macintosh: Convert use of typedef ctl_table to struct ctl_table
[linux-2.6-block.git] / arch / powerpc / perf / core-book3s.c
CommitLineData
4574910e 1/*
cdd6c482 2 * Performance event support - powerpc architecture code
4574910e
PM
3 *
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11#include <linux/kernel.h>
12#include <linux/sched.h>
cdd6c482 13#include <linux/perf_event.h>
4574910e
PM
14#include <linux/percpu.h>
15#include <linux/hardirq.h>
69123184 16#include <linux/uaccess.h>
4574910e
PM
17#include <asm/reg.h>
18#include <asm/pmc.h>
01d0287f 19#include <asm/machdep.h>
0475f9ea 20#include <asm/firmware.h>
0bbd0d4b 21#include <asm/ptrace.h>
69123184 22#include <asm/code-patching.h>
4574910e 23
3925f46b
AK
24#define BHRB_MAX_ENTRIES 32
25#define BHRB_TARGET 0x0000000000000002
26#define BHRB_PREDICTION 0x0000000000000001
27#define BHRB_EA 0xFFFFFFFFFFFFFFFC
28
cdd6c482
IM
29struct cpu_hw_events {
30 int n_events;
4574910e
PM
31 int n_percpu;
32 int disabled;
33 int n_added;
ab7ef2e5
PM
34 int n_limited;
35 u8 pmcs_enabled;
cdd6c482
IM
36 struct perf_event *event[MAX_HWEVENTS];
37 u64 events[MAX_HWEVENTS];
38 unsigned int flags[MAX_HWEVENTS];
448d64f8 39 unsigned long mmcr[3];
a8f90e90
PM
40 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
41 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
cdd6c482
IM
42 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
43 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
44 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
8e6d5573
LM
45
46 unsigned int group_flag;
47 int n_txn_start;
3925f46b
AK
48
49 /* BHRB bits */
50 u64 bhrb_filter; /* BHRB HW branch filter */
51 int bhrb_users;
52 void *bhrb_context;
53 struct perf_branch_stack bhrb_stack;
54 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES];
4574910e 55};
3925f46b 56
cdd6c482 57DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
4574910e
PM
58
59struct power_pmu *ppmu;
60
d095cd46 61/*
57c0c15b 62 * Normally, to ignore kernel events we set the FCS (freeze counters
d095cd46
PM
63 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
64 * hypervisor bit set in the MSR, or if we are running on a processor
65 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
66 * then we need to use the FCHV bit to ignore kernel events.
67 */
cdd6c482 68static unsigned int freeze_events_kernel = MMCR0_FCS;
d095cd46 69
98fb1807
PM
70/*
71 * 32-bit doesn't have MMCRA but does have an MMCR2,
72 * and a few other names are different.
73 */
74#ifdef CONFIG_PPC32
75
76#define MMCR0_FCHV 0
77#define MMCR0_PMCjCE MMCR0_PMCnCE
78
79#define SPRN_MMCRA SPRN_MMCR2
80#define MMCRA_SAMPLE_ENABLE 0
81
82static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
83{
84 return 0;
85}
98fb1807
PM
86static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
87static inline u32 perf_get_misc_flags(struct pt_regs *regs)
88{
89 return 0;
90}
75382aa7
AB
91static inline void perf_read_regs(struct pt_regs *regs)
92{
93 regs->result = 0;
94}
98fb1807
PM
95static inline int perf_intr_is_nmi(struct pt_regs *regs)
96{
97 return 0;
98}
99
e6878835 100static inline int siar_valid(struct pt_regs *regs)
101{
102 return 1;
103}
104
d52f2dc4
MN
105static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
106static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
107void power_pmu_flush_branch_stack(void) {}
108static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
98fb1807
PM
109#endif /* CONFIG_PPC32 */
110
33904054
ME
111static bool regs_use_siar(struct pt_regs *regs)
112{
cbda6aa1 113 return !!regs->result;
33904054
ME
114}
115
98fb1807
PM
116/*
117 * Things that are specific to 64-bit implementations.
118 */
119#ifdef CONFIG_PPC64
120
121static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
122{
123 unsigned long mmcra = regs->dsisr;
124
7a786832 125 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
98fb1807
PM
126 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
127 if (slot > 1)
128 return 4 * (slot - 1);
129 }
7a786832 130
98fb1807
PM
131 return 0;
132}
133
98fb1807
PM
134/*
135 * The user wants a data address recorded.
136 * If we're not doing instruction sampling, give them the SDAR
137 * (sampled data address). If we are doing instruction sampling, then
138 * only give them the SDAR if it corresponds to the instruction
58a032c3
ME
139 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
140 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
98fb1807
PM
141 */
142static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
143{
144 unsigned long mmcra = regs->dsisr;
58a032c3 145 bool sdar_valid;
e6878835 146
58a032c3
ME
147 if (ppmu->flags & PPMU_HAS_SIER)
148 sdar_valid = regs->dar & SIER_SDAR_VALID;
149 else {
150 unsigned long sdsync;
151
152 if (ppmu->flags & PPMU_SIAR_VALID)
153 sdsync = POWER7P_MMCRA_SDAR_VALID;
154 else if (ppmu->flags & PPMU_ALT_SIPR)
155 sdsync = POWER6_MMCRA_SDSYNC;
156 else
157 sdsync = MMCRA_SDSYNC;
158
159 sdar_valid = mmcra & sdsync;
160 }
98fb1807 161
58a032c3 162 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
98fb1807
PM
163 *addrp = mfspr(SPRN_SDAR);
164}
165
5682c460 166static bool regs_sihv(struct pt_regs *regs)
68b30bb9
AB
167{
168 unsigned long sihv = MMCRA_SIHV;
169
8f61aa32
ME
170 if (ppmu->flags & PPMU_HAS_SIER)
171 return !!(regs->dar & SIER_SIHV);
172
68b30bb9
AB
173 if (ppmu->flags & PPMU_ALT_SIPR)
174 sihv = POWER6_MMCRA_SIHV;
175
5682c460 176 return !!(regs->dsisr & sihv);
68b30bb9
AB
177}
178
5682c460 179static bool regs_sipr(struct pt_regs *regs)
68b30bb9
AB
180{
181 unsigned long sipr = MMCRA_SIPR;
182
8f61aa32
ME
183 if (ppmu->flags & PPMU_HAS_SIER)
184 return !!(regs->dar & SIER_SIPR);
185
68b30bb9
AB
186 if (ppmu->flags & PPMU_ALT_SIPR)
187 sipr = POWER6_MMCRA_SIPR;
188
5682c460 189 return !!(regs->dsisr & sipr);
68b30bb9
AB
190}
191
1ce447b9
BH
192static inline u32 perf_flags_from_msr(struct pt_regs *regs)
193{
194 if (regs->msr & MSR_PR)
195 return PERF_RECORD_MISC_USER;
196 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
197 return PERF_RECORD_MISC_HYPERVISOR;
198 return PERF_RECORD_MISC_KERNEL;
199}
200
98fb1807
PM
201static inline u32 perf_get_misc_flags(struct pt_regs *regs)
202{
33904054 203 bool use_siar = regs_use_siar(regs);
98fb1807 204
75382aa7 205 if (!use_siar)
1ce447b9
BH
206 return perf_flags_from_msr(regs);
207
208 /*
209 * If we don't have flags in MMCRA, rather than using
210 * the MSR, we intuit the flags from the address in
211 * SIAR which should give slightly more reliable
212 * results
213 */
cbda6aa1 214 if (ppmu->flags & PPMU_NO_SIPR) {
1ce447b9
BH
215 unsigned long siar = mfspr(SPRN_SIAR);
216 if (siar >= PAGE_OFFSET)
217 return PERF_RECORD_MISC_KERNEL;
218 return PERF_RECORD_MISC_USER;
219 }
98fb1807 220
7abb840b 221 /* PR has priority over HV, so order below is important */
5682c460 222 if (regs_sipr(regs))
7abb840b 223 return PERF_RECORD_MISC_USER;
5682c460
ME
224
225 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
cdd6c482 226 return PERF_RECORD_MISC_HYPERVISOR;
5682c460 227
7abb840b 228 return PERF_RECORD_MISC_KERNEL;
98fb1807
PM
229}
230
231/*
232 * Overload regs->dsisr to store MMCRA so we only need to read it once
233 * on each interrupt.
8f61aa32 234 * Overload regs->dar to store SIER if we have it.
75382aa7
AB
235 * Overload regs->result to specify whether we should use the MSR (result
236 * is zero) or the SIAR (result is non zero).
98fb1807
PM
237 */
238static inline void perf_read_regs(struct pt_regs *regs)
239{
75382aa7
AB
240 unsigned long mmcra = mfspr(SPRN_MMCRA);
241 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
242 int use_siar;
243
5682c460 244 regs->dsisr = mmcra;
8f61aa32 245
cbda6aa1
ME
246 if (ppmu->flags & PPMU_HAS_SIER)
247 regs->dar = mfspr(SPRN_SIER);
8f61aa32 248
5c093efa
AB
249 /*
250 * If this isn't a PMU exception (eg a software event) the SIAR is
251 * not valid. Use pt_regs.
252 *
253 * If it is a marked event use the SIAR.
254 *
255 * If the PMU doesn't update the SIAR for non marked events use
256 * pt_regs.
257 *
258 * If the PMU has HV/PR flags then check to see if they
259 * place the exception in userspace. If so, use pt_regs. In
260 * continuous sampling mode the SIAR and the PMU exception are
261 * not synchronised, so they may be many instructions apart.
262 * This can result in confusing backtraces. We still want
263 * hypervisor samples as well as samples in the kernel with
264 * interrupts off hence the userspace check.
265 */
75382aa7
AB
266 if (TRAP(regs) != 0xf00)
267 use_siar = 0;
5c093efa
AB
268 else if (marked)
269 use_siar = 1;
270 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
271 use_siar = 0;
cbda6aa1 272 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
75382aa7
AB
273 use_siar = 0;
274 else
275 use_siar = 1;
276
cbda6aa1 277 regs->result = use_siar;
98fb1807
PM
278}
279
280/*
281 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
282 * it as an NMI.
283 */
284static inline int perf_intr_is_nmi(struct pt_regs *regs)
285{
286 return !regs->softe;
287}
288
e6878835 289/*
290 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
291 * must be sampled only if the SIAR-valid bit is set.
292 *
293 * For unmarked instructions and for processors that don't have the SIAR-Valid
294 * bit, assume that SIAR is valid.
295 */
296static inline int siar_valid(struct pt_regs *regs)
297{
298 unsigned long mmcra = regs->dsisr;
299 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
300
58a032c3
ME
301 if (marked) {
302 if (ppmu->flags & PPMU_HAS_SIER)
303 return regs->dar & SIER_SIAR_VALID;
304
305 if (ppmu->flags & PPMU_SIAR_VALID)
306 return mmcra & POWER7P_MMCRA_SIAR_VALID;
307 }
e6878835 308
309 return 1;
310}
311
d52f2dc4
MN
312
313/* Reset all possible BHRB entries */
314static void power_pmu_bhrb_reset(void)
315{
316 asm volatile(PPC_CLRBHRB);
317}
318
319static void power_pmu_bhrb_enable(struct perf_event *event)
320{
321 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
322
323 if (!ppmu->bhrb_nr)
324 return;
325
326 /* Clear BHRB if we changed task context to avoid data leaks */
327 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
328 power_pmu_bhrb_reset();
329 cpuhw->bhrb_context = event->ctx;
330 }
331 cpuhw->bhrb_users++;
332}
333
334static void power_pmu_bhrb_disable(struct perf_event *event)
335{
336 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
337
338 if (!ppmu->bhrb_nr)
339 return;
340
341 cpuhw->bhrb_users--;
342 WARN_ON_ONCE(cpuhw->bhrb_users < 0);
343
344 if (!cpuhw->disabled && !cpuhw->bhrb_users) {
345 /* BHRB cannot be turned off when other
346 * events are active on the PMU.
347 */
348
349 /* avoid stale pointer */
350 cpuhw->bhrb_context = NULL;
351 }
352}
353
354/* Called from ctxsw to prevent one process's branch entries to
355 * mingle with the other process's entries during context switch.
356 */
357void power_pmu_flush_branch_stack(void)
358{
359 if (ppmu->bhrb_nr)
360 power_pmu_bhrb_reset();
361}
69123184
MN
362/* Calculate the to address for a branch */
363static __u64 power_pmu_bhrb_to(u64 addr)
364{
365 unsigned int instr;
366 int ret;
367 __u64 target;
368
369 if (is_kernel_addr(addr))
370 return branch_target((unsigned int *)addr);
371
372 /* Userspace: need copy instruction here then translate it */
373 pagefault_disable();
374 ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
375 if (ret) {
376 pagefault_enable();
377 return 0;
378 }
379 pagefault_enable();
380
381 target = branch_target(&instr);
382 if ((!target) || (instr & BRANCH_ABSOLUTE))
383 return target;
384
385 /* Translate relative branch target from kernel to user address */
386 return target - (unsigned long)&instr + addr;
387}
d52f2dc4 388
d52f2dc4 389/* Processing BHRB entries */
506e70d1 390void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
d52f2dc4
MN
391{
392 u64 val;
393 u64 addr;
506e70d1 394 int r_index, u_index, pred;
d52f2dc4
MN
395
396 r_index = 0;
397 u_index = 0;
398 while (r_index < ppmu->bhrb_nr) {
399 /* Assembly read function */
506e70d1
MN
400 val = read_bhrb(r_index++);
401 if (!val)
402 /* Terminal marker: End of valid BHRB entries */
d52f2dc4 403 break;
506e70d1 404 else {
d52f2dc4
MN
405 addr = val & BHRB_EA;
406 pred = val & BHRB_PREDICTION;
d52f2dc4 407
506e70d1
MN
408 if (!addr)
409 /* invalid entry */
d52f2dc4 410 continue;
d52f2dc4 411
506e70d1
MN
412 /* Branches are read most recent first (ie. mfbhrb 0 is
413 * the most recent branch).
414 * There are two types of valid entries:
415 * 1) a target entry which is the to address of a
416 * computed goto like a blr,bctr,btar. The next
417 * entry read from the bhrb will be branch
418 * corresponding to this target (ie. the actual
419 * blr/bctr/btar instruction).
420 * 2) a from address which is an actual branch. If a
421 * target entry proceeds this, then this is the
422 * matching branch for that target. If this is not
423 * following a target entry, then this is a branch
424 * where the target is given as an immediate field
425 * in the instruction (ie. an i or b form branch).
426 * In this case we need to read the instruction from
427 * memory to determine the target/to address.
428 */
d52f2dc4 429
d52f2dc4 430 if (val & BHRB_TARGET) {
506e70d1
MN
431 /* Target branches use two entries
432 * (ie. computed gotos/XL form)
433 */
434 cpuhw->bhrb_entries[u_index].to = addr;
435 cpuhw->bhrb_entries[u_index].mispred = pred;
436 cpuhw->bhrb_entries[u_index].predicted = ~pred;
d52f2dc4 437
506e70d1
MN
438 /* Get from address in next entry */
439 val = read_bhrb(r_index++);
440 addr = val & BHRB_EA;
441 if (val & BHRB_TARGET) {
442 /* Shouldn't have two targets in a
443 row.. Reset index and try again */
444 r_index--;
445 addr = 0;
446 }
447 cpuhw->bhrb_entries[u_index].from = addr;
d52f2dc4 448 } else {
506e70d1
MN
449 /* Branches to immediate field
450 (ie I or B form) */
d52f2dc4 451 cpuhw->bhrb_entries[u_index].from = addr;
69123184
MN
452 cpuhw->bhrb_entries[u_index].to =
453 power_pmu_bhrb_to(addr);
d52f2dc4
MN
454 cpuhw->bhrb_entries[u_index].mispred = pred;
455 cpuhw->bhrb_entries[u_index].predicted = ~pred;
d52f2dc4 456 }
506e70d1
MN
457 u_index++;
458
d52f2dc4
MN
459 }
460 }
461 cpuhw->bhrb_stack.nr = u_index;
462 return;
463}
464
98fb1807
PM
465#endif /* CONFIG_PPC64 */
466
cdd6c482 467static void perf_event_interrupt(struct pt_regs *regs);
7595d63b 468
cdd6c482 469void perf_event_print_debug(void)
4574910e
PM
470{
471}
472
4574910e 473/*
57c0c15b 474 * Read one performance monitor counter (PMC).
4574910e
PM
475 */
476static unsigned long read_pmc(int idx)
477{
478 unsigned long val;
479
480 switch (idx) {
481 case 1:
482 val = mfspr(SPRN_PMC1);
483 break;
484 case 2:
485 val = mfspr(SPRN_PMC2);
486 break;
487 case 3:
488 val = mfspr(SPRN_PMC3);
489 break;
490 case 4:
491 val = mfspr(SPRN_PMC4);
492 break;
493 case 5:
494 val = mfspr(SPRN_PMC5);
495 break;
496 case 6:
497 val = mfspr(SPRN_PMC6);
498 break;
98fb1807 499#ifdef CONFIG_PPC64
4574910e
PM
500 case 7:
501 val = mfspr(SPRN_PMC7);
502 break;
503 case 8:
504 val = mfspr(SPRN_PMC8);
505 break;
98fb1807 506#endif /* CONFIG_PPC64 */
4574910e
PM
507 default:
508 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
509 val = 0;
510 }
511 return val;
512}
513
514/*
515 * Write one PMC.
516 */
517static void write_pmc(int idx, unsigned long val)
518{
519 switch (idx) {
520 case 1:
521 mtspr(SPRN_PMC1, val);
522 break;
523 case 2:
524 mtspr(SPRN_PMC2, val);
525 break;
526 case 3:
527 mtspr(SPRN_PMC3, val);
528 break;
529 case 4:
530 mtspr(SPRN_PMC4, val);
531 break;
532 case 5:
533 mtspr(SPRN_PMC5, val);
534 break;
535 case 6:
536 mtspr(SPRN_PMC6, val);
537 break;
98fb1807 538#ifdef CONFIG_PPC64
4574910e
PM
539 case 7:
540 mtspr(SPRN_PMC7, val);
541 break;
542 case 8:
543 mtspr(SPRN_PMC8, val);
544 break;
98fb1807 545#endif /* CONFIG_PPC64 */
4574910e
PM
546 default:
547 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
548 }
549}
550
551/*
552 * Check if a set of events can all go on the PMU at once.
553 * If they can't, this will look at alternative codes for the events
554 * and see if any combination of alternative codes is feasible.
cdd6c482 555 * The feasible set is returned in event_id[].
4574910e 556 */
cdd6c482
IM
557static int power_check_constraints(struct cpu_hw_events *cpuhw,
558 u64 event_id[], unsigned int cflags[],
ab7ef2e5 559 int n_ev)
4574910e 560{
448d64f8 561 unsigned long mask, value, nv;
cdd6c482
IM
562 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
563 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
4574910e 564 int i, j;
448d64f8
PM
565 unsigned long addf = ppmu->add_fields;
566 unsigned long tadd = ppmu->test_adder;
4574910e 567
a8f90e90 568 if (n_ev > ppmu->n_counter)
4574910e
PM
569 return -1;
570
571 /* First see if the events will go on as-is */
572 for (i = 0; i < n_ev; ++i) {
ab7ef2e5 573 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
cdd6c482
IM
574 && !ppmu->limited_pmc_event(event_id[i])) {
575 ppmu->get_alternatives(event_id[i], cflags[i],
e51ee31e 576 cpuhw->alternatives[i]);
cdd6c482 577 event_id[i] = cpuhw->alternatives[i][0];
ab7ef2e5 578 }
cdd6c482 579 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
e51ee31e 580 &cpuhw->avalues[i][0]))
4574910e 581 return -1;
4574910e
PM
582 }
583 value = mask = 0;
584 for (i = 0; i < n_ev; ++i) {
e51ee31e
PM
585 nv = (value | cpuhw->avalues[i][0]) +
586 (value & cpuhw->avalues[i][0] & addf);
4574910e 587 if ((((nv + tadd) ^ value) & mask) != 0 ||
e51ee31e
PM
588 (((nv + tadd) ^ cpuhw->avalues[i][0]) &
589 cpuhw->amasks[i][0]) != 0)
4574910e
PM
590 break;
591 value = nv;
e51ee31e 592 mask |= cpuhw->amasks[i][0];
4574910e
PM
593 }
594 if (i == n_ev)
595 return 0; /* all OK */
596
597 /* doesn't work, gather alternatives... */
598 if (!ppmu->get_alternatives)
599 return -1;
600 for (i = 0; i < n_ev; ++i) {
ab7ef2e5 601 choice[i] = 0;
cdd6c482 602 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
e51ee31e 603 cpuhw->alternatives[i]);
4574910e 604 for (j = 1; j < n_alt[i]; ++j)
e51ee31e
PM
605 ppmu->get_constraint(cpuhw->alternatives[i][j],
606 &cpuhw->amasks[i][j],
607 &cpuhw->avalues[i][j]);
4574910e
PM
608 }
609
610 /* enumerate all possibilities and see if any will work */
611 i = 0;
612 j = -1;
613 value = mask = nv = 0;
614 while (i < n_ev) {
615 if (j >= 0) {
616 /* we're backtracking, restore context */
617 value = svalues[i];
618 mask = smasks[i];
619 j = choice[i];
620 }
621 /*
cdd6c482 622 * See if any alternative k for event_id i,
4574910e
PM
623 * where k > j, will satisfy the constraints.
624 */
625 while (++j < n_alt[i]) {
e51ee31e
PM
626 nv = (value | cpuhw->avalues[i][j]) +
627 (value & cpuhw->avalues[i][j] & addf);
4574910e 628 if ((((nv + tadd) ^ value) & mask) == 0 &&
e51ee31e
PM
629 (((nv + tadd) ^ cpuhw->avalues[i][j])
630 & cpuhw->amasks[i][j]) == 0)
4574910e
PM
631 break;
632 }
633 if (j >= n_alt[i]) {
634 /*
635 * No feasible alternative, backtrack
cdd6c482 636 * to event_id i-1 and continue enumerating its
4574910e
PM
637 * alternatives from where we got up to.
638 */
639 if (--i < 0)
640 return -1;
641 } else {
642 /*
cdd6c482
IM
643 * Found a feasible alternative for event_id i,
644 * remember where we got up to with this event_id,
645 * go on to the next event_id, and start with
4574910e
PM
646 * the first alternative for it.
647 */
648 choice[i] = j;
649 svalues[i] = value;
650 smasks[i] = mask;
651 value = nv;
e51ee31e 652 mask |= cpuhw->amasks[i][j];
4574910e
PM
653 ++i;
654 j = -1;
655 }
656 }
657
658 /* OK, we have a feasible combination, tell the caller the solution */
659 for (i = 0; i < n_ev; ++i)
cdd6c482 660 event_id[i] = cpuhw->alternatives[i][choice[i]];
4574910e
PM
661 return 0;
662}
663
0475f9ea 664/*
cdd6c482 665 * Check if newly-added events have consistent settings for
0475f9ea 666 * exclude_{user,kernel,hv} with each other and any previously
cdd6c482 667 * added events.
0475f9ea 668 */
cdd6c482 669static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
ab7ef2e5 670 int n_prev, int n_new)
0475f9ea 671{
ab7ef2e5
PM
672 int eu = 0, ek = 0, eh = 0;
673 int i, n, first;
cdd6c482 674 struct perf_event *event;
0475f9ea
PM
675
676 n = n_prev + n_new;
677 if (n <= 1)
678 return 0;
679
ab7ef2e5
PM
680 first = 1;
681 for (i = 0; i < n; ++i) {
682 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
683 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
684 continue;
685 }
cdd6c482 686 event = ctrs[i];
ab7ef2e5 687 if (first) {
cdd6c482
IM
688 eu = event->attr.exclude_user;
689 ek = event->attr.exclude_kernel;
690 eh = event->attr.exclude_hv;
ab7ef2e5 691 first = 0;
cdd6c482
IM
692 } else if (event->attr.exclude_user != eu ||
693 event->attr.exclude_kernel != ek ||
694 event->attr.exclude_hv != eh) {
0475f9ea 695 return -EAGAIN;
ab7ef2e5 696 }
0475f9ea 697 }
ab7ef2e5
PM
698
699 if (eu || ek || eh)
700 for (i = 0; i < n; ++i)
701 if (cflags[i] & PPMU_LIMITED_PMC_OK)
702 cflags[i] |= PPMU_LIMITED_PMC_REQD;
703
0475f9ea
PM
704 return 0;
705}
706
86c74ab3
EM
707static u64 check_and_compute_delta(u64 prev, u64 val)
708{
709 u64 delta = (val - prev) & 0xfffffffful;
710
711 /*
712 * POWER7 can roll back counter values, if the new value is smaller
713 * than the previous value it will cause the delta and the counter to
714 * have bogus values unless we rolled a counter over. If a coutner is
715 * rolled back, it will be smaller, but within 256, which is the maximum
716 * number of events to rollback at once. If we dectect a rollback
717 * return 0. This can lead to a small lack of precision in the
718 * counters.
719 */
720 if (prev > val && (prev - val) < 256)
721 delta = 0;
722
723 return delta;
724}
725
cdd6c482 726static void power_pmu_read(struct perf_event *event)
4574910e 727{
98fb1807 728 s64 val, delta, prev;
4574910e 729
a4eaf7f1
PZ
730 if (event->hw.state & PERF_HES_STOPPED)
731 return;
732
cdd6c482 733 if (!event->hw.idx)
4574910e
PM
734 return;
735 /*
736 * Performance monitor interrupts come even when interrupts
737 * are soft-disabled, as long as interrupts are hard-enabled.
738 * Therefore we treat them like NMIs.
739 */
740 do {
e7850595 741 prev = local64_read(&event->hw.prev_count);
4574910e 742 barrier();
cdd6c482 743 val = read_pmc(event->hw.idx);
86c74ab3
EM
744 delta = check_and_compute_delta(prev, val);
745 if (!delta)
746 return;
e7850595 747 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
4574910e 748
e7850595
PZ
749 local64_add(delta, &event->count);
750 local64_sub(delta, &event->hw.period_left);
4574910e
PM
751}
752
ab7ef2e5
PM
753/*
754 * On some machines, PMC5 and PMC6 can't be written, don't respect
755 * the freeze conditions, and don't generate interrupts. This tells
cdd6c482 756 * us if `event' is using such a PMC.
ab7ef2e5
PM
757 */
758static int is_limited_pmc(int pmcnum)
759{
0bbd0d4b
PM
760 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
761 && (pmcnum == 5 || pmcnum == 6);
ab7ef2e5
PM
762}
763
a8f90e90 764static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
ab7ef2e5
PM
765 unsigned long pmc5, unsigned long pmc6)
766{
cdd6c482 767 struct perf_event *event;
ab7ef2e5
PM
768 u64 val, prev, delta;
769 int i;
770
771 for (i = 0; i < cpuhw->n_limited; ++i) {
a8f90e90 772 event = cpuhw->limited_counter[i];
cdd6c482 773 if (!event->hw.idx)
ab7ef2e5 774 continue;
cdd6c482 775 val = (event->hw.idx == 5) ? pmc5 : pmc6;
e7850595 776 prev = local64_read(&event->hw.prev_count);
cdd6c482 777 event->hw.idx = 0;
86c74ab3
EM
778 delta = check_and_compute_delta(prev, val);
779 if (delta)
780 local64_add(delta, &event->count);
ab7ef2e5
PM
781 }
782}
783
a8f90e90 784static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
ab7ef2e5
PM
785 unsigned long pmc5, unsigned long pmc6)
786{
cdd6c482 787 struct perf_event *event;
86c74ab3 788 u64 val, prev;
ab7ef2e5
PM
789 int i;
790
791 for (i = 0; i < cpuhw->n_limited; ++i) {
a8f90e90 792 event = cpuhw->limited_counter[i];
cdd6c482
IM
793 event->hw.idx = cpuhw->limited_hwidx[i];
794 val = (event->hw.idx == 5) ? pmc5 : pmc6;
86c74ab3
EM
795 prev = local64_read(&event->hw.prev_count);
796 if (check_and_compute_delta(prev, val))
797 local64_set(&event->hw.prev_count, val);
cdd6c482 798 perf_event_update_userpage(event);
ab7ef2e5
PM
799 }
800}
801
802/*
cdd6c482 803 * Since limited events don't respect the freeze conditions, we
ab7ef2e5 804 * have to read them immediately after freezing or unfreezing the
cdd6c482
IM
805 * other events. We try to keep the values from the limited
806 * events as consistent as possible by keeping the delay (in
ab7ef2e5 807 * cycles and instructions) between freezing/unfreezing and reading
cdd6c482
IM
808 * the limited events as small and consistent as possible.
809 * Therefore, if any limited events are in use, we read them
ab7ef2e5
PM
810 * both, and always in the same order, to minimize variability,
811 * and do it inside the same asm that writes MMCR0.
812 */
cdd6c482 813static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
ab7ef2e5
PM
814{
815 unsigned long pmc5, pmc6;
816
817 if (!cpuhw->n_limited) {
818 mtspr(SPRN_MMCR0, mmcr0);
819 return;
820 }
821
822 /*
823 * Write MMCR0, then read PMC5 and PMC6 immediately.
dcd945e0
PM
824 * To ensure we don't get a performance monitor interrupt
825 * between writing MMCR0 and freezing/thawing the limited
cdd6c482 826 * events, we first write MMCR0 with the event overflow
dcd945e0 827 * interrupt enable bits turned off.
ab7ef2e5
PM
828 */
829 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
830 : "=&r" (pmc5), "=&r" (pmc6)
dcd945e0
PM
831 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
832 "i" (SPRN_MMCR0),
ab7ef2e5
PM
833 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
834
835 if (mmcr0 & MMCR0_FC)
a8f90e90 836 freeze_limited_counters(cpuhw, pmc5, pmc6);
ab7ef2e5 837 else
a8f90e90 838 thaw_limited_counters(cpuhw, pmc5, pmc6);
dcd945e0
PM
839
840 /*
cdd6c482 841 * Write the full MMCR0 including the event overflow interrupt
dcd945e0
PM
842 * enable bits, if necessary.
843 */
844 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
845 mtspr(SPRN_MMCR0, mmcr0);
ab7ef2e5
PM
846}
847
4574910e 848/*
cdd6c482
IM
849 * Disable all events to prevent PMU interrupts and to allow
850 * events to be added or removed.
4574910e 851 */
a4eaf7f1 852static void power_pmu_disable(struct pmu *pmu)
4574910e 853{
cdd6c482 854 struct cpu_hw_events *cpuhw;
4574910e
PM
855 unsigned long flags;
856
f36a1a13
PM
857 if (!ppmu)
858 return;
4574910e 859 local_irq_save(flags);
cdd6c482 860 cpuhw = &__get_cpu_var(cpu_hw_events);
4574910e 861
448d64f8 862 if (!cpuhw->disabled) {
4574910e
PM
863 cpuhw->disabled = 1;
864 cpuhw->n_added = 0;
865
01d0287f
PM
866 /*
867 * Check if we ever enabled the PMU on this cpu.
868 */
869 if (!cpuhw->pmcs_enabled) {
a6dbf93a 870 ppc_enable_pmcs();
01d0287f
PM
871 cpuhw->pmcs_enabled = 1;
872 }
873
f708223d
PM
874 /*
875 * Disable instruction sampling if it was enabled
876 */
877 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
878 mtspr(SPRN_MMCRA,
879 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
880 mb();
881 }
882
4574910e 883 /*
57c0c15b 884 * Set the 'freeze counters' bit.
4574910e 885 * The barrier is to make sure the mtspr has been
cdd6c482 886 * executed and the PMU has frozen the events
4574910e
PM
887 * before we return.
888 */
ab7ef2e5 889 write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
4574910e
PM
890 mb();
891 }
892 local_irq_restore(flags);
4574910e
PM
893}
894
895/*
cdd6c482
IM
896 * Re-enable all events if disable == 0.
897 * If we were previously disabled and events were added, then
4574910e
PM
898 * put the new config on the PMU.
899 */
a4eaf7f1 900static void power_pmu_enable(struct pmu *pmu)
4574910e 901{
cdd6c482
IM
902 struct perf_event *event;
903 struct cpu_hw_events *cpuhw;
4574910e
PM
904 unsigned long flags;
905 long i;
906 unsigned long val;
907 s64 left;
cdd6c482 908 unsigned int hwc_index[MAX_HWEVENTS];
ab7ef2e5
PM
909 int n_lim;
910 int idx;
4574910e 911
f36a1a13
PM
912 if (!ppmu)
913 return;
4574910e 914 local_irq_save(flags);
cdd6c482 915 cpuhw = &__get_cpu_var(cpu_hw_events);
9e35ad38
PZ
916 if (!cpuhw->disabled) {
917 local_irq_restore(flags);
918 return;
919 }
4574910e
PM
920 cpuhw->disabled = 0;
921
922 /*
cdd6c482 923 * If we didn't change anything, or only removed events,
4574910e
PM
924 * no need to recalculate MMCR* settings and reset the PMCs.
925 * Just reenable the PMU with the current MMCR* settings
cdd6c482 926 * (possibly updated for removal of events).
4574910e
PM
927 */
928 if (!cpuhw->n_added) {
f708223d 929 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
4574910e 930 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
cdd6c482 931 if (cpuhw->n_events == 0)
a6dbf93a 932 ppc_set_pmu_inuse(0);
f708223d 933 goto out_enable;
4574910e
PM
934 }
935
936 /*
cdd6c482 937 * Compute MMCR* values for the new set of events
4574910e 938 */
cdd6c482 939 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
4574910e
PM
940 cpuhw->mmcr)) {
941 /* shouldn't ever get here */
942 printk(KERN_ERR "oops compute_mmcr failed\n");
943 goto out;
944 }
945
0475f9ea
PM
946 /*
947 * Add in MMCR0 freeze bits corresponding to the
cdd6c482
IM
948 * attr.exclude_* bits for the first event.
949 * We have already checked that all events have the
950 * same values for these bits as the first event.
0475f9ea 951 */
cdd6c482
IM
952 event = cpuhw->event[0];
953 if (event->attr.exclude_user)
0475f9ea 954 cpuhw->mmcr[0] |= MMCR0_FCP;
cdd6c482
IM
955 if (event->attr.exclude_kernel)
956 cpuhw->mmcr[0] |= freeze_events_kernel;
957 if (event->attr.exclude_hv)
0475f9ea
PM
958 cpuhw->mmcr[0] |= MMCR0_FCHV;
959
4574910e
PM
960 /*
961 * Write the new configuration to MMCR* with the freeze
cdd6c482
IM
962 * bit set and set the hardware events to their initial values.
963 * Then unfreeze the events.
4574910e 964 */
a6dbf93a 965 ppc_set_pmu_inuse(1);
f708223d 966 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
4574910e
PM
967 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
968 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
969 | MMCR0_FC);
970
971 /*
cdd6c482 972 * Read off any pre-existing events that need to move
4574910e
PM
973 * to another PMC.
974 */
cdd6c482
IM
975 for (i = 0; i < cpuhw->n_events; ++i) {
976 event = cpuhw->event[i];
977 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
978 power_pmu_read(event);
979 write_pmc(event->hw.idx, 0);
980 event->hw.idx = 0;
4574910e
PM
981 }
982 }
983
984 /*
cdd6c482 985 * Initialize the PMCs for all the new and moved events.
4574910e 986 */
ab7ef2e5 987 cpuhw->n_limited = n_lim = 0;
cdd6c482
IM
988 for (i = 0; i < cpuhw->n_events; ++i) {
989 event = cpuhw->event[i];
990 if (event->hw.idx)
4574910e 991 continue;
ab7ef2e5
PM
992 idx = hwc_index[i] + 1;
993 if (is_limited_pmc(idx)) {
a8f90e90 994 cpuhw->limited_counter[n_lim] = event;
ab7ef2e5
PM
995 cpuhw->limited_hwidx[n_lim] = idx;
996 ++n_lim;
997 continue;
998 }
4574910e 999 val = 0;
cdd6c482 1000 if (event->hw.sample_period) {
e7850595 1001 left = local64_read(&event->hw.period_left);
4574910e
PM
1002 if (left < 0x80000000L)
1003 val = 0x80000000L - left;
1004 }
e7850595 1005 local64_set(&event->hw.prev_count, val);
cdd6c482 1006 event->hw.idx = idx;
a4eaf7f1
PZ
1007 if (event->hw.state & PERF_HES_STOPPED)
1008 val = 0;
ab7ef2e5 1009 write_pmc(idx, val);
cdd6c482 1010 perf_event_update_userpage(event);
4574910e 1011 }
ab7ef2e5 1012 cpuhw->n_limited = n_lim;
4574910e 1013 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
f708223d
PM
1014
1015 out_enable:
1016 mb();
ab7ef2e5 1017 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
4574910e 1018
f708223d
PM
1019 /*
1020 * Enable instruction sampling if necessary
1021 */
1022 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1023 mb();
1024 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1025 }
1026
4574910e 1027 out:
3925f46b
AK
1028 if (cpuhw->bhrb_users)
1029 ppmu->config_bhrb(cpuhw->bhrb_filter);
1030
4574910e
PM
1031 local_irq_restore(flags);
1032}
1033
cdd6c482
IM
1034static int collect_events(struct perf_event *group, int max_count,
1035 struct perf_event *ctrs[], u64 *events,
ab7ef2e5 1036 unsigned int *flags)
4574910e
PM
1037{
1038 int n = 0;
cdd6c482 1039 struct perf_event *event;
4574910e 1040
cdd6c482 1041 if (!is_software_event(group)) {
4574910e
PM
1042 if (n >= max_count)
1043 return -1;
1044 ctrs[n] = group;
cdd6c482 1045 flags[n] = group->hw.event_base;
4574910e
PM
1046 events[n++] = group->hw.config;
1047 }
a8f90e90 1048 list_for_each_entry(event, &group->sibling_list, group_entry) {
cdd6c482
IM
1049 if (!is_software_event(event) &&
1050 event->state != PERF_EVENT_STATE_OFF) {
4574910e
PM
1051 if (n >= max_count)
1052 return -1;
cdd6c482
IM
1053 ctrs[n] = event;
1054 flags[n] = event->hw.event_base;
1055 events[n++] = event->hw.config;
4574910e
PM
1056 }
1057 }
1058 return n;
1059}
1060
4574910e 1061/*
cdd6c482
IM
1062 * Add a event to the PMU.
1063 * If all events are not already frozen, then we disable and
9e35ad38 1064 * re-enable the PMU in order to get hw_perf_enable to do the
4574910e
PM
1065 * actual work of reconfiguring the PMU.
1066 */
a4eaf7f1 1067static int power_pmu_add(struct perf_event *event, int ef_flags)
4574910e 1068{
cdd6c482 1069 struct cpu_hw_events *cpuhw;
4574910e 1070 unsigned long flags;
4574910e
PM
1071 int n0;
1072 int ret = -EAGAIN;
1073
1074 local_irq_save(flags);
33696fc0 1075 perf_pmu_disable(event->pmu);
4574910e
PM
1076
1077 /*
cdd6c482 1078 * Add the event to the list (if there is room)
4574910e
PM
1079 * and check whether the total set is still feasible.
1080 */
cdd6c482
IM
1081 cpuhw = &__get_cpu_var(cpu_hw_events);
1082 n0 = cpuhw->n_events;
a8f90e90 1083 if (n0 >= ppmu->n_counter)
4574910e 1084 goto out;
cdd6c482
IM
1085 cpuhw->event[n0] = event;
1086 cpuhw->events[n0] = event->hw.config;
1087 cpuhw->flags[n0] = event->hw.event_base;
8e6d5573 1088
f53d168c 1089 /*
1090 * This event may have been disabled/stopped in record_and_restart()
1091 * because we exceeded the ->event_limit. If re-starting the event,
1092 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1093 * notification is re-enabled.
1094 */
a4eaf7f1
PZ
1095 if (!(ef_flags & PERF_EF_START))
1096 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
f53d168c 1097 else
1098 event->hw.state = 0;
a4eaf7f1 1099
8e6d5573
LM
1100 /*
1101 * If group events scheduling transaction was started,
25985edc 1102 * skip the schedulability test here, it will be performed
8e6d5573
LM
1103 * at commit time(->commit_txn) as a whole
1104 */
8d2cacbb 1105 if (cpuhw->group_flag & PERF_EVENT_TXN)
8e6d5573
LM
1106 goto nocheck;
1107
cdd6c482 1108 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
0475f9ea 1109 goto out;
e51ee31e 1110 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
4574910e 1111 goto out;
cdd6c482 1112 event->hw.config = cpuhw->events[n0];
8e6d5573
LM
1113
1114nocheck:
cdd6c482 1115 ++cpuhw->n_events;
4574910e
PM
1116 ++cpuhw->n_added;
1117
1118 ret = 0;
1119 out:
3925f46b
AK
1120 if (has_branch_stack(event))
1121 power_pmu_bhrb_enable(event);
1122
33696fc0 1123 perf_pmu_enable(event->pmu);
4574910e
PM
1124 local_irq_restore(flags);
1125 return ret;
1126}
1127
1128/*
cdd6c482 1129 * Remove a event from the PMU.
4574910e 1130 */
a4eaf7f1 1131static void power_pmu_del(struct perf_event *event, int ef_flags)
4574910e 1132{
cdd6c482 1133 struct cpu_hw_events *cpuhw;
4574910e 1134 long i;
4574910e
PM
1135 unsigned long flags;
1136
1137 local_irq_save(flags);
33696fc0 1138 perf_pmu_disable(event->pmu);
4574910e 1139
cdd6c482
IM
1140 power_pmu_read(event);
1141
1142 cpuhw = &__get_cpu_var(cpu_hw_events);
1143 for (i = 0; i < cpuhw->n_events; ++i) {
1144 if (event == cpuhw->event[i]) {
219a92a4 1145 while (++i < cpuhw->n_events) {
cdd6c482 1146 cpuhw->event[i-1] = cpuhw->event[i];
219a92a4
ME
1147 cpuhw->events[i-1] = cpuhw->events[i];
1148 cpuhw->flags[i-1] = cpuhw->flags[i];
1149 }
cdd6c482
IM
1150 --cpuhw->n_events;
1151 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1152 if (event->hw.idx) {
1153 write_pmc(event->hw.idx, 0);
1154 event->hw.idx = 0;
ab7ef2e5 1155 }
cdd6c482 1156 perf_event_update_userpage(event);
4574910e
PM
1157 break;
1158 }
1159 }
ab7ef2e5 1160 for (i = 0; i < cpuhw->n_limited; ++i)
a8f90e90 1161 if (event == cpuhw->limited_counter[i])
ab7ef2e5
PM
1162 break;
1163 if (i < cpuhw->n_limited) {
1164 while (++i < cpuhw->n_limited) {
a8f90e90 1165 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
ab7ef2e5
PM
1166 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1167 }
1168 --cpuhw->n_limited;
1169 }
cdd6c482
IM
1170 if (cpuhw->n_events == 0) {
1171 /* disable exceptions if no events are running */
4574910e
PM
1172 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1173 }
1174
3925f46b
AK
1175 if (has_branch_stack(event))
1176 power_pmu_bhrb_disable(event);
1177
33696fc0 1178 perf_pmu_enable(event->pmu);
4574910e
PM
1179 local_irq_restore(flags);
1180}
1181
8a7b8cb9 1182/*
a4eaf7f1
PZ
1183 * POWER-PMU does not support disabling individual counters, hence
1184 * program their cycle counter to their max value and ignore the interrupts.
8a7b8cb9 1185 */
a4eaf7f1
PZ
1186
1187static void power_pmu_start(struct perf_event *event, int ef_flags)
8a7b8cb9 1188{
8a7b8cb9 1189 unsigned long flags;
a4eaf7f1 1190 s64 left;
9a45a940 1191 unsigned long val;
8a7b8cb9 1192
cdd6c482 1193 if (!event->hw.idx || !event->hw.sample_period)
8a7b8cb9 1194 return;
a4eaf7f1
PZ
1195
1196 if (!(event->hw.state & PERF_HES_STOPPED))
1197 return;
1198
1199 if (ef_flags & PERF_EF_RELOAD)
1200 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1201
1202 local_irq_save(flags);
1203 perf_pmu_disable(event->pmu);
1204
1205 event->hw.state = 0;
1206 left = local64_read(&event->hw.period_left);
9a45a940
AB
1207
1208 val = 0;
1209 if (left < 0x80000000L)
1210 val = 0x80000000L - left;
1211
1212 write_pmc(event->hw.idx, val);
a4eaf7f1
PZ
1213
1214 perf_event_update_userpage(event);
1215 perf_pmu_enable(event->pmu);
1216 local_irq_restore(flags);
1217}
1218
1219static void power_pmu_stop(struct perf_event *event, int ef_flags)
1220{
1221 unsigned long flags;
1222
1223 if (!event->hw.idx || !event->hw.sample_period)
1224 return;
1225
1226 if (event->hw.state & PERF_HES_STOPPED)
1227 return;
1228
8a7b8cb9 1229 local_irq_save(flags);
33696fc0 1230 perf_pmu_disable(event->pmu);
a4eaf7f1 1231
cdd6c482 1232 power_pmu_read(event);
a4eaf7f1
PZ
1233 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1234 write_pmc(event->hw.idx, 0);
1235
cdd6c482 1236 perf_event_update_userpage(event);
33696fc0 1237 perf_pmu_enable(event->pmu);
8a7b8cb9
PM
1238 local_irq_restore(flags);
1239}
1240
8e6d5573
LM
1241/*
1242 * Start group events scheduling transaction
1243 * Set the flag to make pmu::enable() not perform the
1244 * schedulability test, it will be performed at commit time
1245 */
51b0fe39 1246void power_pmu_start_txn(struct pmu *pmu)
8e6d5573
LM
1247{
1248 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1249
33696fc0 1250 perf_pmu_disable(pmu);
8d2cacbb 1251 cpuhw->group_flag |= PERF_EVENT_TXN;
8e6d5573
LM
1252 cpuhw->n_txn_start = cpuhw->n_events;
1253}
1254
1255/*
1256 * Stop group events scheduling transaction
1257 * Clear the flag and pmu::enable() will perform the
1258 * schedulability test.
1259 */
51b0fe39 1260void power_pmu_cancel_txn(struct pmu *pmu)
8e6d5573
LM
1261{
1262 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1263
8d2cacbb 1264 cpuhw->group_flag &= ~PERF_EVENT_TXN;
33696fc0 1265 perf_pmu_enable(pmu);
8e6d5573
LM
1266}
1267
1268/*
1269 * Commit group events scheduling transaction
1270 * Perform the group schedulability test as a whole
1271 * Return 0 if success
1272 */
51b0fe39 1273int power_pmu_commit_txn(struct pmu *pmu)
8e6d5573
LM
1274{
1275 struct cpu_hw_events *cpuhw;
1276 long i, n;
1277
1278 if (!ppmu)
1279 return -EAGAIN;
1280 cpuhw = &__get_cpu_var(cpu_hw_events);
1281 n = cpuhw->n_events;
1282 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1283 return -EAGAIN;
1284 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1285 if (i < 0)
1286 return -EAGAIN;
1287
1288 for (i = cpuhw->n_txn_start; i < n; ++i)
1289 cpuhw->event[i]->hw.config = cpuhw->events[i];
1290
8d2cacbb 1291 cpuhw->group_flag &= ~PERF_EVENT_TXN;
33696fc0 1292 perf_pmu_enable(pmu);
8e6d5573
LM
1293 return 0;
1294}
1295
ab7ef2e5 1296/*
cdd6c482 1297 * Return 1 if we might be able to put event on a limited PMC,
ab7ef2e5 1298 * or 0 if not.
cdd6c482 1299 * A event can only go on a limited PMC if it counts something
ab7ef2e5
PM
1300 * that a limited PMC can count, doesn't require interrupts, and
1301 * doesn't exclude any processor mode.
1302 */
cdd6c482 1303static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
ab7ef2e5
PM
1304 unsigned int flags)
1305{
1306 int n;
ef923214 1307 u64 alt[MAX_EVENT_ALTERNATIVES];
ab7ef2e5 1308
cdd6c482
IM
1309 if (event->attr.exclude_user
1310 || event->attr.exclude_kernel
1311 || event->attr.exclude_hv
1312 || event->attr.sample_period)
ab7ef2e5
PM
1313 return 0;
1314
1315 if (ppmu->limited_pmc_event(ev))
1316 return 1;
1317
1318 /*
cdd6c482 1319 * The requested event_id isn't on a limited PMC already;
ab7ef2e5
PM
1320 * see if any alternative code goes on a limited PMC.
1321 */
1322 if (!ppmu->get_alternatives)
1323 return 0;
1324
1325 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1326 n = ppmu->get_alternatives(ev, flags, alt);
ab7ef2e5 1327
ef923214 1328 return n > 0;
ab7ef2e5
PM
1329}
1330
1331/*
cdd6c482
IM
1332 * Find an alternative event_id that goes on a normal PMC, if possible,
1333 * and return the event_id code, or 0 if there is no such alternative.
1334 * (Note: event_id code 0 is "don't count" on all machines.)
ab7ef2e5 1335 */
ef923214 1336static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
ab7ef2e5 1337{
ef923214 1338 u64 alt[MAX_EVENT_ALTERNATIVES];
ab7ef2e5
PM
1339 int n;
1340
1341 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1342 n = ppmu->get_alternatives(ev, flags, alt);
1343 if (!n)
1344 return 0;
1345 return alt[0];
1346}
1347
cdd6c482
IM
1348/* Number of perf_events counting hardware events */
1349static atomic_t num_events;
7595d63b
PM
1350/* Used to avoid races in calling reserve/release_pmc_hardware */
1351static DEFINE_MUTEX(pmc_reserve_mutex);
1352
1353/*
cdd6c482 1354 * Release the PMU if this is the last perf_event.
7595d63b 1355 */
cdd6c482 1356static void hw_perf_event_destroy(struct perf_event *event)
7595d63b 1357{
cdd6c482 1358 if (!atomic_add_unless(&num_events, -1, 1)) {
7595d63b 1359 mutex_lock(&pmc_reserve_mutex);
cdd6c482 1360 if (atomic_dec_return(&num_events) == 0)
7595d63b
PM
1361 release_pmc_hardware();
1362 mutex_unlock(&pmc_reserve_mutex);
1363 }
1364}
1365
106b506c 1366/*
cdd6c482 1367 * Translate a generic cache event_id config to a raw event_id code.
106b506c
PM
1368 */
1369static int hw_perf_cache_event(u64 config, u64 *eventp)
1370{
1371 unsigned long type, op, result;
1372 int ev;
1373
1374 if (!ppmu->cache_events)
1375 return -EINVAL;
1376
1377 /* unpack config */
1378 type = config & 0xff;
1379 op = (config >> 8) & 0xff;
1380 result = (config >> 16) & 0xff;
1381
1382 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1383 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1384 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1385 return -EINVAL;
1386
1387 ev = (*ppmu->cache_events)[type][op][result];
1388 if (ev == 0)
1389 return -EOPNOTSUPP;
1390 if (ev == -1)
1391 return -EINVAL;
1392 *eventp = ev;
1393 return 0;
1394}
1395
b0a873eb 1396static int power_pmu_event_init(struct perf_event *event)
4574910e 1397{
ef923214
PM
1398 u64 ev;
1399 unsigned long flags;
cdd6c482
IM
1400 struct perf_event *ctrs[MAX_HWEVENTS];
1401 u64 events[MAX_HWEVENTS];
1402 unsigned int cflags[MAX_HWEVENTS];
4574910e 1403 int n;
7595d63b 1404 int err;
cdd6c482 1405 struct cpu_hw_events *cpuhw;
4574910e
PM
1406
1407 if (!ppmu)
b0a873eb
PZ
1408 return -ENOENT;
1409
3925f46b
AK
1410 if (has_branch_stack(event)) {
1411 /* PMU has BHRB enabled */
1412 if (!(ppmu->flags & PPMU_BHRB))
1413 return -EOPNOTSUPP;
1414 }
2481c5fa 1415
cdd6c482 1416 switch (event->attr.type) {
106b506c 1417 case PERF_TYPE_HARDWARE:
cdd6c482 1418 ev = event->attr.config;
9aaa131a 1419 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
b0a873eb 1420 return -EOPNOTSUPP;
4574910e 1421 ev = ppmu->generic_events[ev];
106b506c
PM
1422 break;
1423 case PERF_TYPE_HW_CACHE:
cdd6c482 1424 err = hw_perf_cache_event(event->attr.config, &ev);
106b506c 1425 if (err)
b0a873eb 1426 return err;
106b506c
PM
1427 break;
1428 case PERF_TYPE_RAW:
cdd6c482 1429 ev = event->attr.config;
106b506c 1430 break;
90c8f954 1431 default:
b0a873eb 1432 return -ENOENT;
4574910e 1433 }
b0a873eb 1434
cdd6c482
IM
1435 event->hw.config_base = ev;
1436 event->hw.idx = 0;
4574910e 1437
0475f9ea
PM
1438 /*
1439 * If we are not running on a hypervisor, force the
1440 * exclude_hv bit to 0 so that we don't care what
d095cd46 1441 * the user set it to.
0475f9ea
PM
1442 */
1443 if (!firmware_has_feature(FW_FEATURE_LPAR))
cdd6c482 1444 event->attr.exclude_hv = 0;
ab7ef2e5
PM
1445
1446 /*
cdd6c482 1447 * If this is a per-task event, then we can use
ab7ef2e5
PM
1448 * PM_RUN_* events interchangeably with their non RUN_*
1449 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1450 * XXX we should check if the task is an idle task.
1451 */
1452 flags = 0;
57fa7214 1453 if (event->attach_state & PERF_ATTACH_TASK)
ab7ef2e5
PM
1454 flags |= PPMU_ONLY_COUNT_RUN;
1455
1456 /*
cdd6c482
IM
1457 * If this machine has limited events, check whether this
1458 * event_id could go on a limited event.
ab7ef2e5 1459 */
0bbd0d4b 1460 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
cdd6c482 1461 if (can_go_on_limited_pmc(event, ev, flags)) {
ab7ef2e5
PM
1462 flags |= PPMU_LIMITED_PMC_OK;
1463 } else if (ppmu->limited_pmc_event(ev)) {
1464 /*
cdd6c482 1465 * The requested event_id is on a limited PMC,
ab7ef2e5
PM
1466 * but we can't use a limited PMC; see if any
1467 * alternative goes on a normal PMC.
1468 */
1469 ev = normal_pmc_alternative(ev, flags);
1470 if (!ev)
b0a873eb 1471 return -EINVAL;
ab7ef2e5
PM
1472 }
1473 }
1474
4574910e
PM
1475 /*
1476 * If this is in a group, check if it can go on with all the
cdd6c482 1477 * other hardware events in the group. We assume the event
4574910e
PM
1478 * hasn't been linked into its leader's sibling list at this point.
1479 */
1480 n = 0;
cdd6c482 1481 if (event->group_leader != event) {
a8f90e90 1482 n = collect_events(event->group_leader, ppmu->n_counter - 1,
ab7ef2e5 1483 ctrs, events, cflags);
4574910e 1484 if (n < 0)
b0a873eb 1485 return -EINVAL;
4574910e 1486 }
0475f9ea 1487 events[n] = ev;
cdd6c482 1488 ctrs[n] = event;
ab7ef2e5
PM
1489 cflags[n] = flags;
1490 if (check_excludes(ctrs, cflags, n, 1))
b0a873eb 1491 return -EINVAL;
e51ee31e 1492
cdd6c482 1493 cpuhw = &get_cpu_var(cpu_hw_events);
e51ee31e 1494 err = power_check_constraints(cpuhw, events, cflags, n + 1);
3925f46b
AK
1495
1496 if (has_branch_stack(event)) {
1497 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1498 event->attr.branch_sample_type);
1499
1500 if(cpuhw->bhrb_filter == -1)
1501 return -EOPNOTSUPP;
1502 }
1503
cdd6c482 1504 put_cpu_var(cpu_hw_events);
e51ee31e 1505 if (err)
b0a873eb 1506 return -EINVAL;
4574910e 1507
cdd6c482
IM
1508 event->hw.config = events[n];
1509 event->hw.event_base = cflags[n];
1510 event->hw.last_period = event->hw.sample_period;
e7850595 1511 local64_set(&event->hw.period_left, event->hw.last_period);
7595d63b
PM
1512
1513 /*
1514 * See if we need to reserve the PMU.
cdd6c482 1515 * If no events are currently in use, then we have to take a
7595d63b
PM
1516 * mutex to ensure that we don't race with another task doing
1517 * reserve_pmc_hardware or release_pmc_hardware.
1518 */
1519 err = 0;
cdd6c482 1520 if (!atomic_inc_not_zero(&num_events)) {
7595d63b 1521 mutex_lock(&pmc_reserve_mutex);
cdd6c482
IM
1522 if (atomic_read(&num_events) == 0 &&
1523 reserve_pmc_hardware(perf_event_interrupt))
7595d63b
PM
1524 err = -EBUSY;
1525 else
cdd6c482 1526 atomic_inc(&num_events);
7595d63b
PM
1527 mutex_unlock(&pmc_reserve_mutex);
1528 }
cdd6c482 1529 event->destroy = hw_perf_event_destroy;
7595d63b 1530
b0a873eb 1531 return err;
4574910e
PM
1532}
1533
35edc2a5
PZ
1534static int power_pmu_event_idx(struct perf_event *event)
1535{
1536 return event->hw.idx;
1537}
1538
1c53a270
SB
1539ssize_t power_events_sysfs_show(struct device *dev,
1540 struct device_attribute *attr, char *page)
1541{
1542 struct perf_pmu_events_attr *pmu_attr;
1543
1544 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
1545
1546 return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
1547}
1548
b0a873eb 1549struct pmu power_pmu = {
a4eaf7f1
PZ
1550 .pmu_enable = power_pmu_enable,
1551 .pmu_disable = power_pmu_disable,
b0a873eb 1552 .event_init = power_pmu_event_init,
a4eaf7f1
PZ
1553 .add = power_pmu_add,
1554 .del = power_pmu_del,
1555 .start = power_pmu_start,
1556 .stop = power_pmu_stop,
b0a873eb 1557 .read = power_pmu_read,
b0a873eb
PZ
1558 .start_txn = power_pmu_start_txn,
1559 .cancel_txn = power_pmu_cancel_txn,
1560 .commit_txn = power_pmu_commit_txn,
35edc2a5 1561 .event_idx = power_pmu_event_idx,
3925f46b 1562 .flush_branch_stack = power_pmu_flush_branch_stack,
b0a873eb
PZ
1563};
1564
4574910e 1565/*
57c0c15b 1566 * A counter has overflowed; update its count and record
4574910e
PM
1567 * things if requested. Note that interrupts are hard-disabled
1568 * here so there is no possibility of being interrupted.
1569 */
cdd6c482 1570static void record_and_restart(struct perf_event *event, unsigned long val,
a8b0ca17 1571 struct pt_regs *regs)
4574910e 1572{
cdd6c482 1573 u64 period = event->hw.sample_period;
4574910e
PM
1574 s64 prev, delta, left;
1575 int record = 0;
1576
a4eaf7f1
PZ
1577 if (event->hw.state & PERF_HES_STOPPED) {
1578 write_pmc(event->hw.idx, 0);
1579 return;
1580 }
1581
4574910e 1582 /* we don't have to worry about interrupts here */
e7850595 1583 prev = local64_read(&event->hw.prev_count);
86c74ab3 1584 delta = check_and_compute_delta(prev, val);
e7850595 1585 local64_add(delta, &event->count);
4574910e
PM
1586
1587 /*
cdd6c482 1588 * See if the total period for this event has expired,
4574910e
PM
1589 * and update for the next period.
1590 */
1591 val = 0;
e7850595 1592 left = local64_read(&event->hw.period_left) - delta;
e13e895f
MN
1593 if (delta == 0)
1594 left++;
60db5e09 1595 if (period) {
4574910e 1596 if (left <= 0) {
60db5e09 1597 left += period;
4574910e 1598 if (left <= 0)
60db5e09 1599 left = period;
e6878835 1600 record = siar_valid(regs);
4bca770e 1601 event->hw.last_period = event->hw.sample_period;
4574910e 1602 }
98fb1807
PM
1603 if (left < 0x80000000LL)
1604 val = 0x80000000LL - left;
4574910e 1605 }
4574910e 1606
a4eaf7f1
PZ
1607 write_pmc(event->hw.idx, val);
1608 local64_set(&event->hw.prev_count, val);
1609 local64_set(&event->hw.period_left, left);
1610 perf_event_update_userpage(event);
1611
4574910e
PM
1612 /*
1613 * Finally record data if requested.
1614 */
0bbd0d4b 1615 if (record) {
dc1d628a
PZ
1616 struct perf_sample_data data;
1617
fd0d000b 1618 perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
df1a132b 1619
cdd6c482 1620 if (event->attr.sample_type & PERF_SAMPLE_ADDR)
98fb1807
PM
1621 perf_get_data_addr(regs, &data.addr);
1622
3925f46b
AK
1623 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
1624 struct cpu_hw_events *cpuhw;
1625 cpuhw = &__get_cpu_var(cpu_hw_events);
1626 power_pmu_bhrb_read(cpuhw);
1627 data.br_stack = &cpuhw->bhrb_stack;
1628 }
1629
a8b0ca17 1630 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1631 power_pmu_stop(event, 0);
0bbd0d4b
PM
1632 }
1633}
1634
1635/*
1636 * Called from generic code to get the misc flags (i.e. processor mode)
cdd6c482 1637 * for an event_id.
0bbd0d4b
PM
1638 */
1639unsigned long perf_misc_flags(struct pt_regs *regs)
1640{
98fb1807 1641 u32 flags = perf_get_misc_flags(regs);
0bbd0d4b 1642
98fb1807
PM
1643 if (flags)
1644 return flags;
cdd6c482
IM
1645 return user_mode(regs) ? PERF_RECORD_MISC_USER :
1646 PERF_RECORD_MISC_KERNEL;
0bbd0d4b
PM
1647}
1648
1649/*
1650 * Called from generic code to get the instruction pointer
cdd6c482 1651 * for an event_id.
0bbd0d4b
PM
1652 */
1653unsigned long perf_instruction_pointer(struct pt_regs *regs)
1654{
33904054 1655 bool use_siar = regs_use_siar(regs);
0bbd0d4b 1656
e6878835 1657 if (use_siar && siar_valid(regs))
75382aa7 1658 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
e6878835 1659 else if (use_siar)
1660 return 0; // no valid instruction pointer
75382aa7 1661 else
1ce447b9 1662 return regs->nip;
4574910e
PM
1663}
1664
bc09c219 1665static bool pmc_overflow_power7(unsigned long val)
0837e324 1666{
0837e324
AB
1667 /*
1668 * Events on POWER7 can roll back if a speculative event doesn't
1669 * eventually complete. Unfortunately in some rare cases they will
1670 * raise a performance monitor exception. We need to catch this to
1671 * ensure we reset the PMC. In all cases the PMC will be 256 or less
1672 * cycles from overflow.
1673 *
1674 * We only do this if the first pass fails to find any overflowing
1675 * PMCs because a user might set a period of less than 256 and we
1676 * don't want to mistakenly reset them.
1677 */
bc09c219
MN
1678 if ((0x80000000 - val) <= 256)
1679 return true;
1680
1681 return false;
1682}
1683
1684static bool pmc_overflow(unsigned long val)
1685{
1686 if ((int)val < 0)
0837e324
AB
1687 return true;
1688
1689 return false;
1690}
1691
4574910e
PM
1692/*
1693 * Performance monitor interrupt stuff
1694 */
cdd6c482 1695static void perf_event_interrupt(struct pt_regs *regs)
4574910e 1696{
bc09c219 1697 int i, j;
cdd6c482
IM
1698 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1699 struct perf_event *event;
bc09c219
MN
1700 unsigned long val[8];
1701 int found, active;
ca8f2d7f
PM
1702 int nmi;
1703
ab7ef2e5 1704 if (cpuhw->n_limited)
a8f90e90 1705 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
ab7ef2e5
PM
1706 mfspr(SPRN_PMC6));
1707
98fb1807 1708 perf_read_regs(regs);
0bbd0d4b 1709
98fb1807 1710 nmi = perf_intr_is_nmi(regs);
ca8f2d7f
PM
1711 if (nmi)
1712 nmi_enter();
1713 else
1714 irq_enter();
4574910e 1715
bc09c219
MN
1716 /* Read all the PMCs since we'll need them a bunch of times */
1717 for (i = 0; i < ppmu->n_counter; ++i)
1718 val[i] = read_pmc(i + 1);
1719
1720 /* Try to find what caused the IRQ */
1721 found = 0;
1722 for (i = 0; i < ppmu->n_counter; ++i) {
1723 if (!pmc_overflow(val[i]))
ab7ef2e5 1724 continue;
bc09c219
MN
1725 if (is_limited_pmc(i + 1))
1726 continue; /* these won't generate IRQs */
1727 /*
1728 * We've found one that's overflowed. For active
1729 * counters we need to log this. For inactive
1730 * counters, we need to reset it anyway
1731 */
1732 found = 1;
1733 active = 0;
1734 for (j = 0; j < cpuhw->n_events; ++j) {
1735 event = cpuhw->event[j];
1736 if (event->hw.idx == (i + 1)) {
1737 active = 1;
1738 record_and_restart(event, val[i], regs);
1739 break;
1740 }
4574910e 1741 }
bc09c219
MN
1742 if (!active)
1743 /* reset non active counters that have overflowed */
1744 write_pmc(i + 1, 0);
4574910e 1745 }
bc09c219
MN
1746 if (!found && pvr_version_is(PVR_POWER7)) {
1747 /* check active counters for special buggy p7 overflow */
1748 for (i = 0; i < cpuhw->n_events; ++i) {
1749 event = cpuhw->event[i];
1750 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
ab7ef2e5 1751 continue;
bc09c219
MN
1752 if (pmc_overflow_power7(val[event->hw.idx - 1])) {
1753 /* event has overflowed in a buggy way*/
1754 found = 1;
1755 record_and_restart(event,
1756 val[event->hw.idx - 1],
1757 regs);
1758 }
4574910e
PM
1759 }
1760 }
6772faa1 1761 if (!found && !nmi && printk_ratelimit())
bc09c219 1762 printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
4574910e
PM
1763
1764 /*
1765 * Reset MMCR0 to its normal value. This will set PMXE and
57c0c15b 1766 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
4574910e 1767 * and thus allow interrupts to occur again.
cdd6c482 1768 * XXX might want to use MSR.PM to keep the events frozen until
4574910e
PM
1769 * we get back out of this interrupt.
1770 */
ab7ef2e5 1771 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
4574910e 1772
ca8f2d7f
PM
1773 if (nmi)
1774 nmi_exit();
1775 else
db4fb5ac 1776 irq_exit();
4574910e
PM
1777}
1778
3f6da390 1779static void power_pmu_setup(int cpu)
01d0287f 1780{
cdd6c482 1781 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
01d0287f 1782
f36a1a13
PM
1783 if (!ppmu)
1784 return;
01d0287f
PM
1785 memset(cpuhw, 0, sizeof(*cpuhw));
1786 cpuhw->mmcr[0] = MMCR0_FC;
1787}
1788
3f6da390 1789static int __cpuinit
85cfabbc 1790power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
3f6da390
PZ
1791{
1792 unsigned int cpu = (long)hcpu;
1793
1794 switch (action & ~CPU_TASKS_FROZEN) {
1795 case CPU_UP_PREPARE:
1796 power_pmu_setup(cpu);
1797 break;
1798
1799 default:
1800 break;
1801 }
1802
1803 return NOTIFY_OK;
1804}
1805
77c2342a 1806int __cpuinit register_power_pmu(struct power_pmu *pmu)
4574910e 1807{
079b3c56
PM
1808 if (ppmu)
1809 return -EBUSY; /* something's already registered */
1810
1811 ppmu = pmu;
1812 pr_info("%s performance monitor hardware support registered\n",
1813 pmu->name);
d095cd46 1814
1c53a270
SB
1815 power_pmu.attr_groups = ppmu->attr_groups;
1816
98fb1807 1817#ifdef MSR_HV
d095cd46
PM
1818 /*
1819 * Use FCHV to ignore kernel events if MSR.HV is set.
1820 */
1821 if (mfmsr() & MSR_HV)
cdd6c482 1822 freeze_events_kernel = MMCR0_FCHV;
98fb1807 1823#endif /* CONFIG_PPC64 */
d095cd46 1824
2e80a82a 1825 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
3f6da390
PZ
1826 perf_cpu_notifier(power_pmu_notifier);
1827
4574910e
PM
1828 return 0;
1829}