powerpc/perf: Move BHRB code into CONFIG_PPC64 region
[linux-2.6-block.git] / arch / powerpc / perf / core-book3s.c
CommitLineData
4574910e 1/*
cdd6c482 2 * Performance event support - powerpc architecture code
4574910e
PM
3 *
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11#include <linux/kernel.h>
12#include <linux/sched.h>
cdd6c482 13#include <linux/perf_event.h>
4574910e
PM
14#include <linux/percpu.h>
15#include <linux/hardirq.h>
16#include <asm/reg.h>
17#include <asm/pmc.h>
01d0287f 18#include <asm/machdep.h>
0475f9ea 19#include <asm/firmware.h>
0bbd0d4b 20#include <asm/ptrace.h>
4574910e 21
3925f46b
AK
22#define BHRB_MAX_ENTRIES 32
23#define BHRB_TARGET 0x0000000000000002
24#define BHRB_PREDICTION 0x0000000000000001
25#define BHRB_EA 0xFFFFFFFFFFFFFFFC
26
cdd6c482
IM
27struct cpu_hw_events {
28 int n_events;
4574910e
PM
29 int n_percpu;
30 int disabled;
31 int n_added;
ab7ef2e5
PM
32 int n_limited;
33 u8 pmcs_enabled;
cdd6c482
IM
34 struct perf_event *event[MAX_HWEVENTS];
35 u64 events[MAX_HWEVENTS];
36 unsigned int flags[MAX_HWEVENTS];
448d64f8 37 unsigned long mmcr[3];
a8f90e90
PM
38 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
39 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
cdd6c482
IM
40 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
41 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
42 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
8e6d5573
LM
43
44 unsigned int group_flag;
45 int n_txn_start;
3925f46b
AK
46
47 /* BHRB bits */
48 u64 bhrb_filter; /* BHRB HW branch filter */
49 int bhrb_users;
50 void *bhrb_context;
51 struct perf_branch_stack bhrb_stack;
52 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES];
4574910e 53};
3925f46b 54
cdd6c482 55DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
4574910e
PM
56
57struct power_pmu *ppmu;
58
d095cd46 59/*
57c0c15b 60 * Normally, to ignore kernel events we set the FCS (freeze counters
d095cd46
PM
61 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
62 * hypervisor bit set in the MSR, or if we are running on a processor
63 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
64 * then we need to use the FCHV bit to ignore kernel events.
65 */
cdd6c482 66static unsigned int freeze_events_kernel = MMCR0_FCS;
d095cd46 67
98fb1807
PM
68/*
69 * 32-bit doesn't have MMCRA but does have an MMCR2,
70 * and a few other names are different.
71 */
72#ifdef CONFIG_PPC32
73
74#define MMCR0_FCHV 0
75#define MMCR0_PMCjCE MMCR0_PMCnCE
76
77#define SPRN_MMCRA SPRN_MMCR2
78#define MMCRA_SAMPLE_ENABLE 0
79
80static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
81{
82 return 0;
83}
98fb1807
PM
84static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
85static inline u32 perf_get_misc_flags(struct pt_regs *regs)
86{
87 return 0;
88}
75382aa7
AB
89static inline void perf_read_regs(struct pt_regs *regs)
90{
91 regs->result = 0;
92}
98fb1807
PM
93static inline int perf_intr_is_nmi(struct pt_regs *regs)
94{
95 return 0;
96}
97
e6878835 98static inline int siar_valid(struct pt_regs *regs)
99{
100 return 1;
101}
102
d52f2dc4
MN
103static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
104static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
105void power_pmu_flush_branch_stack(void) {}
106static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
98fb1807
PM
107#endif /* CONFIG_PPC32 */
108
33904054
ME
109static bool regs_use_siar(struct pt_regs *regs)
110{
111 return !!(regs->result & 1);
112}
113
98fb1807
PM
114/*
115 * Things that are specific to 64-bit implementations.
116 */
117#ifdef CONFIG_PPC64
118
119static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
120{
121 unsigned long mmcra = regs->dsisr;
122
7a786832 123 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
98fb1807
PM
124 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
125 if (slot > 1)
126 return 4 * (slot - 1);
127 }
7a786832 128
98fb1807
PM
129 return 0;
130}
131
98fb1807
PM
132/*
133 * The user wants a data address recorded.
134 * If we're not doing instruction sampling, give them the SDAR
135 * (sampled data address). If we are doing instruction sampling, then
136 * only give them the SDAR if it corresponds to the instruction
e6878835 137 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC or
138 * the [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA.
98fb1807
PM
139 */
140static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
141{
142 unsigned long mmcra = regs->dsisr;
e6878835 143 unsigned long sdsync;
144
145 if (ppmu->flags & PPMU_SIAR_VALID)
146 sdsync = POWER7P_MMCRA_SDAR_VALID;
147 else if (ppmu->flags & PPMU_ALT_SIPR)
148 sdsync = POWER6_MMCRA_SDSYNC;
149 else
150 sdsync = MMCRA_SDSYNC;
98fb1807
PM
151
152 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
153 *addrp = mfspr(SPRN_SDAR);
154}
155
5682c460 156static bool regs_sihv(struct pt_regs *regs)
68b30bb9
AB
157{
158 unsigned long sihv = MMCRA_SIHV;
159
8f61aa32
ME
160 if (ppmu->flags & PPMU_HAS_SIER)
161 return !!(regs->dar & SIER_SIHV);
162
68b30bb9
AB
163 if (ppmu->flags & PPMU_ALT_SIPR)
164 sihv = POWER6_MMCRA_SIHV;
165
5682c460 166 return !!(regs->dsisr & sihv);
68b30bb9
AB
167}
168
5682c460 169static bool regs_sipr(struct pt_regs *regs)
68b30bb9
AB
170{
171 unsigned long sipr = MMCRA_SIPR;
172
8f61aa32
ME
173 if (ppmu->flags & PPMU_HAS_SIER)
174 return !!(regs->dar & SIER_SIPR);
175
68b30bb9
AB
176 if (ppmu->flags & PPMU_ALT_SIPR)
177 sipr = POWER6_MMCRA_SIPR;
178
5682c460 179 return !!(regs->dsisr & sipr);
68b30bb9
AB
180}
181
860aad71
ME
182static bool regs_no_sipr(struct pt_regs *regs)
183{
184 return !!(regs->result & 2);
185}
186
1ce447b9
BH
187static inline u32 perf_flags_from_msr(struct pt_regs *regs)
188{
189 if (regs->msr & MSR_PR)
190 return PERF_RECORD_MISC_USER;
191 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
192 return PERF_RECORD_MISC_HYPERVISOR;
193 return PERF_RECORD_MISC_KERNEL;
194}
195
98fb1807
PM
196static inline u32 perf_get_misc_flags(struct pt_regs *regs)
197{
33904054 198 bool use_siar = regs_use_siar(regs);
98fb1807 199
75382aa7 200 if (!use_siar)
1ce447b9
BH
201 return perf_flags_from_msr(regs);
202
203 /*
204 * If we don't have flags in MMCRA, rather than using
205 * the MSR, we intuit the flags from the address in
206 * SIAR which should give slightly more reliable
207 * results
208 */
860aad71 209 if (regs_no_sipr(regs)) {
1ce447b9
BH
210 unsigned long siar = mfspr(SPRN_SIAR);
211 if (siar >= PAGE_OFFSET)
212 return PERF_RECORD_MISC_KERNEL;
213 return PERF_RECORD_MISC_USER;
214 }
98fb1807 215
7abb840b 216 /* PR has priority over HV, so order below is important */
5682c460 217 if (regs_sipr(regs))
7abb840b 218 return PERF_RECORD_MISC_USER;
5682c460
ME
219
220 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
cdd6c482 221 return PERF_RECORD_MISC_HYPERVISOR;
5682c460 222
7abb840b 223 return PERF_RECORD_MISC_KERNEL;
98fb1807
PM
224}
225
226/*
227 * Overload regs->dsisr to store MMCRA so we only need to read it once
228 * on each interrupt.
8f61aa32 229 * Overload regs->dar to store SIER if we have it.
75382aa7
AB
230 * Overload regs->result to specify whether we should use the MSR (result
231 * is zero) or the SIAR (result is non zero).
98fb1807
PM
232 */
233static inline void perf_read_regs(struct pt_regs *regs)
234{
75382aa7
AB
235 unsigned long mmcra = mfspr(SPRN_MMCRA);
236 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
237 int use_siar;
238
5682c460 239 regs->dsisr = mmcra;
860aad71
ME
240 regs->result = 0;
241
242 if (ppmu->flags & PPMU_NO_SIPR)
243 regs->result |= 2;
5682c460 244
8f61aa32
ME
245 /*
246 * On power8 if we're in random sampling mode, the SIER is updated.
247 * If we're in continuous sampling mode, we don't have SIPR.
248 */
249 if (ppmu->flags & PPMU_HAS_SIER) {
250 if (marked)
251 regs->dar = mfspr(SPRN_SIER);
252 else
253 regs->result |= 2;
254 }
255
256
5c093efa
AB
257 /*
258 * If this isn't a PMU exception (eg a software event) the SIAR is
259 * not valid. Use pt_regs.
260 *
261 * If it is a marked event use the SIAR.
262 *
263 * If the PMU doesn't update the SIAR for non marked events use
264 * pt_regs.
265 *
266 * If the PMU has HV/PR flags then check to see if they
267 * place the exception in userspace. If so, use pt_regs. In
268 * continuous sampling mode the SIAR and the PMU exception are
269 * not synchronised, so they may be many instructions apart.
270 * This can result in confusing backtraces. We still want
271 * hypervisor samples as well as samples in the kernel with
272 * interrupts off hence the userspace check.
273 */
75382aa7
AB
274 if (TRAP(regs) != 0xf00)
275 use_siar = 0;
5c093efa
AB
276 else if (marked)
277 use_siar = 1;
278 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
279 use_siar = 0;
860aad71 280 else if (!regs_no_sipr(regs) && regs_sipr(regs))
75382aa7
AB
281 use_siar = 0;
282 else
283 use_siar = 1;
284
860aad71 285 regs->result |= use_siar;
98fb1807
PM
286}
287
288/*
289 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
290 * it as an NMI.
291 */
292static inline int perf_intr_is_nmi(struct pt_regs *regs)
293{
294 return !regs->softe;
295}
296
e6878835 297/*
298 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
299 * must be sampled only if the SIAR-valid bit is set.
300 *
301 * For unmarked instructions and for processors that don't have the SIAR-Valid
302 * bit, assume that SIAR is valid.
303 */
304static inline int siar_valid(struct pt_regs *regs)
305{
306 unsigned long mmcra = regs->dsisr;
307 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
308
309 if ((ppmu->flags & PPMU_SIAR_VALID) && marked)
310 return mmcra & POWER7P_MMCRA_SIAR_VALID;
311
312 return 1;
313}
314
d52f2dc4
MN
315
316/* Reset all possible BHRB entries */
317static void power_pmu_bhrb_reset(void)
318{
319 asm volatile(PPC_CLRBHRB);
320}
321
322static void power_pmu_bhrb_enable(struct perf_event *event)
323{
324 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
325
326 if (!ppmu->bhrb_nr)
327 return;
328
329 /* Clear BHRB if we changed task context to avoid data leaks */
330 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
331 power_pmu_bhrb_reset();
332 cpuhw->bhrb_context = event->ctx;
333 }
334 cpuhw->bhrb_users++;
335}
336
337static void power_pmu_bhrb_disable(struct perf_event *event)
338{
339 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
340
341 if (!ppmu->bhrb_nr)
342 return;
343
344 cpuhw->bhrb_users--;
345 WARN_ON_ONCE(cpuhw->bhrb_users < 0);
346
347 if (!cpuhw->disabled && !cpuhw->bhrb_users) {
348 /* BHRB cannot be turned off when other
349 * events are active on the PMU.
350 */
351
352 /* avoid stale pointer */
353 cpuhw->bhrb_context = NULL;
354 }
355}
356
357/* Called from ctxsw to prevent one process's branch entries to
358 * mingle with the other process's entries during context switch.
359 */
360void power_pmu_flush_branch_stack(void)
361{
362 if (ppmu->bhrb_nr)
363 power_pmu_bhrb_reset();
364}
365
366
367/* Processing BHRB entries */
368static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
369{
370 u64 val;
371 u64 addr;
372 int r_index, u_index, target, pred;
373
374 r_index = 0;
375 u_index = 0;
376 while (r_index < ppmu->bhrb_nr) {
377 /* Assembly read function */
378 val = read_bhrb(r_index);
379
380 /* Terminal marker: End of valid BHRB entries */
381 if (val == 0) {
382 break;
383 } else {
384 /* BHRB field break up */
385 addr = val & BHRB_EA;
386 pred = val & BHRB_PREDICTION;
387 target = val & BHRB_TARGET;
388
389 /* Probable Missed entry: Not applicable for POWER8 */
390 if ((addr == 0) && (target == 0) && (pred == 1)) {
391 r_index++;
392 continue;
393 }
394
395 /* Real Missed entry: Power8 based missed entry */
396 if ((addr == 0) && (target == 1) && (pred == 1)) {
397 r_index++;
398 continue;
399 }
400
401 /* Reserved condition: Not a valid entry */
402 if ((addr == 0) && (target == 1) && (pred == 0)) {
403 r_index++;
404 continue;
405 }
406
407 /* Is a target address */
408 if (val & BHRB_TARGET) {
409 /* First address cannot be a target address */
410 if (r_index == 0) {
411 r_index++;
412 continue;
413 }
414
415 /* Update target address for the previous entry */
416 cpuhw->bhrb_entries[u_index - 1].to = addr;
417 cpuhw->bhrb_entries[u_index - 1].mispred = pred;
418 cpuhw->bhrb_entries[u_index - 1].predicted = ~pred;
419
420 /* Dont increment u_index */
421 r_index++;
422 } else {
423 /* Update address, flags for current entry */
424 cpuhw->bhrb_entries[u_index].from = addr;
425 cpuhw->bhrb_entries[u_index].mispred = pred;
426 cpuhw->bhrb_entries[u_index].predicted = ~pred;
427
428 /* Successfully popullated one entry */
429 u_index++;
430 r_index++;
431 }
432 }
433 }
434 cpuhw->bhrb_stack.nr = u_index;
435 return;
436}
437
98fb1807
PM
438#endif /* CONFIG_PPC64 */
439
cdd6c482 440static void perf_event_interrupt(struct pt_regs *regs);
7595d63b 441
cdd6c482 442void perf_event_print_debug(void)
4574910e
PM
443{
444}
445
4574910e 446/*
57c0c15b 447 * Read one performance monitor counter (PMC).
4574910e
PM
448 */
449static unsigned long read_pmc(int idx)
450{
451 unsigned long val;
452
453 switch (idx) {
454 case 1:
455 val = mfspr(SPRN_PMC1);
456 break;
457 case 2:
458 val = mfspr(SPRN_PMC2);
459 break;
460 case 3:
461 val = mfspr(SPRN_PMC3);
462 break;
463 case 4:
464 val = mfspr(SPRN_PMC4);
465 break;
466 case 5:
467 val = mfspr(SPRN_PMC5);
468 break;
469 case 6:
470 val = mfspr(SPRN_PMC6);
471 break;
98fb1807 472#ifdef CONFIG_PPC64
4574910e
PM
473 case 7:
474 val = mfspr(SPRN_PMC7);
475 break;
476 case 8:
477 val = mfspr(SPRN_PMC8);
478 break;
98fb1807 479#endif /* CONFIG_PPC64 */
4574910e
PM
480 default:
481 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
482 val = 0;
483 }
484 return val;
485}
486
487/*
488 * Write one PMC.
489 */
490static void write_pmc(int idx, unsigned long val)
491{
492 switch (idx) {
493 case 1:
494 mtspr(SPRN_PMC1, val);
495 break;
496 case 2:
497 mtspr(SPRN_PMC2, val);
498 break;
499 case 3:
500 mtspr(SPRN_PMC3, val);
501 break;
502 case 4:
503 mtspr(SPRN_PMC4, val);
504 break;
505 case 5:
506 mtspr(SPRN_PMC5, val);
507 break;
508 case 6:
509 mtspr(SPRN_PMC6, val);
510 break;
98fb1807 511#ifdef CONFIG_PPC64
4574910e
PM
512 case 7:
513 mtspr(SPRN_PMC7, val);
514 break;
515 case 8:
516 mtspr(SPRN_PMC8, val);
517 break;
98fb1807 518#endif /* CONFIG_PPC64 */
4574910e
PM
519 default:
520 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
521 }
522}
523
524/*
525 * Check if a set of events can all go on the PMU at once.
526 * If they can't, this will look at alternative codes for the events
527 * and see if any combination of alternative codes is feasible.
cdd6c482 528 * The feasible set is returned in event_id[].
4574910e 529 */
cdd6c482
IM
530static int power_check_constraints(struct cpu_hw_events *cpuhw,
531 u64 event_id[], unsigned int cflags[],
ab7ef2e5 532 int n_ev)
4574910e 533{
448d64f8 534 unsigned long mask, value, nv;
cdd6c482
IM
535 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
536 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
4574910e 537 int i, j;
448d64f8
PM
538 unsigned long addf = ppmu->add_fields;
539 unsigned long tadd = ppmu->test_adder;
4574910e 540
a8f90e90 541 if (n_ev > ppmu->n_counter)
4574910e
PM
542 return -1;
543
544 /* First see if the events will go on as-is */
545 for (i = 0; i < n_ev; ++i) {
ab7ef2e5 546 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
cdd6c482
IM
547 && !ppmu->limited_pmc_event(event_id[i])) {
548 ppmu->get_alternatives(event_id[i], cflags[i],
e51ee31e 549 cpuhw->alternatives[i]);
cdd6c482 550 event_id[i] = cpuhw->alternatives[i][0];
ab7ef2e5 551 }
cdd6c482 552 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
e51ee31e 553 &cpuhw->avalues[i][0]))
4574910e 554 return -1;
4574910e
PM
555 }
556 value = mask = 0;
557 for (i = 0; i < n_ev; ++i) {
e51ee31e
PM
558 nv = (value | cpuhw->avalues[i][0]) +
559 (value & cpuhw->avalues[i][0] & addf);
4574910e 560 if ((((nv + tadd) ^ value) & mask) != 0 ||
e51ee31e
PM
561 (((nv + tadd) ^ cpuhw->avalues[i][0]) &
562 cpuhw->amasks[i][0]) != 0)
4574910e
PM
563 break;
564 value = nv;
e51ee31e 565 mask |= cpuhw->amasks[i][0];
4574910e
PM
566 }
567 if (i == n_ev)
568 return 0; /* all OK */
569
570 /* doesn't work, gather alternatives... */
571 if (!ppmu->get_alternatives)
572 return -1;
573 for (i = 0; i < n_ev; ++i) {
ab7ef2e5 574 choice[i] = 0;
cdd6c482 575 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
e51ee31e 576 cpuhw->alternatives[i]);
4574910e 577 for (j = 1; j < n_alt[i]; ++j)
e51ee31e
PM
578 ppmu->get_constraint(cpuhw->alternatives[i][j],
579 &cpuhw->amasks[i][j],
580 &cpuhw->avalues[i][j]);
4574910e
PM
581 }
582
583 /* enumerate all possibilities and see if any will work */
584 i = 0;
585 j = -1;
586 value = mask = nv = 0;
587 while (i < n_ev) {
588 if (j >= 0) {
589 /* we're backtracking, restore context */
590 value = svalues[i];
591 mask = smasks[i];
592 j = choice[i];
593 }
594 /*
cdd6c482 595 * See if any alternative k for event_id i,
4574910e
PM
596 * where k > j, will satisfy the constraints.
597 */
598 while (++j < n_alt[i]) {
e51ee31e
PM
599 nv = (value | cpuhw->avalues[i][j]) +
600 (value & cpuhw->avalues[i][j] & addf);
4574910e 601 if ((((nv + tadd) ^ value) & mask) == 0 &&
e51ee31e
PM
602 (((nv + tadd) ^ cpuhw->avalues[i][j])
603 & cpuhw->amasks[i][j]) == 0)
4574910e
PM
604 break;
605 }
606 if (j >= n_alt[i]) {
607 /*
608 * No feasible alternative, backtrack
cdd6c482 609 * to event_id i-1 and continue enumerating its
4574910e
PM
610 * alternatives from where we got up to.
611 */
612 if (--i < 0)
613 return -1;
614 } else {
615 /*
cdd6c482
IM
616 * Found a feasible alternative for event_id i,
617 * remember where we got up to with this event_id,
618 * go on to the next event_id, and start with
4574910e
PM
619 * the first alternative for it.
620 */
621 choice[i] = j;
622 svalues[i] = value;
623 smasks[i] = mask;
624 value = nv;
e51ee31e 625 mask |= cpuhw->amasks[i][j];
4574910e
PM
626 ++i;
627 j = -1;
628 }
629 }
630
631 /* OK, we have a feasible combination, tell the caller the solution */
632 for (i = 0; i < n_ev; ++i)
cdd6c482 633 event_id[i] = cpuhw->alternatives[i][choice[i]];
4574910e
PM
634 return 0;
635}
636
0475f9ea 637/*
cdd6c482 638 * Check if newly-added events have consistent settings for
0475f9ea 639 * exclude_{user,kernel,hv} with each other and any previously
cdd6c482 640 * added events.
0475f9ea 641 */
cdd6c482 642static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
ab7ef2e5 643 int n_prev, int n_new)
0475f9ea 644{
ab7ef2e5
PM
645 int eu = 0, ek = 0, eh = 0;
646 int i, n, first;
cdd6c482 647 struct perf_event *event;
0475f9ea
PM
648
649 n = n_prev + n_new;
650 if (n <= 1)
651 return 0;
652
ab7ef2e5
PM
653 first = 1;
654 for (i = 0; i < n; ++i) {
655 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
656 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
657 continue;
658 }
cdd6c482 659 event = ctrs[i];
ab7ef2e5 660 if (first) {
cdd6c482
IM
661 eu = event->attr.exclude_user;
662 ek = event->attr.exclude_kernel;
663 eh = event->attr.exclude_hv;
ab7ef2e5 664 first = 0;
cdd6c482
IM
665 } else if (event->attr.exclude_user != eu ||
666 event->attr.exclude_kernel != ek ||
667 event->attr.exclude_hv != eh) {
0475f9ea 668 return -EAGAIN;
ab7ef2e5 669 }
0475f9ea 670 }
ab7ef2e5
PM
671
672 if (eu || ek || eh)
673 for (i = 0; i < n; ++i)
674 if (cflags[i] & PPMU_LIMITED_PMC_OK)
675 cflags[i] |= PPMU_LIMITED_PMC_REQD;
676
0475f9ea
PM
677 return 0;
678}
679
86c74ab3
EM
680static u64 check_and_compute_delta(u64 prev, u64 val)
681{
682 u64 delta = (val - prev) & 0xfffffffful;
683
684 /*
685 * POWER7 can roll back counter values, if the new value is smaller
686 * than the previous value it will cause the delta and the counter to
687 * have bogus values unless we rolled a counter over. If a coutner is
688 * rolled back, it will be smaller, but within 256, which is the maximum
689 * number of events to rollback at once. If we dectect a rollback
690 * return 0. This can lead to a small lack of precision in the
691 * counters.
692 */
693 if (prev > val && (prev - val) < 256)
694 delta = 0;
695
696 return delta;
697}
698
cdd6c482 699static void power_pmu_read(struct perf_event *event)
4574910e 700{
98fb1807 701 s64 val, delta, prev;
4574910e 702
a4eaf7f1
PZ
703 if (event->hw.state & PERF_HES_STOPPED)
704 return;
705
cdd6c482 706 if (!event->hw.idx)
4574910e
PM
707 return;
708 /*
709 * Performance monitor interrupts come even when interrupts
710 * are soft-disabled, as long as interrupts are hard-enabled.
711 * Therefore we treat them like NMIs.
712 */
713 do {
e7850595 714 prev = local64_read(&event->hw.prev_count);
4574910e 715 barrier();
cdd6c482 716 val = read_pmc(event->hw.idx);
86c74ab3
EM
717 delta = check_and_compute_delta(prev, val);
718 if (!delta)
719 return;
e7850595 720 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
4574910e 721
e7850595
PZ
722 local64_add(delta, &event->count);
723 local64_sub(delta, &event->hw.period_left);
4574910e
PM
724}
725
ab7ef2e5
PM
726/*
727 * On some machines, PMC5 and PMC6 can't be written, don't respect
728 * the freeze conditions, and don't generate interrupts. This tells
cdd6c482 729 * us if `event' is using such a PMC.
ab7ef2e5
PM
730 */
731static int is_limited_pmc(int pmcnum)
732{
0bbd0d4b
PM
733 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
734 && (pmcnum == 5 || pmcnum == 6);
ab7ef2e5
PM
735}
736
a8f90e90 737static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
ab7ef2e5
PM
738 unsigned long pmc5, unsigned long pmc6)
739{
cdd6c482 740 struct perf_event *event;
ab7ef2e5
PM
741 u64 val, prev, delta;
742 int i;
743
744 for (i = 0; i < cpuhw->n_limited; ++i) {
a8f90e90 745 event = cpuhw->limited_counter[i];
cdd6c482 746 if (!event->hw.idx)
ab7ef2e5 747 continue;
cdd6c482 748 val = (event->hw.idx == 5) ? pmc5 : pmc6;
e7850595 749 prev = local64_read(&event->hw.prev_count);
cdd6c482 750 event->hw.idx = 0;
86c74ab3
EM
751 delta = check_and_compute_delta(prev, val);
752 if (delta)
753 local64_add(delta, &event->count);
ab7ef2e5
PM
754 }
755}
756
a8f90e90 757static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
ab7ef2e5
PM
758 unsigned long pmc5, unsigned long pmc6)
759{
cdd6c482 760 struct perf_event *event;
86c74ab3 761 u64 val, prev;
ab7ef2e5
PM
762 int i;
763
764 for (i = 0; i < cpuhw->n_limited; ++i) {
a8f90e90 765 event = cpuhw->limited_counter[i];
cdd6c482
IM
766 event->hw.idx = cpuhw->limited_hwidx[i];
767 val = (event->hw.idx == 5) ? pmc5 : pmc6;
86c74ab3
EM
768 prev = local64_read(&event->hw.prev_count);
769 if (check_and_compute_delta(prev, val))
770 local64_set(&event->hw.prev_count, val);
cdd6c482 771 perf_event_update_userpage(event);
ab7ef2e5
PM
772 }
773}
774
775/*
cdd6c482 776 * Since limited events don't respect the freeze conditions, we
ab7ef2e5 777 * have to read them immediately after freezing or unfreezing the
cdd6c482
IM
778 * other events. We try to keep the values from the limited
779 * events as consistent as possible by keeping the delay (in
ab7ef2e5 780 * cycles and instructions) between freezing/unfreezing and reading
cdd6c482
IM
781 * the limited events as small and consistent as possible.
782 * Therefore, if any limited events are in use, we read them
ab7ef2e5
PM
783 * both, and always in the same order, to minimize variability,
784 * and do it inside the same asm that writes MMCR0.
785 */
cdd6c482 786static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
ab7ef2e5
PM
787{
788 unsigned long pmc5, pmc6;
789
790 if (!cpuhw->n_limited) {
791 mtspr(SPRN_MMCR0, mmcr0);
792 return;
793 }
794
795 /*
796 * Write MMCR0, then read PMC5 and PMC6 immediately.
dcd945e0
PM
797 * To ensure we don't get a performance monitor interrupt
798 * between writing MMCR0 and freezing/thawing the limited
cdd6c482 799 * events, we first write MMCR0 with the event overflow
dcd945e0 800 * interrupt enable bits turned off.
ab7ef2e5
PM
801 */
802 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
803 : "=&r" (pmc5), "=&r" (pmc6)
dcd945e0
PM
804 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
805 "i" (SPRN_MMCR0),
ab7ef2e5
PM
806 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
807
808 if (mmcr0 & MMCR0_FC)
a8f90e90 809 freeze_limited_counters(cpuhw, pmc5, pmc6);
ab7ef2e5 810 else
a8f90e90 811 thaw_limited_counters(cpuhw, pmc5, pmc6);
dcd945e0
PM
812
813 /*
cdd6c482 814 * Write the full MMCR0 including the event overflow interrupt
dcd945e0
PM
815 * enable bits, if necessary.
816 */
817 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
818 mtspr(SPRN_MMCR0, mmcr0);
ab7ef2e5
PM
819}
820
4574910e 821/*
cdd6c482
IM
822 * Disable all events to prevent PMU interrupts and to allow
823 * events to be added or removed.
4574910e 824 */
a4eaf7f1 825static void power_pmu_disable(struct pmu *pmu)
4574910e 826{
cdd6c482 827 struct cpu_hw_events *cpuhw;
4574910e
PM
828 unsigned long flags;
829
f36a1a13
PM
830 if (!ppmu)
831 return;
4574910e 832 local_irq_save(flags);
cdd6c482 833 cpuhw = &__get_cpu_var(cpu_hw_events);
4574910e 834
448d64f8 835 if (!cpuhw->disabled) {
4574910e
PM
836 cpuhw->disabled = 1;
837 cpuhw->n_added = 0;
838
01d0287f
PM
839 /*
840 * Check if we ever enabled the PMU on this cpu.
841 */
842 if (!cpuhw->pmcs_enabled) {
a6dbf93a 843 ppc_enable_pmcs();
01d0287f
PM
844 cpuhw->pmcs_enabled = 1;
845 }
846
f708223d
PM
847 /*
848 * Disable instruction sampling if it was enabled
849 */
850 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
851 mtspr(SPRN_MMCRA,
852 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
853 mb();
854 }
855
4574910e 856 /*
57c0c15b 857 * Set the 'freeze counters' bit.
4574910e 858 * The barrier is to make sure the mtspr has been
cdd6c482 859 * executed and the PMU has frozen the events
4574910e
PM
860 * before we return.
861 */
ab7ef2e5 862 write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
4574910e
PM
863 mb();
864 }
865 local_irq_restore(flags);
4574910e
PM
866}
867
868/*
cdd6c482
IM
869 * Re-enable all events if disable == 0.
870 * If we were previously disabled and events were added, then
4574910e
PM
871 * put the new config on the PMU.
872 */
a4eaf7f1 873static void power_pmu_enable(struct pmu *pmu)
4574910e 874{
cdd6c482
IM
875 struct perf_event *event;
876 struct cpu_hw_events *cpuhw;
4574910e
PM
877 unsigned long flags;
878 long i;
879 unsigned long val;
880 s64 left;
cdd6c482 881 unsigned int hwc_index[MAX_HWEVENTS];
ab7ef2e5
PM
882 int n_lim;
883 int idx;
4574910e 884
f36a1a13
PM
885 if (!ppmu)
886 return;
4574910e 887 local_irq_save(flags);
cdd6c482 888 cpuhw = &__get_cpu_var(cpu_hw_events);
9e35ad38
PZ
889 if (!cpuhw->disabled) {
890 local_irq_restore(flags);
891 return;
892 }
4574910e
PM
893 cpuhw->disabled = 0;
894
895 /*
cdd6c482 896 * If we didn't change anything, or only removed events,
4574910e
PM
897 * no need to recalculate MMCR* settings and reset the PMCs.
898 * Just reenable the PMU with the current MMCR* settings
cdd6c482 899 * (possibly updated for removal of events).
4574910e
PM
900 */
901 if (!cpuhw->n_added) {
f708223d 902 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
4574910e 903 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
cdd6c482 904 if (cpuhw->n_events == 0)
a6dbf93a 905 ppc_set_pmu_inuse(0);
f708223d 906 goto out_enable;
4574910e
PM
907 }
908
909 /*
cdd6c482 910 * Compute MMCR* values for the new set of events
4574910e 911 */
cdd6c482 912 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
4574910e
PM
913 cpuhw->mmcr)) {
914 /* shouldn't ever get here */
915 printk(KERN_ERR "oops compute_mmcr failed\n");
916 goto out;
917 }
918
0475f9ea
PM
919 /*
920 * Add in MMCR0 freeze bits corresponding to the
cdd6c482
IM
921 * attr.exclude_* bits for the first event.
922 * We have already checked that all events have the
923 * same values for these bits as the first event.
0475f9ea 924 */
cdd6c482
IM
925 event = cpuhw->event[0];
926 if (event->attr.exclude_user)
0475f9ea 927 cpuhw->mmcr[0] |= MMCR0_FCP;
cdd6c482
IM
928 if (event->attr.exclude_kernel)
929 cpuhw->mmcr[0] |= freeze_events_kernel;
930 if (event->attr.exclude_hv)
0475f9ea
PM
931 cpuhw->mmcr[0] |= MMCR0_FCHV;
932
4574910e
PM
933 /*
934 * Write the new configuration to MMCR* with the freeze
cdd6c482
IM
935 * bit set and set the hardware events to their initial values.
936 * Then unfreeze the events.
4574910e 937 */
a6dbf93a 938 ppc_set_pmu_inuse(1);
f708223d 939 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
4574910e
PM
940 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
941 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
942 | MMCR0_FC);
943
944 /*
cdd6c482 945 * Read off any pre-existing events that need to move
4574910e
PM
946 * to another PMC.
947 */
cdd6c482
IM
948 for (i = 0; i < cpuhw->n_events; ++i) {
949 event = cpuhw->event[i];
950 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
951 power_pmu_read(event);
952 write_pmc(event->hw.idx, 0);
953 event->hw.idx = 0;
4574910e
PM
954 }
955 }
956
957 /*
cdd6c482 958 * Initialize the PMCs for all the new and moved events.
4574910e 959 */
ab7ef2e5 960 cpuhw->n_limited = n_lim = 0;
cdd6c482
IM
961 for (i = 0; i < cpuhw->n_events; ++i) {
962 event = cpuhw->event[i];
963 if (event->hw.idx)
4574910e 964 continue;
ab7ef2e5
PM
965 idx = hwc_index[i] + 1;
966 if (is_limited_pmc(idx)) {
a8f90e90 967 cpuhw->limited_counter[n_lim] = event;
ab7ef2e5
PM
968 cpuhw->limited_hwidx[n_lim] = idx;
969 ++n_lim;
970 continue;
971 }
4574910e 972 val = 0;
cdd6c482 973 if (event->hw.sample_period) {
e7850595 974 left = local64_read(&event->hw.period_left);
4574910e
PM
975 if (left < 0x80000000L)
976 val = 0x80000000L - left;
977 }
e7850595 978 local64_set(&event->hw.prev_count, val);
cdd6c482 979 event->hw.idx = idx;
a4eaf7f1
PZ
980 if (event->hw.state & PERF_HES_STOPPED)
981 val = 0;
ab7ef2e5 982 write_pmc(idx, val);
cdd6c482 983 perf_event_update_userpage(event);
4574910e 984 }
ab7ef2e5 985 cpuhw->n_limited = n_lim;
4574910e 986 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
f708223d
PM
987
988 out_enable:
989 mb();
ab7ef2e5 990 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
4574910e 991
f708223d
PM
992 /*
993 * Enable instruction sampling if necessary
994 */
995 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
996 mb();
997 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
998 }
999
4574910e 1000 out:
3925f46b
AK
1001 if (cpuhw->bhrb_users)
1002 ppmu->config_bhrb(cpuhw->bhrb_filter);
1003
4574910e
PM
1004 local_irq_restore(flags);
1005}
1006
cdd6c482
IM
1007static int collect_events(struct perf_event *group, int max_count,
1008 struct perf_event *ctrs[], u64 *events,
ab7ef2e5 1009 unsigned int *flags)
4574910e
PM
1010{
1011 int n = 0;
cdd6c482 1012 struct perf_event *event;
4574910e 1013
cdd6c482 1014 if (!is_software_event(group)) {
4574910e
PM
1015 if (n >= max_count)
1016 return -1;
1017 ctrs[n] = group;
cdd6c482 1018 flags[n] = group->hw.event_base;
4574910e
PM
1019 events[n++] = group->hw.config;
1020 }
a8f90e90 1021 list_for_each_entry(event, &group->sibling_list, group_entry) {
cdd6c482
IM
1022 if (!is_software_event(event) &&
1023 event->state != PERF_EVENT_STATE_OFF) {
4574910e
PM
1024 if (n >= max_count)
1025 return -1;
cdd6c482
IM
1026 ctrs[n] = event;
1027 flags[n] = event->hw.event_base;
1028 events[n++] = event->hw.config;
4574910e
PM
1029 }
1030 }
1031 return n;
1032}
1033
4574910e 1034/*
cdd6c482
IM
1035 * Add a event to the PMU.
1036 * If all events are not already frozen, then we disable and
9e35ad38 1037 * re-enable the PMU in order to get hw_perf_enable to do the
4574910e
PM
1038 * actual work of reconfiguring the PMU.
1039 */
a4eaf7f1 1040static int power_pmu_add(struct perf_event *event, int ef_flags)
4574910e 1041{
cdd6c482 1042 struct cpu_hw_events *cpuhw;
4574910e 1043 unsigned long flags;
4574910e
PM
1044 int n0;
1045 int ret = -EAGAIN;
1046
1047 local_irq_save(flags);
33696fc0 1048 perf_pmu_disable(event->pmu);
4574910e
PM
1049
1050 /*
cdd6c482 1051 * Add the event to the list (if there is room)
4574910e
PM
1052 * and check whether the total set is still feasible.
1053 */
cdd6c482
IM
1054 cpuhw = &__get_cpu_var(cpu_hw_events);
1055 n0 = cpuhw->n_events;
a8f90e90 1056 if (n0 >= ppmu->n_counter)
4574910e 1057 goto out;
cdd6c482
IM
1058 cpuhw->event[n0] = event;
1059 cpuhw->events[n0] = event->hw.config;
1060 cpuhw->flags[n0] = event->hw.event_base;
8e6d5573 1061
f53d168c 1062 /*
1063 * This event may have been disabled/stopped in record_and_restart()
1064 * because we exceeded the ->event_limit. If re-starting the event,
1065 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1066 * notification is re-enabled.
1067 */
a4eaf7f1
PZ
1068 if (!(ef_flags & PERF_EF_START))
1069 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
f53d168c 1070 else
1071 event->hw.state = 0;
a4eaf7f1 1072
8e6d5573
LM
1073 /*
1074 * If group events scheduling transaction was started,
25985edc 1075 * skip the schedulability test here, it will be performed
8e6d5573
LM
1076 * at commit time(->commit_txn) as a whole
1077 */
8d2cacbb 1078 if (cpuhw->group_flag & PERF_EVENT_TXN)
8e6d5573
LM
1079 goto nocheck;
1080
cdd6c482 1081 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
0475f9ea 1082 goto out;
e51ee31e 1083 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
4574910e 1084 goto out;
cdd6c482 1085 event->hw.config = cpuhw->events[n0];
8e6d5573
LM
1086
1087nocheck:
cdd6c482 1088 ++cpuhw->n_events;
4574910e
PM
1089 ++cpuhw->n_added;
1090
1091 ret = 0;
1092 out:
3925f46b
AK
1093 if (has_branch_stack(event))
1094 power_pmu_bhrb_enable(event);
1095
33696fc0 1096 perf_pmu_enable(event->pmu);
4574910e
PM
1097 local_irq_restore(flags);
1098 return ret;
1099}
1100
1101/*
cdd6c482 1102 * Remove a event from the PMU.
4574910e 1103 */
a4eaf7f1 1104static void power_pmu_del(struct perf_event *event, int ef_flags)
4574910e 1105{
cdd6c482 1106 struct cpu_hw_events *cpuhw;
4574910e 1107 long i;
4574910e
PM
1108 unsigned long flags;
1109
1110 local_irq_save(flags);
33696fc0 1111 perf_pmu_disable(event->pmu);
4574910e 1112
cdd6c482
IM
1113 power_pmu_read(event);
1114
1115 cpuhw = &__get_cpu_var(cpu_hw_events);
1116 for (i = 0; i < cpuhw->n_events; ++i) {
1117 if (event == cpuhw->event[i]) {
219a92a4 1118 while (++i < cpuhw->n_events) {
cdd6c482 1119 cpuhw->event[i-1] = cpuhw->event[i];
219a92a4
ME
1120 cpuhw->events[i-1] = cpuhw->events[i];
1121 cpuhw->flags[i-1] = cpuhw->flags[i];
1122 }
cdd6c482
IM
1123 --cpuhw->n_events;
1124 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1125 if (event->hw.idx) {
1126 write_pmc(event->hw.idx, 0);
1127 event->hw.idx = 0;
ab7ef2e5 1128 }
cdd6c482 1129 perf_event_update_userpage(event);
4574910e
PM
1130 break;
1131 }
1132 }
ab7ef2e5 1133 for (i = 0; i < cpuhw->n_limited; ++i)
a8f90e90 1134 if (event == cpuhw->limited_counter[i])
ab7ef2e5
PM
1135 break;
1136 if (i < cpuhw->n_limited) {
1137 while (++i < cpuhw->n_limited) {
a8f90e90 1138 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
ab7ef2e5
PM
1139 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1140 }
1141 --cpuhw->n_limited;
1142 }
cdd6c482
IM
1143 if (cpuhw->n_events == 0) {
1144 /* disable exceptions if no events are running */
4574910e
PM
1145 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1146 }
1147
3925f46b
AK
1148 if (has_branch_stack(event))
1149 power_pmu_bhrb_disable(event);
1150
33696fc0 1151 perf_pmu_enable(event->pmu);
4574910e
PM
1152 local_irq_restore(flags);
1153}
1154
8a7b8cb9 1155/*
a4eaf7f1
PZ
1156 * POWER-PMU does not support disabling individual counters, hence
1157 * program their cycle counter to their max value and ignore the interrupts.
8a7b8cb9 1158 */
a4eaf7f1
PZ
1159
1160static void power_pmu_start(struct perf_event *event, int ef_flags)
8a7b8cb9 1161{
8a7b8cb9 1162 unsigned long flags;
a4eaf7f1 1163 s64 left;
9a45a940 1164 unsigned long val;
8a7b8cb9 1165
cdd6c482 1166 if (!event->hw.idx || !event->hw.sample_period)
8a7b8cb9 1167 return;
a4eaf7f1
PZ
1168
1169 if (!(event->hw.state & PERF_HES_STOPPED))
1170 return;
1171
1172 if (ef_flags & PERF_EF_RELOAD)
1173 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1174
1175 local_irq_save(flags);
1176 perf_pmu_disable(event->pmu);
1177
1178 event->hw.state = 0;
1179 left = local64_read(&event->hw.period_left);
9a45a940
AB
1180
1181 val = 0;
1182 if (left < 0x80000000L)
1183 val = 0x80000000L - left;
1184
1185 write_pmc(event->hw.idx, val);
a4eaf7f1
PZ
1186
1187 perf_event_update_userpage(event);
1188 perf_pmu_enable(event->pmu);
1189 local_irq_restore(flags);
1190}
1191
1192static void power_pmu_stop(struct perf_event *event, int ef_flags)
1193{
1194 unsigned long flags;
1195
1196 if (!event->hw.idx || !event->hw.sample_period)
1197 return;
1198
1199 if (event->hw.state & PERF_HES_STOPPED)
1200 return;
1201
8a7b8cb9 1202 local_irq_save(flags);
33696fc0 1203 perf_pmu_disable(event->pmu);
a4eaf7f1 1204
cdd6c482 1205 power_pmu_read(event);
a4eaf7f1
PZ
1206 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1207 write_pmc(event->hw.idx, 0);
1208
cdd6c482 1209 perf_event_update_userpage(event);
33696fc0 1210 perf_pmu_enable(event->pmu);
8a7b8cb9
PM
1211 local_irq_restore(flags);
1212}
1213
8e6d5573
LM
1214/*
1215 * Start group events scheduling transaction
1216 * Set the flag to make pmu::enable() not perform the
1217 * schedulability test, it will be performed at commit time
1218 */
51b0fe39 1219void power_pmu_start_txn(struct pmu *pmu)
8e6d5573
LM
1220{
1221 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1222
33696fc0 1223 perf_pmu_disable(pmu);
8d2cacbb 1224 cpuhw->group_flag |= PERF_EVENT_TXN;
8e6d5573
LM
1225 cpuhw->n_txn_start = cpuhw->n_events;
1226}
1227
1228/*
1229 * Stop group events scheduling transaction
1230 * Clear the flag and pmu::enable() will perform the
1231 * schedulability test.
1232 */
51b0fe39 1233void power_pmu_cancel_txn(struct pmu *pmu)
8e6d5573
LM
1234{
1235 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1236
8d2cacbb 1237 cpuhw->group_flag &= ~PERF_EVENT_TXN;
33696fc0 1238 perf_pmu_enable(pmu);
8e6d5573
LM
1239}
1240
1241/*
1242 * Commit group events scheduling transaction
1243 * Perform the group schedulability test as a whole
1244 * Return 0 if success
1245 */
51b0fe39 1246int power_pmu_commit_txn(struct pmu *pmu)
8e6d5573
LM
1247{
1248 struct cpu_hw_events *cpuhw;
1249 long i, n;
1250
1251 if (!ppmu)
1252 return -EAGAIN;
1253 cpuhw = &__get_cpu_var(cpu_hw_events);
1254 n = cpuhw->n_events;
1255 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1256 return -EAGAIN;
1257 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1258 if (i < 0)
1259 return -EAGAIN;
1260
1261 for (i = cpuhw->n_txn_start; i < n; ++i)
1262 cpuhw->event[i]->hw.config = cpuhw->events[i];
1263
8d2cacbb 1264 cpuhw->group_flag &= ~PERF_EVENT_TXN;
33696fc0 1265 perf_pmu_enable(pmu);
8e6d5573
LM
1266 return 0;
1267}
1268
ab7ef2e5 1269/*
cdd6c482 1270 * Return 1 if we might be able to put event on a limited PMC,
ab7ef2e5 1271 * or 0 if not.
cdd6c482 1272 * A event can only go on a limited PMC if it counts something
ab7ef2e5
PM
1273 * that a limited PMC can count, doesn't require interrupts, and
1274 * doesn't exclude any processor mode.
1275 */
cdd6c482 1276static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
ab7ef2e5
PM
1277 unsigned int flags)
1278{
1279 int n;
ef923214 1280 u64 alt[MAX_EVENT_ALTERNATIVES];
ab7ef2e5 1281
cdd6c482
IM
1282 if (event->attr.exclude_user
1283 || event->attr.exclude_kernel
1284 || event->attr.exclude_hv
1285 || event->attr.sample_period)
ab7ef2e5
PM
1286 return 0;
1287
1288 if (ppmu->limited_pmc_event(ev))
1289 return 1;
1290
1291 /*
cdd6c482 1292 * The requested event_id isn't on a limited PMC already;
ab7ef2e5
PM
1293 * see if any alternative code goes on a limited PMC.
1294 */
1295 if (!ppmu->get_alternatives)
1296 return 0;
1297
1298 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1299 n = ppmu->get_alternatives(ev, flags, alt);
ab7ef2e5 1300
ef923214 1301 return n > 0;
ab7ef2e5
PM
1302}
1303
1304/*
cdd6c482
IM
1305 * Find an alternative event_id that goes on a normal PMC, if possible,
1306 * and return the event_id code, or 0 if there is no such alternative.
1307 * (Note: event_id code 0 is "don't count" on all machines.)
ab7ef2e5 1308 */
ef923214 1309static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
ab7ef2e5 1310{
ef923214 1311 u64 alt[MAX_EVENT_ALTERNATIVES];
ab7ef2e5
PM
1312 int n;
1313
1314 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1315 n = ppmu->get_alternatives(ev, flags, alt);
1316 if (!n)
1317 return 0;
1318 return alt[0];
1319}
1320
cdd6c482
IM
1321/* Number of perf_events counting hardware events */
1322static atomic_t num_events;
7595d63b
PM
1323/* Used to avoid races in calling reserve/release_pmc_hardware */
1324static DEFINE_MUTEX(pmc_reserve_mutex);
1325
1326/*
cdd6c482 1327 * Release the PMU if this is the last perf_event.
7595d63b 1328 */
cdd6c482 1329static void hw_perf_event_destroy(struct perf_event *event)
7595d63b 1330{
cdd6c482 1331 if (!atomic_add_unless(&num_events, -1, 1)) {
7595d63b 1332 mutex_lock(&pmc_reserve_mutex);
cdd6c482 1333 if (atomic_dec_return(&num_events) == 0)
7595d63b
PM
1334 release_pmc_hardware();
1335 mutex_unlock(&pmc_reserve_mutex);
1336 }
1337}
1338
106b506c 1339/*
cdd6c482 1340 * Translate a generic cache event_id config to a raw event_id code.
106b506c
PM
1341 */
1342static int hw_perf_cache_event(u64 config, u64 *eventp)
1343{
1344 unsigned long type, op, result;
1345 int ev;
1346
1347 if (!ppmu->cache_events)
1348 return -EINVAL;
1349
1350 /* unpack config */
1351 type = config & 0xff;
1352 op = (config >> 8) & 0xff;
1353 result = (config >> 16) & 0xff;
1354
1355 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1356 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1357 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1358 return -EINVAL;
1359
1360 ev = (*ppmu->cache_events)[type][op][result];
1361 if (ev == 0)
1362 return -EOPNOTSUPP;
1363 if (ev == -1)
1364 return -EINVAL;
1365 *eventp = ev;
1366 return 0;
1367}
1368
b0a873eb 1369static int power_pmu_event_init(struct perf_event *event)
4574910e 1370{
ef923214
PM
1371 u64 ev;
1372 unsigned long flags;
cdd6c482
IM
1373 struct perf_event *ctrs[MAX_HWEVENTS];
1374 u64 events[MAX_HWEVENTS];
1375 unsigned int cflags[MAX_HWEVENTS];
4574910e 1376 int n;
7595d63b 1377 int err;
cdd6c482 1378 struct cpu_hw_events *cpuhw;
4574910e
PM
1379
1380 if (!ppmu)
b0a873eb
PZ
1381 return -ENOENT;
1382
3925f46b
AK
1383 if (has_branch_stack(event)) {
1384 /* PMU has BHRB enabled */
1385 if (!(ppmu->flags & PPMU_BHRB))
1386 return -EOPNOTSUPP;
1387 }
2481c5fa 1388
cdd6c482 1389 switch (event->attr.type) {
106b506c 1390 case PERF_TYPE_HARDWARE:
cdd6c482 1391 ev = event->attr.config;
9aaa131a 1392 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
b0a873eb 1393 return -EOPNOTSUPP;
4574910e 1394 ev = ppmu->generic_events[ev];
106b506c
PM
1395 break;
1396 case PERF_TYPE_HW_CACHE:
cdd6c482 1397 err = hw_perf_cache_event(event->attr.config, &ev);
106b506c 1398 if (err)
b0a873eb 1399 return err;
106b506c
PM
1400 break;
1401 case PERF_TYPE_RAW:
cdd6c482 1402 ev = event->attr.config;
106b506c 1403 break;
90c8f954 1404 default:
b0a873eb 1405 return -ENOENT;
4574910e 1406 }
b0a873eb 1407
cdd6c482
IM
1408 event->hw.config_base = ev;
1409 event->hw.idx = 0;
4574910e 1410
0475f9ea
PM
1411 /*
1412 * If we are not running on a hypervisor, force the
1413 * exclude_hv bit to 0 so that we don't care what
d095cd46 1414 * the user set it to.
0475f9ea
PM
1415 */
1416 if (!firmware_has_feature(FW_FEATURE_LPAR))
cdd6c482 1417 event->attr.exclude_hv = 0;
ab7ef2e5
PM
1418
1419 /*
cdd6c482 1420 * If this is a per-task event, then we can use
ab7ef2e5
PM
1421 * PM_RUN_* events interchangeably with their non RUN_*
1422 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1423 * XXX we should check if the task is an idle task.
1424 */
1425 flags = 0;
57fa7214 1426 if (event->attach_state & PERF_ATTACH_TASK)
ab7ef2e5
PM
1427 flags |= PPMU_ONLY_COUNT_RUN;
1428
1429 /*
cdd6c482
IM
1430 * If this machine has limited events, check whether this
1431 * event_id could go on a limited event.
ab7ef2e5 1432 */
0bbd0d4b 1433 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
cdd6c482 1434 if (can_go_on_limited_pmc(event, ev, flags)) {
ab7ef2e5
PM
1435 flags |= PPMU_LIMITED_PMC_OK;
1436 } else if (ppmu->limited_pmc_event(ev)) {
1437 /*
cdd6c482 1438 * The requested event_id is on a limited PMC,
ab7ef2e5
PM
1439 * but we can't use a limited PMC; see if any
1440 * alternative goes on a normal PMC.
1441 */
1442 ev = normal_pmc_alternative(ev, flags);
1443 if (!ev)
b0a873eb 1444 return -EINVAL;
ab7ef2e5
PM
1445 }
1446 }
1447
4574910e
PM
1448 /*
1449 * If this is in a group, check if it can go on with all the
cdd6c482 1450 * other hardware events in the group. We assume the event
4574910e
PM
1451 * hasn't been linked into its leader's sibling list at this point.
1452 */
1453 n = 0;
cdd6c482 1454 if (event->group_leader != event) {
a8f90e90 1455 n = collect_events(event->group_leader, ppmu->n_counter - 1,
ab7ef2e5 1456 ctrs, events, cflags);
4574910e 1457 if (n < 0)
b0a873eb 1458 return -EINVAL;
4574910e 1459 }
0475f9ea 1460 events[n] = ev;
cdd6c482 1461 ctrs[n] = event;
ab7ef2e5
PM
1462 cflags[n] = flags;
1463 if (check_excludes(ctrs, cflags, n, 1))
b0a873eb 1464 return -EINVAL;
e51ee31e 1465
cdd6c482 1466 cpuhw = &get_cpu_var(cpu_hw_events);
e51ee31e 1467 err = power_check_constraints(cpuhw, events, cflags, n + 1);
3925f46b
AK
1468
1469 if (has_branch_stack(event)) {
1470 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1471 event->attr.branch_sample_type);
1472
1473 if(cpuhw->bhrb_filter == -1)
1474 return -EOPNOTSUPP;
1475 }
1476
cdd6c482 1477 put_cpu_var(cpu_hw_events);
e51ee31e 1478 if (err)
b0a873eb 1479 return -EINVAL;
4574910e 1480
cdd6c482
IM
1481 event->hw.config = events[n];
1482 event->hw.event_base = cflags[n];
1483 event->hw.last_period = event->hw.sample_period;
e7850595 1484 local64_set(&event->hw.period_left, event->hw.last_period);
7595d63b
PM
1485
1486 /*
1487 * See if we need to reserve the PMU.
cdd6c482 1488 * If no events are currently in use, then we have to take a
7595d63b
PM
1489 * mutex to ensure that we don't race with another task doing
1490 * reserve_pmc_hardware or release_pmc_hardware.
1491 */
1492 err = 0;
cdd6c482 1493 if (!atomic_inc_not_zero(&num_events)) {
7595d63b 1494 mutex_lock(&pmc_reserve_mutex);
cdd6c482
IM
1495 if (atomic_read(&num_events) == 0 &&
1496 reserve_pmc_hardware(perf_event_interrupt))
7595d63b
PM
1497 err = -EBUSY;
1498 else
cdd6c482 1499 atomic_inc(&num_events);
7595d63b
PM
1500 mutex_unlock(&pmc_reserve_mutex);
1501 }
cdd6c482 1502 event->destroy = hw_perf_event_destroy;
7595d63b 1503
b0a873eb 1504 return err;
4574910e
PM
1505}
1506
35edc2a5
PZ
1507static int power_pmu_event_idx(struct perf_event *event)
1508{
1509 return event->hw.idx;
1510}
1511
1c53a270
SB
1512ssize_t power_events_sysfs_show(struct device *dev,
1513 struct device_attribute *attr, char *page)
1514{
1515 struct perf_pmu_events_attr *pmu_attr;
1516
1517 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
1518
1519 return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
1520}
1521
b0a873eb 1522struct pmu power_pmu = {
a4eaf7f1
PZ
1523 .pmu_enable = power_pmu_enable,
1524 .pmu_disable = power_pmu_disable,
b0a873eb 1525 .event_init = power_pmu_event_init,
a4eaf7f1
PZ
1526 .add = power_pmu_add,
1527 .del = power_pmu_del,
1528 .start = power_pmu_start,
1529 .stop = power_pmu_stop,
b0a873eb 1530 .read = power_pmu_read,
b0a873eb
PZ
1531 .start_txn = power_pmu_start_txn,
1532 .cancel_txn = power_pmu_cancel_txn,
1533 .commit_txn = power_pmu_commit_txn,
35edc2a5 1534 .event_idx = power_pmu_event_idx,
3925f46b 1535 .flush_branch_stack = power_pmu_flush_branch_stack,
b0a873eb
PZ
1536};
1537
4574910e 1538/*
57c0c15b 1539 * A counter has overflowed; update its count and record
4574910e
PM
1540 * things if requested. Note that interrupts are hard-disabled
1541 * here so there is no possibility of being interrupted.
1542 */
cdd6c482 1543static void record_and_restart(struct perf_event *event, unsigned long val,
a8b0ca17 1544 struct pt_regs *regs)
4574910e 1545{
cdd6c482 1546 u64 period = event->hw.sample_period;
4574910e
PM
1547 s64 prev, delta, left;
1548 int record = 0;
1549
a4eaf7f1
PZ
1550 if (event->hw.state & PERF_HES_STOPPED) {
1551 write_pmc(event->hw.idx, 0);
1552 return;
1553 }
1554
4574910e 1555 /* we don't have to worry about interrupts here */
e7850595 1556 prev = local64_read(&event->hw.prev_count);
86c74ab3 1557 delta = check_and_compute_delta(prev, val);
e7850595 1558 local64_add(delta, &event->count);
4574910e
PM
1559
1560 /*
cdd6c482 1561 * See if the total period for this event has expired,
4574910e
PM
1562 * and update for the next period.
1563 */
1564 val = 0;
e7850595 1565 left = local64_read(&event->hw.period_left) - delta;
e13e895f
MN
1566 if (delta == 0)
1567 left++;
60db5e09 1568 if (period) {
4574910e 1569 if (left <= 0) {
60db5e09 1570 left += period;
4574910e 1571 if (left <= 0)
60db5e09 1572 left = period;
e6878835 1573 record = siar_valid(regs);
4bca770e 1574 event->hw.last_period = event->hw.sample_period;
4574910e 1575 }
98fb1807
PM
1576 if (left < 0x80000000LL)
1577 val = 0x80000000LL - left;
4574910e 1578 }
4574910e 1579
a4eaf7f1
PZ
1580 write_pmc(event->hw.idx, val);
1581 local64_set(&event->hw.prev_count, val);
1582 local64_set(&event->hw.period_left, left);
1583 perf_event_update_userpage(event);
1584
4574910e
PM
1585 /*
1586 * Finally record data if requested.
1587 */
0bbd0d4b 1588 if (record) {
dc1d628a
PZ
1589 struct perf_sample_data data;
1590
fd0d000b 1591 perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
df1a132b 1592
cdd6c482 1593 if (event->attr.sample_type & PERF_SAMPLE_ADDR)
98fb1807
PM
1594 perf_get_data_addr(regs, &data.addr);
1595
3925f46b
AK
1596 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
1597 struct cpu_hw_events *cpuhw;
1598 cpuhw = &__get_cpu_var(cpu_hw_events);
1599 power_pmu_bhrb_read(cpuhw);
1600 data.br_stack = &cpuhw->bhrb_stack;
1601 }
1602
a8b0ca17 1603 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1604 power_pmu_stop(event, 0);
0bbd0d4b
PM
1605 }
1606}
1607
1608/*
1609 * Called from generic code to get the misc flags (i.e. processor mode)
cdd6c482 1610 * for an event_id.
0bbd0d4b
PM
1611 */
1612unsigned long perf_misc_flags(struct pt_regs *regs)
1613{
98fb1807 1614 u32 flags = perf_get_misc_flags(regs);
0bbd0d4b 1615
98fb1807
PM
1616 if (flags)
1617 return flags;
cdd6c482
IM
1618 return user_mode(regs) ? PERF_RECORD_MISC_USER :
1619 PERF_RECORD_MISC_KERNEL;
0bbd0d4b
PM
1620}
1621
1622/*
1623 * Called from generic code to get the instruction pointer
cdd6c482 1624 * for an event_id.
0bbd0d4b
PM
1625 */
1626unsigned long perf_instruction_pointer(struct pt_regs *regs)
1627{
33904054 1628 bool use_siar = regs_use_siar(regs);
0bbd0d4b 1629
e6878835 1630 if (use_siar && siar_valid(regs))
75382aa7 1631 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
e6878835 1632 else if (use_siar)
1633 return 0; // no valid instruction pointer
75382aa7 1634 else
1ce447b9 1635 return regs->nip;
4574910e
PM
1636}
1637
bc09c219 1638static bool pmc_overflow_power7(unsigned long val)
0837e324 1639{
0837e324
AB
1640 /*
1641 * Events on POWER7 can roll back if a speculative event doesn't
1642 * eventually complete. Unfortunately in some rare cases they will
1643 * raise a performance monitor exception. We need to catch this to
1644 * ensure we reset the PMC. In all cases the PMC will be 256 or less
1645 * cycles from overflow.
1646 *
1647 * We only do this if the first pass fails to find any overflowing
1648 * PMCs because a user might set a period of less than 256 and we
1649 * don't want to mistakenly reset them.
1650 */
bc09c219
MN
1651 if ((0x80000000 - val) <= 256)
1652 return true;
1653
1654 return false;
1655}
1656
1657static bool pmc_overflow(unsigned long val)
1658{
1659 if ((int)val < 0)
0837e324
AB
1660 return true;
1661
1662 return false;
1663}
1664
4574910e
PM
1665/*
1666 * Performance monitor interrupt stuff
1667 */
cdd6c482 1668static void perf_event_interrupt(struct pt_regs *regs)
4574910e 1669{
bc09c219 1670 int i, j;
cdd6c482
IM
1671 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1672 struct perf_event *event;
bc09c219
MN
1673 unsigned long val[8];
1674 int found, active;
ca8f2d7f
PM
1675 int nmi;
1676
ab7ef2e5 1677 if (cpuhw->n_limited)
a8f90e90 1678 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
ab7ef2e5
PM
1679 mfspr(SPRN_PMC6));
1680
98fb1807 1681 perf_read_regs(regs);
0bbd0d4b 1682
98fb1807 1683 nmi = perf_intr_is_nmi(regs);
ca8f2d7f
PM
1684 if (nmi)
1685 nmi_enter();
1686 else
1687 irq_enter();
4574910e 1688
bc09c219
MN
1689 /* Read all the PMCs since we'll need them a bunch of times */
1690 for (i = 0; i < ppmu->n_counter; ++i)
1691 val[i] = read_pmc(i + 1);
1692
1693 /* Try to find what caused the IRQ */
1694 found = 0;
1695 for (i = 0; i < ppmu->n_counter; ++i) {
1696 if (!pmc_overflow(val[i]))
ab7ef2e5 1697 continue;
bc09c219
MN
1698 if (is_limited_pmc(i + 1))
1699 continue; /* these won't generate IRQs */
1700 /*
1701 * We've found one that's overflowed. For active
1702 * counters we need to log this. For inactive
1703 * counters, we need to reset it anyway
1704 */
1705 found = 1;
1706 active = 0;
1707 for (j = 0; j < cpuhw->n_events; ++j) {
1708 event = cpuhw->event[j];
1709 if (event->hw.idx == (i + 1)) {
1710 active = 1;
1711 record_and_restart(event, val[i], regs);
1712 break;
1713 }
4574910e 1714 }
bc09c219
MN
1715 if (!active)
1716 /* reset non active counters that have overflowed */
1717 write_pmc(i + 1, 0);
4574910e 1718 }
bc09c219
MN
1719 if (!found && pvr_version_is(PVR_POWER7)) {
1720 /* check active counters for special buggy p7 overflow */
1721 for (i = 0; i < cpuhw->n_events; ++i) {
1722 event = cpuhw->event[i];
1723 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
ab7ef2e5 1724 continue;
bc09c219
MN
1725 if (pmc_overflow_power7(val[event->hw.idx - 1])) {
1726 /* event has overflowed in a buggy way*/
1727 found = 1;
1728 record_and_restart(event,
1729 val[event->hw.idx - 1],
1730 regs);
1731 }
4574910e
PM
1732 }
1733 }
bc09c219
MN
1734 if ((!found) && printk_ratelimit())
1735 printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
4574910e
PM
1736
1737 /*
1738 * Reset MMCR0 to its normal value. This will set PMXE and
57c0c15b 1739 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
4574910e 1740 * and thus allow interrupts to occur again.
cdd6c482 1741 * XXX might want to use MSR.PM to keep the events frozen until
4574910e
PM
1742 * we get back out of this interrupt.
1743 */
ab7ef2e5 1744 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
4574910e 1745
ca8f2d7f
PM
1746 if (nmi)
1747 nmi_exit();
1748 else
db4fb5ac 1749 irq_exit();
4574910e
PM
1750}
1751
3f6da390 1752static void power_pmu_setup(int cpu)
01d0287f 1753{
cdd6c482 1754 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
01d0287f 1755
f36a1a13
PM
1756 if (!ppmu)
1757 return;
01d0287f
PM
1758 memset(cpuhw, 0, sizeof(*cpuhw));
1759 cpuhw->mmcr[0] = MMCR0_FC;
1760}
1761
3f6da390 1762static int __cpuinit
85cfabbc 1763power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
3f6da390
PZ
1764{
1765 unsigned int cpu = (long)hcpu;
1766
1767 switch (action & ~CPU_TASKS_FROZEN) {
1768 case CPU_UP_PREPARE:
1769 power_pmu_setup(cpu);
1770 break;
1771
1772 default:
1773 break;
1774 }
1775
1776 return NOTIFY_OK;
1777}
1778
77c2342a 1779int __cpuinit register_power_pmu(struct power_pmu *pmu)
4574910e 1780{
079b3c56
PM
1781 if (ppmu)
1782 return -EBUSY; /* something's already registered */
1783
1784 ppmu = pmu;
1785 pr_info("%s performance monitor hardware support registered\n",
1786 pmu->name);
d095cd46 1787
1c53a270
SB
1788 power_pmu.attr_groups = ppmu->attr_groups;
1789
98fb1807 1790#ifdef MSR_HV
d095cd46
PM
1791 /*
1792 * Use FCHV to ignore kernel events if MSR.HV is set.
1793 */
1794 if (mfmsr() & MSR_HV)
cdd6c482 1795 freeze_events_kernel = MMCR0_FCHV;
98fb1807 1796#endif /* CONFIG_PPC64 */
d095cd46 1797
2e80a82a 1798 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
3f6da390
PZ
1799 perf_cpu_notifier(power_pmu_notifier);
1800
4574910e
PM
1801 return 0;
1802}