mm: consolidate pgtable_cache_init() and pgd_cache_init()
[linux-2.6-block.git] / arch / riscv / include / asm / pgtable.h
CommitLineData
50acfb2b 1/* SPDX-License-Identifier: GPL-2.0-only */
07037db5
PD
2/*
3 * Copyright (C) 2012 Regents of the University of California
07037db5
PD
4 */
5
6#ifndef _ASM_RISCV_PGTABLE_H
7#define _ASM_RISCV_PGTABLE_H
8
9#include <linux/mmzone.h>
10
11#include <asm/pgtable-bits.h>
12
13#ifndef __ASSEMBLY__
14
07037db5
PD
15/* Page Upper Directory not used in RISC-V */
16#include <asm-generic/pgtable-nopud.h>
17#include <asm/page.h>
18#include <asm/tlbflush.h>
19#include <linux/mm_types.h>
20
21#ifdef CONFIG_64BIT
22#include <asm/pgtable-64.h>
23#else
24#include <asm/pgtable-32.h>
25#endif /* CONFIG_64BIT */
26
27/* Number of entries in the page global directory */
28#define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t))
29/* Number of entries in the page table */
30#define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t))
31
32/* Number of PGD entries that a user-mode program can use */
33#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
34#define FIRST_USER_ADDRESS 0
35
36/* Page protection bits */
37#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
38
e3613bb8 39#define PAGE_NONE __pgprot(_PAGE_PROT_NONE)
07037db5
PD
40#define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ)
41#define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
42#define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC)
43#define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
44#define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \
45 _PAGE_EXEC | _PAGE_WRITE)
46
47#define PAGE_COPY PAGE_READ
48#define PAGE_COPY_EXEC PAGE_EXEC
49#define PAGE_COPY_READ_EXEC PAGE_READ_EXEC
50#define PAGE_SHARED PAGE_WRITE
51#define PAGE_SHARED_EXEC PAGE_WRITE_EXEC
52
53#define _PAGE_KERNEL (_PAGE_READ \
54 | _PAGE_WRITE \
55 | _PAGE_PRESENT \
56 | _PAGE_ACCESSED \
57 | _PAGE_DIRTY)
58
59#define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
60#define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC)
61
671f9a3e
AP
62#define PAGE_TABLE __pgprot(_PAGE_TABLE)
63
07037db5
PD
64extern pgd_t swapper_pg_dir[];
65
66/* MAP_PRIVATE permissions: xwr (copy-on-write) */
67#define __P000 PAGE_NONE
68#define __P001 PAGE_READ
69#define __P010 PAGE_COPY
70#define __P011 PAGE_COPY
71#define __P100 PAGE_EXEC
72#define __P101 PAGE_READ_EXEC
73#define __P110 PAGE_COPY_EXEC
74#define __P111 PAGE_COPY_READ_EXEC
75
76/* MAP_SHARED permissions: xwr */
77#define __S000 PAGE_NONE
78#define __S001 PAGE_READ
79#define __S010 PAGE_SHARED
80#define __S011 PAGE_SHARED
81#define __S100 PAGE_EXEC
82#define __S101 PAGE_READ_EXEC
83#define __S110 PAGE_SHARED_EXEC
84#define __S111 PAGE_SHARED_EXEC
85
d95f1a54
LG
86/*
87 * Roughly size the vmemmap space to be large enough to fit enough
88 * struct pages to map half the virtual address space. Then
89 * position vmemmap directly below the VMALLOC region.
90 */
91#define VMEMMAP_SHIFT \
92 (CONFIG_VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
93#define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT)
94#define VMEMMAP_END (VMALLOC_START - 1)
95#define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE)
96
97#define vmemmap ((struct page *)VMEMMAP_START)
98
07037db5
PD
99/*
100 * ZERO_PAGE is a global shared page that is always zero,
101 * used for zero-mapped memory areas, etc.
102 */
103extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
104#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
105
106static inline int pmd_present(pmd_t pmd)
107{
e3613bb8 108 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
07037db5
PD
109}
110
111static inline int pmd_none(pmd_t pmd)
112{
113 return (pmd_val(pmd) == 0);
114}
115
116static inline int pmd_bad(pmd_t pmd)
117{
118 return !pmd_present(pmd);
119}
120
121static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
122{
123 *pmdp = pmd;
124}
125
126static inline void pmd_clear(pmd_t *pmdp)
127{
128 set_pmd(pmdp, __pmd(0));
129}
130
07037db5
PD
131static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
132{
133 return __pgd((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
134}
135
671f9a3e
AP
136static inline unsigned long _pgd_pfn(pgd_t pgd)
137{
138 return pgd_val(pgd) >> _PAGE_PFN_SHIFT;
139}
140
07037db5
PD
141#define pgd_index(addr) (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
142
143/* Locate an entry in the page global directory */
144static inline pgd_t *pgd_offset(const struct mm_struct *mm, unsigned long addr)
145{
146 return mm->pgd + pgd_index(addr);
147}
148/* Locate an entry in the kernel page global directory */
149#define pgd_offset_k(addr) pgd_offset(&init_mm, (addr))
150
151static inline struct page *pmd_page(pmd_t pmd)
152{
153 return pfn_to_page(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
154}
155
156static inline unsigned long pmd_page_vaddr(pmd_t pmd)
157{
158 return (unsigned long)pfn_to_virt(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
159}
160
161/* Yields the page frame number (PFN) of a page table entry */
162static inline unsigned long pte_pfn(pte_t pte)
163{
164 return (pte_val(pte) >> _PAGE_PFN_SHIFT);
165}
166
167#define pte_page(x) pfn_to_page(pte_pfn(x))
168
169/* Constructs a page table entry */
170static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
171{
172 return __pte((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
173}
174
175static inline pte_t mk_pte(struct page *page, pgprot_t prot)
176{
177 return pfn_pte(page_to_pfn(page), prot);
178}
179
180#define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
181
182static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long addr)
183{
184 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(addr);
185}
186
187#define pte_offset_map(dir, addr) pte_offset_kernel((dir), (addr))
188#define pte_unmap(pte) ((void)(pte))
189
07037db5
PD
190static inline int pte_present(pte_t pte)
191{
e3613bb8 192 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
07037db5
PD
193}
194
195static inline int pte_none(pte_t pte)
196{
197 return (pte_val(pte) == 0);
198}
199
07037db5
PD
200static inline int pte_write(pte_t pte)
201{
202 return pte_val(pte) & _PAGE_WRITE;
203}
204
08f051ed
AW
205static inline int pte_exec(pte_t pte)
206{
207 return pte_val(pte) & _PAGE_EXEC;
208}
209
07037db5
PD
210static inline int pte_huge(pte_t pte)
211{
212 return pte_present(pte)
213 && (pte_val(pte) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC));
214}
215
07037db5
PD
216static inline int pte_dirty(pte_t pte)
217{
218 return pte_val(pte) & _PAGE_DIRTY;
219}
220
221static inline int pte_young(pte_t pte)
222{
223 return pte_val(pte) & _PAGE_ACCESSED;
224}
225
226static inline int pte_special(pte_t pte)
227{
228 return pte_val(pte) & _PAGE_SPECIAL;
229}
230
231/* static inline pte_t pte_rdprotect(pte_t pte) */
232
233static inline pte_t pte_wrprotect(pte_t pte)
234{
235 return __pte(pte_val(pte) & ~(_PAGE_WRITE));
236}
237
238/* static inline pte_t pte_mkread(pte_t pte) */
239
240static inline pte_t pte_mkwrite(pte_t pte)
241{
242 return __pte(pte_val(pte) | _PAGE_WRITE);
243}
244
245/* static inline pte_t pte_mkexec(pte_t pte) */
246
247static inline pte_t pte_mkdirty(pte_t pte)
248{
249 return __pte(pte_val(pte) | _PAGE_DIRTY);
250}
251
252static inline pte_t pte_mkclean(pte_t pte)
253{
254 return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
255}
256
257static inline pte_t pte_mkyoung(pte_t pte)
258{
259 return __pte(pte_val(pte) | _PAGE_ACCESSED);
260}
261
262static inline pte_t pte_mkold(pte_t pte)
263{
264 return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
265}
266
267static inline pte_t pte_mkspecial(pte_t pte)
268{
269 return __pte(pte_val(pte) | _PAGE_SPECIAL);
270}
271
9e953cda
AG
272static inline pte_t pte_mkhuge(pte_t pte)
273{
274 return pte;
275}
276
07037db5
PD
277/* Modify page protection bits */
278static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
279{
280 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
281}
282
283#define pgd_ERROR(e) \
284 pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
285
286
287/* Commit new configuration to MMU hardware */
288static inline void update_mmu_cache(struct vm_area_struct *vma,
289 unsigned long address, pte_t *ptep)
290{
291 /*
292 * The kernel assumes that TLBs don't cache invalid entries, but
293 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
294 * cache flush; it is necessary even after writing invalid entries.
295 * Relying on flush_tlb_fix_spurious_fault would suffice, but
296 * the extra traps reduce performance. So, eagerly SFENCE.VMA.
297 */
298 local_flush_tlb_page(address);
299}
300
301#define __HAVE_ARCH_PTE_SAME
302static inline int pte_same(pte_t pte_a, pte_t pte_b)
303{
304 return pte_val(pte_a) == pte_val(pte_b);
305}
306
08f051ed
AW
307/*
308 * Certain architectures need to do special things when PTEs within
309 * a page table are directly modified. Thus, the following hook is
310 * made available.
311 */
312static inline void set_pte(pte_t *ptep, pte_t pteval)
313{
314 *ptep = pteval;
315}
316
317void flush_icache_pte(pte_t pte);
318
319static inline void set_pte_at(struct mm_struct *mm,
320 unsigned long addr, pte_t *ptep, pte_t pteval)
321{
322 if (pte_present(pteval) && pte_exec(pteval))
323 flush_icache_pte(pteval);
324
325 set_pte(ptep, pteval);
326}
327
328static inline void pte_clear(struct mm_struct *mm,
329 unsigned long addr, pte_t *ptep)
330{
331 set_pte_at(mm, addr, ptep, __pte(0));
332}
333
07037db5
PD
334#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
335static inline int ptep_set_access_flags(struct vm_area_struct *vma,
336 unsigned long address, pte_t *ptep,
337 pte_t entry, int dirty)
338{
339 if (!pte_same(*ptep, entry))
340 set_pte_at(vma->vm_mm, address, ptep, entry);
341 /*
342 * update_mmu_cache will unconditionally execute, handling both
343 * the case that the PTE changed and the spurious fault case.
344 */
345 return true;
346}
347
348#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
349static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
350 unsigned long address, pte_t *ptep)
351{
352 return __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
353}
354
355#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
356static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
357 unsigned long address,
358 pte_t *ptep)
359{
360 if (!pte_young(*ptep))
361 return 0;
362 return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep));
363}
364
365#define __HAVE_ARCH_PTEP_SET_WRPROTECT
366static inline void ptep_set_wrprotect(struct mm_struct *mm,
367 unsigned long address, pte_t *ptep)
368{
369 atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
370}
371
372#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
373static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
374 unsigned long address, pte_t *ptep)
375{
376 /*
377 * This comment is borrowed from x86, but applies equally to RISC-V:
378 *
379 * Clearing the accessed bit without a TLB flush
380 * doesn't cause data corruption. [ It could cause incorrect
381 * page aging and the (mistaken) reclaim of hot pages, but the
382 * chance of that should be relatively low. ]
383 *
384 * So as a performance optimization don't flush the TLB when
385 * clearing the accessed bit, it will eventually be flushed by
386 * a context switch or a VM operation anyway. [ In the rare
387 * event of it not getting flushed for a long time the delay
388 * shouldn't really matter because there's no real memory
389 * pressure for swapout to react to. ]
390 */
391 return ptep_test_and_clear_young(vma, address, ptep);
392}
393
394/*
395 * Encode and decode a swap entry
396 *
397 * Format of swap PTE:
398 * bit 0: _PAGE_PRESENT (zero)
e3613bb8 399 * bit 1: _PAGE_PROT_NONE (zero)
07037db5
PD
400 * bits 2 to 6: swap type
401 * bits 7 to XLEN-1: swap offset
402 */
403#define __SWP_TYPE_SHIFT 2
404#define __SWP_TYPE_BITS 5
405#define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1)
406#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
407
408#define MAX_SWAPFILES_CHECK() \
409 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
410
411#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
412#define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
413#define __swp_entry(type, offset) ((swp_entry_t) \
414 { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
415
416#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
417#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
418
419#ifdef CONFIG_FLATMEM
420#define kern_addr_valid(addr) (1) /* FIXME */
421#endif
422
671f9a3e 423extern void *dtb_early_va;
0651c263 424extern void setup_bootmem(void);
07037db5
PD
425extern void paging_init(void);
426
07037db5
PD
427#define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1)
428#define VMALLOC_END (PAGE_OFFSET - 1)
429#define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE)
430
a256f2e3
AP
431#define FIXADDR_TOP VMALLOC_START
432#ifdef CONFIG_64BIT
433#define FIXADDR_SIZE PMD_SIZE
434#else
435#define FIXADDR_SIZE PGDIR_SIZE
436#endif
437#define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE)
438
07037db5 439/*
a256f2e3 440 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
07037db5
PD
441 * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
442 */
443#ifdef CONFIG_64BIT
444#define TASK_SIZE (PGDIR_SIZE * PTRS_PER_PGD / 2)
445#else
a256f2e3 446#define TASK_SIZE FIXADDR_START
07037db5
PD
447#endif
448
449#include <asm-generic/pgtable.h>
450
451#endif /* !__ASSEMBLY__ */
452
453#endif /* _ASM_RISCV_PGTABLE_H */