[PATCH] getting rid of all casts of k[cmz]alloc() calls
[linux-2.6-block.git] / arch / ppc / 8260_io / fcc_enet.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Ethernet Controller (FCC) driver for Motorola MPC8260.
3 * Copyright (c) 2000 MontaVista Software, Inc. Dan Malek (dmalek@jlc.net)
4 *
5 * This version of the driver is a combination of the 8xx fec and
6 * 8260 SCC Ethernet drivers. This version has some additional
7 * configuration options, which should probably be moved out of
8 * here. This driver currently works for the EST SBC8260,
9 * SBS Diablo/BCM, Embedded Planet RPX6, TQM8260, and others.
10 *
11 * Right now, I am very watseful with the buffers. I allocate memory
12 * pages and then divide them into 2K frame buffers. This way I know I
13 * have buffers large enough to hold one frame within one buffer descriptor.
14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15 * will be much more memory efficient and will easily handle lots of
16 * small packets. Since this is a cache coherent processor and CPM,
17 * I could also preallocate SKB's and use them directly on the interface.
18 *
19 * 2004-12 Leo Li (leoli@freescale.com)
20 * - Rework the FCC clock configuration part, make it easier to configure.
21 *
22 */
23
1da177e4
LT
24#include <linux/kernel.h>
25#include <linux/sched.h>
26#include <linux/string.h>
27#include <linux/ptrace.h>
28#include <linux/errno.h>
29#include <linux/ioport.h>
30#include <linux/slab.h>
31#include <linux/interrupt.h>
32#include <linux/pci.h>
33#include <linux/init.h>
34#include <linux/delay.h>
35#include <linux/netdevice.h>
36#include <linux/etherdevice.h>
37#include <linux/skbuff.h>
38#include <linux/spinlock.h>
39#include <linux/mii.h>
40#include <linux/workqueue.h>
41#include <linux/bitops.h>
42
43#include <asm/immap_cpm2.h>
44#include <asm/pgtable.h>
45#include <asm/mpc8260.h>
46#include <asm/irq.h>
47#include <asm/uaccess.h>
48#include <asm/signal.h>
49
50/* We can't use the PHY interrupt if we aren't using MDIO. */
51#if !defined(CONFIG_USE_MDIO)
52#undef PHY_INTERRUPT
53#endif
54
55/* If we have a PHY interrupt, we will advertise both full-duplex and half-
56 * duplex capabilities. If we don't have a PHY interrupt, then we will only
57 * advertise half-duplex capabilities.
58 */
59#define MII_ADVERTISE_HALF (ADVERTISE_100HALF | ADVERTISE_10HALF | \
60 ADVERTISE_CSMA)
61#define MII_ADVERTISE_ALL (ADVERTISE_100FULL | ADVERTISE_10FULL | \
62 MII_ADVERTISE_HALF)
63#ifdef PHY_INTERRUPT
64#define MII_ADVERTISE_DEFAULT MII_ADVERTISE_ALL
65#else
66#define MII_ADVERTISE_DEFAULT MII_ADVERTISE_HALF
67#endif
68#include <asm/cpm2.h>
69
70/* The transmitter timeout
71 */
72#define TX_TIMEOUT (2*HZ)
73
74#ifdef CONFIG_USE_MDIO
75/* Forward declarations of some structures to support different PHYs */
76
77typedef struct {
78 uint mii_data;
79 void (*funct)(uint mii_reg, struct net_device *dev);
80} phy_cmd_t;
81
82typedef struct {
83 uint id;
84 char *name;
85
86 const phy_cmd_t *config;
87 const phy_cmd_t *startup;
88 const phy_cmd_t *ack_int;
89 const phy_cmd_t *shutdown;
90} phy_info_t;
91
92/* values for phy_status */
93
94#define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
95#define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
96#define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
97#define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
98#define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
99#define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
100#define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
101
102#define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
103#define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
104#define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
105#define PHY_STAT_SPMASK 0xf000 /* mask for speed */
106#define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
107#define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
108#define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
109#define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
110#endif /* CONFIG_USE_MDIO */
111
112/* The number of Tx and Rx buffers. These are allocated from the page
113 * pool. The code may assume these are power of two, so it is best
114 * to keep them that size.
115 * We don't need to allocate pages for the transmitter. We just use
116 * the skbuffer directly.
117 */
118#define FCC_ENET_RX_PAGES 16
119#define FCC_ENET_RX_FRSIZE 2048
120#define FCC_ENET_RX_FRPPG (PAGE_SIZE / FCC_ENET_RX_FRSIZE)
121#define RX_RING_SIZE (FCC_ENET_RX_FRPPG * FCC_ENET_RX_PAGES)
122#define TX_RING_SIZE 16 /* Must be power of two */
123#define TX_RING_MOD_MASK 15 /* for this to work */
124
125/* The FCC stores dest/src/type, data, and checksum for receive packets.
126 * size includes support for VLAN
127 */
128#define PKT_MAXBUF_SIZE 1522
129#define PKT_MINBUF_SIZE 64
130
131/* Maximum input DMA size. Must be a should(?) be a multiple of 4.
132 * size includes support for VLAN
133 */
134#define PKT_MAXDMA_SIZE 1524
135
136/* Maximum input buffer size. Must be a multiple of 32.
137*/
138#define PKT_MAXBLR_SIZE 1536
139
140static int fcc_enet_open(struct net_device *dev);
141static int fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
142static int fcc_enet_rx(struct net_device *dev);
39e3eb72 143static irqreturn_t fcc_enet_interrupt(int irq, void *dev_id);
1da177e4
LT
144static int fcc_enet_close(struct net_device *dev);
145static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev);
146/* static void set_multicast_list(struct net_device *dev); */
147static void fcc_restart(struct net_device *dev, int duplex);
148static void fcc_stop(struct net_device *dev);
149static int fcc_enet_set_mac_address(struct net_device *dev, void *addr);
150
151/* These will be configurable for the FCC choice.
152 * Multiple ports can be configured. There is little choice among the
153 * I/O pins to the PHY, except the clocks. We will need some board
154 * dependent clock selection.
155 * Why in the hell did I put these inside #ifdef's? I dunno, maybe to
156 * help show what pins are used for each device.
157 */
158
159/* Since the CLK setting changes greatly from board to board, I changed
160 * it to a easy way. You just need to specify which CLK number to use.
161 * Note that only limited choices can be make on each port.
162 */
163
164/* FCC1 Clock Source Configuration. There are board specific.
165 Can only choose from CLK9-12 */
166#ifdef CONFIG_SBC82xx
167#define F1_RXCLK 9
168#define F1_TXCLK 10
169#elif defined(CONFIG_ADS8272)
170#define F1_RXCLK 11
171#define F1_TXCLK 10
172#else
173#define F1_RXCLK 12
174#define F1_TXCLK 11
175#endif
176
177/* FCC2 Clock Source Configuration. There are board specific.
178 Can only choose from CLK13-16 */
179#ifdef CONFIG_ADS8272
180#define F2_RXCLK 15
181#define F2_TXCLK 16
182#else
183#define F2_RXCLK 13
184#define F2_TXCLK 14
185#endif
186
187/* FCC3 Clock Source Configuration. There are board specific.
188 Can only choose from CLK13-16 */
189#define F3_RXCLK 15
190#define F3_TXCLK 16
191
192/* Automatically generates register configurations */
193#define PC_CLK(x) ((uint)(1<<(x-1))) /* FCC CLK I/O ports */
194
195#define CMXFCR_RF1CS(x) ((uint)((x-5)<<27)) /* FCC1 Receive Clock Source */
196#define CMXFCR_TF1CS(x) ((uint)((x-5)<<24)) /* FCC1 Transmit Clock Source */
197#define CMXFCR_RF2CS(x) ((uint)((x-9)<<19)) /* FCC2 Receive Clock Source */
198#define CMXFCR_TF2CS(x) ((uint)((x-9)<<16)) /* FCC2 Transmit Clock Source */
199#define CMXFCR_RF3CS(x) ((uint)((x-9)<<11)) /* FCC3 Receive Clock Source */
200#define CMXFCR_TF3CS(x) ((uint)((x-9)<<8)) /* FCC3 Transmit Clock Source */
201
202#define PC_F1RXCLK PC_CLK(F1_RXCLK)
203#define PC_F1TXCLK PC_CLK(F1_TXCLK)
204#define CMX1_CLK_ROUTE (CMXFCR_RF1CS(F1_RXCLK) | CMXFCR_TF1CS(F1_TXCLK))
205#define CMX1_CLK_MASK ((uint)0xff000000)
206
207#define PC_F2RXCLK PC_CLK(F2_RXCLK)
208#define PC_F2TXCLK PC_CLK(F2_TXCLK)
209#define CMX2_CLK_ROUTE (CMXFCR_RF2CS(F2_RXCLK) | CMXFCR_TF2CS(F2_TXCLK))
210#define CMX2_CLK_MASK ((uint)0x00ff0000)
211
212#define PC_F3RXCLK PC_CLK(F3_RXCLK)
213#define PC_F3TXCLK PC_CLK(F3_TXCLK)
214#define CMX3_CLK_ROUTE (CMXFCR_RF3CS(F3_RXCLK) | CMXFCR_TF3CS(F3_TXCLK))
215#define CMX3_CLK_MASK ((uint)0x0000ff00)
216
217
218/* I/O Pin assignment for FCC1. I don't yet know the best way to do this,
219 * but there is little variation among the choices.
220 */
221#define PA1_COL ((uint)0x00000001)
222#define PA1_CRS ((uint)0x00000002)
223#define PA1_TXER ((uint)0x00000004)
224#define PA1_TXEN ((uint)0x00000008)
225#define PA1_RXDV ((uint)0x00000010)
226#define PA1_RXER ((uint)0x00000020)
227#define PA1_TXDAT ((uint)0x00003c00)
228#define PA1_RXDAT ((uint)0x0003c000)
229#define PA1_PSORA_BOUT (PA1_RXDAT | PA1_TXDAT)
230#define PA1_PSORA_BIN (PA1_COL | PA1_CRS | PA1_TXER | PA1_TXEN | \
231 PA1_RXDV | PA1_RXER)
232#define PA1_DIRA_BOUT (PA1_RXDAT | PA1_CRS | PA1_COL | PA1_RXER | PA1_RXDV)
233#define PA1_DIRA_BIN (PA1_TXDAT | PA1_TXEN | PA1_TXER)
234
235
236/* I/O Pin assignment for FCC2. I don't yet know the best way to do this,
237 * but there is little variation among the choices.
238 */
239#define PB2_TXER ((uint)0x00000001)
240#define PB2_RXDV ((uint)0x00000002)
241#define PB2_TXEN ((uint)0x00000004)
242#define PB2_RXER ((uint)0x00000008)
243#define PB2_COL ((uint)0x00000010)
244#define PB2_CRS ((uint)0x00000020)
245#define PB2_TXDAT ((uint)0x000003c0)
246#define PB2_RXDAT ((uint)0x00003c00)
247#define PB2_PSORB_BOUT (PB2_RXDAT | PB2_TXDAT | PB2_CRS | PB2_COL | \
248 PB2_RXER | PB2_RXDV | PB2_TXER)
249#define PB2_PSORB_BIN (PB2_TXEN)
250#define PB2_DIRB_BOUT (PB2_RXDAT | PB2_CRS | PB2_COL | PB2_RXER | PB2_RXDV)
251#define PB2_DIRB_BIN (PB2_TXDAT | PB2_TXEN | PB2_TXER)
252
253
254/* I/O Pin assignment for FCC3. I don't yet know the best way to do this,
255 * but there is little variation among the choices.
256 */
257#define PB3_RXDV ((uint)0x00004000)
258#define PB3_RXER ((uint)0x00008000)
259#define PB3_TXER ((uint)0x00010000)
260#define PB3_TXEN ((uint)0x00020000)
261#define PB3_COL ((uint)0x00040000)
262#define PB3_CRS ((uint)0x00080000)
263#ifndef CONFIG_RPX8260
264#define PB3_TXDAT ((uint)0x0f000000)
265#define PC3_TXDAT ((uint)0x00000000)
266#else
267#define PB3_TXDAT ((uint)0x0f000000)
268#define PC3_TXDAT 0
269#endif
270#define PB3_RXDAT ((uint)0x00f00000)
271#define PB3_PSORB_BOUT (PB3_RXDAT | PB3_TXDAT | PB3_CRS | PB3_COL | \
272 PB3_RXER | PB3_RXDV | PB3_TXER | PB3_TXEN)
273#define PB3_PSORB_BIN (0)
274#define PB3_DIRB_BOUT (PB3_RXDAT | PB3_CRS | PB3_COL | PB3_RXER | PB3_RXDV)
275#define PB3_DIRB_BIN (PB3_TXDAT | PB3_TXEN | PB3_TXER)
276
277#define PC3_PSORC_BOUT (PC3_TXDAT)
278#define PC3_PSORC_BIN (0)
279#define PC3_DIRC_BOUT (0)
280#define PC3_DIRC_BIN (PC3_TXDAT)
281
282
283/* MII status/control serial interface.
284*/
285#if defined(CONFIG_RPX8260)
286/* The EP8260 doesn't use Port C for MDIO */
287#define PC_MDIO ((uint)0x00000000)
288#define PC_MDCK ((uint)0x00000000)
289#elif defined(CONFIG_TQM8260)
290/* TQM8260 has MDIO and MDCK on PC30 and PC31 respectively */
291#define PC_MDIO ((uint)0x00000002)
292#define PC_MDCK ((uint)0x00000001)
293#elif defined(CONFIG_ADS8272)
294#define PC_MDIO ((uint)0x00002000)
295#define PC_MDCK ((uint)0x00001000)
296#elif defined(CONFIG_EST8260) || defined(CONFIG_ADS8260) || defined(CONFIG_PQ2FADS)
297#define PC_MDIO ((uint)0x00400000)
298#define PC_MDCK ((uint)0x00200000)
299#else
300#define PC_MDIO ((uint)0x00000004)
301#define PC_MDCK ((uint)0x00000020)
302#endif
303
304#if defined(CONFIG_USE_MDIO) && (!defined(PC_MDIO) || !defined(PC_MDCK))
305#error "Must define PC_MDIO and PC_MDCK if using MDIO"
306#endif
307
308/* PHY addresses */
309/* default to dynamic config of phy addresses */
310#define FCC1_PHY_ADDR 0
311#ifdef CONFIG_PQ2FADS
312#define FCC2_PHY_ADDR 0
313#else
314#define FCC2_PHY_ADDR 2
315#endif
316#define FCC3_PHY_ADDR 3
317
318/* A table of information for supporting FCCs. This does two things.
319 * First, we know how many FCCs we have and they are always externally
320 * numbered from zero. Second, it holds control register and I/O
321 * information that could be different among board designs.
322 */
323typedef struct fcc_info {
324 uint fc_fccnum;
325 uint fc_phyaddr;
326 uint fc_cpmblock;
327 uint fc_cpmpage;
328 uint fc_proff;
329 uint fc_interrupt;
330 uint fc_trxclocks;
331 uint fc_clockroute;
332 uint fc_clockmask;
333 uint fc_mdio;
334 uint fc_mdck;
335} fcc_info_t;
336
337static fcc_info_t fcc_ports[] = {
338#ifdef CONFIG_FCC1_ENET
339 { 0, FCC1_PHY_ADDR, CPM_CR_FCC1_SBLOCK, CPM_CR_FCC1_PAGE, PROFF_FCC1, SIU_INT_FCC1,
340 (PC_F1RXCLK | PC_F1TXCLK), CMX1_CLK_ROUTE, CMX1_CLK_MASK,
341 PC_MDIO, PC_MDCK },
342#endif
343#ifdef CONFIG_FCC2_ENET
344 { 1, FCC2_PHY_ADDR, CPM_CR_FCC2_SBLOCK, CPM_CR_FCC2_PAGE, PROFF_FCC2, SIU_INT_FCC2,
345 (PC_F2RXCLK | PC_F2TXCLK), CMX2_CLK_ROUTE, CMX2_CLK_MASK,
346 PC_MDIO, PC_MDCK },
347#endif
348#ifdef CONFIG_FCC3_ENET
349 { 2, FCC3_PHY_ADDR, CPM_CR_FCC3_SBLOCK, CPM_CR_FCC3_PAGE, PROFF_FCC3, SIU_INT_FCC3,
350 (PC_F3RXCLK | PC_F3TXCLK), CMX3_CLK_ROUTE, CMX3_CLK_MASK,
351 PC_MDIO, PC_MDCK },
352#endif
353};
354
355/* The FCC buffer descriptors track the ring buffers. The rx_bd_base and
356 * tx_bd_base always point to the base of the buffer descriptors. The
357 * cur_rx and cur_tx point to the currently available buffer.
358 * The dirty_tx tracks the current buffer that is being sent by the
359 * controller. The cur_tx and dirty_tx are equal under both completely
360 * empty and completely full conditions. The empty/ready indicator in
361 * the buffer descriptor determines the actual condition.
362 */
363struct fcc_enet_private {
364 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
365 struct sk_buff* tx_skbuff[TX_RING_SIZE];
366 ushort skb_cur;
367 ushort skb_dirty;
368
369 /* CPM dual port RAM relative addresses.
370 */
371 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
372 cbd_t *tx_bd_base;
373 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
374 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
375 volatile fcc_t *fccp;
376 volatile fcc_enet_t *ep;
377 struct net_device_stats stats;
378 uint tx_free;
379 spinlock_t lock;
380
381#ifdef CONFIG_USE_MDIO
382 uint phy_id;
383 uint phy_id_done;
384 uint phy_status;
385 phy_info_t *phy;
386 struct work_struct phy_relink;
387 struct work_struct phy_display_config;
6d5aefb8 388 struct net_device *dev;
1da177e4
LT
389
390 uint sequence_done;
391
392 uint phy_addr;
393#endif /* CONFIG_USE_MDIO */
394
395 int link;
396 int old_link;
397 int full_duplex;
398
399 fcc_info_t *fip;
400};
401
402static void init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep,
403 volatile cpm2_map_t *immap);
404static void init_fcc_startup(fcc_info_t *fip, struct net_device *dev);
405static void init_fcc_ioports(fcc_info_t *fip, volatile iop_cpm2_t *io,
406 volatile cpm2_map_t *immap);
407static void init_fcc_param(fcc_info_t *fip, struct net_device *dev,
408 volatile cpm2_map_t *immap);
409
410#ifdef CONFIG_USE_MDIO
411static int mii_queue(struct net_device *dev, int request, void (*func)(uint, struct net_device *));
412static uint mii_send_receive(fcc_info_t *fip, uint cmd);
413static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c);
414
415/* Make MII read/write commands for the FCC.
416*/
417#define mk_mii_read(REG) (0x60020000 | (((REG) & 0x1f) << 18))
418#define mk_mii_write(REG, VAL) (0x50020000 | (((REG) & 0x1f) << 18) | \
419 ((VAL) & 0xffff))
420#define mk_mii_end 0
421#endif /* CONFIG_USE_MDIO */
422
423
424static int
425fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
426{
427 struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
428 volatile cbd_t *bdp;
429
430 /* Fill in a Tx ring entry */
431 bdp = cep->cur_tx;
432
433#ifndef final_version
434 if (!cep->tx_free || (bdp->cbd_sc & BD_ENET_TX_READY)) {
435 /* Ooops. All transmit buffers are full. Bail out.
436 * This should not happen, since the tx queue should be stopped.
437 */
438 printk("%s: tx queue full!.\n", dev->name);
439 return 1;
440 }
441#endif
442
443 /* Clear all of the status flags. */
444 bdp->cbd_sc &= ~BD_ENET_TX_STATS;
445
446 /* If the frame is short, tell CPM to pad it. */
447 if (skb->len <= ETH_ZLEN)
448 bdp->cbd_sc |= BD_ENET_TX_PAD;
449 else
450 bdp->cbd_sc &= ~BD_ENET_TX_PAD;
451
452 /* Set buffer length and buffer pointer. */
453 bdp->cbd_datlen = skb->len;
454 bdp->cbd_bufaddr = __pa(skb->data);
455
456 spin_lock_irq(&cep->lock);
457
458 /* Save skb pointer. */
459 cep->tx_skbuff[cep->skb_cur] = skb;
460
461 cep->stats.tx_bytes += skb->len;
462 cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK;
463
464 /* Send it on its way. Tell CPM its ready, interrupt when done,
465 * its the last BD of the frame, and to put the CRC on the end.
466 */
467 bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC);
468
469#if 0
470 /* Errata says don't do this. */
471 cep->fccp->fcc_ftodr = 0x8000;
472#endif
473 dev->trans_start = jiffies;
474
475 /* If this was the last BD in the ring, start at the beginning again. */
476 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
477 bdp = cep->tx_bd_base;
478 else
479 bdp++;
480
481 if (!--cep->tx_free)
482 netif_stop_queue(dev);
483
484 cep->cur_tx = (cbd_t *)bdp;
485
486 spin_unlock_irq(&cep->lock);
487
488 return 0;
489}
490
491
492static void
493fcc_enet_timeout(struct net_device *dev)
494{
495 struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
496
497 printk("%s: transmit timed out.\n", dev->name);
498 cep->stats.tx_errors++;
499#ifndef final_version
500 {
501 int i;
502 cbd_t *bdp;
503 printk(" Ring data dump: cur_tx %p tx_free %d cur_rx %p.\n",
504 cep->cur_tx, cep->tx_free,
505 cep->cur_rx);
506 bdp = cep->tx_bd_base;
507 printk(" Tx @base %p :\n", bdp);
508 for (i = 0 ; i < TX_RING_SIZE; i++, bdp++)
509 printk("%04x %04x %08x\n",
510 bdp->cbd_sc,
511 bdp->cbd_datlen,
512 bdp->cbd_bufaddr);
513 bdp = cep->rx_bd_base;
514 printk(" Rx @base %p :\n", bdp);
515 for (i = 0 ; i < RX_RING_SIZE; i++, bdp++)
516 printk("%04x %04x %08x\n",
517 bdp->cbd_sc,
518 bdp->cbd_datlen,
519 bdp->cbd_bufaddr);
520 }
521#endif
522 if (cep->tx_free)
523 netif_wake_queue(dev);
524}
525
526/* The interrupt handler. */
527static irqreturn_t
39e3eb72 528fcc_enet_interrupt(int irq, void * dev_id)
1da177e4
LT
529{
530 struct net_device *dev = dev_id;
531 volatile struct fcc_enet_private *cep;
532 volatile cbd_t *bdp;
533 ushort int_events;
534 int must_restart;
535
536 cep = (struct fcc_enet_private *)dev->priv;
537
538 /* Get the interrupt events that caused us to be here.
539 */
540 int_events = cep->fccp->fcc_fcce;
541 cep->fccp->fcc_fcce = (int_events & cep->fccp->fcc_fccm);
542 must_restart = 0;
543
544#ifdef PHY_INTERRUPT
545 /* We have to be careful here to make sure that we aren't
546 * interrupted by a PHY interrupt.
547 */
548 disable_irq_nosync(PHY_INTERRUPT);
549#endif
550
551 /* Handle receive event in its own function.
552 */
553 if (int_events & FCC_ENET_RXF)
554 fcc_enet_rx(dev_id);
555
556 /* Check for a transmit error. The manual is a little unclear
557 * about this, so the debug code until I get it figured out. It
558 * appears that if TXE is set, then TXB is not set. However,
559 * if carrier sense is lost during frame transmission, the TXE
560 * bit is set, "and continues the buffer transmission normally."
561 * I don't know if "normally" implies TXB is set when the buffer
562 * descriptor is closed.....trial and error :-).
563 */
564
565 /* Transmit OK, or non-fatal error. Update the buffer descriptors.
566 */
567 if (int_events & (FCC_ENET_TXE | FCC_ENET_TXB)) {
568 spin_lock(&cep->lock);
569 bdp = cep->dirty_tx;
570 while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) {
571 if (cep->tx_free == TX_RING_SIZE)
572 break;
573
574 if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
575 cep->stats.tx_heartbeat_errors++;
576 if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
577 cep->stats.tx_window_errors++;
578 if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
579 cep->stats.tx_aborted_errors++;
580 if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
581 cep->stats.tx_fifo_errors++;
582 if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
583 cep->stats.tx_carrier_errors++;
584
585
586 /* No heartbeat or Lost carrier are not really bad errors.
587 * The others require a restart transmit command.
588 */
589 if (bdp->cbd_sc &
590 (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
591 must_restart = 1;
592 cep->stats.tx_errors++;
593 }
594
595 cep->stats.tx_packets++;
596
597 /* Deferred means some collisions occurred during transmit,
598 * but we eventually sent the packet OK.
599 */
600 if (bdp->cbd_sc & BD_ENET_TX_DEF)
601 cep->stats.collisions++;
602
603 /* Free the sk buffer associated with this last transmit. */
604 dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]);
605 cep->tx_skbuff[cep->skb_dirty] = NULL;
606 cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK;
607
608 /* Update pointer to next buffer descriptor to be transmitted. */
609 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
610 bdp = cep->tx_bd_base;
611 else
612 bdp++;
613
614 /* I don't know if we can be held off from processing these
615 * interrupts for more than one frame time. I really hope
616 * not. In such a case, we would now want to check the
617 * currently available BD (cur_tx) and determine if any
618 * buffers between the dirty_tx and cur_tx have also been
619 * sent. We would want to process anything in between that
620 * does not have BD_ENET_TX_READY set.
621 */
622
623 /* Since we have freed up a buffer, the ring is no longer
624 * full.
625 */
626 if (!cep->tx_free++) {
627 if (netif_queue_stopped(dev)) {
628 netif_wake_queue(dev);
629 }
630 }
631
632 cep->dirty_tx = (cbd_t *)bdp;
633 }
634
635 if (must_restart) {
636 volatile cpm_cpm2_t *cp;
637
638 /* Some transmit errors cause the transmitter to shut
639 * down. We now issue a restart transmit. Since the
640 * errors close the BD and update the pointers, the restart
641 * _should_ pick up without having to reset any of our
642 * pointers either. Also, To workaround 8260 device erratum
643 * CPM37, we must disable and then re-enable the transmitter
644 * following a Late Collision, Underrun, or Retry Limit error.
645 */
646 cep->fccp->fcc_gfmr &= ~FCC_GFMR_ENT;
647 udelay(10); /* wait a few microseconds just on principle */
648 cep->fccp->fcc_gfmr |= FCC_GFMR_ENT;
649
650 cp = cpmp;
651 cp->cp_cpcr =
652 mk_cr_cmd(cep->fip->fc_cpmpage, cep->fip->fc_cpmblock,
653 0x0c, CPM_CR_RESTART_TX) | CPM_CR_FLG;
654 while (cp->cp_cpcr & CPM_CR_FLG);
655 }
656 spin_unlock(&cep->lock);
657 }
658
659 /* Check for receive busy, i.e. packets coming but no place to
660 * put them.
661 */
662 if (int_events & FCC_ENET_BSY) {
663 cep->fccp->fcc_fcce = FCC_ENET_BSY;
664 cep->stats.rx_dropped++;
665 }
666
667#ifdef PHY_INTERRUPT
668 enable_irq(PHY_INTERRUPT);
669#endif
670 return IRQ_HANDLED;
671}
672
673/* During a receive, the cur_rx points to the current incoming buffer.
674 * When we update through the ring, if the next incoming buffer has
675 * not been given to the system, we just set the empty indicator,
676 * effectively tossing the packet.
677 */
678static int
679fcc_enet_rx(struct net_device *dev)
680{
681 struct fcc_enet_private *cep;
682 volatile cbd_t *bdp;
683 struct sk_buff *skb;
684 ushort pkt_len;
685
686 cep = (struct fcc_enet_private *)dev->priv;
687
688 /* First, grab all of the stats for the incoming packet.
689 * These get messed up if we get called due to a busy condition.
690 */
691 bdp = cep->cur_rx;
692
693for (;;) {
694 if (bdp->cbd_sc & BD_ENET_RX_EMPTY)
695 break;
696
697#ifndef final_version
698 /* Since we have allocated space to hold a complete frame, both
699 * the first and last indicators should be set.
700 */
701 if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) !=
702 (BD_ENET_RX_FIRST | BD_ENET_RX_LAST))
703 printk("CPM ENET: rcv is not first+last\n");
704#endif
705
706 /* Frame too long or too short. */
707 if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
708 cep->stats.rx_length_errors++;
709 if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
710 cep->stats.rx_frame_errors++;
711 if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
712 cep->stats.rx_crc_errors++;
713 if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
714 cep->stats.rx_crc_errors++;
715 if (bdp->cbd_sc & BD_ENET_RX_CL) /* Late Collision */
716 cep->stats.rx_frame_errors++;
717
718 if (!(bdp->cbd_sc &
719 (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | BD_ENET_RX_CR
720 | BD_ENET_RX_OV | BD_ENET_RX_CL)))
721 {
722 /* Process the incoming frame. */
723 cep->stats.rx_packets++;
724
725 /* Remove the FCS from the packet length. */
726 pkt_len = bdp->cbd_datlen - 4;
727 cep->stats.rx_bytes += pkt_len;
728
729 /* This does 16 byte alignment, much more than we need. */
730 skb = dev_alloc_skb(pkt_len);
731
732 if (skb == NULL) {
733 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
734 cep->stats.rx_dropped++;
735 }
736 else {
737 skb->dev = dev;
738 skb_put(skb,pkt_len); /* Make room */
739 eth_copy_and_sum(skb,
740 (unsigned char *)__va(bdp->cbd_bufaddr),
741 pkt_len, 0);
742 skb->protocol=eth_type_trans(skb,dev);
743 netif_rx(skb);
744 }
745 }
746
747 /* Clear the status flags for this buffer. */
748 bdp->cbd_sc &= ~BD_ENET_RX_STATS;
749
750 /* Mark the buffer empty. */
751 bdp->cbd_sc |= BD_ENET_RX_EMPTY;
752
753 /* Update BD pointer to next entry. */
754 if (bdp->cbd_sc & BD_ENET_RX_WRAP)
755 bdp = cep->rx_bd_base;
756 else
757 bdp++;
758
759 }
760 cep->cur_rx = (cbd_t *)bdp;
761
762 return 0;
763}
764
765static int
766fcc_enet_close(struct net_device *dev)
767{
768#ifdef CONFIG_USE_MDIO
769 struct fcc_enet_private *fep = dev->priv;
770#endif
771
772 netif_stop_queue(dev);
773 fcc_stop(dev);
774#ifdef CONFIG_USE_MDIO
775 if (fep->phy)
776 mii_do_cmd(dev, fep->phy->shutdown);
777#endif
778
779 return 0;
780}
781
782static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev)
783{
784 struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
785
786 return &cep->stats;
787}
788
789#ifdef CONFIG_USE_MDIO
790
791/* NOTE: Most of the following comes from the FEC driver for 860. The
792 * overall structure of MII code has been retained (as it's proved stable
793 * and well-tested), but actual transfer requests are processed "at once"
794 * instead of being queued (there's no interrupt-driven MII transfer
795 * mechanism, one has to toggle the data/clock bits manually).
796 */
797static int
798mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
799{
800 struct fcc_enet_private *fep;
801 int retval, tmp;
802
803 /* Add PHY address to register command. */
804 fep = dev->priv;
805 regval |= fep->phy_addr << 23;
806
807 retval = 0;
808
809 tmp = mii_send_receive(fep->fip, regval);
810 if (func)
811 func(tmp, dev);
812
813 return retval;
814}
815
816static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
817{
818 int k;
819
820 if(!c)
821 return;
822
823 for(k = 0; (c+k)->mii_data != mk_mii_end; k++)
824 mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
825}
826
827static void mii_parse_sr(uint mii_reg, struct net_device *dev)
828{
829 volatile struct fcc_enet_private *fep = dev->priv;
830 uint s = fep->phy_status;
831
832 s &= ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
833
834 if (mii_reg & BMSR_LSTATUS)
835 s |= PHY_STAT_LINK;
836 if (mii_reg & BMSR_RFAULT)
837 s |= PHY_STAT_FAULT;
838 if (mii_reg & BMSR_ANEGCOMPLETE)
839 s |= PHY_STAT_ANC;
840
841 fep->phy_status = s;
842}
843
844static void mii_parse_cr(uint mii_reg, struct net_device *dev)
845{
846 volatile struct fcc_enet_private *fep = dev->priv;
847 uint s = fep->phy_status;
848
849 s &= ~(PHY_CONF_ANE | PHY_CONF_LOOP);
850
851 if (mii_reg & BMCR_ANENABLE)
852 s |= PHY_CONF_ANE;
853 if (mii_reg & BMCR_LOOPBACK)
854 s |= PHY_CONF_LOOP;
855
856 fep->phy_status = s;
857}
858
859static void mii_parse_anar(uint mii_reg, struct net_device *dev)
860{
861 volatile struct fcc_enet_private *fep = dev->priv;
862 uint s = fep->phy_status;
863
864 s &= ~(PHY_CONF_SPMASK);
865
866 if (mii_reg & ADVERTISE_10HALF)
867 s |= PHY_CONF_10HDX;
868 if (mii_reg & ADVERTISE_10FULL)
869 s |= PHY_CONF_10FDX;
870 if (mii_reg & ADVERTISE_100HALF)
871 s |= PHY_CONF_100HDX;
872 if (mii_reg & ADVERTISE_100FULL)
873 s |= PHY_CONF_100FDX;
874
875 fep->phy_status = s;
876}
877
878/* ------------------------------------------------------------------------- */
879/* Generic PHY support. Should work for all PHYs, but does not support link
880 * change interrupts.
881 */
882#ifdef CONFIG_FCC_GENERIC_PHY
883
884static phy_info_t phy_info_generic = {
885 0x00000000, /* 0-->match any PHY */
886 "GENERIC",
887
888 (const phy_cmd_t []) { /* config */
889 /* advertise only half-duplex capabilities */
890 { mk_mii_write(MII_ADVERTISE, MII_ADVERTISE_HALF),
891 mii_parse_anar },
892
893 /* enable auto-negotiation */
894 { mk_mii_write(MII_BMCR, BMCR_ANENABLE), mii_parse_cr },
895 { mk_mii_end, }
896 },
897 (const phy_cmd_t []) { /* startup */
898 /* restart auto-negotiation */
899 { mk_mii_write(MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART),
900 NULL },
901 { mk_mii_end, }
902 },
903 (const phy_cmd_t []) { /* ack_int */
904 /* We don't actually use the ack_int table with a generic
905 * PHY, but putting a reference to mii_parse_sr here keeps
906 * us from getting a compiler warning about unused static
907 * functions in the case where we only compile in generic
908 * PHY support.
909 */
910 { mk_mii_read(MII_BMSR), mii_parse_sr },
911 { mk_mii_end, }
912 },
913 (const phy_cmd_t []) { /* shutdown */
914 { mk_mii_end, }
915 },
916};
917#endif /* ifdef CONFIG_FCC_GENERIC_PHY */
918
919/* ------------------------------------------------------------------------- */
920/* The Level one LXT970 is used by many boards */
921
922#ifdef CONFIG_FCC_LXT970
923
924#define MII_LXT970_MIRROR 16 /* Mirror register */
925#define MII_LXT970_IER 17 /* Interrupt Enable Register */
926#define MII_LXT970_ISR 18 /* Interrupt Status Register */
927#define MII_LXT970_CONFIG 19 /* Configuration Register */
928#define MII_LXT970_CSR 20 /* Chip Status Register */
929
930static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
931{
932 volatile struct fcc_enet_private *fep = dev->priv;
933 uint s = fep->phy_status;
934
935 s &= ~(PHY_STAT_SPMASK);
936
937 if (mii_reg & 0x0800) {
938 if (mii_reg & 0x1000)
939 s |= PHY_STAT_100FDX;
940 else
941 s |= PHY_STAT_100HDX;
942 } else {
943 if (mii_reg & 0x1000)
944 s |= PHY_STAT_10FDX;
945 else
946 s |= PHY_STAT_10HDX;
947 }
948
949 fep->phy_status = s;
950}
951
952static phy_info_t phy_info_lxt970 = {
953 0x07810000,
954 "LXT970",
955
956 (const phy_cmd_t []) { /* config */
957#if 0
958// { mk_mii_write(MII_ADVERTISE, 0x0021), NULL },
959
960 /* Set default operation of 100-TX....for some reason
961 * some of these bits are set on power up, which is wrong.
962 */
963 { mk_mii_write(MII_LXT970_CONFIG, 0), NULL },
964#endif
965 { mk_mii_read(MII_BMCR), mii_parse_cr },
966 { mk_mii_read(MII_ADVERTISE), mii_parse_anar },
967 { mk_mii_end, }
968 },
969 (const phy_cmd_t []) { /* startup - enable interrupts */
970 { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
971 { mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */
972 { mk_mii_end, }
973 },
974 (const phy_cmd_t []) { /* ack_int */
975 /* read SR and ISR to acknowledge */
976
977 { mk_mii_read(MII_BMSR), mii_parse_sr },
978 { mk_mii_read(MII_LXT970_ISR), NULL },
979
980 /* find out the current status */
981
982 { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
983 { mk_mii_end, }
984 },
985 (const phy_cmd_t []) { /* shutdown - disable interrupts */
986 { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
987 { mk_mii_end, }
988 },
989};
990
991#endif /* CONFIG_FEC_LXT970 */
992
993/* ------------------------------------------------------------------------- */
994/* The Level one LXT971 is used on some of my custom boards */
995
996#ifdef CONFIG_FCC_LXT971
997
998/* register definitions for the 971 */
999
1000#define MII_LXT971_PCR 16 /* Port Control Register */
1001#define MII_LXT971_SR2 17 /* Status Register 2 */
1002#define MII_LXT971_IER 18 /* Interrupt Enable Register */
1003#define MII_LXT971_ISR 19 /* Interrupt Status Register */
1004#define MII_LXT971_LCR 20 /* LED Control Register */
1005#define MII_LXT971_TCR 30 /* Transmit Control Register */
1006
1007/*
1008 * I had some nice ideas of running the MDIO faster...
1009 * The 971 should support 8MHz and I tried it, but things acted really
1010 * weird, so 2.5 MHz ought to be enough for anyone...
1011 */
1012
1013static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
1014{
1015 volatile struct fcc_enet_private *fep = dev->priv;
1016 uint s = fep->phy_status;
1017
1018 s &= ~(PHY_STAT_SPMASK);
1019
1020 if (mii_reg & 0x4000) {
1021 if (mii_reg & 0x0200)
1022 s |= PHY_STAT_100FDX;
1023 else
1024 s |= PHY_STAT_100HDX;
1025 } else {
1026 if (mii_reg & 0x0200)
1027 s |= PHY_STAT_10FDX;
1028 else
1029 s |= PHY_STAT_10HDX;
1030 }
1031 if (mii_reg & 0x0008)
1032 s |= PHY_STAT_FAULT;
1033
1034 fep->phy_status = s;
1035}
1036
1037static phy_info_t phy_info_lxt971 = {
1038 0x0001378e,
1039 "LXT971",
1040
1041 (const phy_cmd_t []) { /* config */
1042 /* configure link capabilities to advertise */
1043 { mk_mii_write(MII_ADVERTISE, MII_ADVERTISE_DEFAULT),
1044 mii_parse_anar },
1045
1046 /* enable auto-negotiation */
1047 { mk_mii_write(MII_BMCR, BMCR_ANENABLE), mii_parse_cr },
1048 { mk_mii_end, }
1049 },
1050 (const phy_cmd_t []) { /* startup - enable interrupts */
1051 { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
1052
1053 /* restart auto-negotiation */
1054 { mk_mii_write(MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART),
1055 NULL },
1056 { mk_mii_end, }
1057 },
1058 (const phy_cmd_t []) { /* ack_int */
1059 /* find out the current status */
1060 { mk_mii_read(MII_BMSR), NULL },
1061 { mk_mii_read(MII_BMSR), mii_parse_sr },
1062 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
1063
1064 /* we only need to read ISR to acknowledge */
1065 { mk_mii_read(MII_LXT971_ISR), NULL },
1066 { mk_mii_end, }
1067 },
1068 (const phy_cmd_t []) { /* shutdown - disable interrupts */
1069 { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
1070 { mk_mii_end, }
1071 },
1072};
1073
1074#endif /* CONFIG_FCC_LXT971 */
1075
1076/* ------------------------------------------------------------------------- */
1077/* The Quality Semiconductor QS6612 is used on the RPX CLLF */
1078
1079#ifdef CONFIG_FCC_QS6612
1080
1081/* register definitions */
1082
1083#define MII_QS6612_MCR 17 /* Mode Control Register */
1084#define MII_QS6612_FTR 27 /* Factory Test Register */
1085#define MII_QS6612_MCO 28 /* Misc. Control Register */
1086#define MII_QS6612_ISR 29 /* Interrupt Source Register */
1087#define MII_QS6612_IMR 30 /* Interrupt Mask Register */
1088#define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
1089
1090static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
1091{
1092 volatile struct fcc_enet_private *fep = dev->priv;
1093 uint s = fep->phy_status;
1094
1095 s &= ~(PHY_STAT_SPMASK);
1096
1097 switch((mii_reg >> 2) & 7) {
1098 case 1: s |= PHY_STAT_10HDX; break;
1099 case 2: s |= PHY_STAT_100HDX; break;
1100 case 5: s |= PHY_STAT_10FDX; break;
1101 case 6: s |= PHY_STAT_100FDX; break;
1102 }
1103
1104 fep->phy_status = s;
1105}
1106
1107static phy_info_t phy_info_qs6612 = {
1108 0x00181440,
1109 "QS6612",
1110
1111 (const phy_cmd_t []) { /* config */
1112// { mk_mii_write(MII_ADVERTISE, 0x061), NULL }, /* 10 Mbps */
1113
1114 /* The PHY powers up isolated on the RPX,
1115 * so send a command to allow operation.
1116 */
1117
1118 { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
1119
1120 /* parse cr and anar to get some info */
1121
1122 { mk_mii_read(MII_BMCR), mii_parse_cr },
1123 { mk_mii_read(MII_ADVERTISE), mii_parse_anar },
1124 { mk_mii_end, }
1125 },
1126 (const phy_cmd_t []) { /* startup - enable interrupts */
1127 { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
1128 { mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */
1129 { mk_mii_end, }
1130 },
1131 (const phy_cmd_t []) { /* ack_int */
1132
1133 /* we need to read ISR, SR and ANER to acknowledge */
1134
1135 { mk_mii_read(MII_QS6612_ISR), NULL },
1136 { mk_mii_read(MII_BMSR), mii_parse_sr },
1137 { mk_mii_read(MII_EXPANSION), NULL },
1138
1139 /* read pcr to get info */
1140
1141 { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
1142 { mk_mii_end, }
1143 },
1144 (const phy_cmd_t []) { /* shutdown - disable interrupts */
1145 { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
1146 { mk_mii_end, }
1147 },
1148};
1149
1150
1151#endif /* CONFIG_FEC_QS6612 */
1152
1153
1154/* ------------------------------------------------------------------------- */
1155/* The Davicom DM9131 is used on the HYMOD board */
1156
1157#ifdef CONFIG_FCC_DM9131
1158
1159/* register definitions */
1160
1161#define MII_DM9131_ACR 16 /* Aux. Config Register */
1162#define MII_DM9131_ACSR 17 /* Aux. Config/Status Register */
1163#define MII_DM9131_10TCSR 18 /* 10BaseT Config/Status Reg. */
1164#define MII_DM9131_INTR 21 /* Interrupt Register */
1165#define MII_DM9131_RECR 22 /* Receive Error Counter Reg. */
1166#define MII_DM9131_DISCR 23 /* Disconnect Counter Register */
1167
1168static void mii_parse_dm9131_acsr(uint mii_reg, struct net_device *dev)
1169{
1170 volatile struct fcc_enet_private *fep = dev->priv;
1171 uint s = fep->phy_status;
1172
1173 s &= ~(PHY_STAT_SPMASK);
1174
1175 switch ((mii_reg >> 12) & 0xf) {
1176 case 1: s |= PHY_STAT_10HDX; break;
1177 case 2: s |= PHY_STAT_10FDX; break;
1178 case 4: s |= PHY_STAT_100HDX; break;
1179 case 8: s |= PHY_STAT_100FDX; break;
1180 }
1181
1182 fep->phy_status = s;
1183}
1184
1185static phy_info_t phy_info_dm9131 = {
1186 0x00181b80,
1187 "DM9131",
1188
1189 (const phy_cmd_t []) { /* config */
1190 /* parse cr and anar to get some info */
1191 { mk_mii_read(MII_BMCR), mii_parse_cr },
1192 { mk_mii_read(MII_ADVERTISE), mii_parse_anar },
1193 { mk_mii_end, }
1194 },
1195 (const phy_cmd_t []) { /* startup - enable interrupts */
1196 { mk_mii_write(MII_DM9131_INTR, 0x0002), NULL },
1197 { mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */
1198 { mk_mii_end, }
1199 },
1200 (const phy_cmd_t []) { /* ack_int */
1201
1202 /* we need to read INTR, SR and ANER to acknowledge */
1203
1204 { mk_mii_read(MII_DM9131_INTR), NULL },
1205 { mk_mii_read(MII_BMSR), mii_parse_sr },
1206 { mk_mii_read(MII_EXPANSION), NULL },
1207
1208 /* read acsr to get info */
1209
1210 { mk_mii_read(MII_DM9131_ACSR), mii_parse_dm9131_acsr },
1211 { mk_mii_end, }
1212 },
1213 (const phy_cmd_t []) { /* shutdown - disable interrupts */
1214 { mk_mii_write(MII_DM9131_INTR, 0x0f00), NULL },
1215 { mk_mii_end, }
1216 },
1217};
1218
1219
1220#endif /* CONFIG_FEC_DM9131 */
1221#ifdef CONFIG_FCC_DM9161
1222/* ------------------------------------------------------------------------- */
1223/* DM9161 Control register values */
1224#define MIIM_DM9161_CR_STOP 0x0400
1225#define MIIM_DM9161_CR_RSTAN 0x1200
1226
1227#define MIIM_DM9161_SCR 0x10
1228#define MIIM_DM9161_SCR_INIT 0x0610
1229
1230/* DM9161 Specified Configuration and Status Register */
1231#define MIIM_DM9161_SCSR 0x11
1232#define MIIM_DM9161_SCSR_100F 0x8000
1233#define MIIM_DM9161_SCSR_100H 0x4000
1234#define MIIM_DM9161_SCSR_10F 0x2000
1235#define MIIM_DM9161_SCSR_10H 0x1000
1236/* DM9161 10BT register */
1237#define MIIM_DM9161_10BTCSR 0x12
1238#define MIIM_DM9161_10BTCSR_INIT 0x7800
1239/* DM9161 Interrupt Register */
1240#define MIIM_DM9161_INTR 0x15
1241#define MIIM_DM9161_INTR_PEND 0x8000
1242#define MIIM_DM9161_INTR_DPLX_MASK 0x0800
1243#define MIIM_DM9161_INTR_SPD_MASK 0x0400
1244#define MIIM_DM9161_INTR_LINK_MASK 0x0200
1245#define MIIM_DM9161_INTR_MASK 0x0100
1246#define MIIM_DM9161_INTR_DPLX_CHANGE 0x0010
1247#define MIIM_DM9161_INTR_SPD_CHANGE 0x0008
1248#define MIIM_DM9161_INTR_LINK_CHANGE 0x0004
1249#define MIIM_DM9161_INTR_INIT 0x0000
1250#define MIIM_DM9161_INTR_STOP \
1251(MIIM_DM9161_INTR_DPLX_MASK | MIIM_DM9161_INTR_SPD_MASK \
1252 | MIIM_DM9161_INTR_LINK_MASK | MIIM_DM9161_INTR_MASK)
1253
1254static void mii_parse_dm9161_sr(uint mii_reg, struct net_device * dev)
1255{
1256 volatile struct fcc_enet_private *fep = dev->priv;
1257 uint regstat, timeout=0xffff;
1258
1259 while(!(mii_reg & 0x0020) && timeout--)
1260 {
1261 regstat=mk_mii_read(MII_BMSR);
1262 regstat |= fep->phy_addr <<23;
1263 mii_reg = mii_send_receive(fep->fip,regstat);
1264 }
1265
1266 mii_parse_sr(mii_reg, dev);
1267}
1268
1269static void mii_parse_dm9161_scsr(uint mii_reg, struct net_device * dev)
1270{
1271 volatile struct fcc_enet_private *fep = dev->priv;
1272 uint s = fep->phy_status;
1273
1274 s &= ~(PHY_STAT_SPMASK);
1275 switch((mii_reg >>12) & 0xf) {
1276 case 1:
1277 {
1278 s |= PHY_STAT_10HDX;
1279 printk("10BaseT Half Duplex\n");
1280 break;
1281 }
1282 case 2:
1283 {
1284 s |= PHY_STAT_10FDX;
1285 printk("10BaseT Full Duplex\n");
1286 break;
1287 }
1288 case 4:
1289 {
1290 s |= PHY_STAT_100HDX;
1291 printk("100BaseT Half Duplex\n");
1292 break;
1293 }
1294 case 8:
1295 {
1296 s |= PHY_STAT_100FDX;
1297 printk("100BaseT Full Duplex\n");
1298 break;
1299 }
1300 }
1301
1302 fep->phy_status = s;
1303
1304}
1305
1306static void mii_dm9161_wait(uint mii_reg, struct net_device *dev)
1307{
1308 int timeout = HZ;
1309
1310 /* Davicom takes a bit to come up after a reset,
1311 * so wait here for a bit */
8f09f4a2 1312 schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1313}
1314
1315static phy_info_t phy_info_dm9161 = {
1316 0x00181b88,
1317 "Davicom DM9161E",
1318 (const phy_cmd_t[]) { /* config */
1319 { mk_mii_write(MII_BMCR, MIIM_DM9161_CR_STOP), NULL},
1320 /* Do not bypass the scrambler/descrambler */
1321 { mk_mii_write(MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT), NULL},
1322 /* Configure 10BTCSR register */
1323 { mk_mii_write(MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT),NULL},
1324 /* Configure some basic stuff */
1325 { mk_mii_write(MII_BMCR, 0x1000), NULL},
1326 { mk_mii_read(MII_BMCR), mii_parse_cr },
1327 { mk_mii_read(MII_ADVERTISE), mii_parse_anar },
1328 { mk_mii_end,}
1329 },
1330 (const phy_cmd_t[]) { /* startup */
1331 /* Restart Auto Negotiation */
1332 { mk_mii_write(MII_BMCR, MIIM_DM9161_CR_RSTAN), NULL},
1333 /* Status is read once to clear old link state */
1334 { mk_mii_read(MII_BMSR), mii_dm9161_wait},
1335 /* Auto-negotiate */
1336 { mk_mii_read(MII_BMSR), mii_parse_dm9161_sr},
1337 /* Read the status */
1338 { mk_mii_read(MIIM_DM9161_SCSR), mii_parse_dm9161_scsr},
1339 /* Clear any pending interrupts */
1340 { mk_mii_read(MIIM_DM9161_INTR), NULL},
1341 /* Enable Interrupts */
1342 { mk_mii_write(MIIM_DM9161_INTR, MIIM_DM9161_INTR_INIT), NULL},
1343 { mk_mii_end,}
1344 },
1345 (const phy_cmd_t[]) { /* ack_int */
1346 { mk_mii_read(MIIM_DM9161_INTR), NULL},
1347#if 0
1348 { mk_mii_read(MII_BMSR), NULL},
1349 { mk_mii_read(MII_BMSR), mii_parse_dm9161_sr},
1350 { mk_mii_read(MIIM_DM9161_SCSR), mii_parse_dm9161_scsr},
1351#endif
1352 { mk_mii_end,}
1353 },
1354 (const phy_cmd_t[]) { /* shutdown */
1355 { mk_mii_read(MIIM_DM9161_INTR),NULL},
1356 { mk_mii_write(MIIM_DM9161_INTR, MIIM_DM9161_INTR_STOP), NULL},
1357 { mk_mii_end,}
1358 },
1359};
1360#endif /* CONFIG_FCC_DM9161 */
1361
1362static phy_info_t *phy_info[] = {
1363
1364#ifdef CONFIG_FCC_LXT970
1365 &phy_info_lxt970,
1366#endif /* CONFIG_FEC_LXT970 */
1367
1368#ifdef CONFIG_FCC_LXT971
1369 &phy_info_lxt971,
1370#endif /* CONFIG_FEC_LXT971 */
1371
1372#ifdef CONFIG_FCC_QS6612
1373 &phy_info_qs6612,
1374#endif /* CONFIG_FEC_QS6612 */
1375
1376#ifdef CONFIG_FCC_DM9131
1377 &phy_info_dm9131,
1378#endif /* CONFIG_FEC_DM9131 */
1379
1380#ifdef CONFIG_FCC_DM9161
1381 &phy_info_dm9161,
1382#endif /* CONFIG_FCC_DM9161 */
1383
1384#ifdef CONFIG_FCC_GENERIC_PHY
1385 /* Generic PHY support. This must be the last PHY in the table.
1386 * It will be used to support any PHY that doesn't match a previous
1387 * entry in the table.
1388 */
1389 &phy_info_generic,
1390#endif /* CONFIG_FCC_GENERIC_PHY */
1391
1392 NULL
1393};
1394
6d5aefb8 1395static void mii_display_status(struct work_struct *work)
1da177e4 1396{
6d5aefb8
DH
1397 volatile struct fcc_enet_private *fep =
1398 container_of(work, struct fcc_enet_private, phy_relink);
1399 struct net_device *dev = fep->dev;
1da177e4
LT
1400 uint s = fep->phy_status;
1401
1402 if (!fep->link && !fep->old_link) {
1403 /* Link is still down - don't print anything */
1404 return;
1405 }
1406
1407 printk("%s: status: ", dev->name);
1408
1409 if (!fep->link) {
1410 printk("link down");
1411 } else {
1412 printk("link up");
1413
1414 switch(s & PHY_STAT_SPMASK) {
1415 case PHY_STAT_100FDX: printk(", 100 Mbps Full Duplex"); break;
1416 case PHY_STAT_100HDX: printk(", 100 Mbps Half Duplex"); break;
1417 case PHY_STAT_10FDX: printk(", 10 Mbps Full Duplex"); break;
1418 case PHY_STAT_10HDX: printk(", 10 Mbps Half Duplex"); break;
1419 default:
1420 printk(", Unknown speed/duplex");
1421 }
1422
1423 if (s & PHY_STAT_ANC)
1424 printk(", auto-negotiation complete");
1425 }
1426
1427 if (s & PHY_STAT_FAULT)
1428 printk(", remote fault");
1429
1430 printk(".\n");
1431}
1432
6d5aefb8 1433static void mii_display_config(struct work_struct *work)
1da177e4 1434{
6d5aefb8
DH
1435 volatile struct fcc_enet_private *fep =
1436 container_of(work, struct fcc_enet_private,
1437 phy_display_config);
1438 struct net_device *dev = fep->dev;
1da177e4
LT
1439 uint s = fep->phy_status;
1440
1441 printk("%s: config: auto-negotiation ", dev->name);
1442
1443 if (s & PHY_CONF_ANE)
1444 printk("on");
1445 else
1446 printk("off");
1447
1448 if (s & PHY_CONF_100FDX)
1449 printk(", 100FDX");
1450 if (s & PHY_CONF_100HDX)
1451 printk(", 100HDX");
1452 if (s & PHY_CONF_10FDX)
1453 printk(", 10FDX");
1454 if (s & PHY_CONF_10HDX)
1455 printk(", 10HDX");
1456 if (!(s & PHY_CONF_SPMASK))
1457 printk(", No speed/duplex selected?");
1458
1459 if (s & PHY_CONF_LOOP)
1460 printk(", loopback enabled");
1461
1462 printk(".\n");
1463
1464 fep->sequence_done = 1;
1465}
1466
1467static void mii_relink(struct net_device *dev)
1468{
1469 struct fcc_enet_private *fep = dev->priv;
1470 int duplex = 0;
1471
1472 fep->old_link = fep->link;
1473 fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
1474
1475#ifdef MDIO_DEBUG
1476 printk(" mii_relink: link=%d\n", fep->link);
1477#endif
1478
1479 if (fep->link) {
1480 if (fep->phy_status
1481 & (PHY_STAT_100FDX | PHY_STAT_10FDX))
1482 duplex = 1;
1483 fcc_restart(dev, duplex);
1484#ifdef MDIO_DEBUG
1485 printk(" mii_relink: duplex=%d\n", duplex);
1486#endif
1487 }
1488}
1489
1490static void mii_queue_relink(uint mii_reg, struct net_device *dev)
1491{
1492 struct fcc_enet_private *fep = dev->priv;
1493
1494 mii_relink(dev);
1495
1496 schedule_work(&fep->phy_relink);
1497}
1498
1499static void mii_queue_config(uint mii_reg, struct net_device *dev)
1500{
1501 struct fcc_enet_private *fep = dev->priv;
1502
1503 schedule_work(&fep->phy_display_config);
1504}
1505
1506phy_cmd_t phy_cmd_relink[] = { { mk_mii_read(MII_BMCR), mii_queue_relink },
1507 { mk_mii_end, } };
1508phy_cmd_t phy_cmd_config[] = { { mk_mii_read(MII_BMCR), mii_queue_config },
1509 { mk_mii_end, } };
1510
1511
1512/* Read remainder of PHY ID.
1513*/
1514static void
1515mii_discover_phy3(uint mii_reg, struct net_device *dev)
1516{
1517 struct fcc_enet_private *fep;
1518 int i;
1519
1520 fep = dev->priv;
1521 printk("mii_reg: %08x\n", mii_reg);
1522 fep->phy_id |= (mii_reg & 0xffff);
1523
1524 for(i = 0; phy_info[i]; i++)
1525 if((phy_info[i]->id == (fep->phy_id >> 4)) || !phy_info[i]->id)
1526 break;
1527
1528 if(!phy_info[i])
1529 panic("%s: PHY id 0x%08x is not supported!\n",
1530 dev->name, fep->phy_id);
1531
1532 fep->phy = phy_info[i];
1533 fep->phy_id_done = 1;
1534
1535 printk("%s: Phy @ 0x%x, type %s (0x%08x)\n",
1536 dev->name, fep->phy_addr, fep->phy->name, fep->phy_id);
1537}
1538
1539/* Scan all of the MII PHY addresses looking for someone to respond
1540 * with a valid ID. This usually happens quickly.
1541 */
1542static void
1543mii_discover_phy(uint mii_reg, struct net_device *dev)
1544{
1545 struct fcc_enet_private *fep;
1546 uint phytype;
1547
1548 fep = dev->priv;
1549
1550 if ((phytype = (mii_reg & 0xffff)) != 0xffff) {
1551
1552 /* Got first part of ID, now get remainder. */
1553 fep->phy_id = phytype << 16;
1554 mii_queue(dev, mk_mii_read(MII_PHYSID2), mii_discover_phy3);
1555 } else {
1556 fep->phy_addr++;
1557 if (fep->phy_addr < 32) {
1558 mii_queue(dev, mk_mii_read(MII_PHYSID1),
1559 mii_discover_phy);
1560 } else {
1561 printk("fec: No PHY device found.\n");
1562 }
1563 }
1564}
1565#endif /* CONFIG_USE_MDIO */
1566
1567#ifdef PHY_INTERRUPT
1568/* This interrupt occurs when the PHY detects a link change. */
1569static irqreturn_t
39e3eb72 1570mii_link_interrupt(int irq, void * dev_id)
1da177e4
LT
1571{
1572 struct net_device *dev = dev_id;
1573 struct fcc_enet_private *fep = dev->priv;
1574 fcc_info_t *fip = fep->fip;
1575
1576 if (fep->phy) {
1577 /* We don't want to be interrupted by an FCC
1578 * interrupt here.
1579 */
1580 disable_irq_nosync(fip->fc_interrupt);
1581
1582 mii_do_cmd(dev, fep->phy->ack_int);
1583 /* restart and display status */
1584 mii_do_cmd(dev, phy_cmd_relink);
1585
1586 enable_irq(fip->fc_interrupt);
1587 }
1588 return IRQ_HANDLED;
1589}
1590#endif /* ifdef PHY_INTERRUPT */
1591
1592#if 0 /* This should be fixed someday */
1593/* Set or clear the multicast filter for this adaptor.
1594 * Skeleton taken from sunlance driver.
1595 * The CPM Ethernet implementation allows Multicast as well as individual
1596 * MAC address filtering. Some of the drivers check to make sure it is
1597 * a group multicast address, and discard those that are not. I guess I
1598 * will do the same for now, but just remove the test if you want
1599 * individual filtering as well (do the upper net layers want or support
1600 * this kind of feature?).
1601 */
1602static void
1603set_multicast_list(struct net_device *dev)
1604{
1605 struct fcc_enet_private *cep;
1606 struct dev_mc_list *dmi;
1607 u_char *mcptr, *tdptr;
1608 volatile fcc_enet_t *ep;
1609 int i, j;
1610
1611 cep = (struct fcc_enet_private *)dev->priv;
1612
1613return;
1614 /* Get pointer to FCC area in parameter RAM.
1615 */
1616 ep = (fcc_enet_t *)dev->base_addr;
1617
1618 if (dev->flags&IFF_PROMISC) {
1619
1620 /* Log any net taps. */
1621 printk("%s: Promiscuous mode enabled.\n", dev->name);
1622 cep->fccp->fcc_fpsmr |= FCC_PSMR_PRO;
1623 } else {
1624
1625 cep->fccp->fcc_fpsmr &= ~FCC_PSMR_PRO;
1626
1627 if (dev->flags & IFF_ALLMULTI) {
1628 /* Catch all multicast addresses, so set the
1629 * filter to all 1's.
1630 */
1631 ep->fen_gaddrh = 0xffffffff;
1632 ep->fen_gaddrl = 0xffffffff;
1633 }
1634 else {
1635 /* Clear filter and add the addresses in the list.
1636 */
1637 ep->fen_gaddrh = 0;
1638 ep->fen_gaddrl = 0;
1639
1640 dmi = dev->mc_list;
1641
1642 for (i=0; i<dev->mc_count; i++, dmi = dmi->next) {
1643
1644 /* Only support group multicast for now.
1645 */
1646 if (!(dmi->dmi_addr[0] & 1))
1647 continue;
1648
1649 /* The address in dmi_addr is LSB first,
1650 * and taddr is MSB first. We have to
1651 * copy bytes MSB first from dmi_addr.
1652 */
1653 mcptr = (u_char *)dmi->dmi_addr + 5;
1654 tdptr = (u_char *)&ep->fen_taddrh;
1655 for (j=0; j<6; j++)
1656 *tdptr++ = *mcptr--;
1657
1658 /* Ask CPM to run CRC and set bit in
1659 * filter mask.
1660 */
1661 cpmp->cp_cpcr = mk_cr_cmd(cep->fip->fc_cpmpage,
1662 cep->fip->fc_cpmblock, 0x0c,
1663 CPM_CR_SET_GADDR) | CPM_CR_FLG;
1664 udelay(10);
1665 while (cpmp->cp_cpcr & CPM_CR_FLG);
1666 }
1667 }
1668 }
1669}
1670#endif /* if 0 */
1671
1672
1673/* Set the individual MAC address.
1674 */
1675int fcc_enet_set_mac_address(struct net_device *dev, void *p)
1676{
1677 struct sockaddr *addr= (struct sockaddr *) p;
1678 struct fcc_enet_private *cep;
1679 volatile fcc_enet_t *ep;
1680 unsigned char *eap;
1681 int i;
1682
1683 cep = (struct fcc_enet_private *)(dev->priv);
1684 ep = cep->ep;
1685
1686 if (netif_running(dev))
1687 return -EBUSY;
1688
1689 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1690
1691 eap = (unsigned char *) &(ep->fen_paddrh);
1692 for (i=5; i>=0; i--)
1693 *eap++ = addr->sa_data[i];
1694
1695 return 0;
1696}
1697
1698
1699/* Initialize the CPM Ethernet on FCC.
1700 */
1701static int __init fec_enet_init(void)
1702{
1703 struct net_device *dev;
1704 struct fcc_enet_private *cep;
1705 fcc_info_t *fip;
1706 int i, np, err;
1707 volatile cpm2_map_t *immap;
1708 volatile iop_cpm2_t *io;
1709
1710 immap = (cpm2_map_t *)CPM_MAP_ADDR; /* and to internal registers */
1711 io = &immap->im_ioport;
1712
1713 np = sizeof(fcc_ports) / sizeof(fcc_info_t);
1714 fip = fcc_ports;
1715
1716 while (np-- > 0) {
1717 /* Create an Ethernet device instance.
1718 */
1719 dev = alloc_etherdev(sizeof(*cep));
1720 if (!dev)
1721 return -ENOMEM;
1722
1723 cep = dev->priv;
1724 spin_lock_init(&cep->lock);
1725 cep->fip = fip;
1726
1727 init_fcc_shutdown(fip, cep, immap);
1728 init_fcc_ioports(fip, io, immap);
1729 init_fcc_param(fip, dev, immap);
1730
1731 dev->base_addr = (unsigned long)(cep->ep);
1732
1733 /* The CPM Ethernet specific entries in the device
1734 * structure.
1735 */
1736 dev->open = fcc_enet_open;
1737 dev->hard_start_xmit = fcc_enet_start_xmit;
1738 dev->tx_timeout = fcc_enet_timeout;
1739 dev->watchdog_timeo = TX_TIMEOUT;
1740 dev->stop = fcc_enet_close;
1741 dev->get_stats = fcc_enet_get_stats;
1742 /* dev->set_multicast_list = set_multicast_list; */
1743 dev->set_mac_address = fcc_enet_set_mac_address;
1744
1745 init_fcc_startup(fip, dev);
1746
1747 err = register_netdev(dev);
1748 if (err) {
1749 free_netdev(dev);
1750 return err;
1751 }
1752
1753 printk("%s: FCC ENET Version 0.3, ", dev->name);
1754 for (i=0; i<5; i++)
1755 printk("%02x:", dev->dev_addr[i]);
1756 printk("%02x\n", dev->dev_addr[5]);
1757
1758#ifdef CONFIG_USE_MDIO
1759 /* Queue up command to detect the PHY and initialize the
1760 * remainder of the interface.
1761 */
1762 cep->phy_id_done = 0;
1763 cep->phy_addr = fip->fc_phyaddr;
1764 mii_queue(dev, mk_mii_read(MII_PHYSID1), mii_discover_phy);
6d5aefb8
DH
1765 INIT_WORK(&cep->phy_relink, mii_display_status);
1766 INIT_WORK(&cep->phy_display_config, mii_display_config);
1767 cep->dev = dev;
1da177e4
LT
1768#endif /* CONFIG_USE_MDIO */
1769
1770 fip++;
1771 }
1772
1773 return 0;
1774}
1775module_init(fec_enet_init);
1776
1777/* Make sure the device is shut down during initialization.
1778*/
1779static void __init
1780init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep,
1781 volatile cpm2_map_t *immap)
1782{
1783 volatile fcc_enet_t *ep;
1784 volatile fcc_t *fccp;
1785
1786 /* Get pointer to FCC area in parameter RAM.
1787 */
1788 ep = (fcc_enet_t *)(&immap->im_dprambase[fip->fc_proff]);
1789
1790 /* And another to the FCC register area.
1791 */
1792 fccp = (volatile fcc_t *)(&immap->im_fcc[fip->fc_fccnum]);
1793 cep->fccp = fccp; /* Keep the pointers handy */
1794 cep->ep = ep;
1795
1796 /* Disable receive and transmit in case someone left it running.
1797 */
1798 fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT);
1799}
1800
1801/* Initialize the I/O pins for the FCC Ethernet.
1802*/
1803static void __init
1804init_fcc_ioports(fcc_info_t *fip, volatile iop_cpm2_t *io,
1805 volatile cpm2_map_t *immap)
1806{
1807
1808 /* FCC1 pins are on port A/C. FCC2/3 are port B/C.
1809 */
1810 if (fip->fc_proff == PROFF_FCC1) {
1811 /* Configure port A and C pins for FCC1 Ethernet.
1812 */
1813 io->iop_pdira &= ~PA1_DIRA_BOUT;
1814 io->iop_pdira |= PA1_DIRA_BIN;
1815 io->iop_psora &= ~PA1_PSORA_BOUT;
1816 io->iop_psora |= PA1_PSORA_BIN;
1817 io->iop_ppara |= (PA1_DIRA_BOUT | PA1_DIRA_BIN);
1818 }
1819 if (fip->fc_proff == PROFF_FCC2) {
1820 /* Configure port B and C pins for FCC Ethernet.
1821 */
1822 io->iop_pdirb &= ~PB2_DIRB_BOUT;
1823 io->iop_pdirb |= PB2_DIRB_BIN;
1824 io->iop_psorb &= ~PB2_PSORB_BOUT;
1825 io->iop_psorb |= PB2_PSORB_BIN;
1826 io->iop_pparb |= (PB2_DIRB_BOUT | PB2_DIRB_BIN);
1827 }
1828 if (fip->fc_proff == PROFF_FCC3) {
1829 /* Configure port B and C pins for FCC Ethernet.
1830 */
1831 io->iop_pdirb &= ~PB3_DIRB_BOUT;
1832 io->iop_pdirb |= PB3_DIRB_BIN;
1833 io->iop_psorb &= ~PB3_PSORB_BOUT;
1834 io->iop_psorb |= PB3_PSORB_BIN;
1835 io->iop_pparb |= (PB3_DIRB_BOUT | PB3_DIRB_BIN);
1836
1837 io->iop_pdirc &= ~PC3_DIRC_BOUT;
1838 io->iop_pdirc |= PC3_DIRC_BIN;
1839 io->iop_psorc &= ~PC3_PSORC_BOUT;
1840 io->iop_psorc |= PC3_PSORC_BIN;
1841 io->iop_pparc |= (PC3_DIRC_BOUT | PC3_DIRC_BIN);
1842
1843 }
1844
1845 /* Port C has clocks......
1846 */
1847 io->iop_psorc &= ~(fip->fc_trxclocks);
1848 io->iop_pdirc &= ~(fip->fc_trxclocks);
1849 io->iop_pparc |= fip->fc_trxclocks;
1850
1851#ifdef CONFIG_USE_MDIO
1852 /* ....and the MII serial clock/data.
1853 */
1854 io->iop_pdatc |= (fip->fc_mdio | fip->fc_mdck);
1855 io->iop_podrc &= ~(fip->fc_mdio | fip->fc_mdck);
1856 io->iop_pdirc |= (fip->fc_mdio | fip->fc_mdck);
1857 io->iop_pparc &= ~(fip->fc_mdio | fip->fc_mdck);
1858#endif /* CONFIG_USE_MDIO */
1859
1860 /* Configure Serial Interface clock routing.
1861 * First, clear all FCC bits to zero,
1862 * then set the ones we want.
1863 */
1864 immap->im_cpmux.cmx_fcr &= ~(fip->fc_clockmask);
1865 immap->im_cpmux.cmx_fcr |= fip->fc_clockroute;
1866}
1867
1868static void __init
1869init_fcc_param(fcc_info_t *fip, struct net_device *dev,
1870 volatile cpm2_map_t *immap)
1871{
1872 unsigned char *eap;
1873 unsigned long mem_addr;
1874 bd_t *bd;
1875 int i, j;
1876 struct fcc_enet_private *cep;
1877 volatile fcc_enet_t *ep;
1878 volatile cbd_t *bdp;
1879 volatile cpm_cpm2_t *cp;
1880
1881 cep = (struct fcc_enet_private *)(dev->priv);
1882 ep = cep->ep;
1883 cp = cpmp;
1884
1885 bd = (bd_t *)__res;
1886
1887 /* Zero the whole thing.....I must have missed some individually.
1888 * It works when I do this.
1889 */
1890 memset((char *)ep, 0, sizeof(fcc_enet_t));
1891
1892 /* Allocate space for the buffer descriptors from regular memory.
1893 * Initialize base addresses for the buffer descriptors.
1894 */
5cbded58 1895 cep->rx_bd_base = kmalloc(sizeof(cbd_t) * RX_RING_SIZE,
1da177e4
LT
1896 GFP_KERNEL | GFP_DMA);
1897 ep->fen_genfcc.fcc_rbase = __pa(cep->rx_bd_base);
5cbded58 1898 cep->tx_bd_base = kmalloc(sizeof(cbd_t) * TX_RING_SIZE,
1da177e4
LT
1899 GFP_KERNEL | GFP_DMA);
1900 ep->fen_genfcc.fcc_tbase = __pa(cep->tx_bd_base);
1901
1902 cep->dirty_tx = cep->cur_tx = cep->tx_bd_base;
1903 cep->cur_rx = cep->rx_bd_base;
1904
1905 ep->fen_genfcc.fcc_rstate = (CPMFCR_GBL | CPMFCR_EB) << 24;
1906 ep->fen_genfcc.fcc_tstate = (CPMFCR_GBL | CPMFCR_EB) << 24;
1907
1908 /* Set maximum bytes per receive buffer.
1909 * It must be a multiple of 32.
1910 */
1911 ep->fen_genfcc.fcc_mrblr = PKT_MAXBLR_SIZE;
1912
1913 /* Allocate space in the reserved FCC area of DPRAM for the
1914 * internal buffers. No one uses this space (yet), so we
1915 * can do this. Later, we will add resource management for
1916 * this area.
1917 */
1918 mem_addr = CPM_FCC_SPECIAL_BASE + (fip->fc_fccnum * 128);
1919 ep->fen_genfcc.fcc_riptr = mem_addr;
1920 ep->fen_genfcc.fcc_tiptr = mem_addr+32;
1921 ep->fen_padptr = mem_addr+64;
1922 memset((char *)(&(immap->im_dprambase[(mem_addr+64)])), 0x88, 32);
1923
1924 ep->fen_genfcc.fcc_rbptr = 0;
1925 ep->fen_genfcc.fcc_tbptr = 0;
1926 ep->fen_genfcc.fcc_rcrc = 0;
1927 ep->fen_genfcc.fcc_tcrc = 0;
1928 ep->fen_genfcc.fcc_res1 = 0;
1929 ep->fen_genfcc.fcc_res2 = 0;
1930
1931 ep->fen_camptr = 0; /* CAM isn't used in this driver */
1932
1933 /* Set CRC preset and mask.
1934 */
1935 ep->fen_cmask = 0xdebb20e3;
1936 ep->fen_cpres = 0xffffffff;
1937
1938 ep->fen_crcec = 0; /* CRC Error counter */
1939 ep->fen_alec = 0; /* alignment error counter */
1940 ep->fen_disfc = 0; /* discard frame counter */
1941 ep->fen_retlim = 15; /* Retry limit threshold */
1942 ep->fen_pper = 0; /* Normal persistence */
1943
1944 /* Clear hash filter tables.
1945 */
1946 ep->fen_gaddrh = 0;
1947 ep->fen_gaddrl = 0;
1948 ep->fen_iaddrh = 0;
1949 ep->fen_iaddrl = 0;
1950
1951 /* Clear the Out-of-sequence TxBD.
1952 */
1953 ep->fen_tfcstat = 0;
1954 ep->fen_tfclen = 0;
1955 ep->fen_tfcptr = 0;
1956
1957 ep->fen_mflr = PKT_MAXBUF_SIZE; /* maximum frame length register */
1958 ep->fen_minflr = PKT_MINBUF_SIZE; /* minimum frame length register */
1959
1960 /* Set Ethernet station address.
1961 *
1962 * This is supplied in the board information structure, so we
1963 * copy that into the controller.
1964 * So, far we have only been given one Ethernet address. We make
1965 * it unique by setting a few bits in the upper byte of the
1966 * non-static part of the address.
1967 */
1968 eap = (unsigned char *)&(ep->fen_paddrh);
1969 for (i=5; i>=0; i--) {
1970
1971/*
1972 * The EP8260 only uses FCC3, so we can safely give it the real
1973 * MAC address.
1974 */
1975#ifdef CONFIG_SBC82xx
1976 if (i == 5) {
1977 /* bd->bi_enetaddr holds the SCC0 address; the FCC
1978 devices count up from there */
1979 dev->dev_addr[i] = bd->bi_enetaddr[i] & ~3;
1980 dev->dev_addr[i] += 1 + fip->fc_fccnum;
1981 *eap++ = dev->dev_addr[i];
1982 }
1983#else
1984#ifndef CONFIG_RPX8260
1985 if (i == 3) {
1986 dev->dev_addr[i] = bd->bi_enetaddr[i];
1987 dev->dev_addr[i] |= (1 << (7 - fip->fc_fccnum));
1988 *eap++ = dev->dev_addr[i];
1989 } else
1990#endif
1991 {
1992 *eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i];
1993 }
1994#endif
1995 }
1996
1997 ep->fen_taddrh = 0;
1998 ep->fen_taddrm = 0;
1999 ep->fen_taddrl = 0;
2000
2001 ep->fen_maxd1 = PKT_MAXDMA_SIZE; /* maximum DMA1 length */
2002 ep->fen_maxd2 = PKT_MAXDMA_SIZE; /* maximum DMA2 length */
2003
2004 /* Clear stat counters, in case we ever enable RMON.
2005 */
2006 ep->fen_octc = 0;
2007 ep->fen_colc = 0;
2008 ep->fen_broc = 0;
2009 ep->fen_mulc = 0;
2010 ep->fen_uspc = 0;
2011 ep->fen_frgc = 0;
2012 ep->fen_ospc = 0;
2013 ep->fen_jbrc = 0;
2014 ep->fen_p64c = 0;
2015 ep->fen_p65c = 0;
2016 ep->fen_p128c = 0;
2017 ep->fen_p256c = 0;
2018 ep->fen_p512c = 0;
2019 ep->fen_p1024c = 0;
2020
2021 ep->fen_rfthr = 0; /* Suggested by manual */
2022 ep->fen_rfcnt = 0;
2023 ep->fen_cftype = 0;
2024
2025 /* Now allocate the host memory pages and initialize the
2026 * buffer descriptors.
2027 */
2028 bdp = cep->tx_bd_base;
2029 for (i=0; i<TX_RING_SIZE; i++) {
2030
2031 /* Initialize the BD for every fragment in the page.
2032 */
2033 bdp->cbd_sc = 0;
2034 bdp->cbd_datlen = 0;
2035 bdp->cbd_bufaddr = 0;
2036 bdp++;
2037 }
2038
2039 /* Set the last buffer to wrap.
2040 */
2041 bdp--;
2042 bdp->cbd_sc |= BD_SC_WRAP;
2043
2044 bdp = cep->rx_bd_base;
2045 for (i=0; i<FCC_ENET_RX_PAGES; i++) {
2046
2047 /* Allocate a page.
2048 */
2049 mem_addr = __get_free_page(GFP_KERNEL);
2050
2051 /* Initialize the BD for every fragment in the page.
2052 */
2053 for (j=0; j<FCC_ENET_RX_FRPPG; j++) {
2054 bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR;
2055 bdp->cbd_datlen = 0;
2056 bdp->cbd_bufaddr = __pa(mem_addr);
2057 mem_addr += FCC_ENET_RX_FRSIZE;
2058 bdp++;
2059 }
2060 }
2061
2062 /* Set the last buffer to wrap.
2063 */
2064 bdp--;
2065 bdp->cbd_sc |= BD_SC_WRAP;
2066
2067 /* Let's re-initialize the channel now. We have to do it later
2068 * than the manual describes because we have just now finished
2069 * the BD initialization.
2070 */
2071 cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock, 0x0c,
2072 CPM_CR_INIT_TRX) | CPM_CR_FLG;
2073 while (cp->cp_cpcr & CPM_CR_FLG);
2074
2075 cep->skb_cur = cep->skb_dirty = 0;
2076}
2077
2078/* Let 'er rip.
2079*/
2080static void __init
2081init_fcc_startup(fcc_info_t *fip, struct net_device *dev)
2082{
2083 volatile fcc_t *fccp;
2084 struct fcc_enet_private *cep;
2085
2086 cep = (struct fcc_enet_private *)(dev->priv);
2087 fccp = cep->fccp;
2088
2089#ifdef CONFIG_RPX8260
2090#ifdef PHY_INTERRUPT
2091 /* Route PHY interrupt to IRQ. The following code only works for
2092 * IRQ1 - IRQ7. It does not work for Port C interrupts.
2093 */
2094 *((volatile u_char *) (RPX_CSR_ADDR + 13)) &= ~BCSR13_FETH_IRQMASK;
2095 *((volatile u_char *) (RPX_CSR_ADDR + 13)) |=
2096 ((PHY_INTERRUPT - SIU_INT_IRQ1 + 1) << 4);
2097#endif
2098 /* Initialize MDIO pins. */
2099 *((volatile u_char *) (RPX_CSR_ADDR + 4)) &= ~BCSR4_MII_MDC;
2100 *((volatile u_char *) (RPX_CSR_ADDR + 4)) |=
2101 BCSR4_MII_READ | BCSR4_MII_MDIO;
2102 /* Enable external LXT971 PHY. */
2103 *((volatile u_char *) (RPX_CSR_ADDR + 4)) |= BCSR4_EN_PHY;
2104 udelay(1000);
2105 *((volatile u_char *) (RPX_CSR_ADDR+ 4)) |= BCSR4_EN_MII;
2106 udelay(1000);
2107#endif /* ifdef CONFIG_RPX8260 */
2108
2109 fccp->fcc_fcce = 0xffff; /* Clear any pending events */
2110
2111 /* Leave FCC interrupts masked for now. Will be unmasked by
2112 * fcc_restart().
2113 */
2114 fccp->fcc_fccm = 0;
2115
2116 /* Install our interrupt handler.
2117 */
2118 if (request_irq(fip->fc_interrupt, fcc_enet_interrupt, 0, "fenet",
2119 dev) < 0)
2120 printk("Can't get FCC IRQ %d\n", fip->fc_interrupt);
2121
2122#ifdef PHY_INTERRUPT
2123#ifdef CONFIG_ADS8272
bc59d280 2124 if (request_irq(PHY_INTERRUPT, mii_link_interrupt, IRQF_SHARED,
1da177e4
LT
2125 "mii", dev) < 0)
2126 printk(KERN_CRIT "Can't get MII IRQ %d\n", PHY_INTERRUPT);
2127#else
2128 /* Make IRQn edge triggered. This does not work if PHY_INTERRUPT is
2129 * on Port C.
2130 */
2131 ((volatile cpm2_map_t *) CPM_MAP_ADDR)->im_intctl.ic_siexr |=
2132 (1 << (14 - (PHY_INTERRUPT - SIU_INT_IRQ1)));
2133
2134 if (request_irq(PHY_INTERRUPT, mii_link_interrupt, 0,
2135 "mii", dev) < 0)
2136 printk(KERN_CRIT "Can't get MII IRQ %d\n", PHY_INTERRUPT);
2137#endif
2138#endif /* PHY_INTERRUPT */
2139
2140 /* Set GFMR to enable Ethernet operating mode.
2141 */
2142 fccp->fcc_gfmr = (FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
2143
2144 /* Set sync/delimiters.
2145 */
2146 fccp->fcc_fdsr = 0xd555;
2147
2148 /* Set protocol specific processing mode for Ethernet.
2149 * This has to be adjusted for Full Duplex operation after we can
2150 * determine how to detect that.
2151 */
2152 fccp->fcc_fpsmr = FCC_PSMR_ENCRC;
2153
2154#ifdef CONFIG_PQ2ADS
2155 /* Enable the PHY. */
2156 *(volatile uint *)(BCSR_ADDR + 4) &= ~BCSR1_FETHIEN;
2157 *(volatile uint *)(BCSR_ADDR + 4) |= BCSR1_FETH_RST;
2158#endif
2159#if defined(CONFIG_PQ2ADS) || defined(CONFIG_PQ2FADS)
2160 /* Enable the 2nd PHY. */
2161 *(volatile uint *)(BCSR_ADDR + 12) &= ~BCSR3_FETHIEN2;
2162 *(volatile uint *)(BCSR_ADDR + 12) |= BCSR3_FETH2_RST;
2163#endif
2164
2165#if defined(CONFIG_USE_MDIO) || defined(CONFIG_TQM8260)
2166 /* start in full duplex mode, and negotiate speed
2167 */
2168 fcc_restart (dev, 1);
2169#else
2170 /* start in half duplex mode
2171 */
2172 fcc_restart (dev, 0);
2173#endif
2174}
2175
2176#ifdef CONFIG_USE_MDIO
2177/* MII command/status interface.
2178 * I'm not going to describe all of the details. You can find the
2179 * protocol definition in many other places, including the data sheet
2180 * of most PHY parts.
2181 * I wonder what "they" were thinking (maybe weren't) when they leave
2182 * the I2C in the CPM but I have to toggle these bits......
2183 */
2184#ifdef CONFIG_RPX8260
2185 /* The EP8260 has the MDIO pins in a BCSR instead of on Port C
2186 * like most other boards.
2187 */
2188#define MDIO_ADDR ((volatile u_char *)(RPX_CSR_ADDR + 4))
2189#define MAKE_MDIO_OUTPUT *MDIO_ADDR &= ~BCSR4_MII_READ
2190#define MAKE_MDIO_INPUT *MDIO_ADDR |= BCSR4_MII_READ | BCSR4_MII_MDIO
2191#define OUT_MDIO(bit) \
2192 if (bit) \
2193 *MDIO_ADDR |= BCSR4_MII_MDIO; \
2194 else \
2195 *MDIO_ADDR &= ~BCSR4_MII_MDIO;
2196#define IN_MDIO (*MDIO_ADDR & BCSR4_MII_MDIO)
2197#define OUT_MDC(bit) \
2198 if (bit) \
2199 *MDIO_ADDR |= BCSR4_MII_MDC; \
2200 else \
2201 *MDIO_ADDR &= ~BCSR4_MII_MDC;
2202#else /* ifdef CONFIG_RPX8260 */
2203 /* This is for the usual case where the MDIO pins are on Port C.
2204 */
2205#define MDIO_ADDR (((volatile cpm2_map_t *)CPM_MAP_ADDR)->im_ioport)
2206#define MAKE_MDIO_OUTPUT MDIO_ADDR.iop_pdirc |= fip->fc_mdio
2207#define MAKE_MDIO_INPUT MDIO_ADDR.iop_pdirc &= ~fip->fc_mdio
2208#define OUT_MDIO(bit) \
2209 if (bit) \
2210 MDIO_ADDR.iop_pdatc |= fip->fc_mdio; \
2211 else \
2212 MDIO_ADDR.iop_pdatc &= ~fip->fc_mdio;
2213#define IN_MDIO ((MDIO_ADDR.iop_pdatc) & fip->fc_mdio)
2214#define OUT_MDC(bit) \
2215 if (bit) \
2216 MDIO_ADDR.iop_pdatc |= fip->fc_mdck; \
2217 else \
2218 MDIO_ADDR.iop_pdatc &= ~fip->fc_mdck;
2219#endif /* ifdef CONFIG_RPX8260 */
2220
2221static uint
2222mii_send_receive(fcc_info_t *fip, uint cmd)
2223{
2224 uint retval;
2225 int read_op, i, off;
2226 const int us = 1;
2227
2228 read_op = ((cmd & 0xf0000000) == 0x60000000);
2229
2230 /* Write preamble
2231 */
2232 OUT_MDIO(1);
2233 MAKE_MDIO_OUTPUT;
2234 OUT_MDIO(1);
2235 for (i = 0; i < 32; i++)
2236 {
2237 udelay(us);
2238 OUT_MDC(1);
2239 udelay(us);
2240 OUT_MDC(0);
2241 }
2242
2243 /* Write data
2244 */
2245 for (i = 0, off = 31; i < (read_op ? 14 : 32); i++, --off)
2246 {
2247 OUT_MDIO((cmd >> off) & 0x00000001);
2248 udelay(us);
2249 OUT_MDC(1);
2250 udelay(us);
2251 OUT_MDC(0);
2252 }
2253
2254 retval = cmd;
2255
2256 if (read_op)
2257 {
2258 retval >>= 16;
2259
2260 MAKE_MDIO_INPUT;
2261 udelay(us);
2262 OUT_MDC(1);
2263 udelay(us);
2264 OUT_MDC(0);
2265
2266 for (i = 0; i < 16; i++)
2267 {
2268 udelay(us);
2269 OUT_MDC(1);
2270 udelay(us);
2271 retval <<= 1;
2272 if (IN_MDIO)
2273 retval++;
2274 OUT_MDC(0);
2275 }
2276 }
2277
2278 MAKE_MDIO_INPUT;
2279 udelay(us);
2280 OUT_MDC(1);
2281 udelay(us);
2282 OUT_MDC(0);
2283
2284 return retval;
2285}
2286#endif /* CONFIG_USE_MDIO */
2287
2288static void
2289fcc_stop(struct net_device *dev)
2290{
2291 struct fcc_enet_private *fep= (struct fcc_enet_private *)(dev->priv);
2292 volatile fcc_t *fccp = fep->fccp;
2293 fcc_info_t *fip = fep->fip;
2294 volatile fcc_enet_t *ep = fep->ep;
2295 volatile cpm_cpm2_t *cp = cpmp;
2296 volatile cbd_t *bdp;
2297 int i;
2298
2299 if ((fccp->fcc_gfmr & (FCC_GFMR_ENR | FCC_GFMR_ENT)) == 0)
2300 return; /* already down */
2301
2302 fccp->fcc_fccm = 0;
2303
2304 /* issue the graceful stop tx command */
2305 while (cp->cp_cpcr & CPM_CR_FLG);
2306 cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock,
2307 0x0c, CPM_CR_GRA_STOP_TX) | CPM_CR_FLG;
2308 while (cp->cp_cpcr & CPM_CR_FLG);
2309
2310 /* Disable transmit/receive */
2311 fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT);
2312
2313 /* issue the restart tx command */
2314 fccp->fcc_fcce = FCC_ENET_GRA;
2315 while (cp->cp_cpcr & CPM_CR_FLG);
2316 cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock,
2317 0x0c, CPM_CR_RESTART_TX) | CPM_CR_FLG;
2318 while (cp->cp_cpcr & CPM_CR_FLG);
2319
2320 /* free tx buffers */
2321 fep->skb_cur = fep->skb_dirty = 0;
2322 for (i=0; i<=TX_RING_MOD_MASK; i++) {
2323 if (fep->tx_skbuff[i] != NULL) {
2324 dev_kfree_skb(fep->tx_skbuff[i]);
2325 fep->tx_skbuff[i] = NULL;
2326 }
2327 }
2328 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2329 fep->tx_free = TX_RING_SIZE;
2330 ep->fen_genfcc.fcc_tbptr = ep->fen_genfcc.fcc_tbase;
2331
2332 /* Initialize the tx buffer descriptors. */
2333 bdp = fep->tx_bd_base;
2334 for (i=0; i<TX_RING_SIZE; i++) {
2335 bdp->cbd_sc = 0;
2336 bdp->cbd_datlen = 0;
2337 bdp->cbd_bufaddr = 0;
2338 bdp++;
2339 }
2340 /* Set the last buffer to wrap. */
2341 bdp--;
2342 bdp->cbd_sc |= BD_SC_WRAP;
2343}
2344
2345static void
2346fcc_restart(struct net_device *dev, int duplex)
2347{
2348 struct fcc_enet_private *fep = (struct fcc_enet_private *)(dev->priv);
2349 volatile fcc_t *fccp = fep->fccp;
2350
2351 /* stop any transmissions in progress */
2352 fcc_stop(dev);
2353
2354 if (duplex)
2355 fccp->fcc_fpsmr |= FCC_PSMR_FDE | FCC_PSMR_LPB;
2356 else
2357 fccp->fcc_fpsmr &= ~(FCC_PSMR_FDE | FCC_PSMR_LPB);
2358
2359 /* Enable interrupts for transmit error, complete frame
2360 * received, and any transmit buffer we have also set the
2361 * interrupt flag.
2362 */
2363 fccp->fcc_fccm = (FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
2364
2365 /* Enable transmit/receive */
2366 fccp->fcc_gfmr |= FCC_GFMR_ENR | FCC_GFMR_ENT;
2367}
2368
2369static int
2370fcc_enet_open(struct net_device *dev)
2371{
2372 struct fcc_enet_private *fep = dev->priv;
2373
2374#ifdef CONFIG_USE_MDIO
2375 fep->sequence_done = 0;
2376 fep->link = 0;
2377
2378 if (fep->phy) {
2379 fcc_restart(dev, 0); /* always start in half-duplex */
2380 mii_do_cmd(dev, fep->phy->ack_int);
2381 mii_do_cmd(dev, fep->phy->config);
2382 mii_do_cmd(dev, phy_cmd_config); /* display configuration */
2383 while(!fep->sequence_done)
2384 schedule();
2385
2386 mii_do_cmd(dev, fep->phy->startup);
2387 netif_start_queue(dev);
2388 return 0; /* Success */
2389 }
2390 return -ENODEV; /* No PHY we understand */
2391#else
2392 fep->link = 1;
2393 fcc_restart(dev, 0); /* always start in half-duplex */
2394 netif_start_queue(dev);
2395 return 0; /* Always succeed */
2396#endif /* CONFIG_USE_MDIO */
2397}
2398