)
9 *
10 * Derived from "include/asm-i386/pgtable.h"
11 */
12
13#ifndef _ASM_S390_PGTABLE_H
14#define _ASM_S390_PGTABLE_H
15
1da177e4
LT
16/*
17 * The Linux memory management assumes a three-level page table setup. For
18 * s390 31 bit we "fold" the mid level into the top-level page table, so
19 * that we physically have the same two-level page table as the s390 mmu
20 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
21 * the hardware provides (region first and region second tables are not
22 * used).
23 *
24 * The "pgd_xxx()" functions are trivial for a folded two-level
25 * setup: the pgd is never bad, and a pmd always exists (as it's folded
26 * into the pgd entry)
27 *
28 * This file contains the functions and defines necessary to modify and use
29 * the S390 page table tree.
30 */
31#ifndef __ASSEMBLY__
9789db08 32#include <linux/sched.h>
2dcea57a 33#include <linux/mm_types.h>
5b7baf05 34#include <asm/bitops.h>
1da177e4
LT
35#include <asm/bug.h>
36#include <asm/processor.h>
1da177e4 37
1da177e4
LT
38extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
39extern void paging_init(void);
2b67fc46 40extern void vmem_map_init(void);
1da177e4
LT
41
42/*
43 * The S390 doesn't have any external MMU info: the kernel page
44 * tables contain all the necessary information.
45 */
46#define update_mmu_cache(vma, address, pte) do { } while (0)
47
48/*
49 * ZERO_PAGE is a global shared page that is always zero: used
50 * for zero-mapped memory areas etc..
51 */
52extern char empty_zero_page[PAGE_SIZE];
53#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
54#endif /* !__ASSEMBLY__ */
55
56/*
57 * PMD_SHIFT determines the size of the area a second-level page
58 * table can map
59 * PGDIR_SHIFT determines what a third-level page table entry can map
60 */
61#ifndef __s390x__
146e4b3c
MS
62# define PMD_SHIFT 20
63# define PUD_SHIFT 20
64# define PGDIR_SHIFT 20
1da177e4 65#else /* __s390x__ */
146e4b3c 66# define PMD_SHIFT 20
190a1d72 67# define PUD_SHIFT 31
5a216a20 68# define PGDIR_SHIFT 42
1da177e4
LT
69#endif /* __s390x__ */
70
71#define PMD_SIZE (1UL << PMD_SHIFT)
72#define PMD_MASK (~(PMD_SIZE-1))
190a1d72
MS
73#define PUD_SIZE (1UL << PUD_SHIFT)
74#define PUD_MASK (~(PUD_SIZE-1))
5a216a20
MS
75#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
76#define PGDIR_MASK (~(PGDIR_SIZE-1))
1da177e4
LT
77
78/*
79 * entries per page directory level: the S390 is two-level, so
80 * we don't really have any PMD directory physically.
81 * for S390 segment-table entries are combined to one PGD
82 * that leads to 1024 pte per pgd
83 */
146e4b3c 84#define PTRS_PER_PTE 256
1da177e4 85#ifndef __s390x__
146e4b3c 86#define PTRS_PER_PMD 1
5a216a20 87#define PTRS_PER_PUD 1
1da177e4 88#else /* __s390x__ */
146e4b3c 89#define PTRS_PER_PMD 2048
5a216a20 90#define PTRS_PER_PUD 2048
1da177e4 91#endif /* __s390x__ */
146e4b3c 92#define PTRS_PER_PGD 2048
1da177e4 93
d455a369
HD
94#define FIRST_USER_ADDRESS 0
95
1da177e4
LT
96#define pte_ERROR(e) \
97 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
98#define pmd_ERROR(e) \
99 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
190a1d72
MS
100#define pud_ERROR(e) \
101 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
1da177e4
LT
102#define pgd_ERROR(e) \
103 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
104
105#ifndef __ASSEMBLY__
106/*
5fd9c6e2
CB
107 * The vmalloc area will always be on the topmost area of the kernel
108 * mapping. We reserve 96MB (31bit) / 1GB (64bit) for vmalloc,
109 * which should be enough for any sane case.
110 * By putting vmalloc at the top, we maximise the gap between physical
111 * memory and vmalloc to catch misplaced memory accesses. As a side
112 * effect, this also makes sure that 64 bit module code cannot be used
113 * as system call address.
8b62bc96 114 */
1da177e4 115#ifndef __s390x__
5fd9c6e2
CB
116#define VMALLOC_START 0x78000000UL
117#define VMALLOC_END 0x7e000000UL
0189103c 118#define VMEM_MAP_END 0x80000000UL
1da177e4 119#else /* __s390x__ */
5fd9c6e2
CB
120#define VMALLOC_START 0x3e000000000UL
121#define VMALLOC_END 0x3e040000000UL
0189103c 122#define VMEM_MAP_END 0x40000000000UL
1da177e4
LT
123#endif /* __s390x__ */
124
0189103c
HC
125/*
126 * VMEM_MAX_PHYS is the highest physical address that can be added to the 1:1
127 * mapping. This needs to be calculated at compile time since the size of the
128 * VMEM_MAP is static but the size of struct page can change.
129 */
522d8dc0
MS
130#define VMEM_MAX_PAGES ((VMEM_MAP_END - VMALLOC_END) / sizeof(struct page))
131#define VMEM_MAX_PFN min(VMALLOC_START >> PAGE_SHIFT, VMEM_MAX_PAGES)
132#define VMEM_MAX_PHYS ((VMEM_MAX_PFN << PAGE_SHIFT) & ~((16 << 20) - 1))
17f34580 133#define vmemmap ((struct page *) VMALLOC_END)
5fd9c6e2 134
1da177e4
LT
135/*
136 * A 31 bit pagetable entry of S390 has following format:
137 * | PFRA | | OS |
138 * 0 0IP0
139 * 00000000001111111111222222222233
140 * 01234567890123456789012345678901
141 *
142 * I Page-Invalid Bit: Page is not available for address-translation
143 * P Page-Protection Bit: Store access not possible for page
144 *
145 * A 31 bit segmenttable entry of S390 has following format:
146 * | P-table origin | |PTL
147 * 0 IC
148 * 00000000001111111111222222222233
149 * 01234567890123456789012345678901
150 *
151 * I Segment-Invalid Bit: Segment is not available for address-translation
152 * C Common-Segment Bit: Segment is not private (PoP 3-30)
153 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
154 *
155 * The 31 bit segmenttable origin of S390 has following format:
156 *
157 * |S-table origin | | STL |
158 * X **GPS
159 * 00000000001111111111222222222233
160 * 01234567890123456789012345678901
161 *
162 * X Space-Switch event:
163 * G Segment-Invalid Bit: *
164 * P Private-Space Bit: Segment is not private (PoP 3-30)
165 * S Storage-Alteration:
166 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
167 *
168 * A 64 bit pagetable entry of S390 has following format:
169 * | PFRA |0IP0| OS |
170 * 0000000000111111111122222222223333333333444444444455555555556666
171 * 0123456789012345678901234567890123456789012345678901234567890123
172 *
173 * I Page-Invalid Bit: Page is not available for address-translation
174 * P Page-Protection Bit: Store access not possible for page
175 *
176 * A 64 bit segmenttable entry of S390 has following format:
177 * | P-table origin | TT
178 * 0000000000111111111122222222223333333333444444444455555555556666
179 * 0123456789012345678901234567890123456789012345678901234567890123
180 *
181 * I Segment-Invalid Bit: Segment is not available for address-translation
182 * C Common-Segment Bit: Segment is not private (PoP 3-30)
183 * P Page-Protection Bit: Store access not possible for page
184 * TT Type 00
185 *
186 * A 64 bit region table entry of S390 has following format:
187 * | S-table origin | TF TTTL
188 * 0000000000111111111122222222223333333333444444444455555555556666
189 * 0123456789012345678901234567890123456789012345678901234567890123
190 *
191 * I Segment-Invalid Bit: Segment is not available for address-translation
192 * TT Type 01
193 * TF
190a1d72 194 * TL Table length
1da177e4
LT
195 *
196 * The 64 bit regiontable origin of S390 has following format:
197 * | region table origon | DTTL
198 * 0000000000111111111122222222223333333333444444444455555555556666
199 * 0123456789012345678901234567890123456789012345678901234567890123
200 *
201 * X Space-Switch event:
202 * G Segment-Invalid Bit:
203 * P Private-Space Bit:
204 * S Storage-Alteration:
205 * R Real space
206 * TL Table-Length:
207 *
208 * A storage key has the following format:
209 * | ACC |F|R|C|0|
210 * 0 3 4 5 6 7
211 * ACC: access key
212 * F : fetch protection bit
213 * R : referenced bit
214 * C : changed bit
215 */
216
217/* Hardware bits in the page table entry */
83377484
MS
218#define _PAGE_RO 0x200 /* HW read-only bit */
219#define _PAGE_INVALID 0x400 /* HW invalid bit */
3610cce8
MS
220
221/* Software bits in the page table entry */
83377484
MS
222#define _PAGE_SWT 0x001 /* SW pte type bit t */
223#define _PAGE_SWX 0x002 /* SW pte type bit x */
a08cb629
NP
224#define _PAGE_SPECIAL 0x004 /* SW associated with special page */
225#define __HAVE_ARCH_PTE_SPECIAL
1da177e4 226
138c9021
NP
227/* Set of bits not changed in pte_modify */
228#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL)
229
83377484 230/* Six different types of pages. */
9282ed92
GS
231#define _PAGE_TYPE_EMPTY 0x400
232#define _PAGE_TYPE_NONE 0x401
83377484
MS
233#define _PAGE_TYPE_SWAP 0x403
234#define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */
9282ed92
GS
235#define _PAGE_TYPE_RO 0x200
236#define _PAGE_TYPE_RW 0x000
c1821c2e
GS
237#define _PAGE_TYPE_EX_RO 0x202
238#define _PAGE_TYPE_EX_RW 0x002
1da177e4 239
53492b1d
GS
240/*
241 * Only four types for huge pages, using the invalid bit and protection bit
242 * of a segment table entry.
243 */
244#define _HPAGE_TYPE_EMPTY 0x020 /* _SEGMENT_ENTRY_INV */
245#define _HPAGE_TYPE_NONE 0x220
246#define _HPAGE_TYPE_RO 0x200 /* _SEGMENT_ENTRY_RO */
247#define _HPAGE_TYPE_RW 0x000
248
83377484
MS
249/*
250 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
251 * pte_none and pte_file to find out the pte type WITHOUT holding the page
252 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
253 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
254 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
255 * This change is done while holding the lock, but the intermediate step
256 * of a previously valid pte with the hw invalid bit set can be observed by
257 * handle_pte_fault. That makes it necessary that all valid pte types with
258 * the hw invalid bit set must be distinguishable from the four pte types
259 * empty, none, swap and file.
260 *
261 * irxt ipte irxt
262 * _PAGE_TYPE_EMPTY 1000 -> 1000
263 * _PAGE_TYPE_NONE 1001 -> 1001
264 * _PAGE_TYPE_SWAP 1011 -> 1011
265 * _PAGE_TYPE_FILE 11?1 -> 11?1
266 * _PAGE_TYPE_RO 0100 -> 1100
267 * _PAGE_TYPE_RW 0000 -> 1000
c1821c2e
GS
268 * _PAGE_TYPE_EX_RO 0110 -> 1110
269 * _PAGE_TYPE_EX_RW 0010 -> 1010
83377484 270 *
c1821c2e 271 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
83377484
MS
272 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
273 * pte_file is true for bits combinations 1101, 1111
c1821c2e 274 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
83377484
MS
275 */
276
5b7baf05
CB
277/* Page status table bits for virtualization */
278#define RCP_PCL_BIT 55
279#define RCP_HR_BIT 54
280#define RCP_HC_BIT 53
281#define RCP_GR_BIT 50
282#define RCP_GC_BIT 49
283
15e86b0c
FF
284/* User dirty bit for KVM's migration feature */
285#define KVM_UD_BIT 47
286
1da177e4
LT
287#ifndef __s390x__
288
3610cce8
MS
289/* Bits in the segment table address-space-control-element */
290#define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
291#define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
292#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
293#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
294#define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
1da177e4 295
3610cce8
MS
296/* Bits in the segment table entry */
297#define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
298#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
299#define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
300#define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
1da177e4 301
3610cce8
MS
302#define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
303#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
1da177e4
LT
304
305#else /* __s390x__ */
306
3610cce8
MS
307/* Bits in the segment/region table address-space-control-element */
308#define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
309#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
310#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
311#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
312#define _ASCE_REAL_SPACE 0x20 /* real space control */
313#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
314#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
315#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
316#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
317#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
318#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
319
320/* Bits in the region table entry */
321#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
322#define _REGION_ENTRY_INV 0x20 /* invalid region table entry */
323#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
324#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
325#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
326#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
327#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
328
329#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
330#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
331#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
332#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
333#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
334#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
335
1da177e4 336/* Bits in the segment table entry */
3610cce8
MS
337#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
338#define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
339#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
1da177e4 340
3610cce8
MS
341#define _SEGMENT_ENTRY (0)
342#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
343
53492b1d
GS
344#define _SEGMENT_ENTRY_LARGE 0x400 /* STE-format control, large page */
345#define _SEGMENT_ENTRY_CO 0x100 /* change-recording override */
346
3610cce8 347#endif /* __s390x__ */
1da177e4
LT
348
349/*
3610cce8
MS
350 * A user page table pointer has the space-switch-event bit, the
351 * private-space-control bit and the storage-alteration-event-control
352 * bit set. A kernel page table pointer doesn't need them.
1da177e4 353 */
3610cce8
MS
354#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
355 _ASCE_ALT_EVENT)
1da177e4 356
3610cce8 357/* Bits int the storage key */
1da177e4
LT
358#define _PAGE_CHANGED 0x02 /* HW changed bit */
359#define _PAGE_REFERENCED 0x04 /* HW referenced bit */
360
1da177e4 361/*
9282ed92 362 * Page protection definitions.
1da177e4 363 */
9282ed92
GS
364#define PAGE_NONE __pgprot(_PAGE_TYPE_NONE)
365#define PAGE_RO __pgprot(_PAGE_TYPE_RO)
366#define PAGE_RW __pgprot(_PAGE_TYPE_RW)
c1821c2e
GS
367#define PAGE_EX_RO __pgprot(_PAGE_TYPE_EX_RO)
368#define PAGE_EX_RW __pgprot(_PAGE_TYPE_EX_RW)
9282ed92
GS
369
370#define PAGE_KERNEL PAGE_RW
371#define PAGE_COPY PAGE_RO
1da177e4
LT
372
373/*
c1821c2e
GS
374 * Dependent on the EXEC_PROTECT option s390 can do execute protection.
375 * Write permission always implies read permission. In theory with a
376 * primary/secondary page table execute only can be implemented but
377 * it would cost an additional bit in the pte to distinguish all the
378 * different pte types. To avoid that execute permission currently
379 * implies read permission as well.
1da177e4
LT
380 */
381 /*xwr*/
9282ed92
GS
382#define __P000 PAGE_NONE
383#define __P001 PAGE_RO
384#define __P010 PAGE_RO
385#define __P011 PAGE_RO
c1821c2e
GS
386#define __P100 PAGE_EX_RO
387#define __P101 PAGE_EX_RO
388#define __P110 PAGE_EX_RO
389#define __P111 PAGE_EX_RO
9282ed92
GS
390
391#define __S000 PAGE_NONE
392#define __S001 PAGE_RO
393#define __S010 PAGE_RW
394#define __S011 PAGE_RW
c1821c2e
GS
395#define __S100 PAGE_EX_RO
396#define __S101 PAGE_EX_RO
397#define __S110 PAGE_EX_RW
398#define __S111 PAGE_EX_RW
399
400#ifndef __s390x__
3610cce8 401# define PxD_SHADOW_SHIFT 1
c1821c2e 402#else /* __s390x__ */
3610cce8 403# define PxD_SHADOW_SHIFT 2
c1821c2e
GS
404#endif /* __s390x__ */
405
3610cce8 406static inline void *get_shadow_table(void *table)
c1821c2e 407{
3610cce8
MS
408 unsigned long addr, offset;
409 struct page *page;
410
411 addr = (unsigned long) table;
412 offset = addr & ((PAGE_SIZE << PxD_SHADOW_SHIFT) - 1);
413 page = virt_to_page((void *)(addr ^ offset));
414 return (void *)(addr_t)(page->index ? (page->index | offset) : 0UL);
c1821c2e 415}
1da177e4
LT
416
417/*
418 * Certain architectures need to do special things when PTEs
419 * within a page table are directly modified. Thus, the following
420 * hook is made available.
421 */
ba8a9229 422static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
146e4b3c 423 pte_t *ptep, pte_t entry)
1da177e4 424{
146e4b3c
MS
425 *ptep = entry;
426 if (mm->context.noexec) {
427 if (!(pte_val(entry) & _PAGE_INVALID) &&
428 (pte_val(entry) & _PAGE_SWX))
429 pte_val(entry) |= _PAGE_RO;
c1821c2e 430 else
146e4b3c
MS
431 pte_val(entry) = _PAGE_TYPE_EMPTY;
432 ptep[PTRS_PER_PTE] = entry;
c1821c2e 433 }
1da177e4 434}
1da177e4
LT
435
436/*
437 * pgd/pmd/pte query functions
438 */
439#ifndef __s390x__
440
4448aaf0
AB
441static inline int pgd_present(pgd_t pgd) { return 1; }
442static inline int pgd_none(pgd_t pgd) { return 0; }
443static inline int pgd_bad(pgd_t pgd) { return 0; }
1da177e4 444
190a1d72
MS
445static inline int pud_present(pud_t pud) { return 1; }
446static inline int pud_none(pud_t pud) { return 0; }
447static inline int pud_bad(pud_t pud) { return 0; }
448
1da177e4
LT
449#else /* __s390x__ */
450
5a216a20
MS
451static inline int pgd_present(pgd_t pgd)
452{
6252d702
MS
453 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
454 return 1;
5a216a20
MS
455 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
456}
457
458static inline int pgd_none(pgd_t pgd)
459{
6252d702
MS
460 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
461 return 0;
5a216a20
MS
462 return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
463}
464
465static inline int pgd_bad(pgd_t pgd)
466{
6252d702
MS
467 /*
468 * With dynamic page table levels the pgd can be a region table
469 * entry or a segment table entry. Check for the bit that are
470 * invalid for either table entry.
471 */
5a216a20 472 unsigned long mask =
6252d702 473 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
5a216a20
MS
474 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
475 return (pgd_val(pgd) & mask) != 0;
476}
190a1d72
MS
477
478static inline int pud_present(pud_t pud)
1da177e4 479{
6252d702
MS
480 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
481 return 1;
0d017923 482 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
1da177e4
LT
483}
484
190a1d72 485static inline int pud_none(pud_t pud)
1da177e4 486{
6252d702
MS
487 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
488 return 0;
0d017923 489 return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
1da177e4
LT
490}
491
190a1d72 492static inline int pud_bad(pud_t pud)
1da177e4 493{
6252d702
MS
494 /*
495 * With dynamic page table levels the pud can be a region table
496 * entry or a segment table entry. Check for the bit that are
497 * invalid for either table entry.
498 */
5a216a20 499 unsigned long mask =
6252d702 500 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
5a216a20
MS
501 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
502 return (pud_val(pud) & mask) != 0;
1da177e4
LT
503}
504
3610cce8
MS
505#endif /* __s390x__ */
506
4448aaf0 507static inline int pmd_present(pmd_t pmd)
1da177e4 508{
0d017923 509 return (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) != 0UL;
1da177e4
LT
510}
511
4448aaf0 512static inline int pmd_none(pmd_t pmd)
1da177e4 513{
0d017923 514 return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) != 0UL;
1da177e4
LT
515}
516
4448aaf0 517static inline int pmd_bad(pmd_t pmd)
1da177e4 518{
3610cce8
MS
519 unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
520 return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
1da177e4
LT
521}
522
4448aaf0 523static inline int pte_none(pte_t pte)
1da177e4 524{
83377484 525 return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
1da177e4
LT
526}
527
4448aaf0 528static inline int pte_present(pte_t pte)
1da177e4 529{
83377484
MS
530 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
531 return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
532 (!(pte_val(pte) & _PAGE_INVALID) &&
533 !(pte_val(pte) & _PAGE_SWT));
1da177e4
LT
534}
535
4448aaf0 536static inline int pte_file(pte_t pte)
1da177e4 537{
83377484
MS
538 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
539 return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
1da177e4
LT
540}
541
7e675137
NP
542static inline int pte_special(pte_t pte)
543{
a08cb629 544 return (pte_val(pte) & _PAGE_SPECIAL);
7e675137
NP
545}
546
ba8a9229
MS
547#define __HAVE_ARCH_PTE_SAME
548#define pte_same(a,b) (pte_val(a) == pte_val(b))
1da177e4 549
5b7baf05
CB
550static inline void rcp_lock(pte_t *ptep)
551{
552#ifdef CONFIG_PGSTE
553 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
554 preempt_disable();
555 while (test_and_set_bit(RCP_PCL_BIT, pgste))
556 ;
557#endif
558}
559
560static inline void rcp_unlock(pte_t *ptep)
561{
562#ifdef CONFIG_PGSTE
563 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
564 clear_bit(RCP_PCL_BIT, pgste);
565 preempt_enable();
566#endif
567}
568
569/* forward declaration for SetPageUptodate in page-flags.h*/
570static inline void page_clear_dirty(struct page *page);
571#include <linux/page-flags.h>
572
573static inline void ptep_rcp_copy(pte_t *ptep)
574{
575#ifdef CONFIG_PGSTE
576 struct page *page = virt_to_page(pte_val(*ptep));
577 unsigned int skey;
578 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
579
580 skey = page_get_storage_key(page_to_phys(page));
15e86b0c 581 if (skey & _PAGE_CHANGED) {
c71799c1 582 set_bit_simple(RCP_GC_BIT, pgste);
15e86b0c
FF
583 set_bit_simple(KVM_UD_BIT, pgste);
584 }
5b7baf05 585 if (skey & _PAGE_REFERENCED)
c71799c1 586 set_bit_simple(RCP_GR_BIT, pgste);
15e86b0c 587 if (test_and_clear_bit_simple(RCP_HC_BIT, pgste)) {
5b7baf05 588 SetPageDirty(page);
15e86b0c
FF
589 set_bit_simple(KVM_UD_BIT, pgste);
590 }
c71799c1 591 if (test_and_clear_bit_simple(RCP_HR_BIT, pgste))
5b7baf05
CB
592 SetPageReferenced(page);
593#endif
594}
595
1da177e4
LT
596/*
597 * query functions pte_write/pte_dirty/pte_young only work if
598 * pte_present() is true. Undefined behaviour if not..
599 */
4448aaf0 600static inline int pte_write(pte_t pte)
1da177e4
LT
601{
602 return (pte_val(pte) & _PAGE_RO) == 0;
603}
604
4448aaf0 605static inline int pte_dirty(pte_t pte)
1da177e4
LT
606{
607 /* A pte is neither clean nor dirty on s/390. The dirty bit
608 * is in the storage key. See page_test_and_clear_dirty for
609 * details.
610 */
611 return 0;
612}
613
4448aaf0 614static inline int pte_young(pte_t pte)
1da177e4
LT
615{
616 /* A pte is neither young nor old on s/390. The young bit
617 * is in the storage key. See page_test_and_clear_young for
618 * details.
619 */
620 return 0;
621}
622
1da177e4
LT
623/*
624 * pgd/pmd/pte modification functions
625 */
626
627#ifndef __s390x__
628
190a1d72
MS
629#define pgd_clear(pgd) do { } while (0)
630#define pud_clear(pud) do { } while (0)
1da177e4 631
1da177e4
LT
632#else /* __s390x__ */
633
5a216a20
MS
634static inline void pgd_clear_kernel(pgd_t * pgd)
635{
6252d702
MS
636 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
637 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
5a216a20
MS
638}
639
640static inline void pgd_clear(pgd_t * pgd)
641{
642 pgd_t *shadow = get_shadow_table(pgd);
643
644 pgd_clear_kernel(pgd);
645 if (shadow)
646 pgd_clear_kernel(shadow);
647}
190a1d72
MS
648
649static inline void pud_clear_kernel(pud_t *pud)
1da177e4 650{
6252d702
MS
651 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
652 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
1da177e4
LT
653}
654
6252d702 655static inline void pud_clear(pud_t *pud)
c1821c2e 656{
190a1d72 657 pud_t *shadow = get_shadow_table(pud);
c1821c2e 658
190a1d72
MS
659 pud_clear_kernel(pud);
660 if (shadow)
661 pud_clear_kernel(shadow);
c1821c2e
GS
662}
663
146e4b3c
MS
664#endif /* __s390x__ */
665
c1821c2e 666static inline void pmd_clear_kernel(pmd_t * pmdp)
1da177e4 667{
3610cce8 668 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
1da177e4
LT
669}
670
146e4b3c 671static inline void pmd_clear(pmd_t *pmd)
c1821c2e 672{
146e4b3c 673 pmd_t *shadow = get_shadow_table(pmd);
c1821c2e 674
146e4b3c
MS
675 pmd_clear_kernel(pmd);
676 if (shadow)
677 pmd_clear_kernel(shadow);
c1821c2e
GS
678}
679
4448aaf0 680static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
1da177e4 681{
9282ed92 682 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
146e4b3c
MS
683 if (mm->context.noexec)
684 pte_val(ptep[PTRS_PER_PTE]) = _PAGE_TYPE_EMPTY;
1da177e4
LT
685}
686
687/*
688 * The following pte modification functions only work if
689 * pte_present() is true. Undefined behaviour if not..
690 */
4448aaf0 691static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1da177e4 692{
138c9021 693 pte_val(pte) &= _PAGE_CHG_MASK;
1da177e4
LT
694 pte_val(pte) |= pgprot_val(newprot);
695 return pte;
696}
697
4448aaf0 698static inline pte_t pte_wrprotect(pte_t pte)
1da177e4 699{
9282ed92 700 /* Do not clobber _PAGE_TYPE_NONE pages! */
1da177e4
LT
701 if (!(pte_val(pte) & _PAGE_INVALID))
702 pte_val(pte) |= _PAGE_RO;
703 return pte;
704}
705
4448aaf0 706static inline pte_t pte_mkwrite(pte_t pte)
1da177e4
LT
707{
708 pte_val(pte) &= ~_PAGE_RO;
709 return pte;
710}
711
4448aaf0 712static inline pte_t pte_mkclean(pte_t pte)
1da177e4
LT
713{
714 /* The only user of pte_mkclean is the fork() code.
715 We must *not* clear the *physical* page dirty bit
716 just because fork() wants to clear the dirty bit in
717 *one* of the page's mappings. So we just do nothing. */
718 return pte;
719}
720
4448aaf0 721static inline pte_t pte_mkdirty(pte_t pte)
1da177e4
LT
722{
723 /* We do not explicitly set the dirty bit because the
724 * sske instruction is slow. It is faster to let the
725 * next instruction set the dirty bit.
726 */
727 return pte;
728}
729
4448aaf0 730static inline pte_t pte_mkold(pte_t pte)
1da177e4
LT
731{
732 /* S/390 doesn't keep its dirty/referenced bit in the pte.
733 * There is no point in clearing the real referenced bit.
734 */
735 return pte;
736}
737
4448aaf0 738static inline pte_t pte_mkyoung(pte_t pte)
1da177e4
LT
739{
740 /* S/390 doesn't keep its dirty/referenced bit in the pte.
741 * There is no point in setting the real referenced bit.
742 */
743 return pte;
744}
745
7e675137
NP
746static inline pte_t pte_mkspecial(pte_t pte)
747{
a08cb629 748 pte_val(pte) |= _PAGE_SPECIAL;
7e675137
NP
749 return pte;
750}
751
15e86b0c
FF
752#ifdef CONFIG_PGSTE
753/*
754 * Get (and clear) the user dirty bit for a PTE.
755 */
756static inline int kvm_s390_test_and_clear_page_dirty(struct mm_struct *mm,
757 pte_t *ptep)
758{
759 int dirty;
760 unsigned long *pgste;
761 struct page *page;
762 unsigned int skey;
763
250cf776 764 if (!mm->context.has_pgste)
15e86b0c
FF
765 return -EINVAL;
766 rcp_lock(ptep);
767 pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
768 page = virt_to_page(pte_val(*ptep));
769 skey = page_get_storage_key(page_to_phys(page));
770 if (skey & _PAGE_CHANGED) {
771 set_bit_simple(RCP_GC_BIT, pgste);
772 set_bit_simple(KVM_UD_BIT, pgste);
773 }
774 if (test_and_clear_bit_simple(RCP_HC_BIT, pgste)) {
775 SetPageDirty(page);
776 set_bit_simple(KVM_UD_BIT, pgste);
777 }
778 dirty = test_and_clear_bit_simple(KVM_UD_BIT, pgste);
779 if (skey & _PAGE_CHANGED)
780 page_clear_dirty(page);
781 rcp_unlock(ptep);
782 return dirty;
783}
784#endif
785
ba8a9229
MS
786#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
787static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
788 unsigned long addr, pte_t *ptep)
1da177e4 789{
5b7baf05
CB
790#ifdef CONFIG_PGSTE
791 unsigned long physpage;
792 int young;
793 unsigned long *pgste;
794
250cf776 795 if (!vma->vm_mm->context.has_pgste)
5b7baf05
CB
796 return 0;
797 physpage = pte_val(*ptep) & PAGE_MASK;
798 pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
799
800 young = ((page_get_storage_key(physpage) & _PAGE_REFERENCED) != 0);
801 rcp_lock(ptep);
802 if (young)
c71799c1
HC
803 set_bit_simple(RCP_GR_BIT, pgste);
804 young |= test_and_clear_bit_simple(RCP_HR_BIT, pgste);
5b7baf05
CB
805 rcp_unlock(ptep);
806 return young;
807#endif
1da177e4
LT
808 return 0;
809}
810
ba8a9229
MS
811#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
812static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
813 unsigned long address, pte_t *ptep)
1da177e4 814{
5b7baf05
CB
815 /* No need to flush TLB
816 * On s390 reference bits are in storage key and never in TLB
817 * With virtualization we handle the reference bit, without we
818 * we can simply return */
819#ifdef CONFIG_PGSTE
820 return ptep_test_and_clear_young(vma, address, ptep);
821#endif
ba8a9229 822 return 0;
1da177e4
LT
823}
824
9282ed92 825static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
1da177e4 826{
9282ed92 827 if (!(pte_val(*ptep) & _PAGE_INVALID)) {
1da177e4 828#ifndef __s390x__
146e4b3c 829 /* pto must point to the start of the segment table */
1da177e4 830 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
9282ed92
GS
831#else
832 /* ipte in zarch mode can do the math */
833 pte_t *pto = ptep;
834#endif
94c12cc7
MS
835 asm volatile(
836 " ipte %2,%3"
837 : "=m" (*ptep) : "m" (*ptep),
838 "a" (pto), "a" (address));
1da177e4 839 }
9282ed92
GS
840}
841
146e4b3c
MS
842static inline void ptep_invalidate(struct mm_struct *mm,
843 unsigned long address, pte_t *ptep)
9282ed92 844{
250cf776 845 if (mm->context.has_pgste) {
5b7baf05
CB
846 rcp_lock(ptep);
847 __ptep_ipte(address, ptep);
848 ptep_rcp_copy(ptep);
849 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
850 rcp_unlock(ptep);
851 return;
852 }
9282ed92 853 __ptep_ipte(address, ptep);
5b7baf05
CB
854 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
855 if (mm->context.noexec) {
146e4b3c 856 __ptep_ipte(address, ptep + PTRS_PER_PTE);
5b7baf05
CB
857 pte_val(*(ptep + PTRS_PER_PTE)) = _PAGE_TYPE_EMPTY;
858 }
f0e47c22
MS
859}
860
ba8a9229
MS
861/*
862 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
863 * both clear the TLB for the unmapped pte. The reason is that
864 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
865 * to modify an active pte. The sequence is
866 * 1) ptep_get_and_clear
867 * 2) set_pte_at
868 * 3) flush_tlb_range
869 * On s390 the tlb needs to get flushed with the modification of the pte
870 * if the pte is active. The only way how this can be implemented is to
871 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
872 * is a nop.
873 */
874#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
875#define ptep_get_and_clear(__mm, __address, __ptep) \
876({ \
877 pte_t __pte = *(__ptep); \
878 if (atomic_read(&(__mm)->mm_users) > 1 || \
879 (__mm) != current->active_mm) \
146e4b3c 880 ptep_invalidate(__mm, __address, __ptep); \
ba8a9229
MS
881 else \
882 pte_clear((__mm), (__address), (__ptep)); \
883 __pte; \
884})
885
886#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
f0e47c22
MS
887static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
888 unsigned long address, pte_t *ptep)
889{
890 pte_t pte = *ptep;
146e4b3c 891 ptep_invalidate(vma->vm_mm, address, ptep);
1da177e4
LT
892 return pte;
893}
894
ba8a9229
MS
895/*
896 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
897 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
898 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
899 * cannot be accessed while the batched unmap is running. In this case
900 * full==1 and a simple pte_clear is enough. See tlb.h.
901 */
902#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
903static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
904 unsigned long addr,
905 pte_t *ptep, int full)
1da177e4 906{
ba8a9229
MS
907 pte_t pte = *ptep;
908
909 if (full)
910 pte_clear(mm, addr, ptep);
911 else
146e4b3c 912 ptep_invalidate(mm, addr, ptep);
ba8a9229 913 return pte;
1da177e4
LT
914}
915
ba8a9229
MS
916#define __HAVE_ARCH_PTEP_SET_WRPROTECT
917#define ptep_set_wrprotect(__mm, __addr, __ptep) \
918({ \
919 pte_t __pte = *(__ptep); \
920 if (pte_write(__pte)) { \
921 if (atomic_read(&(__mm)->mm_users) > 1 || \
922 (__mm) != current->active_mm) \
146e4b3c 923 ptep_invalidate(__mm, __addr, __ptep); \
ba8a9229
MS
924 set_pte_at(__mm, __addr, __ptep, pte_wrprotect(__pte)); \
925 } \
926})
927
928#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
f0e47c22
MS
929#define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __dirty) \
930({ \
931 int __changed = !pte_same(*(__ptep), __entry); \
932 if (__changed) { \
146e4b3c 933 ptep_invalidate((__vma)->vm_mm, __addr, __ptep); \
f0e47c22
MS
934 set_pte_at((__vma)->vm_mm, __addr, __ptep, __entry); \
935 } \
936 __changed; \
8dab5241 937})
1da177e4
LT
938
939/*
940 * Test and clear dirty bit in storage key.
941 * We can't clear the changed bit atomically. This is a potential
942 * race against modification of the referenced bit. This function
943 * should therefore only be called if it is not mapped in any
944 * address space.
945 */
ba8a9229 946#define __HAVE_ARCH_PAGE_TEST_DIRTY
6c210482 947static inline int page_test_dirty(struct page *page)
2dcea57a 948{
6c210482
MS
949 return (page_get_storage_key(page_to_phys(page)) & _PAGE_CHANGED) != 0;
950}
2dcea57a 951
ba8a9229 952#define __HAVE_ARCH_PAGE_CLEAR_DIRTY
6c210482
MS
953static inline void page_clear_dirty(struct page *page)
954{
955 page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY);
2dcea57a 956}
1da177e4
LT
957
958/*
959 * Test and clear referenced bit in storage key.
960 */
ba8a9229 961#define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
2dcea57a
HC
962static inline int page_test_and_clear_young(struct page *page)
963{
0b2b6e1d 964 unsigned long physpage = page_to_phys(page);
2dcea57a
HC
965 int ccode;
966
0b2b6e1d
HC
967 asm volatile(
968 " rrbe 0,%1\n"
969 " ipm %0\n"
970 " srl %0,28\n"
2dcea57a
HC
971 : "=d" (ccode) : "a" (physpage) : "cc" );
972 return ccode & 2;
973}
1da177e4
LT
974
975/*
976 * Conversion functions: convert a page and protection to a page entry,
977 * and a page entry and page directory to the page they refer to.
978 */
979static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
980{
981 pte_t __pte;
982 pte_val(__pte) = physpage + pgprot_val(pgprot);
983 return __pte;
984}
985
2dcea57a
HC
986static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
987{
0b2b6e1d 988 unsigned long physpage = page_to_phys(page);
1da177e4 989
2dcea57a
HC
990 return mk_pte_phys(physpage, pgprot);
991}
992
190a1d72
MS
993#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
994#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
995#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
996#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1da177e4 997
190a1d72
MS
998#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
999#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1da177e4 1000
190a1d72 1001#ifndef __s390x__
1da177e4 1002
190a1d72
MS
1003#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1004#define pud_deref(pmd) ({ BUG(); 0UL; })
1005#define pgd_deref(pmd) ({ BUG(); 0UL; })
46a82b2d 1006
190a1d72
MS
1007#define pud_offset(pgd, address) ((pud_t *) pgd)
1008#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1da177e4 1009
190a1d72 1010#else /* __s390x__ */
1da177e4 1011
190a1d72
MS
1012#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1013#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
5a216a20 1014#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1da177e4 1015
5a216a20
MS
1016static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1017{
6252d702
MS
1018 pud_t *pud = (pud_t *) pgd;
1019 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1020 pud = (pud_t *) pgd_deref(*pgd);
5a216a20
MS
1021 return pud + pud_index(address);
1022}
1da177e4 1023
190a1d72 1024static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1da177e4 1025{
6252d702
MS
1026 pmd_t *pmd = (pmd_t *) pud;
1027 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1028 pmd = (pmd_t *) pud_deref(*pud);
190a1d72 1029 return pmd + pmd_index(address);
1da177e4
LT
1030}
1031
190a1d72 1032#endif /* __s390x__ */
1da177e4 1033
190a1d72
MS
1034#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1035#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1036#define pte_page(x) pfn_to_page(pte_pfn(x))
1da177e4 1037
190a1d72 1038#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1da177e4 1039
190a1d72
MS
1040/* Find an entry in the lowest level page table.. */
1041#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1042#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1da177e4
LT
1043#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1044#define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address)
1045#define pte_unmap(pte) do { } while (0)
1046#define pte_unmap_nested(pte) do { } while (0)
1047
1048/*
1049 * 31 bit swap entry format:
1050 * A page-table entry has some bits we have to treat in a special way.
1051 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1052 * exception will occur instead of a page translation exception. The
1053 * specifiation exception has the bad habit not to store necessary
1054 * information in the lowcore.
1055 * Bit 21 and bit 22 are the page invalid bit and the page protection
1056 * bit. We set both to indicate a swapped page.
1057 * Bit 30 and 31 are used to distinguish the different page types. For
1058 * a swapped page these bits need to be zero.
1059 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1060 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1061 * plus 24 for the offset.
1062 * 0| offset |0110|o|type |00|
1063 * 0 0000000001111111111 2222 2 22222 33
1064 * 0 1234567890123456789 0123 4 56789 01
1065 *
1066 * 64 bit swap entry format:
1067 * A page-table entry has some bits we have to treat in a special way.
1068 * Bits 52 and bit 55 have to be zero, otherwise an specification
1069 * exception will occur instead of a page translation exception. The
1070 * specifiation exception has the bad habit not to store necessary
1071 * information in the lowcore.
1072 * Bit 53 and bit 54 are the page invalid bit and the page protection
1073 * bit. We set both to indicate a swapped page.
1074 * Bit 62 and 63 are used to distinguish the different page types. For
1075 * a swapped page these bits need to be zero.
1076 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1077 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1078 * plus 56 for the offset.
1079 * | offset |0110|o|type |00|
1080 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1081 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1082 */
1083#ifndef __s390x__
1084#define __SWP_OFFSET_MASK (~0UL >> 12)
1085#else
1086#define __SWP_OFFSET_MASK (~0UL >> 11)
1087#endif
4448aaf0 1088static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1da177e4
LT
1089{
1090 pte_t pte;
1091 offset &= __SWP_OFFSET_MASK;
9282ed92 1092 pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
1da177e4
LT
1093 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1094 return pte;
1095}
1096
1097#define __swp_type(entry) (((entry).val >> 2) & 0x1f)
1098#define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
1099#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1100
1101#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1102#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1103
1104#ifndef __s390x__
1105# define PTE_FILE_MAX_BITS 26
1106#else /* __s390x__ */
1107# define PTE_FILE_MAX_BITS 59
1108#endif /* __s390x__ */
1109
1110#define pte_to_pgoff(__pte) \
1111 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1112
1113#define pgoff_to_pte(__off) \
1114 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
9282ed92 1115 | _PAGE_TYPE_FILE })
1da177e4
LT
1116
1117#endif /* !__ASSEMBLY__ */
1118
1119#define kern_addr_valid(addr) (1)
1120
17f34580
HC
1121extern int vmem_add_mapping(unsigned long start, unsigned long size);
1122extern int vmem_remove_mapping(unsigned long start, unsigned long size);
402b0862 1123extern int s390_enable_sie(void);
f4eb07c1 1124
1da177e4
LT
1125/*
1126 * No page table caches to initialise
1127 */
1128#define pgtable_cache_init() do { } while (0)
1129
1da177e4
LT
1130#include <asm-generic/pgtable.h>
1131
1132#endif /* _S390_PAGE_H */