Merge branch 'core/iommu' into core/urgent
[linux-2.6-block.git] / arch / powerpc / platforms / cell / spufs / sched.c
CommitLineData
8b3d6663
AB
1/* sched.c - SPU scheduler.
2 *
3 * Copyright (C) IBM 2005
4 * Author: Mark Nutter <mnutter@us.ibm.com>
5 *
a68cf983 6 * 2006-03-31 NUMA domains added.
8b3d6663
AB
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
3b3d22cb
AB
23#undef DEBUG
24
8b3d6663
AB
25#include <linux/module.h>
26#include <linux/errno.h>
27#include <linux/sched.h>
28#include <linux/kernel.h>
29#include <linux/mm.h>
30#include <linux/completion.h>
31#include <linux/vmalloc.h>
32#include <linux/smp.h>
8b3d6663
AB
33#include <linux/stddef.h>
34#include <linux/unistd.h>
a68cf983
MN
35#include <linux/numa.h>
36#include <linux/mutex.h>
86767277 37#include <linux/notifier.h>
37901802 38#include <linux/kthread.h>
65de66f0
CH
39#include <linux/pid_namespace.h>
40#include <linux/proc_fs.h>
41#include <linux/seq_file.h>
038200cf 42#include <linux/marker.h>
8b3d6663
AB
43
44#include <asm/io.h>
45#include <asm/mmu_context.h>
46#include <asm/spu.h>
47#include <asm/spu_csa.h>
a91942ae 48#include <asm/spu_priv1.h>
8b3d6663
AB
49#include "spufs.h"
50
8b3d6663 51struct spu_prio_array {
72cb3608 52 DECLARE_BITMAP(bitmap, MAX_PRIO);
079cdb61
CH
53 struct list_head runq[MAX_PRIO];
54 spinlock_t runq_lock;
65de66f0 55 int nr_waiting;
8b3d6663
AB
56};
57
65de66f0 58static unsigned long spu_avenrun[3];
a68cf983 59static struct spu_prio_array *spu_prio;
37901802
CH
60static struct task_struct *spusched_task;
61static struct timer_list spusched_timer;
90608a29 62static struct timer_list spuloadavg_timer;
8b3d6663 63
fe443ef2
CH
64/*
65 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
66 */
67#define NORMAL_PRIO 120
68
69/*
70 * Frequency of the spu scheduler tick. By default we do one SPU scheduler
71 * tick for every 10 CPU scheduler ticks.
72 */
73#define SPUSCHED_TICK (10)
74
75/*
76 * These are the 'tuning knobs' of the scheduler:
77 *
60e24239
JK
78 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
79 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
fe443ef2 80 */
60e24239
JK
81#define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
82#define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK))
fe443ef2
CH
83
84#define MAX_USER_PRIO (MAX_PRIO - MAX_RT_PRIO)
85#define SCALE_PRIO(x, prio) \
86 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
87
88/*
89 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
90 * [800ms ... 100ms ... 5ms]
91 *
92 * The higher a thread's priority, the bigger timeslices
93 * it gets during one round of execution. But even the lowest
94 * priority thread gets MIN_TIMESLICE worth of execution time.
95 */
96void spu_set_timeslice(struct spu_context *ctx)
97{
98 if (ctx->prio < NORMAL_PRIO)
99 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
100 else
101 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
102}
103
2cf2b3b4
CH
104/*
105 * Update scheduling information from the owning thread.
106 */
107void __spu_update_sched_info(struct spu_context *ctx)
108{
91569531
LB
109 /*
110 * assert that the context is not on the runqueue, so it is safe
111 * to change its scheduling parameters.
112 */
113 BUG_ON(!list_empty(&ctx->rq));
114
476273ad 115 /*
9b1d21f8
JMV
116 * 32-Bit assignments are atomic on powerpc, and we don't care about
117 * memory ordering here because retrieving the controlling thread is
118 * per definition racy.
476273ad
CH
119 */
120 ctx->tid = current->pid;
121
2cf2b3b4
CH
122 /*
123 * We do our own priority calculations, so we normally want
9b1d21f8 124 * ->static_prio to start with. Unfortunately this field
2cf2b3b4
CH
125 * contains junk for threads with a realtime scheduling
126 * policy so we have to look at ->prio in this case.
127 */
128 if (rt_prio(current->prio))
129 ctx->prio = current->prio;
130 else
131 ctx->prio = current->static_prio;
132 ctx->policy = current->policy;
ea1ae594
CH
133
134 /*
91569531
LB
135 * TO DO: the context may be loaded, so we may need to activate
136 * it again on a different node. But it shouldn't hurt anything
137 * to update its parameters, because we know that the scheduler
138 * is not actively looking at this field, since it is not on the
139 * runqueue. The context will be rescheduled on the proper node
140 * if it is timesliced or preempted.
ea1ae594 141 */
ea1ae594 142 ctx->cpus_allowed = current->cpus_allowed;
7a214200
LB
143
144 /* Save the current cpu id for spu interrupt routing. */
145 ctx->last_ran = raw_smp_processor_id();
2cf2b3b4
CH
146}
147
148void spu_update_sched_info(struct spu_context *ctx)
149{
91569531 150 int node;
2cf2b3b4 151
91569531
LB
152 if (ctx->state == SPU_STATE_RUNNABLE) {
153 node = ctx->spu->node;
e65c2f6f
LB
154
155 /*
156 * Take list_mutex to sync with find_victim().
157 */
91569531
LB
158 mutex_lock(&cbe_spu_info[node].list_mutex);
159 __spu_update_sched_info(ctx);
160 mutex_unlock(&cbe_spu_info[node].list_mutex);
161 } else {
162 __spu_update_sched_info(ctx);
163 }
2cf2b3b4
CH
164}
165
ea1ae594 166static int __node_allowed(struct spu_context *ctx, int node)
8b3d6663 167{
ea1ae594 168 if (nr_cpus_node(node)) {
86c6f274 169 const struct cpumask *mask = cpumask_of_node(node);
8b3d6663 170
86c6f274 171 if (cpumask_intersects(mask, &ctx->cpus_allowed))
ea1ae594
CH
172 return 1;
173 }
174
175 return 0;
176}
177
178static int node_allowed(struct spu_context *ctx, int node)
179{
180 int rval;
181
182 spin_lock(&spu_prio->runq_lock);
183 rval = __node_allowed(ctx, node);
184 spin_unlock(&spu_prio->runq_lock);
185
186 return rval;
8b3d6663
AB
187}
188
aed3a8c9 189void do_notify_spus_active(void)
36aaccc1
BN
190{
191 int node;
192
193 /*
194 * Wake up the active spu_contexts.
195 *
196 * When the awakened processes see their "notify_active" flag is set,
9b1d21f8 197 * they will call spu_switch_notify().
36aaccc1
BN
198 */
199 for_each_online_node(node) {
200 struct spu *spu;
486acd48
CH
201
202 mutex_lock(&cbe_spu_info[node].list_mutex);
203 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
204 if (spu->alloc_state != SPU_FREE) {
205 struct spu_context *ctx = spu->ctx;
206 set_bit(SPU_SCHED_NOTIFY_ACTIVE,
207 &ctx->sched_flags);
208 mb();
209 wake_up_all(&ctx->stop_wq);
210 }
36aaccc1 211 }
486acd48 212 mutex_unlock(&cbe_spu_info[node].list_mutex);
36aaccc1
BN
213 }
214}
215
202557d2
CH
216/**
217 * spu_bind_context - bind spu context to physical spu
218 * @spu: physical spu to bind to
219 * @ctx: context to bind
220 */
221static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
8b3d6663 222{
038200cf
CH
223 spu_context_trace(spu_bind_context__enter, ctx, spu);
224
27ec41d3 225 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
e9f8a0b6 226
aa6d5b20
AB
227 if (ctx->flags & SPU_CREATE_NOSCHED)
228 atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
229
e9f8a0b6
CH
230 ctx->stats.slb_flt_base = spu->stats.slb_flt;
231 ctx->stats.class2_intr_base = spu->stats.class2_intr;
232
2c911a14
LB
233 spu_associate_mm(spu, ctx->owner);
234
235 spin_lock_irq(&spu->register_lock);
8b3d6663
AB
236 spu->ctx = ctx;
237 spu->flags = 0;
238 ctx->spu = spu;
239 ctx->ops = &spu_hw_ops;
240 spu->pid = current->pid;
1474855d 241 spu->tgid = current->tgid;
8b3d6663
AB
242 spu->ibox_callback = spufs_ibox_callback;
243 spu->wbox_callback = spufs_wbox_callback;
5110459f 244 spu->stop_callback = spufs_stop_callback;
a33a7d73 245 spu->mfc_callback = spufs_mfc_callback;
2c911a14
LB
246 spin_unlock_irq(&spu->register_lock);
247
5110459f 248 spu_unmap_mappings(ctx);
2c911a14 249
5158e9b5 250 spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0);
8b3d6663 251 spu_restore(&ctx->csa, spu);
2a911f0b 252 spu->timestamp = jiffies;
86767277 253 spu_switch_notify(spu, ctx);
81998baf 254 ctx->state = SPU_STATE_RUNNABLE;
27ec41d3 255
2a58aa33 256 spuctx_switch_state(ctx, SPU_UTIL_USER);
8b3d6663
AB
257}
258
c5fc8d2a 259/*
486acd48 260 * Must be used with the list_mutex held.
c5fc8d2a
AB
261 */
262static inline int sched_spu(struct spu *spu)
263{
486acd48
CH
264 BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));
265
c5fc8d2a
AB
266 return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
267}
268
269static void aff_merge_remaining_ctxs(struct spu_gang *gang)
270{
271 struct spu_context *ctx;
272
273 list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
274 if (list_empty(&ctx->aff_list))
275 list_add(&ctx->aff_list, &gang->aff_list_head);
276 }
277 gang->aff_flags |= AFF_MERGED;
278}
279
280static void aff_set_offsets(struct spu_gang *gang)
281{
282 struct spu_context *ctx;
283 int offset;
284
285 offset = -1;
286 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
287 aff_list) {
288 if (&ctx->aff_list == &gang->aff_list_head)
289 break;
290 ctx->aff_offset = offset--;
291 }
292
293 offset = 0;
294 list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
295 if (&ctx->aff_list == &gang->aff_list_head)
296 break;
297 ctx->aff_offset = offset++;
298 }
299
300 gang->aff_flags |= AFF_OFFSETS_SET;
301}
302
303static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
304 int group_size, int lowest_offset)
305{
306 struct spu *spu;
307 int node, n;
308
309 /*
310 * TODO: A better algorithm could be used to find a good spu to be
311 * used as reference location for the ctxs chain.
312 */
313 node = cpu_to_node(raw_smp_processor_id());
314 for (n = 0; n < MAX_NUMNODES; n++, node++) {
10baa26c
AD
315 /*
316 * "available_spus" counts how many spus are not potentially
317 * going to be used by other affinity gangs whose reference
318 * context is already in place. Although this code seeks to
319 * avoid having affinity gangs with a summed amount of
320 * contexts bigger than the amount of spus in the node,
321 * this may happen sporadically. In this case, available_spus
322 * becomes negative, which is harmless.
323 */
ad1ede12
AD
324 int available_spus;
325
c5fc8d2a
AB
326 node = (node < MAX_NUMNODES) ? node : 0;
327 if (!node_allowed(ctx, node))
328 continue;
ad1ede12
AD
329
330 available_spus = 0;
486acd48 331 mutex_lock(&cbe_spu_info[node].list_mutex);
ad1ede12 332 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
10baa26c
AD
333 if (spu->ctx && spu->ctx->gang && !spu->ctx->aff_offset
334 && spu->ctx->gang->aff_ref_spu)
335 available_spus -= spu->ctx->gang->contexts;
336 available_spus++;
ad1ede12
AD
337 }
338 if (available_spus < ctx->gang->contexts) {
339 mutex_unlock(&cbe_spu_info[node].list_mutex);
340 continue;
341 }
342
c5fc8d2a
AB
343 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
344 if ((!mem_aff || spu->has_mem_affinity) &&
486acd48
CH
345 sched_spu(spu)) {
346 mutex_unlock(&cbe_spu_info[node].list_mutex);
c5fc8d2a 347 return spu;
486acd48 348 }
c5fc8d2a 349 }
486acd48 350 mutex_unlock(&cbe_spu_info[node].list_mutex);
c5fc8d2a
AB
351 }
352 return NULL;
353}
354
355static void aff_set_ref_point_location(struct spu_gang *gang)
356{
357 int mem_aff, gs, lowest_offset;
358 struct spu_context *ctx;
359 struct spu *tmp;
360
361 mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
362 lowest_offset = 0;
363 gs = 0;
364
365 list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
366 gs++;
367
368 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
369 aff_list) {
370 if (&ctx->aff_list == &gang->aff_list_head)
371 break;
372 lowest_offset = ctx->aff_offset;
373 }
374
683e3ab2
AD
375 gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
376 lowest_offset);
c5fc8d2a
AB
377}
378
486acd48 379static struct spu *ctx_location(struct spu *ref, int offset, int node)
c5fc8d2a
AB
380{
381 struct spu *spu;
382
383 spu = NULL;
384 if (offset >= 0) {
385 list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
486acd48 386 BUG_ON(spu->node != node);
c5fc8d2a
AB
387 if (offset == 0)
388 break;
389 if (sched_spu(spu))
390 offset--;
391 }
392 } else {
393 list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
486acd48 394 BUG_ON(spu->node != node);
c5fc8d2a
AB
395 if (offset == 0)
396 break;
397 if (sched_spu(spu))
398 offset++;
399 }
400 }
486acd48 401
c5fc8d2a
AB
402 return spu;
403}
404
405/*
406 * affinity_check is called each time a context is going to be scheduled.
407 * It returns the spu ptr on which the context must run.
408 */
486acd48 409static int has_affinity(struct spu_context *ctx)
c5fc8d2a 410{
486acd48 411 struct spu_gang *gang = ctx->gang;
c5fc8d2a
AB
412
413 if (list_empty(&ctx->aff_list))
486acd48
CH
414 return 0;
415
0855b543
AD
416 if (atomic_read(&ctx->gang->aff_sched_count) == 0)
417 ctx->gang->aff_ref_spu = NULL;
418
c5fc8d2a
AB
419 if (!gang->aff_ref_spu) {
420 if (!(gang->aff_flags & AFF_MERGED))
421 aff_merge_remaining_ctxs(gang);
422 if (!(gang->aff_flags & AFF_OFFSETS_SET))
423 aff_set_offsets(gang);
424 aff_set_ref_point_location(gang);
425 }
486acd48
CH
426
427 return gang->aff_ref_spu != NULL;
c5fc8d2a
AB
428}
429
202557d2
CH
430/**
431 * spu_unbind_context - unbind spu context from physical spu
432 * @spu: physical spu to unbind from
433 * @ctx: context to unbind
202557d2 434 */
678b2ff1 435static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
8b3d6663 436{
028fda0a
LB
437 u32 status;
438
038200cf
CH
439 spu_context_trace(spu_unbind_context__enter, ctx, spu);
440
27ec41d3 441 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
fe2f896d 442
aa6d5b20
AB
443 if (spu->ctx->flags & SPU_CREATE_NOSCHED)
444 atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
36ddbb13 445
0855b543 446 if (ctx->gang)
34318c25
AD
447 /*
448 * If ctx->gang->aff_sched_count is positive, SPU affinity is
449 * being considered in this gang. Using atomic_dec_if_positive
450 * allow us to skip an explicit check for affinity in this gang
451 */
0855b543 452 atomic_dec_if_positive(&ctx->gang->aff_sched_count);
36ddbb13 453
86767277 454 spu_switch_notify(spu, NULL);
5110459f 455 spu_unmap_mappings(ctx);
8b3d6663 456 spu_save(&ctx->csa, spu);
5158e9b5 457 spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0);
2c911a14
LB
458
459 spin_lock_irq(&spu->register_lock);
2a911f0b 460 spu->timestamp = jiffies;
8b3d6663
AB
461 ctx->state = SPU_STATE_SAVED;
462 spu->ibox_callback = NULL;
463 spu->wbox_callback = NULL;
5110459f 464 spu->stop_callback = NULL;
a33a7d73 465 spu->mfc_callback = NULL;
8b3d6663 466 spu->pid = 0;
1474855d 467 spu->tgid = 0;
8b3d6663 468 ctx->ops = &spu_backing_ops;
2a911f0b 469 spu->flags = 0;
8b3d6663 470 spu->ctx = NULL;
2c911a14
LB
471 spin_unlock_irq(&spu->register_lock);
472
473 spu_associate_mm(spu, NULL);
e9f8a0b6
CH
474
475 ctx->stats.slb_flt +=
476 (spu->stats.slb_flt - ctx->stats.slb_flt_base);
477 ctx->stats.class2_intr +=
478 (spu->stats.class2_intr - ctx->stats.class2_intr_base);
27ec41d3
AD
479
480 /* This maps the underlying spu state to idle */
481 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
482 ctx->spu = NULL;
028fda0a
LB
483
484 if (spu_stopped(ctx, &status))
485 wake_up_all(&ctx->stop_wq);
8b3d6663
AB
486}
487
079cdb61
CH
488/**
489 * spu_add_to_rq - add a context to the runqueue
490 * @ctx: context to add
491 */
4e0f4ed0 492static void __spu_add_to_rq(struct spu_context *ctx)
8b3d6663 493{
27449971
CH
494 /*
495 * Unfortunately this code path can be called from multiple threads
496 * on behalf of a single context due to the way the problem state
497 * mmap support works.
498 *
499 * Fortunately we need to wake up all these threads at the same time
500 * and can simply skip the runqueue addition for every but the first
501 * thread getting into this codepath.
502 *
503 * It's still quite hacky, and long-term we should proxy all other
504 * threads through the owner thread so that spu_run is in control
505 * of all the scheduling activity for a given context.
506 */
507 if (list_empty(&ctx->rq)) {
508 list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
509 set_bit(ctx->prio, spu_prio->bitmap);
510 if (!spu_prio->nr_waiting++)
511 __mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
512 }
2a911f0b 513}
5110459f 514
e65c2f6f
LB
515static void spu_add_to_rq(struct spu_context *ctx)
516{
517 spin_lock(&spu_prio->runq_lock);
518 __spu_add_to_rq(ctx);
519 spin_unlock(&spu_prio->runq_lock);
520}
521
4e0f4ed0 522static void __spu_del_from_rq(struct spu_context *ctx)
a475c2f4 523{
4e0f4ed0
LB
524 int prio = ctx->prio;
525
65de66f0 526 if (!list_empty(&ctx->rq)) {
c77239b8
CH
527 if (!--spu_prio->nr_waiting)
528 del_timer(&spusched_timer);
a475c2f4 529 list_del_init(&ctx->rq);
c77239b8
CH
530
531 if (list_empty(&spu_prio->runq[prio]))
532 clear_bit(prio, spu_prio->bitmap);
65de66f0 533 }
079cdb61 534}
a68cf983 535
e65c2f6f
LB
536void spu_del_from_rq(struct spu_context *ctx)
537{
538 spin_lock(&spu_prio->runq_lock);
539 __spu_del_from_rq(ctx);
540 spin_unlock(&spu_prio->runq_lock);
541}
542
079cdb61 543static void spu_prio_wait(struct spu_context *ctx)
8b3d6663 544{
a68cf983 545 DEFINE_WAIT(wait);
8b3d6663 546
e65c2f6f
LB
547 /*
548 * The caller must explicitly wait for a context to be loaded
549 * if the nosched flag is set. If NOSCHED is not set, the caller
550 * queues the context and waits for an spu event or error.
551 */
552 BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));
553
4e0f4ed0 554 spin_lock(&spu_prio->runq_lock);
079cdb61 555 prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
a68cf983 556 if (!signal_pending(current)) {
4e0f4ed0
LB
557 __spu_add_to_rq(ctx);
558 spin_unlock(&spu_prio->runq_lock);
650f8b02 559 mutex_unlock(&ctx->state_mutex);
a68cf983 560 schedule();
650f8b02 561 mutex_lock(&ctx->state_mutex);
4e0f4ed0
LB
562 spin_lock(&spu_prio->runq_lock);
563 __spu_del_from_rq(ctx);
8b3d6663 564 }
4e0f4ed0 565 spin_unlock(&spu_prio->runq_lock);
079cdb61
CH
566 __set_current_state(TASK_RUNNING);
567 remove_wait_queue(&ctx->stop_wq, &wait);
8b3d6663
AB
568}
569
079cdb61 570static struct spu *spu_get_idle(struct spu_context *ctx)
a68cf983 571{
36ddbb13 572 struct spu *spu, *aff_ref_spu;
486acd48
CH
573 int node, n;
574
038200cf
CH
575 spu_context_nospu_trace(spu_get_idle__enter, ctx);
576
36ddbb13
AD
577 if (ctx->gang) {
578 mutex_lock(&ctx->gang->aff_mutex);
579 if (has_affinity(ctx)) {
580 aff_ref_spu = ctx->gang->aff_ref_spu;
581 atomic_inc(&ctx->gang->aff_sched_count);
582 mutex_unlock(&ctx->gang->aff_mutex);
583 node = aff_ref_spu->node;
584
585 mutex_lock(&cbe_spu_info[node].list_mutex);
586 spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
587 if (spu && spu->alloc_state == SPU_FREE)
588 goto found;
589 mutex_unlock(&cbe_spu_info[node].list_mutex);
a68cf983 590
0855b543 591 atomic_dec(&ctx->gang->aff_sched_count);
038200cf 592 goto not_found;
36ddbb13
AD
593 }
594 mutex_unlock(&ctx->gang->aff_mutex);
595 }
486acd48 596 node = cpu_to_node(raw_smp_processor_id());
a68cf983
MN
597 for (n = 0; n < MAX_NUMNODES; n++, node++) {
598 node = (node < MAX_NUMNODES) ? node : 0;
ea1ae594 599 if (!node_allowed(ctx, node))
a68cf983 600 continue;
486acd48
CH
601
602 mutex_lock(&cbe_spu_info[node].list_mutex);
603 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
604 if (spu->alloc_state == SPU_FREE)
605 goto found;
606 }
607 mutex_unlock(&cbe_spu_info[node].list_mutex);
a68cf983 608 }
486acd48 609
038200cf
CH
610 not_found:
611 spu_context_nospu_trace(spu_get_idle__not_found, ctx);
486acd48
CH
612 return NULL;
613
614 found:
615 spu->alloc_state = SPU_USED;
616 mutex_unlock(&cbe_spu_info[node].list_mutex);
038200cf 617 spu_context_trace(spu_get_idle__found, ctx, spu);
486acd48 618 spu_init_channels(spu);
a68cf983
MN
619 return spu;
620}
8b3d6663 621
52f04fcf
CH
622/**
623 * find_victim - find a lower priority context to preempt
624 * @ctx: canidate context for running
625 *
626 * Returns the freed physical spu to run the new context on.
627 */
628static struct spu *find_victim(struct spu_context *ctx)
629{
630 struct spu_context *victim = NULL;
631 struct spu *spu;
632 int node, n;
633
8a476d49 634 spu_context_nospu_trace(spu_find_victim__enter, ctx);
038200cf 635
52f04fcf
CH
636 /*
637 * Look for a possible preemption candidate on the local node first.
638 * If there is no candidate look at the other nodes. This isn't
9b1d21f8 639 * exactly fair, but so far the whole spu scheduler tries to keep
52f04fcf
CH
640 * a strong node affinity. We might want to fine-tune this in
641 * the future.
642 */
643 restart:
644 node = cpu_to_node(raw_smp_processor_id());
645 for (n = 0; n < MAX_NUMNODES; n++, node++) {
646 node = (node < MAX_NUMNODES) ? node : 0;
ea1ae594 647 if (!node_allowed(ctx, node))
52f04fcf
CH
648 continue;
649
486acd48
CH
650 mutex_lock(&cbe_spu_info[node].list_mutex);
651 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
52f04fcf
CH
652 struct spu_context *tmp = spu->ctx;
653
c0e7b4aa 654 if (tmp && tmp->prio > ctx->prio &&
e65c2f6f 655 !(tmp->flags & SPU_CREATE_NOSCHED) &&
8d5636fb 656 (!victim || tmp->prio > victim->prio)) {
52f04fcf 657 victim = spu->ctx;
8d5636fb 658 }
52f04fcf 659 }
9f43e391
JK
660 if (victim)
661 get_spu_context(victim);
486acd48 662 mutex_unlock(&cbe_spu_info[node].list_mutex);
52f04fcf
CH
663
664 if (victim) {
665 /*
666 * This nests ctx->state_mutex, but we always lock
667 * higher priority contexts before lower priority
668 * ones, so this is safe until we introduce
669 * priority inheritance schemes.
91569531
LB
670 *
671 * XXX if the highest priority context is locked,
672 * this can loop a long time. Might be better to
673 * look at another context or give up after X retries.
52f04fcf
CH
674 */
675 if (!mutex_trylock(&victim->state_mutex)) {
8d5636fb 676 put_spu_context(victim);
52f04fcf
CH
677 victim = NULL;
678 goto restart;
679 }
680
681 spu = victim->spu;
b192541b 682 if (!spu || victim->prio <= ctx->prio) {
52f04fcf
CH
683 /*
684 * This race can happen because we've dropped
b192541b 685 * the active list mutex. Not a problem, just
52f04fcf
CH
686 * restart the search.
687 */
688 mutex_unlock(&victim->state_mutex);
8d5636fb 689 put_spu_context(victim);
52f04fcf
CH
690 victim = NULL;
691 goto restart;
692 }
486acd48 693
038200cf
CH
694 spu_context_trace(__spu_deactivate__unload, ctx, spu);
695
486acd48
CH
696 mutex_lock(&cbe_spu_info[node].list_mutex);
697 cbe_spu_info[node].nr_active--;
c0e7b4aa 698 spu_unbind_context(spu, victim);
486acd48
CH
699 mutex_unlock(&cbe_spu_info[node].list_mutex);
700
e9f8a0b6 701 victim->stats.invol_ctx_switch++;
fe2f896d 702 spu->stats.invol_ctx_switch++;
08fcf1d6 703 if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags))
7a28a154 704 spu_add_to_rq(victim);
e65c2f6f 705
52f04fcf 706 mutex_unlock(&victim->state_mutex);
8d5636fb 707 put_spu_context(victim);
e65c2f6f 708
52f04fcf
CH
709 return spu;
710 }
711 }
712
713 return NULL;
714}
715
e65c2f6f
LB
716static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
717{
718 int node = spu->node;
719 int success = 0;
720
721 spu_set_timeslice(ctx);
722
723 mutex_lock(&cbe_spu_info[node].list_mutex);
724 if (spu->ctx == NULL) {
725 spu_bind_context(spu, ctx);
726 cbe_spu_info[node].nr_active++;
727 spu->alloc_state = SPU_USED;
728 success = 1;
729 }
730 mutex_unlock(&cbe_spu_info[node].list_mutex);
731
732 if (success)
733 wake_up_all(&ctx->run_wq);
734 else
735 spu_add_to_rq(ctx);
736}
737
738static void spu_schedule(struct spu *spu, struct spu_context *ctx)
739{
c9101bdb
CH
740 /* not a candidate for interruptible because it's called either
741 from the scheduler thread or from spu_deactivate */
742 mutex_lock(&ctx->state_mutex);
b2e601d1
AD
743 if (ctx->state == SPU_STATE_SAVED)
744 __spu_schedule(spu, ctx);
e65c2f6f
LB
745 spu_release(ctx);
746}
747
b65fe035
JK
748/**
749 * spu_unschedule - remove a context from a spu, and possibly release it.
750 * @spu: The SPU to unschedule from
751 * @ctx: The context currently scheduled on the SPU
752 * @free_spu Whether to free the SPU for other contexts
753 *
754 * Unbinds the context @ctx from the SPU @spu. If @free_spu is non-zero, the
755 * SPU is made available for other contexts (ie, may be returned by
756 * spu_get_idle). If this is zero, the caller is expected to schedule another
757 * context to this spu.
758 *
759 * Should be called with ctx->state_mutex held.
760 */
761static void spu_unschedule(struct spu *spu, struct spu_context *ctx,
762 int free_spu)
e65c2f6f
LB
763{
764 int node = spu->node;
765
766 mutex_lock(&cbe_spu_info[node].list_mutex);
767 cbe_spu_info[node].nr_active--;
b65fe035
JK
768 if (free_spu)
769 spu->alloc_state = SPU_FREE;
e65c2f6f
LB
770 spu_unbind_context(spu, ctx);
771 ctx->stats.invol_ctx_switch++;
772 spu->stats.invol_ctx_switch++;
773 mutex_unlock(&cbe_spu_info[node].list_mutex);
774}
775
079cdb61
CH
776/**
777 * spu_activate - find a free spu for a context and execute it
778 * @ctx: spu context to schedule
779 * @flags: flags (currently ignored)
780 *
08873095 781 * Tries to find a free spu to run @ctx. If no free spu is available
079cdb61
CH
782 * add the context to the runqueue so it gets woken up once an spu
783 * is available.
784 */
26bec673 785int spu_activate(struct spu_context *ctx, unsigned long flags)
8b3d6663 786{
e65c2f6f 787 struct spu *spu;
079cdb61 788
e65c2f6f
LB
789 /*
790 * If there are multiple threads waiting for a single context
791 * only one actually binds the context while the others will
792 * only be able to acquire the state_mutex once the context
793 * already is in runnable state.
794 */
795 if (ctx->spu)
796 return 0;
27449971 797
e65c2f6f
LB
798spu_activate_top:
799 if (signal_pending(current))
800 return -ERESTARTSYS;
486acd48 801
e65c2f6f
LB
802 spu = spu_get_idle(ctx);
803 /*
804 * If this is a realtime thread we try to get it running by
805 * preempting a lower priority thread.
806 */
807 if (!spu && rt_prio(ctx->prio))
808 spu = find_victim(ctx);
809 if (spu) {
810 unsigned long runcntl;
811
812 runcntl = ctx->ops->runcntl_read(ctx);
813 __spu_schedule(spu, ctx);
814 if (runcntl & SPU_RUNCNTL_RUNNABLE)
815 spuctx_switch_state(ctx, SPU_UTIL_USER);
079cdb61 816
e65c2f6f
LB
817 return 0;
818 }
819
820 if (ctx->flags & SPU_CREATE_NOSCHED) {
50b520d4 821 spu_prio_wait(ctx);
e65c2f6f
LB
822 goto spu_activate_top;
823 }
824
825 spu_add_to_rq(ctx);
079cdb61 826
e65c2f6f 827 return 0;
8b3d6663
AB
828}
829
bb5db29a
CH
830/**
831 * grab_runnable_context - try to find a runnable context
832 *
833 * Remove the highest priority context on the runqueue and return it
834 * to the caller. Returns %NULL if no runnable context was found.
835 */
ea1ae594 836static struct spu_context *grab_runnable_context(int prio, int node)
bb5db29a 837{
ea1ae594 838 struct spu_context *ctx;
bb5db29a
CH
839 int best;
840
841 spin_lock(&spu_prio->runq_lock);
7e90b749 842 best = find_first_bit(spu_prio->bitmap, prio);
ea1ae594 843 while (best < prio) {
bb5db29a
CH
844 struct list_head *rq = &spu_prio->runq[best];
845
ea1ae594
CH
846 list_for_each_entry(ctx, rq, rq) {
847 /* XXX(hch): check for affinity here aswell */
848 if (__node_allowed(ctx, node)) {
849 __spu_del_from_rq(ctx);
850 goto found;
851 }
852 }
853 best++;
bb5db29a 854 }
ea1ae594
CH
855 ctx = NULL;
856 found:
bb5db29a 857 spin_unlock(&spu_prio->runq_lock);
bb5db29a
CH
858 return ctx;
859}
860
861static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
862{
863 struct spu *spu = ctx->spu;
864 struct spu_context *new = NULL;
865
866 if (spu) {
ea1ae594 867 new = grab_runnable_context(max_prio, spu->node);
bb5db29a 868 if (new || force) {
b65fe035 869 spu_unschedule(spu, ctx, new == NULL);
e65c2f6f
LB
870 if (new) {
871 if (new->flags & SPU_CREATE_NOSCHED)
872 wake_up(&new->stop_wq);
873 else {
874 spu_release(ctx);
875 spu_schedule(spu, new);
c9101bdb
CH
876 /* this one can't easily be made
877 interruptible */
878 mutex_lock(&ctx->state_mutex);
e65c2f6f
LB
879 }
880 }
bb5db29a 881 }
bb5db29a
CH
882 }
883
884 return new != NULL;
885}
886
678b2ff1
CH
887/**
888 * spu_deactivate - unbind a context from it's physical spu
889 * @ctx: spu context to unbind
890 *
891 * Unbind @ctx from the physical spu it is running on and schedule
892 * the highest priority context to run on the freed physical spu.
893 */
8b3d6663
AB
894void spu_deactivate(struct spu_context *ctx)
895{
038200cf 896 spu_context_nospu_trace(spu_deactivate__enter, ctx);
bb5db29a 897 __spu_deactivate(ctx, 1, MAX_PRIO);
8b3d6663
AB
898}
899
ae7b4c52 900/**
1474855d 901 * spu_yield - yield a physical spu if others are waiting
ae7b4c52
CH
902 * @ctx: spu context to yield
903 *
904 * Check if there is a higher priority context waiting and if yes
905 * unbind @ctx from the physical spu and schedule the highest
906 * priority context to run on the freed physical spu instead.
907 */
8b3d6663
AB
908void spu_yield(struct spu_context *ctx)
909{
038200cf 910 spu_context_nospu_trace(spu_yield__enter, ctx);
e5c0b9ec
CH
911 if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
912 mutex_lock(&ctx->state_mutex);
27ec41d3 913 __spu_deactivate(ctx, 0, MAX_PRIO);
e5c0b9ec
CH
914 mutex_unlock(&ctx->state_mutex);
915 }
bb5db29a 916}
8b3d6663 917
486acd48 918static noinline void spusched_tick(struct spu_context *ctx)
bb5db29a 919{
e65c2f6f
LB
920 struct spu_context *new = NULL;
921 struct spu *spu = NULL;
e65c2f6f 922
c9101bdb
CH
923 if (spu_acquire(ctx))
924 BUG(); /* a kernel thread never has signals pending */
e65c2f6f
LB
925
926 if (ctx->state != SPU_STATE_RUNNABLE)
927 goto out;
df09cf3e 928 if (ctx->flags & SPU_CREATE_NOSCHED)
e65c2f6f 929 goto out;
df09cf3e 930 if (ctx->policy == SCHED_FIFO)
e65c2f6f 931 goto out;
df09cf3e 932
ce7c191b 933 if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
e65c2f6f 934 goto out;
bb5db29a 935
e65c2f6f 936 spu = ctx->spu;
038200cf
CH
937
938 spu_context_trace(spusched_tick__preempt, ctx, spu);
939
e65c2f6f
LB
940 new = grab_runnable_context(ctx->prio + 1, spu->node);
941 if (new) {
b65fe035 942 spu_unschedule(spu, ctx, 0);
ce7c191b 943 if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
4ef11014 944 spu_add_to_rq(ctx);
bb5db29a 945 } else {
038200cf 946 spu_context_nospu_trace(spusched_tick__newslice, ctx);
2442a8ba
LB
947 if (!ctx->time_slice)
948 ctx->time_slice++;
8b3d6663 949 }
e65c2f6f
LB
950out:
951 spu_release(ctx);
952
953 if (new)
954 spu_schedule(spu, new);
8b3d6663
AB
955}
956
65de66f0
CH
957/**
958 * count_active_contexts - count nr of active tasks
959 *
960 * Return the number of tasks currently running or waiting to run.
961 *
486acd48 962 * Note that we don't take runq_lock / list_mutex here. Reading
65de66f0
CH
963 * a single 32bit value is atomic on powerpc, and we don't care
964 * about memory ordering issues here.
965 */
966static unsigned long count_active_contexts(void)
967{
968 int nr_active = 0, node;
969
970 for (node = 0; node < MAX_NUMNODES; node++)
486acd48 971 nr_active += cbe_spu_info[node].nr_active;
65de66f0
CH
972 nr_active += spu_prio->nr_waiting;
973
974 return nr_active;
975}
976
977/**
90608a29 978 * spu_calc_load - update the avenrun load estimates.
65de66f0
CH
979 *
980 * No locking against reading these values from userspace, as for
981 * the CPU loadavg code.
982 */
90608a29 983static void spu_calc_load(void)
65de66f0
CH
984{
985 unsigned long active_tasks; /* fixed-point */
90608a29
AL
986
987 active_tasks = count_active_contexts() * FIXED_1;
988 CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
989 CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
990 CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
65de66f0
CH
991}
992
37901802
CH
993static void spusched_wake(unsigned long data)
994{
995 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
996 wake_up_process(spusched_task);
90608a29
AL
997}
998
999static void spuloadavg_wake(unsigned long data)
1000{
1001 mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
1002 spu_calc_load();
37901802
CH
1003}
1004
1005static int spusched_thread(void *unused)
1006{
486acd48 1007 struct spu *spu;
37901802
CH
1008 int node;
1009
37901802
CH
1010 while (!kthread_should_stop()) {
1011 set_current_state(TASK_INTERRUPTIBLE);
1012 schedule();
1013 for (node = 0; node < MAX_NUMNODES; node++) {
e65c2f6f
LB
1014 struct mutex *mtx = &cbe_spu_info[node].list_mutex;
1015
1016 mutex_lock(mtx);
1017 list_for_each_entry(spu, &cbe_spu_info[node].spus,
1018 cbe_list) {
1019 struct spu_context *ctx = spu->ctx;
1020
1021 if (ctx) {
8d5636fb 1022 get_spu_context(ctx);
e65c2f6f
LB
1023 mutex_unlock(mtx);
1024 spusched_tick(ctx);
1025 mutex_lock(mtx);
8d5636fb 1026 put_spu_context(ctx);
e65c2f6f
LB
1027 }
1028 }
1029 mutex_unlock(mtx);
37901802
CH
1030 }
1031 }
1032
37901802
CH
1033 return 0;
1034}
1035
7cd58e43
JK
1036void spuctx_switch_state(struct spu_context *ctx,
1037 enum spu_utilization_state new_state)
1038{
1039 unsigned long long curtime;
1040 signed long long delta;
1041 struct timespec ts;
1042 struct spu *spu;
1043 enum spu_utilization_state old_state;
fabb6570 1044 int node;
7cd58e43
JK
1045
1046 ktime_get_ts(&ts);
1047 curtime = timespec_to_ns(&ts);
1048 delta = curtime - ctx->stats.tstamp;
1049
1050 WARN_ON(!mutex_is_locked(&ctx->state_mutex));
1051 WARN_ON(delta < 0);
1052
1053 spu = ctx->spu;
1054 old_state = ctx->stats.util_state;
1055 ctx->stats.util_state = new_state;
1056 ctx->stats.tstamp = curtime;
1057
1058 /*
1059 * Update the physical SPU utilization statistics.
1060 */
1061 if (spu) {
1062 ctx->stats.times[old_state] += delta;
1063 spu->stats.times[old_state] += delta;
1064 spu->stats.util_state = new_state;
1065 spu->stats.tstamp = curtime;
fabb6570
MS
1066 node = spu->node;
1067 if (old_state == SPU_UTIL_USER)
1068 atomic_dec(&cbe_spu_info[node].busy_spus);
cb9808d3 1069 if (new_state == SPU_UTIL_USER)
fabb6570 1070 atomic_inc(&cbe_spu_info[node].busy_spus);
7cd58e43
JK
1071 }
1072}
1073
65de66f0
CH
1074#define LOAD_INT(x) ((x) >> FSHIFT)
1075#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
1076
1077static int show_spu_loadavg(struct seq_file *s, void *private)
1078{
1079 int a, b, c;
1080
1081 a = spu_avenrun[0] + (FIXED_1/200);
1082 b = spu_avenrun[1] + (FIXED_1/200);
1083 c = spu_avenrun[2] + (FIXED_1/200);
1084
1085 /*
1086 * Note that last_pid doesn't really make much sense for the
9b1d21f8 1087 * SPU loadavg (it even seems very odd on the CPU side...),
65de66f0
CH
1088 * but we include it here to have a 100% compatible interface.
1089 */
1090 seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
1091 LOAD_INT(a), LOAD_FRAC(a),
1092 LOAD_INT(b), LOAD_FRAC(b),
1093 LOAD_INT(c), LOAD_FRAC(c),
1094 count_active_contexts(),
1095 atomic_read(&nr_spu_contexts),
1096 current->nsproxy->pid_ns->last_pid);
1097 return 0;
1098}
1099
1100static int spu_loadavg_open(struct inode *inode, struct file *file)
1101{
1102 return single_open(file, show_spu_loadavg, NULL);
1103}
1104
1105static const struct file_operations spu_loadavg_fops = {
1106 .open = spu_loadavg_open,
1107 .read = seq_read,
1108 .llseek = seq_lseek,
1109 .release = single_release,
1110};
1111
8b3d6663
AB
1112int __init spu_sched_init(void)
1113{
65de66f0
CH
1114 struct proc_dir_entry *entry;
1115 int err = -ENOMEM, i;
8b3d6663 1116
a68cf983 1117 spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
37901802 1118 if (!spu_prio)
65de66f0 1119 goto out;
37901802 1120
8b3d6663 1121 for (i = 0; i < MAX_PRIO; i++) {
079cdb61 1122 INIT_LIST_HEAD(&spu_prio->runq[i]);
a68cf983 1123 __clear_bit(i, spu_prio->bitmap);
8b3d6663 1124 }
079cdb61 1125 spin_lock_init(&spu_prio->runq_lock);
37901802 1126
c77239b8 1127 setup_timer(&spusched_timer, spusched_wake, 0);
90608a29 1128 setup_timer(&spuloadavg_timer, spuloadavg_wake, 0);
c77239b8 1129
37901802
CH
1130 spusched_task = kthread_run(spusched_thread, NULL, "spusched");
1131 if (IS_ERR(spusched_task)) {
65de66f0
CH
1132 err = PTR_ERR(spusched_task);
1133 goto out_free_spu_prio;
37901802 1134 }
f3f59bec 1135
90608a29
AL
1136 mod_timer(&spuloadavg_timer, 0);
1137
66747138 1138 entry = proc_create("spu_loadavg", 0, NULL, &spu_loadavg_fops);
65de66f0
CH
1139 if (!entry)
1140 goto out_stop_kthread;
65de66f0 1141
f3f59bec
JK
1142 pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
1143 SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
8b3d6663 1144 return 0;
37901802 1145
65de66f0
CH
1146 out_stop_kthread:
1147 kthread_stop(spusched_task);
1148 out_free_spu_prio:
1149 kfree(spu_prio);
1150 out:
1151 return err;
8b3d6663
AB
1152}
1153
d1450317 1154void spu_sched_exit(void)
8b3d6663 1155{
486acd48 1156 struct spu *spu;
a68cf983
MN
1157 int node;
1158
65de66f0
CH
1159 remove_proc_entry("spu_loadavg", NULL);
1160
c77239b8 1161 del_timer_sync(&spusched_timer);
90608a29 1162 del_timer_sync(&spuloadavg_timer);
37901802
CH
1163 kthread_stop(spusched_task);
1164
a68cf983 1165 for (node = 0; node < MAX_NUMNODES; node++) {
486acd48
CH
1166 mutex_lock(&cbe_spu_info[node].list_mutex);
1167 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
1168 if (spu->alloc_state != SPU_FREE)
1169 spu->alloc_state = SPU_FREE;
1170 mutex_unlock(&cbe_spu_info[node].list_mutex);
8b3d6663 1171 }
a68cf983 1172 kfree(spu_prio);
8b3d6663 1173}