Merge branch 'v28-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / arch / powerpc / oprofile / op_model_cell.c
CommitLineData
18f2190d
MJ
1/*
2 * Cell Broadband Engine OProfile Support
3 *
4 * (C) Copyright IBM Corporation 2006
5 *
6 * Author: David Erb (djerb@us.ibm.com)
7 * Modifications:
1474855d
BN
8 * Carl Love <carll@us.ibm.com>
9 * Maynard Johnson <maynardj@us.ibm.com>
18f2190d
MJ
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17#include <linux/cpufreq.h>
18#include <linux/delay.h>
19#include <linux/init.h>
20#include <linux/jiffies.h>
21#include <linux/kthread.h>
22#include <linux/oprofile.h>
23#include <linux/percpu.h>
24#include <linux/smp.h>
25#include <linux/spinlock.h>
26#include <linux/timer.h>
27#include <asm/cell-pmu.h>
28#include <asm/cputable.h>
29#include <asm/firmware.h>
30#include <asm/io.h>
31#include <asm/oprofile_impl.h>
32#include <asm/processor.h>
33#include <asm/prom.h>
34#include <asm/ptrace.h>
35#include <asm/reg.h>
36#include <asm/rtas.h>
37#include <asm/system.h>
eef686a0 38#include <asm/cell-regs.h>
18f2190d
MJ
39
40#include "../platforms/cell/interrupt.h"
1474855d
BN
41#include "cell/pr_util.h"
42
43static void cell_global_stop_spu(void);
44
45/*
46 * spu_cycle_reset is the number of cycles between samples.
47 * This variable is used for SPU profiling and should ONLY be set
48 * at the beginning of cell_reg_setup; otherwise, it's read-only.
49 */
50static unsigned int spu_cycle_reset;
51
52#define NUM_SPUS_PER_NODE 8
53#define SPU_CYCLES_EVENT_NUM 2 /* event number for SPU_CYCLES */
18f2190d
MJ
54
55#define PPU_CYCLES_EVENT_NUM 1 /* event number for CYCLES */
1474855d
BN
56#define PPU_CYCLES_GRP_NUM 1 /* special group number for identifying
57 * PPU_CYCLES event
58 */
59#define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */
18f2190d 60
bcb63e25
CL
61#define NUM_THREADS 2 /* number of physical threads in
62 * physical processor
63 */
a1ef4849 64#define NUM_DEBUG_BUS_WORDS 4
bcb63e25
CL
65#define NUM_INPUT_BUS_WORDS 2
66
1474855d 67#define MAX_SPU_COUNT 0xFFFFFF /* maximum 24 bit LFSR value */
18f2190d
MJ
68
69struct pmc_cntrl_data {
70 unsigned long vcntr;
71 unsigned long evnts;
72 unsigned long masks;
73 unsigned long enabled;
74};
75
76/*
77 * ibm,cbe-perftools rtas parameters
78 */
18f2190d
MJ
79struct pm_signal {
80 u16 cpu; /* Processor to modify */
1474855d
BN
81 u16 sub_unit; /* hw subunit this applies to (if applicable)*/
82 short int signal_group; /* Signal Group to Enable/Disable */
18f2190d
MJ
83 u8 bus_word; /* Enable/Disable on this Trace/Trigger/Event
84 * Bus Word(s) (bitmask)
85 */
86 u8 bit; /* Trigger/Event bit (if applicable) */
87};
88
89/*
90 * rtas call arguments
91 */
92enum {
93 SUBFUNC_RESET = 1,
94 SUBFUNC_ACTIVATE = 2,
95 SUBFUNC_DEACTIVATE = 3,
96
97 PASSTHRU_IGNORE = 0,
98 PASSTHRU_ENABLE = 1,
99 PASSTHRU_DISABLE = 2,
100};
101
102struct pm_cntrl {
103 u16 enable;
104 u16 stop_at_max;
105 u16 trace_mode;
106 u16 freeze;
107 u16 count_mode;
108};
109
110static struct {
111 u32 group_control;
112 u32 debug_bus_control;
113 struct pm_cntrl pm_cntrl;
114 u32 pm07_cntrl[NR_PHYS_CTRS];
115} pm_regs;
116
18f2190d
MJ
117#define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12)
118#define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4)
119#define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8)
120#define GET_POLARITY(x) ((x & 0x00000002) >> 1)
121#define GET_COUNT_CYCLES(x) (x & 0x00000001)
122#define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2)
123
18f2190d
MJ
124static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values);
125
126static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS];
127
1474855d
BN
128/*
129 * The CELL profiling code makes rtas calls to setup the debug bus to
130 * route the performance signals. Additionally, SPU profiling requires
131 * a second rtas call to setup the hardware to capture the SPU PCs.
132 * The EIO error value is returned if the token lookups or the rtas
133 * call fail. The EIO error number is the best choice of the existing
134 * error numbers. The probability of rtas related error is very low. But
135 * by returning EIO and printing additional information to dmsg the user
136 * will know that OProfile did not start and dmesg will tell them why.
137 * OProfile does not support returning errors on Stop. Not a huge issue
138 * since failure to reset the debug bus or stop the SPU PC collection is
139 * not a fatel issue. Chances are if the Stop failed, Start doesn't work
140 * either.
141 */
142
143/*
144 * Interpetation of hdw_thread:
18f2190d
MJ
145 * 0 - even virtual cpus 0, 2, 4,...
146 * 1 - odd virtual cpus 1, 3, 5, ...
1474855d
BN
147 *
148 * FIXME: this is strictly wrong, we need to clean this up in a number
149 * of places. It works for now. -arnd
18f2190d
MJ
150 */
151static u32 hdw_thread;
152
153static u32 virt_cntr_inter_mask;
154static struct timer_list timer_virt_cntr;
155
1474855d
BN
156/*
157 * pm_signal needs to be global since it is initialized in
18f2190d
MJ
158 * cell_reg_setup at the time when the necessary information
159 * is available.
160 */
161static struct pm_signal pm_signal[NR_PHYS_CTRS];
1474855d
BN
162static int pm_rtas_token; /* token for debug bus setup call */
163static int spu_rtas_token; /* token for SPU cycle profiling */
18f2190d
MJ
164
165static u32 reset_value[NR_PHYS_CTRS];
166static int num_counters;
167static int oprofile_running;
057b184a 168static DEFINE_SPINLOCK(virt_cntr_lock);
18f2190d
MJ
169
170static u32 ctr_enabled;
171
bcb63e25 172static unsigned char input_bus[NUM_INPUT_BUS_WORDS];
18f2190d
MJ
173
174/*
175 * Firmware interface functions
176 */
177static int
178rtas_ibm_cbe_perftools(int subfunc, int passthru,
179 void *address, unsigned long length)
180{
181 u64 paddr = __pa(address);
182
1474855d
BN
183 return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc,
184 passthru, paddr >> 32, paddr & 0xffffffff, length);
18f2190d
MJ
185}
186
187static void pm_rtas_reset_signals(u32 node)
188{
189 int ret;
190 struct pm_signal pm_signal_local;
191
1474855d
BN
192 /*
193 * The debug bus is being set to the passthru disable state.
194 * However, the FW still expects atleast one legal signal routing
195 * entry or it will return an error on the arguments. If we don't
196 * supply a valid entry, we must ignore all return values. Ignoring
197 * all return values means we might miss an error we should be
198 * concerned about.
18f2190d
MJ
199 */
200
201 /* fw expects physical cpu #. */
202 pm_signal_local.cpu = node;
203 pm_signal_local.signal_group = 21;
204 pm_signal_local.bus_word = 1;
205 pm_signal_local.sub_unit = 0;
206 pm_signal_local.bit = 0;
207
208 ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE,
209 &pm_signal_local,
210 sizeof(struct pm_signal));
211
1474855d
BN
212 if (unlikely(ret))
213 /*
214 * Not a fatal error. For Oprofile stop, the oprofile
215 * functions do not support returning an error for
216 * failure to stop OProfile.
217 */
18f2190d 218 printk(KERN_WARNING "%s: rtas returned: %d\n",
e48b1b45 219 __func__, ret);
18f2190d
MJ
220}
221
1474855d 222static int pm_rtas_activate_signals(u32 node, u32 count)
18f2190d
MJ
223{
224 int ret;
c7eb7347 225 int i, j;
18f2190d
MJ
226 struct pm_signal pm_signal_local[NR_PHYS_CTRS];
227
1474855d
BN
228 /*
229 * There is no debug setup required for the cycles event.
c7eb7347
MJ
230 * Note that only events in the same group can be used.
231 * Otherwise, there will be conflicts in correctly routing
232 * the signals on the debug bus. It is the responsiblity
233 * of the OProfile user tool to check the events are in
234 * the same group.
235 */
236 i = 0;
18f2190d 237 for (j = 0; j < count; j++) {
c7eb7347
MJ
238 if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) {
239
240 /* fw expects physical cpu # */
241 pm_signal_local[i].cpu = node;
242 pm_signal_local[i].signal_group
243 = pm_signal[j].signal_group;
244 pm_signal_local[i].bus_word = pm_signal[j].bus_word;
245 pm_signal_local[i].sub_unit = pm_signal[j].sub_unit;
246 pm_signal_local[i].bit = pm_signal[j].bit;
247 i++;
248 }
18f2190d
MJ
249 }
250
c7eb7347
MJ
251 if (i != 0) {
252 ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE,
253 pm_signal_local,
254 i * sizeof(struct pm_signal));
18f2190d 255
1474855d 256 if (unlikely(ret)) {
c7eb7347 257 printk(KERN_WARNING "%s: rtas returned: %d\n",
e48b1b45 258 __func__, ret);
1474855d
BN
259 return -EIO;
260 }
c7eb7347 261 }
1474855d
BN
262
263 return 0;
18f2190d
MJ
264}
265
266/*
267 * PM Signal functions
268 */
269static void set_pm_event(u32 ctr, int event, u32 unit_mask)
270{
271 struct pm_signal *p;
272 u32 signal_bit;
273 u32 bus_word, bus_type, count_cycles, polarity, input_control;
274 int j, i;
275
276 if (event == PPU_CYCLES_EVENT_NUM) {
277 /* Special Event: Count all cpu cycles */
278 pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES;
279 p = &(pm_signal[ctr]);
c7eb7347 280 p->signal_group = PPU_CYCLES_GRP_NUM;
18f2190d
MJ
281 p->bus_word = 1;
282 p->sub_unit = 0;
283 p->bit = 0;
284 goto out;
285 } else {
286 pm_regs.pm07_cntrl[ctr] = 0;
287 }
288
289 bus_word = GET_BUS_WORD(unit_mask);
290 bus_type = GET_BUS_TYPE(unit_mask);
291 count_cycles = GET_COUNT_CYCLES(unit_mask);
292 polarity = GET_POLARITY(unit_mask);
293 input_control = GET_INPUT_CONTROL(unit_mask);
294 signal_bit = (event % 100);
295
296 p = &(pm_signal[ctr]);
297
298 p->signal_group = event / 100;
299 p->bus_word = bus_word;
a1ef4849 300 p->sub_unit = GET_SUB_UNIT(unit_mask);
18f2190d
MJ
301
302 pm_regs.pm07_cntrl[ctr] = 0;
303 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles);
304 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity);
305 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control);
306
1474855d
BN
307 /*
308 * Some of the islands signal selection is based on 64 bit words.
bcb63e25
CL
309 * The debug bus words are 32 bits, the input words to the performance
310 * counters are defined as 32 bits. Need to convert the 64 bit island
311 * specification to the appropriate 32 input bit and bus word for the
1474855d 312 * performance counter event selection. See the CELL Performance
bcb63e25
CL
313 * monitoring signals manual and the Perf cntr hardware descriptions
314 * for the details.
315 */
18f2190d
MJ
316 if (input_control == 0) {
317 if (signal_bit > 31) {
318 signal_bit -= 32;
319 if (bus_word == 0x3)
320 bus_word = 0x2;
321 else if (bus_word == 0xc)
322 bus_word = 0x8;
323 }
324
325 if ((bus_type == 0) && p->signal_group >= 60)
326 bus_type = 2;
327 if ((bus_type == 1) && p->signal_group >= 50)
328 bus_type = 0;
329
330 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit);
331 } else {
332 pm_regs.pm07_cntrl[ctr] = 0;
333 p->bit = signal_bit;
334 }
335
a1ef4849 336 for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) {
18f2190d
MJ
337 if (bus_word & (1 << i)) {
338 pm_regs.debug_bus_control |=
a1ef4849 339 (bus_type << (30 - (2 * i)));
18f2190d 340
bcb63e25 341 for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) {
18f2190d
MJ
342 if (input_bus[j] == 0xff) {
343 input_bus[j] = i;
344 pm_regs.group_control |=
a1ef4849 345 (i << (30 - (2 * j)));
1474855d 346
18f2190d
MJ
347 break;
348 }
349 }
350 }
351 }
352out:
353 ;
354}
355
bcb63e25 356static void write_pm_cntrl(int cpu)
18f2190d 357{
1474855d
BN
358 /*
359 * Oprofile will use 32 bit counters, set bits 7:10 to 0
bcb63e25
CL
360 * pmregs.pm_cntrl is a global
361 */
362
18f2190d 363 u32 val = 0;
bcb63e25 364 if (pm_regs.pm_cntrl.enable == 1)
18f2190d
MJ
365 val |= CBE_PM_ENABLE_PERF_MON;
366
bcb63e25 367 if (pm_regs.pm_cntrl.stop_at_max == 1)
18f2190d
MJ
368 val |= CBE_PM_STOP_AT_MAX;
369
bcb63e25
CL
370 if (pm_regs.pm_cntrl.trace_mode == 1)
371 val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode);
18f2190d 372
bcb63e25 373 if (pm_regs.pm_cntrl.freeze == 1)
18f2190d
MJ
374 val |= CBE_PM_FREEZE_ALL_CTRS;
375
1474855d
BN
376 /*
377 * Routine set_count_mode must be called previously to set
18f2190d
MJ
378 * the count mode based on the user selection of user and kernel.
379 */
bcb63e25 380 val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode);
18f2190d
MJ
381 cbe_write_pm(cpu, pm_control, val);
382}
383
384static inline void
bcb63e25 385set_count_mode(u32 kernel, u32 user)
18f2190d 386{
1474855d
BN
387 /*
388 * The user must specify user and kernel if they want them. If
bcb63e25
CL
389 * neither is specified, OProfile will count in hypervisor mode.
390 * pm_regs.pm_cntrl is a global
18f2190d
MJ
391 */
392 if (kernel) {
393 if (user)
bcb63e25 394 pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES;
18f2190d 395 else
bcb63e25
CL
396 pm_regs.pm_cntrl.count_mode =
397 CBE_COUNT_SUPERVISOR_MODE;
18f2190d
MJ
398 } else {
399 if (user)
bcb63e25 400 pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE;
18f2190d 401 else
bcb63e25
CL
402 pm_regs.pm_cntrl.count_mode =
403 CBE_COUNT_HYPERVISOR_MODE;
18f2190d
MJ
404 }
405}
406
407static inline void enable_ctr(u32 cpu, u32 ctr, u32 * pm07_cntrl)
408{
409
bcb63e25 410 pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE;
18f2190d
MJ
411 cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]);
412}
413
414/*
415 * Oprofile is expected to collect data on all CPUs simultaneously.
1474855d 416 * However, there is one set of performance counters per node. There are
18f2190d
MJ
417 * two hardware threads or virtual CPUs on each node. Hence, OProfile must
418 * multiplex in time the performance counter collection on the two virtual
419 * CPUs. The multiplexing of the performance counters is done by this
420 * virtual counter routine.
421 *
422 * The pmc_values used below is defined as 'per-cpu' but its use is
423 * more akin to 'per-node'. We need to store two sets of counter
424 * values per node -- one for the previous run and one for the next.
425 * The per-cpu[NR_PHYS_CTRS] gives us the storage we need. Each odd/even
426 * pair of per-cpu arrays is used for storing the previous and next
427 * pmc values for a given node.
428 * NOTE: We use the per-cpu variable to improve cache performance.
1474855d
BN
429 *
430 * This routine will alternate loading the virtual counters for
431 * virtual CPUs
18f2190d
MJ
432 */
433static void cell_virtual_cntr(unsigned long data)
434{
18f2190d
MJ
435 int i, prev_hdw_thread, next_hdw_thread;
436 u32 cpu;
437 unsigned long flags;
438
1474855d
BN
439 /*
440 * Make sure that the interrupt_hander and the virt counter are
441 * not both playing with the counters on the same node.
18f2190d
MJ
442 */
443
444 spin_lock_irqsave(&virt_cntr_lock, flags);
445
446 prev_hdw_thread = hdw_thread;
447
448 /* switch the cpu handling the interrupts */
449 hdw_thread = 1 ^ hdw_thread;
450 next_hdw_thread = hdw_thread;
451
a1ef4849
BN
452 pm_regs.group_control = 0;
453 pm_regs.debug_bus_control = 0;
454
455 for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
456 input_bus[i] = 0xff;
457
1474855d
BN
458 /*
459 * There are some per thread events. Must do the
bcb63e25
CL
460 * set event, for the thread that is being started
461 */
1474855d 462 for (i = 0; i < num_counters; i++)
bcb63e25
CL
463 set_pm_event(i,
464 pmc_cntrl[next_hdw_thread][i].evnts,
465 pmc_cntrl[next_hdw_thread][i].masks);
466
1474855d
BN
467 /*
468 * The following is done only once per each node, but
18f2190d
MJ
469 * we need cpu #, not node #, to pass to the cbe_xxx functions.
470 */
471 for_each_online_cpu(cpu) {
472 if (cbe_get_hw_thread_id(cpu))
473 continue;
474
1474855d
BN
475 /*
476 * stop counters, save counter values, restore counts
18f2190d
MJ
477 * for previous thread
478 */
479 cbe_disable_pm(cpu);
480 cbe_disable_pm_interrupts(cpu);
481 for (i = 0; i < num_counters; i++) {
482 per_cpu(pmc_values, cpu + prev_hdw_thread)[i]
483 = cbe_read_ctr(cpu, i);
484
485 if (per_cpu(pmc_values, cpu + next_hdw_thread)[i]
486 == 0xFFFFFFFF)
487 /* If the cntr value is 0xffffffff, we must
488 * reset that to 0xfffffff0 when the current
1474855d 489 * thread is restarted. This will generate a
bcb63e25
CL
490 * new interrupt and make sure that we never
491 * restore the counters to the max value. If
492 * the counters were restored to the max value,
493 * they do not increment and no interrupts are
494 * generated. Hence no more samples will be
495 * collected on that cpu.
18f2190d
MJ
496 */
497 cbe_write_ctr(cpu, i, 0xFFFFFFF0);
498 else
499 cbe_write_ctr(cpu, i,
500 per_cpu(pmc_values,
501 cpu +
502 next_hdw_thread)[i]);
503 }
504
1474855d
BN
505 /*
506 * Switch to the other thread. Change the interrupt
18f2190d
MJ
507 * and control regs to be scheduled on the CPU
508 * corresponding to the thread to execute.
509 */
510 for (i = 0; i < num_counters; i++) {
511 if (pmc_cntrl[next_hdw_thread][i].enabled) {
1474855d
BN
512 /*
513 * There are some per thread events.
18f2190d
MJ
514 * Must do the set event, enable_cntr
515 * for each cpu.
516 */
18f2190d
MJ
517 enable_ctr(cpu, i,
518 pm_regs.pm07_cntrl);
519 } else {
520 cbe_write_pm07_control(cpu, i, 0);
521 }
522 }
523
524 /* Enable interrupts on the CPU thread that is starting */
525 cbe_enable_pm_interrupts(cpu, next_hdw_thread,
526 virt_cntr_inter_mask);
527 cbe_enable_pm(cpu);
528 }
529
530 spin_unlock_irqrestore(&virt_cntr_lock, flags);
531
532 mod_timer(&timer_virt_cntr, jiffies + HZ / 10);
533}
534
535static void start_virt_cntrs(void)
536{
537 init_timer(&timer_virt_cntr);
538 timer_virt_cntr.function = cell_virtual_cntr;
539 timer_virt_cntr.data = 0UL;
540 timer_virt_cntr.expires = jiffies + HZ / 10;
541 add_timer(&timer_virt_cntr);
542}
543
544/* This function is called once for all cpus combined */
1474855d
BN
545static int cell_reg_setup(struct op_counter_config *ctr,
546 struct op_system_config *sys, int num_ctrs)
18f2190d
MJ
547{
548 int i, j, cpu;
1474855d
BN
549 spu_cycle_reset = 0;
550
551 if (ctr[0].event == SPU_CYCLES_EVENT_NUM) {
552 spu_cycle_reset = ctr[0].count;
553
554 /*
555 * Each node will need to make the rtas call to start
556 * and stop SPU profiling. Get the token once and store it.
557 */
558 spu_rtas_token = rtas_token("ibm,cbe-spu-perftools");
559
560 if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) {
561 printk(KERN_ERR
562 "%s: rtas token ibm,cbe-spu-perftools unknown\n",
e48b1b45 563 __func__);
1474855d
BN
564 return -EIO;
565 }
566 }
18f2190d
MJ
567
568 pm_rtas_token = rtas_token("ibm,cbe-perftools");
1474855d
BN
569
570 /*
571 * For all events excetp PPU CYCLEs, each node will need to make
572 * the rtas cbe-perftools call to setup and reset the debug bus.
573 * Make the token lookup call once and store it in the global
574 * variable pm_rtas_token.
575 */
576 if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
577 printk(KERN_ERR
578 "%s: rtas token ibm,cbe-perftools unknown\n",
e48b1b45 579 __func__);
1474855d 580 return -EIO;
18f2190d
MJ
581 }
582
583 num_counters = num_ctrs;
584
585 pm_regs.group_control = 0;
586 pm_regs.debug_bus_control = 0;
587
588 /* setup the pm_control register */
589 memset(&pm_regs.pm_cntrl, 0, sizeof(struct pm_cntrl));
590 pm_regs.pm_cntrl.stop_at_max = 1;
591 pm_regs.pm_cntrl.trace_mode = 0;
592 pm_regs.pm_cntrl.freeze = 1;
593
bcb63e25 594 set_count_mode(sys->enable_kernel, sys->enable_user);
18f2190d
MJ
595
596 /* Setup the thread 0 events */
597 for (i = 0; i < num_ctrs; ++i) {
598
599 pmc_cntrl[0][i].evnts = ctr[i].event;
600 pmc_cntrl[0][i].masks = ctr[i].unit_mask;
601 pmc_cntrl[0][i].enabled = ctr[i].enabled;
602 pmc_cntrl[0][i].vcntr = i;
603
604 for_each_possible_cpu(j)
605 per_cpu(pmc_values, j)[i] = 0;
606 }
607
1474855d
BN
608 /*
609 * Setup the thread 1 events, map the thread 0 event to the
18f2190d
MJ
610 * equivalent thread 1 event.
611 */
612 for (i = 0; i < num_ctrs; ++i) {
613 if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111))
614 pmc_cntrl[1][i].evnts = ctr[i].event + 19;
615 else if (ctr[i].event == 2203)
616 pmc_cntrl[1][i].evnts = ctr[i].event;
617 else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215))
618 pmc_cntrl[1][i].evnts = ctr[i].event + 16;
619 else
620 pmc_cntrl[1][i].evnts = ctr[i].event;
621
622 pmc_cntrl[1][i].masks = ctr[i].unit_mask;
623 pmc_cntrl[1][i].enabled = ctr[i].enabled;
624 pmc_cntrl[1][i].vcntr = i;
625 }
626
bcb63e25 627 for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
18f2190d
MJ
628 input_bus[i] = 0xff;
629
1474855d
BN
630 /*
631 * Our counters count up, and "count" refers to
18f2190d 632 * how much before the next interrupt, and we interrupt
1474855d 633 * on overflow. So we calculate the starting value
18f2190d
MJ
634 * which will give us "count" until overflow.
635 * Then we set the events on the enabled counters.
636 */
637 for (i = 0; i < num_counters; ++i) {
638 /* start with virtual counter set 0 */
639 if (pmc_cntrl[0][i].enabled) {
640 /* Using 32bit counters, reset max - count */
641 reset_value[i] = 0xFFFFFFFF - ctr[i].count;
642 set_pm_event(i,
643 pmc_cntrl[0][i].evnts,
644 pmc_cntrl[0][i].masks);
645
646 /* global, used by cell_cpu_setup */
647 ctr_enabled |= (1 << i);
648 }
649 }
650
651 /* initialize the previous counts for the virtual cntrs */
652 for_each_online_cpu(cpu)
653 for (i = 0; i < num_counters; ++i) {
654 per_cpu(pmc_values, cpu)[i] = reset_value[i];
655 }
1474855d
BN
656
657 return 0;
18f2190d
MJ
658}
659
1474855d
BN
660
661
18f2190d 662/* This function is called once for each cpu */
1474855d 663static int cell_cpu_setup(struct op_counter_config *cntr)
18f2190d
MJ
664{
665 u32 cpu = smp_processor_id();
666 u32 num_enabled = 0;
667 int i;
668
1474855d
BN
669 if (spu_cycle_reset)
670 return 0;
671
18f2190d
MJ
672 /* There is one performance monitor per processor chip (i.e. node),
673 * so we only need to perform this function once per node.
674 */
675 if (cbe_get_hw_thread_id(cpu))
1474855d 676 return 0;
18f2190d
MJ
677
678 /* Stop all counters */
679 cbe_disable_pm(cpu);
680 cbe_disable_pm_interrupts(cpu);
681
682 cbe_write_pm(cpu, pm_interval, 0);
683 cbe_write_pm(cpu, pm_start_stop, 0);
684 cbe_write_pm(cpu, group_control, pm_regs.group_control);
685 cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control);
bcb63e25 686 write_pm_cntrl(cpu);
18f2190d
MJ
687
688 for (i = 0; i < num_counters; ++i) {
689 if (ctr_enabled & (1 << i)) {
690 pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu);
691 num_enabled++;
692 }
693 }
694
1474855d
BN
695 /*
696 * The pm_rtas_activate_signals will return -EIO if the FW
697 * call failed.
698 */
699 return pm_rtas_activate_signals(cbe_cpu_to_node(cpu), num_enabled);
700}
701
702#define ENTRIES 303
703#define MAXLFSR 0xFFFFFF
704
705/* precomputed table of 24 bit LFSR values */
706static int initial_lfsr[] = {
707 8221349, 12579195, 5379618, 10097839, 7512963, 7519310, 3955098, 10753424,
708 15507573, 7458917, 285419, 2641121, 9780088, 3915503, 6668768, 1548716,
709 4885000, 8774424, 9650099, 2044357, 2304411, 9326253, 10332526, 4421547,
710 3440748, 10179459, 13332843, 10375561, 1313462, 8375100, 5198480, 6071392,
711 9341783, 1526887, 3985002, 1439429, 13923762, 7010104, 11969769, 4547026,
712 2040072, 4025602, 3437678, 7939992, 11444177, 4496094, 9803157, 10745556,
713 3671780, 4257846, 5662259, 13196905, 3237343, 12077182, 16222879, 7587769,
714 14706824, 2184640, 12591135, 10420257, 7406075, 3648978, 11042541, 15906893,
715 11914928, 4732944, 10695697, 12928164, 11980531, 4430912, 11939291, 2917017,
716 6119256, 4172004, 9373765, 8410071, 14788383, 5047459, 5474428, 1737756,
717 15967514, 13351758, 6691285, 8034329, 2856544, 14394753, 11310160, 12149558,
718 7487528, 7542781, 15668898, 12525138, 12790975, 3707933, 9106617, 1965401,
719 16219109, 12801644, 2443203, 4909502, 8762329, 3120803, 6360315, 9309720,
720 15164599, 10844842, 4456529, 6667610, 14924259, 884312, 6234963, 3326042,
721 15973422, 13919464, 5272099, 6414643, 3909029, 2764324, 5237926, 4774955,
722 10445906, 4955302, 5203726, 10798229, 11443419, 2303395, 333836, 9646934,
723 3464726, 4159182, 568492, 995747, 10318756, 13299332, 4836017, 8237783,
724 3878992, 2581665, 11394667, 5672745, 14412947, 3159169, 9094251, 16467278,
725 8671392, 15230076, 4843545, 7009238, 15504095, 1494895, 9627886, 14485051,
726 8304291, 252817, 12421642, 16085736, 4774072, 2456177, 4160695, 15409741,
727 4902868, 5793091, 13162925, 16039714, 782255, 11347835, 14884586, 366972,
728 16308990, 11913488, 13390465, 2958444, 10340278, 1177858, 1319431, 10426302,
729 2868597, 126119, 5784857, 5245324, 10903900, 16436004, 3389013, 1742384,
730 14674502, 10279218, 8536112, 10364279, 6877778, 14051163, 1025130, 6072469,
731 1988305, 8354440, 8216060, 16342977, 13112639, 3976679, 5913576, 8816697,
732 6879995, 14043764, 3339515, 9364420, 15808858, 12261651, 2141560, 5636398,
733 10345425, 10414756, 781725, 6155650, 4746914, 5078683, 7469001, 6799140,
734 10156444, 9667150, 10116470, 4133858, 2121972, 1124204, 1003577, 1611214,
735 14304602, 16221850, 13878465, 13577744, 3629235, 8772583, 10881308, 2410386,
736 7300044, 5378855, 9301235, 12755149, 4977682, 8083074, 10327581, 6395087,
737 9155434, 15501696, 7514362, 14520507, 15808945, 3244584, 4741962, 9658130,
738 14336147, 8654727, 7969093, 15759799, 14029445, 5038459, 9894848, 8659300,
739 13699287, 8834306, 10712885, 14753895, 10410465, 3373251, 309501, 9561475,
740 5526688, 14647426, 14209836, 5339224, 207299, 14069911, 8722990, 2290950,
741 3258216, 12505185, 6007317, 9218111, 14661019, 10537428, 11731949, 9027003,
742 6641507, 9490160, 200241, 9720425, 16277895, 10816638, 1554761, 10431375,
743 7467528, 6790302, 3429078, 14633753, 14428997, 11463204, 3576212, 2003426,
744 6123687, 820520, 9992513, 15784513, 5778891, 6428165, 8388607
745};
746
747/*
748 * The hardware uses an LFSR counting sequence to determine when to capture
749 * the SPU PCs. An LFSR sequence is like a puesdo random number sequence
750 * where each number occurs once in the sequence but the sequence is not in
751 * numerical order. The SPU PC capture is done when the LFSR sequence reaches
752 * the last value in the sequence. Hence the user specified value N
753 * corresponds to the LFSR number that is N from the end of the sequence.
754 *
755 * To avoid the time to compute the LFSR, a lookup table is used. The 24 bit
756 * LFSR sequence is broken into four ranges. The spacing of the precomputed
757 * values is adjusted in each range so the error between the user specifed
758 * number (N) of events between samples and the actual number of events based
759 * on the precomputed value will be les then about 6.2%. Note, if the user
760 * specifies N < 2^16, the LFSR value that is 2^16 from the end will be used.
761 * This is to prevent the loss of samples because the trace buffer is full.
762 *
763 * User specified N Step between Index in
764 * precomputed values precomputed
765 * table
766 * 0 to 2^16-1 ---- 0
767 * 2^16 to 2^16+2^19-1 2^12 1 to 128
768 * 2^16+2^19 to 2^16+2^19+2^22-1 2^15 129 to 256
769 * 2^16+2^19+2^22 to 2^24-1 2^18 257 to 302
770 *
771 *
772 * For example, the LFSR values in the second range are computed for 2^16,
773 * 2^16+2^12, ... , 2^19-2^16, 2^19 and stored in the table at indicies
774 * 1, 2,..., 127, 128.
775 *
776 * The 24 bit LFSR value for the nth number in the sequence can be
777 * calculated using the following code:
778 *
779 * #define size 24
780 * int calculate_lfsr(int n)
781 * {
782 * int i;
783 * unsigned int newlfsr0;
784 * unsigned int lfsr = 0xFFFFFF;
785 * unsigned int howmany = n;
786 *
787 * for (i = 2; i < howmany + 2; i++) {
788 * newlfsr0 = (((lfsr >> (size - 1 - 0)) & 1) ^
789 * ((lfsr >> (size - 1 - 1)) & 1) ^
790 * (((lfsr >> (size - 1 - 6)) & 1) ^
791 * ((lfsr >> (size - 1 - 23)) & 1)));
792 *
793 * lfsr >>= 1;
794 * lfsr = lfsr | (newlfsr0 << (size - 1));
795 * }
796 * return lfsr;
797 * }
798 */
799
800#define V2_16 (0x1 << 16)
801#define V2_19 (0x1 << 19)
802#define V2_22 (0x1 << 22)
803
804static int calculate_lfsr(int n)
805{
806 /*
807 * The ranges and steps are in powers of 2 so the calculations
808 * can be done using shifts rather then divide.
809 */
810 int index;
811
812 if ((n >> 16) == 0)
813 index = 0;
814 else if (((n - V2_16) >> 19) == 0)
815 index = ((n - V2_16) >> 12) + 1;
816 else if (((n - V2_16 - V2_19) >> 22) == 0)
817 index = ((n - V2_16 - V2_19) >> 15 ) + 1 + 128;
818 else if (((n - V2_16 - V2_19 - V2_22) >> 24) == 0)
819 index = ((n - V2_16 - V2_19 - V2_22) >> 18 ) + 1 + 256;
820 else
821 index = ENTRIES-1;
822
823 /* make sure index is valid */
824 if ((index > ENTRIES) || (index < 0))
825 index = ENTRIES-1;
826
827 return initial_lfsr[index];
828}
829
830static int pm_rtas_activate_spu_profiling(u32 node)
831{
832 int ret, i;
833 struct pm_signal pm_signal_local[NR_PHYS_CTRS];
834
835 /*
836 * Set up the rtas call to configure the debug bus to
837 * route the SPU PCs. Setup the pm_signal for each SPU
838 */
839 for (i = 0; i < NUM_SPUS_PER_NODE; i++) {
840 pm_signal_local[i].cpu = node;
841 pm_signal_local[i].signal_group = 41;
842 /* spu i on word (i/2) */
843 pm_signal_local[i].bus_word = 1 << i / 2;
844 /* spu i */
845 pm_signal_local[i].sub_unit = i;
846 pm_signal_local[i].bit = 63;
847 }
848
849 ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE,
850 PASSTHRU_ENABLE, pm_signal_local,
851 (NUM_SPUS_PER_NODE
852 * sizeof(struct pm_signal)));
853
854 if (unlikely(ret)) {
855 printk(KERN_WARNING "%s: rtas returned: %d\n",
e48b1b45 856 __func__, ret);
1474855d
BN
857 return -EIO;
858 }
859
860 return 0;
861}
862
863#ifdef CONFIG_CPU_FREQ
864static int
865oprof_cpufreq_notify(struct notifier_block *nb, unsigned long val, void *data)
866{
867 int ret = 0;
868 struct cpufreq_freqs *frq = data;
869 if ((val == CPUFREQ_PRECHANGE && frq->old < frq->new) ||
870 (val == CPUFREQ_POSTCHANGE && frq->old > frq->new) ||
871 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE))
872 set_spu_profiling_frequency(frq->new, spu_cycle_reset);
873 return ret;
874}
875
876static struct notifier_block cpu_freq_notifier_block = {
877 .notifier_call = oprof_cpufreq_notify
878};
879#endif
880
881static int cell_global_start_spu(struct op_counter_config *ctr)
882{
883 int subfunc;
884 unsigned int lfsr_value;
885 int cpu;
886 int ret;
887 int rtas_error;
888 unsigned int cpu_khzfreq = 0;
889
890 /* The SPU profiling uses time-based profiling based on
891 * cpu frequency, so if configured with the CPU_FREQ
892 * option, we should detect frequency changes and react
893 * accordingly.
894 */
895#ifdef CONFIG_CPU_FREQ
896 ret = cpufreq_register_notifier(&cpu_freq_notifier_block,
897 CPUFREQ_TRANSITION_NOTIFIER);
898 if (ret < 0)
899 /* this is not a fatal error */
900 printk(KERN_ERR "CPU freq change registration failed: %d\n",
901 ret);
902
903 else
904 cpu_khzfreq = cpufreq_quick_get(smp_processor_id());
905#endif
906
907 set_spu_profiling_frequency(cpu_khzfreq, spu_cycle_reset);
908
909 for_each_online_cpu(cpu) {
910 if (cbe_get_hw_thread_id(cpu))
911 continue;
912
913 /*
914 * Setup SPU cycle-based profiling.
915 * Set perf_mon_control bit 0 to a zero before
916 * enabling spu collection hardware.
917 */
918 cbe_write_pm(cpu, pm_control, 0);
919
920 if (spu_cycle_reset > MAX_SPU_COUNT)
921 /* use largest possible value */
922 lfsr_value = calculate_lfsr(MAX_SPU_COUNT-1);
923 else
924 lfsr_value = calculate_lfsr(spu_cycle_reset);
925
926 /* must use a non zero value. Zero disables data collection. */
927 if (lfsr_value == 0)
928 lfsr_value = calculate_lfsr(1);
929
930 lfsr_value = lfsr_value << 8; /* shift lfsr to correct
931 * register location
932 */
933
934 /* debug bus setup */
935 ret = pm_rtas_activate_spu_profiling(cbe_cpu_to_node(cpu));
936
937 if (unlikely(ret)) {
938 rtas_error = ret;
939 goto out;
940 }
941
942
943 subfunc = 2; /* 2 - activate SPU tracing, 3 - deactivate */
944
945 /* start profiling */
946 ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc,
947 cbe_cpu_to_node(cpu), lfsr_value);
948
949 if (unlikely(ret != 0)) {
950 printk(KERN_ERR
951 "%s: rtas call ibm,cbe-spu-perftools failed, return = %d\n",
e48b1b45 952 __func__, ret);
1474855d
BN
953 rtas_error = -EIO;
954 goto out;
955 }
956 }
957
958 rtas_error = start_spu_profiling(spu_cycle_reset);
959 if (rtas_error)
960 goto out_stop;
961
962 oprofile_running = 1;
963 return 0;
964
965out_stop:
966 cell_global_stop_spu(); /* clean up the PMU/debug bus */
18f2190d 967out:
1474855d 968 return rtas_error;
18f2190d
MJ
969}
970
1474855d 971static int cell_global_start_ppu(struct op_counter_config *ctr)
18f2190d 972{
1474855d 973 u32 cpu, i;
18f2190d 974 u32 interrupt_mask = 0;
18f2190d
MJ
975
976 /* This routine gets called once for the system.
977 * There is one performance monitor per node, so we
978 * only need to perform this function once per node.
979 */
980 for_each_online_cpu(cpu) {
981 if (cbe_get_hw_thread_id(cpu))
982 continue;
983
984 interrupt_mask = 0;
985
986 for (i = 0; i < num_counters; ++i) {
987 if (ctr_enabled & (1 << i)) {
988 cbe_write_ctr(cpu, i, reset_value[i]);
989 enable_ctr(cpu, i, pm_regs.pm07_cntrl);
990 interrupt_mask |=
991 CBE_PM_CTR_OVERFLOW_INTR(i);
992 } else {
993 /* Disable counter */
994 cbe_write_pm07_control(cpu, i, 0);
995 }
996 }
997
bcb63e25 998 cbe_get_and_clear_pm_interrupts(cpu);
18f2190d
MJ
999 cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1000 cbe_enable_pm(cpu);
1001 }
1002
1003 virt_cntr_inter_mask = interrupt_mask;
1004 oprofile_running = 1;
1005 smp_wmb();
1006
1474855d
BN
1007 /*
1008 * NOTE: start_virt_cntrs will result in cell_virtual_cntr() being
1009 * executed which manipulates the PMU. We start the "virtual counter"
18f2190d
MJ
1010 * here so that we do not need to synchronize access to the PMU in
1011 * the above for-loop.
1012 */
1013 start_virt_cntrs();
1474855d
BN
1014
1015 return 0;
18f2190d
MJ
1016}
1017
1474855d
BN
1018static int cell_global_start(struct op_counter_config *ctr)
1019{
1020 if (spu_cycle_reset)
1021 return cell_global_start_spu(ctr);
1022 else
1023 return cell_global_start_ppu(ctr);
1024}
1025
1026/*
1027 * Note the generic OProfile stop calls do not support returning
1028 * an error on stop. Hence, will not return an error if the FW
1029 * calls fail on stop. Failure to reset the debug bus is not an issue.
1030 * Failure to disable the SPU profiling is not an issue. The FW calls
1031 * to enable the performance counters and debug bus will work even if
1032 * the hardware was not cleanly reset.
1033 */
1034static void cell_global_stop_spu(void)
1035{
1036 int subfunc, rtn_value;
1037 unsigned int lfsr_value;
1038 int cpu;
1039
1040 oprofile_running = 0;
1041
1042#ifdef CONFIG_CPU_FREQ
1043 cpufreq_unregister_notifier(&cpu_freq_notifier_block,
1044 CPUFREQ_TRANSITION_NOTIFIER);
1045#endif
1046
1047 for_each_online_cpu(cpu) {
1048 if (cbe_get_hw_thread_id(cpu))
1049 continue;
1050
1051 subfunc = 3; /*
1052 * 2 - activate SPU tracing,
1053 * 3 - deactivate
1054 */
1055 lfsr_value = 0x8f100000;
1056
1057 rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL,
1058 subfunc, cbe_cpu_to_node(cpu),
1059 lfsr_value);
1060
1061 if (unlikely(rtn_value != 0)) {
1062 printk(KERN_ERR
1063 "%s: rtas call ibm,cbe-spu-perftools failed, return = %d\n",
e48b1b45 1064 __func__, rtn_value);
1474855d
BN
1065 }
1066
1067 /* Deactivate the signals */
1068 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1069 }
1070
1071 stop_spu_profiling();
1072}
1073
1074static void cell_global_stop_ppu(void)
18f2190d
MJ
1075{
1076 int cpu;
1077
1474855d
BN
1078 /*
1079 * This routine will be called once for the system.
18f2190d
MJ
1080 * There is one performance monitor per node, so we
1081 * only need to perform this function once per node.
1082 */
1083 del_timer_sync(&timer_virt_cntr);
1084 oprofile_running = 0;
1085 smp_wmb();
1086
1087 for_each_online_cpu(cpu) {
1088 if (cbe_get_hw_thread_id(cpu))
1089 continue;
1090
1091 cbe_sync_irq(cbe_cpu_to_node(cpu));
1092 /* Stop the counters */
1093 cbe_disable_pm(cpu);
1094
1095 /* Deactivate the signals */
1096 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1097
1098 /* Deactivate interrupts */
1099 cbe_disable_pm_interrupts(cpu);
1100 }
1101}
1102
1474855d
BN
1103static void cell_global_stop(void)
1104{
1105 if (spu_cycle_reset)
1106 cell_global_stop_spu();
1107 else
1108 cell_global_stop_ppu();
1109}
1110
1111static void cell_handle_interrupt(struct pt_regs *regs,
1112 struct op_counter_config *ctr)
18f2190d
MJ
1113{
1114 u32 cpu;
1115 u64 pc;
1116 int is_kernel;
1117 unsigned long flags = 0;
1118 u32 interrupt_mask;
1119 int i;
1120
1121 cpu = smp_processor_id();
1122
1474855d
BN
1123 /*
1124 * Need to make sure the interrupt handler and the virt counter
18f2190d
MJ
1125 * routine are not running at the same time. See the
1126 * cell_virtual_cntr() routine for additional comments.
1127 */
1128 spin_lock_irqsave(&virt_cntr_lock, flags);
1129
1474855d
BN
1130 /*
1131 * Need to disable and reenable the performance counters
18f2190d
MJ
1132 * to get the desired behavior from the hardware. This
1133 * is hardware specific.
1134 */
1135
1136 cbe_disable_pm(cpu);
1137
bcb63e25 1138 interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
18f2190d 1139
1474855d
BN
1140 /*
1141 * If the interrupt mask has been cleared, then the virt cntr
18f2190d
MJ
1142 * has cleared the interrupt. When the thread that generated
1143 * the interrupt is restored, the data count will be restored to
1144 * 0xffffff0 to cause the interrupt to be regenerated.
1145 */
1146
1147 if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1148 pc = regs->nip;
1149 is_kernel = is_kernel_addr(pc);
1150
1151 for (i = 0; i < num_counters; ++i) {
1152 if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i))
1153 && ctr[i].enabled) {
101fd46a 1154 oprofile_add_ext_sample(pc, regs, i, is_kernel);
18f2190d
MJ
1155 cbe_write_ctr(cpu, i, reset_value[i]);
1156 }
1157 }
1158
1474855d
BN
1159 /*
1160 * The counters were frozen by the interrupt.
18f2190d
MJ
1161 * Reenable the interrupt and restart the counters.
1162 * If there was a race between the interrupt handler and
1474855d 1163 * the virtual counter routine. The virutal counter
18f2190d
MJ
1164 * routine may have cleared the interrupts. Hence must
1165 * use the virt_cntr_inter_mask to re-enable the interrupts.
1166 */
1167 cbe_enable_pm_interrupts(cpu, hdw_thread,
1168 virt_cntr_inter_mask);
1169
1474855d
BN
1170 /*
1171 * The writes to the various performance counters only writes
1172 * to a latch. The new values (interrupt setting bits, reset
18f2190d
MJ
1173 * counter value etc.) are not copied to the actual registers
1174 * until the performance monitor is enabled. In order to get
1175 * this to work as desired, the permormance monitor needs to
beb7dd86 1176 * be disabled while writing to the latches. This is a
18f2190d
MJ
1177 * HW design issue.
1178 */
1179 cbe_enable_pm(cpu);
1180 }
1181 spin_unlock_irqrestore(&virt_cntr_lock, flags);
1182}
1183
1474855d
BN
1184/*
1185 * This function is called from the generic OProfile
1186 * driver. When profiling PPUs, we need to do the
1187 * generic sync start; otherwise, do spu_sync_start.
1188 */
1189static int cell_sync_start(void)
1190{
1191 if (spu_cycle_reset)
1192 return spu_sync_start();
1193 else
1194 return DO_GENERIC_SYNC;
1195}
1196
1197static int cell_sync_stop(void)
1198{
1199 if (spu_cycle_reset)
1200 return spu_sync_stop();
1201 else
1202 return 1;
1203}
1204
18f2190d
MJ
1205struct op_powerpc_model op_model_cell = {
1206 .reg_setup = cell_reg_setup,
1207 .cpu_setup = cell_cpu_setup,
1208 .global_start = cell_global_start,
1209 .global_stop = cell_global_stop,
1474855d
BN
1210 .sync_start = cell_sync_start,
1211 .sync_stop = cell_sync_stop,
18f2190d
MJ
1212 .handle_interrupt = cell_handle_interrupt,
1213};