powerpc/mm/hash64: Map all the kernel regions in the same 0xc range
[linux-2.6-block.git] / arch / powerpc / mm / slb.c
CommitLineData
1da177e4
LT
1/*
2 * PowerPC64 SLB support.
3 *
4 * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
5cdcd9d6 5 * Based on earlier code written by:
1da177e4
LT
6 * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
7 * Copyright (c) 2001 Dave Engebretsen
8 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
9 *
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
48e7b769 17#include <asm/asm-prototypes.h>
1da177e4
LT
18#include <asm/pgtable.h>
19#include <asm/mmu.h>
20#include <asm/mmu_context.h>
21#include <asm/paca.h>
08e6a343 22#include <asm/ppc-opcode.h>
1da177e4 23#include <asm/cputable.h>
3c726f8d 24#include <asm/cacheflush.h>
2f6093c8
MN
25#include <asm/smp.h>
26#include <linux/compiler.h>
f384796c 27#include <linux/context_tracking.h>
589ee628
IM
28#include <linux/mm_types.h>
29
aa39be09 30#include <asm/udbg.h>
b68a70c4 31#include <asm/code-patching.h>
3c726f8d 32
1d15010c
AK
33enum slb_index {
34 LINEAR_INDEX = 0, /* Kernel linear map (0xc000000000000000) */
85376e2a 35 KSTACK_INDEX = 1, /* Kernel stack map */
1d15010c 36};
1da177e4 37
48e7b769 38static long slb_allocate_user(struct mm_struct *mm, unsigned long ea);
1da177e4 39
3b575064
PM
40#define slb_esid_mask(ssize) \
41 (((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
42
1189be65 43static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
1d15010c 44 enum slb_index index)
1da177e4 45{
1d15010c 46 return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
1da177e4
LT
47}
48
48e7b769 49static inline unsigned long __mk_vsid_data(unsigned long vsid, int ssize,
5e46e29e
NP
50 unsigned long flags)
51{
48e7b769 52 return (vsid << slb_vsid_shift(ssize)) | flags |
54be0b9c 53 ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
5e46e29e
NP
54}
55
48e7b769
NP
56static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
57 unsigned long flags)
58{
59 return __mk_vsid_data(get_kernel_vsid(ea, ssize), ssize, flags);
60}
61
0ae79068 62static void assert_slb_presence(bool present, unsigned long ea)
e15a4fea
NP
63{
64#ifdef CONFIG_DEBUG_VM
65 unsigned long tmp;
66
67 WARN_ON_ONCE(mfmsr() & MSR_EE);
68
9586d569
ME
69 if (!cpu_has_feature(CPU_FTR_ARCH_206))
70 return;
71
7104dccf
NP
72 /*
73 * slbfee. requires bit 24 (PPC bit 39) be clear in RB. Hardware
74 * ignores all other bits from 0-27, so just clear them all.
75 */
76 ea &= ~((1UL << 28) - 1);
08e6a343 77 asm volatile(__PPC_SLBFEE_DOT(%0, %1) : "=r"(tmp) : "r"(ea) : "cr0");
e15a4fea 78
0ae79068 79 WARN_ON(present == (tmp == 0));
e15a4fea
NP
80#endif
81}
82
1189be65 83static inline void slb_shadow_update(unsigned long ea, int ssize,
67439b76 84 unsigned long flags,
1d15010c 85 enum slb_index index)
1da177e4 86{
26cd835e
ME
87 struct slb_shadow *p = get_slb_shadow();
88
2f6093c8
MN
89 /*
90 * Clear the ESID first so the entry is not valid while we are
00efee7d
MN
91 * updating it. No write barriers are needed here, provided
92 * we only update the current CPU's SLB shadow buffer.
2f6093c8 93 */
926bc2f1
NP
94 WRITE_ONCE(p->save_area[index].esid, 0);
95 WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags)));
96 WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index)));
2f6093c8
MN
97}
98
1d15010c 99static inline void slb_shadow_clear(enum slb_index index)
2f6093c8 100{
0f52b3a0 101 WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index));
1da177e4
LT
102}
103
1189be65
PM
104static inline void create_shadowed_slbe(unsigned long ea, int ssize,
105 unsigned long flags,
1d15010c 106 enum slb_index index)
175587cc
PM
107{
108 /*
109 * Updating the shadow buffer before writing the SLB ensures
110 * we don't get a stale entry here if we get preempted by PHYP
111 * between these two statements.
112 */
1d15010c 113 slb_shadow_update(ea, ssize, flags, index);
175587cc 114
0ae79068 115 assert_slb_presence(false, ea);
175587cc 116 asm volatile("slbmte %0,%1" :
1189be65 117 : "r" (mk_vsid_data(ea, ssize, flags)),
1d15010c 118 "r" (mk_esid_data(ea, ssize, index))
175587cc
PM
119 : "memory" );
120}
121
e7e81847
NP
122/*
123 * Insert bolted entries into SLB (which may not be empty, so don't clear
124 * slb_cache_ptr).
125 */
126void __slb_restore_bolted_realmode(void)
127{
128 struct slb_shadow *p = get_slb_shadow();
129 enum slb_index index;
130
131 /* No isync needed because realmode. */
132 for (index = 0; index < SLB_NUM_BOLTED; index++) {
133 asm volatile("slbmte %0,%1" :
134 : "r" (be64_to_cpu(p->save_area[index].vsid)),
135 "r" (be64_to_cpu(p->save_area[index].esid)));
136 }
e15a4fea 137
0ae79068 138 assert_slb_presence(true, local_paca->kstack);
e7e81847
NP
139}
140
141/*
142 * Insert the bolted entries into an empty SLB.
e7e81847
NP
143 */
144void slb_restore_bolted_realmode(void)
145{
146 __slb_restore_bolted_realmode();
147 get_paca()->slb_cache_ptr = 0;
126b11b2
NP
148
149 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
150 get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
e7e81847
NP
151}
152
153/*
154 * This flushes all SLB entries including 0, so it must be realmode.
155 */
156void slb_flush_all_realmode(void)
157{
e7e81847
NP
158 asm volatile("slbmte %0,%0; slbia" : : "r" (0));
159}
160
94ee4272
NP
161/*
162 * This flushes non-bolted entries, it can be run in virtual mode. Must
163 * be called with interrupts disabled.
164 */
165void slb_flush_and_restore_bolted(void)
1da177e4 166{
94ee4272
NP
167 struct slb_shadow *p = get_slb_shadow();
168
169 BUILD_BUG_ON(SLB_NUM_BOLTED != 2);
1da177e4 170
5141c182
NP
171 WARN_ON(!irqs_disabled());
172
173 /*
174 * We can't take a PMU exception in the following code, so hard
175 * disable interrupts.
176 */
177 hard_irq_disable();
178
1da177e4
LT
179 asm volatile("isync\n"
180 "slbia\n"
94ee4272
NP
181 "slbmte %0, %1\n"
182 "isync\n"
183 :: "r" (be64_to_cpu(p->save_area[KSTACK_INDEX].vsid)),
184 "r" (be64_to_cpu(p->save_area[KSTACK_INDEX].esid))
1da177e4 185 : "memory");
0ae79068 186 assert_slb_presence(true, get_paca()->kstack);
1da177e4 187
9c1e1052 188 get_paca()->slb_cache_ptr = 0;
126b11b2
NP
189
190 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
191 get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
9c1e1052
PM
192}
193
c6d15258
MS
194void slb_save_contents(struct slb_entry *slb_ptr)
195{
196 int i;
197 unsigned long e, v;
198
199 /* Save slb_cache_ptr value. */
200 get_paca()->slb_save_cache_ptr = get_paca()->slb_cache_ptr;
201
202 if (!slb_ptr)
203 return;
204
205 for (i = 0; i < mmu_slb_size; i++) {
206 asm volatile("slbmfee %0,%1" : "=r" (e) : "r" (i));
207 asm volatile("slbmfev %0,%1" : "=r" (v) : "r" (i));
208 slb_ptr->esid = e;
209 slb_ptr->vsid = v;
210 slb_ptr++;
211 }
212}
213
214void slb_dump_contents(struct slb_entry *slb_ptr)
215{
216 int i, n;
217 unsigned long e, v;
218 unsigned long llp;
219
220 if (!slb_ptr)
221 return;
222
223 pr_err("SLB contents of cpu 0x%x\n", smp_processor_id());
126b11b2 224 pr_err("Last SLB entry inserted at slot %d\n", get_paca()->stab_rr);
c6d15258
MS
225
226 for (i = 0; i < mmu_slb_size; i++) {
227 e = slb_ptr->esid;
228 v = slb_ptr->vsid;
229 slb_ptr++;
230
231 if (!e && !v)
232 continue;
233
234 pr_err("%02d %016lx %016lx\n", i, e, v);
235
236 if (!(e & SLB_ESID_V)) {
237 pr_err("\n");
238 continue;
239 }
240 llp = v & SLB_VSID_LLP;
241 if (v & SLB_VSID_B_1T) {
242 pr_err(" 1T ESID=%9lx VSID=%13lx LLP:%3lx\n",
243 GET_ESID_1T(e),
244 (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T, llp);
245 } else {
246 pr_err(" 256M ESID=%9lx VSID=%13lx LLP:%3lx\n",
247 GET_ESID(e),
248 (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT, llp);
249 }
250 }
251 pr_err("----------------------------------\n");
252
253 /* Dump slb cache entires as well. */
254 pr_err("SLB cache ptr value = %d\n", get_paca()->slb_save_cache_ptr);
255 pr_err("Valid SLB cache entries:\n");
256 n = min_t(int, get_paca()->slb_save_cache_ptr, SLB_CACHE_ENTRIES);
257 for (i = 0; i < n; i++)
258 pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
259 pr_err("Rest of SLB cache entries:\n");
260 for (i = n; i < SLB_CACHE_ENTRIES; i++)
261 pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
262}
263
67439b76
MN
264void slb_vmalloc_update(void)
265{
94ee4272
NP
266 /*
267 * vmalloc is not bolted, so just have to flush non-bolted.
268 */
269 slb_flush_and_restore_bolted();
67439b76
MN
270}
271
5434ae74 272static bool preload_hit(struct thread_info *ti, unsigned long esid)
89ca4e12 273{
5434ae74 274 unsigned char i;
89ca4e12 275
5434ae74
NP
276 for (i = 0; i < ti->slb_preload_nr; i++) {
277 unsigned char idx;
278
279 idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
280 if (esid == ti->slb_preload_esid[idx])
281 return true;
282 }
283 return false;
284}
285
286static bool preload_add(struct thread_info *ti, unsigned long ea)
287{
288 unsigned char idx;
289 unsigned long esid;
290
291 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
292 /* EAs are stored >> 28 so 256MB segments don't need clearing */
293 if (ea & ESID_MASK_1T)
294 ea &= ESID_MASK_1T;
295 }
89ca4e12 296
5434ae74 297 esid = ea >> SID_SHIFT;
89ca4e12 298
5434ae74
NP
299 if (preload_hit(ti, esid))
300 return false;
89ca4e12 301
5434ae74
NP
302 idx = (ti->slb_preload_tail + ti->slb_preload_nr) % SLB_PRELOAD_NR;
303 ti->slb_preload_esid[idx] = esid;
304 if (ti->slb_preload_nr == SLB_PRELOAD_NR)
305 ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
306 else
307 ti->slb_preload_nr++;
89ca4e12 308
5434ae74 309 return true;
89ca4e12
NP
310}
311
5434ae74
NP
312static void preload_age(struct thread_info *ti)
313{
314 if (!ti->slb_preload_nr)
315 return;
316 ti->slb_preload_nr--;
317 ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
318}
319
320void slb_setup_new_exec(void)
321{
322 struct thread_info *ti = current_thread_info();
323 struct mm_struct *mm = current->mm;
324 unsigned long exec = 0x10000000;
325
326 WARN_ON(irqs_disabled());
327
328 /*
329 * preload cache can only be used to determine whether a SLB
330 * entry exists if it does not start to overflow.
331 */
332 if (ti->slb_preload_nr + 2 > SLB_PRELOAD_NR)
333 return;
334
335 hard_irq_disable();
336
337 /*
338 * We have no good place to clear the slb preload cache on exec,
339 * flush_thread is about the earliest arch hook but that happens
340 * after we switch to the mm and have aleady preloaded the SLBEs.
341 *
342 * For the most part that's probably okay to use entries from the
343 * previous exec, they will age out if unused. It may turn out to
344 * be an advantage to clear the cache before switching to it,
345 * however.
346 */
347
348 /*
349 * preload some userspace segments into the SLB.
350 * Almost all 32 and 64bit PowerPC executables are linked at
351 * 0x10000000 so it makes sense to preload this segment.
352 */
353 if (!is_kernel_addr(exec)) {
354 if (preload_add(ti, exec))
355 slb_allocate_user(mm, exec);
356 }
357
358 /* Libraries and mmaps. */
359 if (!is_kernel_addr(mm->mmap_base)) {
360 if (preload_add(ti, mm->mmap_base))
361 slb_allocate_user(mm, mm->mmap_base);
362 }
363
364 /* see switch_slb */
365 asm volatile("isync" : : : "memory");
366
367 local_irq_enable();
368}
369
370void preload_new_slb_context(unsigned long start, unsigned long sp)
371{
372 struct thread_info *ti = current_thread_info();
373 struct mm_struct *mm = current->mm;
374 unsigned long heap = mm->start_brk;
375
376 WARN_ON(irqs_disabled());
377
378 /* see above */
379 if (ti->slb_preload_nr + 3 > SLB_PRELOAD_NR)
380 return;
381
382 hard_irq_disable();
383
384 /* Userspace entry address. */
385 if (!is_kernel_addr(start)) {
386 if (preload_add(ti, start))
387 slb_allocate_user(mm, start);
388 }
389
390 /* Top of stack, grows down. */
391 if (!is_kernel_addr(sp)) {
392 if (preload_add(ti, sp))
393 slb_allocate_user(mm, sp);
394 }
395
396 /* Bottom of heap, grows up. */
397 if (heap && !is_kernel_addr(heap)) {
398 if (preload_add(ti, heap))
399 slb_allocate_user(mm, heap);
400 }
401
402 /* see switch_slb */
403 asm volatile("isync" : : : "memory");
404
405 local_irq_enable();
406}
407
408
1da177e4
LT
409/* Flush all user entries from the segment table of the current processor. */
410void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
411{
5434ae74
NP
412 struct thread_info *ti = task_thread_info(tsk);
413 unsigned char i;
1da177e4 414
9c1e1052
PM
415 /*
416 * We need interrupts hard-disabled here, not just soft-disabled,
417 * so that a PMU interrupt can't occur, which might try to access
418 * user memory (to get a stack trace) and possible cause an SLB miss
419 * which would update the slb_cache/slb_cache_ptr fields in the PACA.
420 */
421 hard_irq_disable();
5434ae74 422 asm volatile("isync" : : : "memory");
82d8f4c2
NP
423 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
424 /*
425 * SLBIA IH=3 invalidates all Class=1 SLBEs and their
426 * associated lookaside structures, which matches what
427 * switch_slb wants. So ARCH_300 does not use the slb
428 * cache.
429 */
5434ae74 430 asm volatile(PPC_SLBIA(3));
82d8f4c2
NP
431 } else {
432 unsigned long offset = get_paca()->slb_cache_ptr;
433
434 if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
435 offset <= SLB_CACHE_ENTRIES) {
436 unsigned long slbie_data = 0;
82d8f4c2 437
82d8f4c2 438 for (i = 0; i < offset; i++) {
e15a4fea
NP
439 unsigned long ea;
440
441 ea = (unsigned long)
82d8f4c2 442 get_paca()->slb_cache[i] << SID_SHIFT;
e15a4fea 443 /*
0ae79068
ME
444 * Could assert_slb_presence(true) here, but
445 * hypervisor or machine check could have come
446 * in and removed the entry at this point.
e15a4fea
NP
447 */
448
449 slbie_data = ea;
82d8f4c2
NP
450 slbie_data |= user_segment_size(slbie_data)
451 << SLBIE_SSIZE_SHIFT;
452 slbie_data |= SLBIE_C; /* user slbs have C=1 */
453 asm volatile("slbie %0" : : "r" (slbie_data));
454 }
455
456 /* Workaround POWER5 < DD2.1 issue */
457 if (!cpu_has_feature(CPU_FTR_ARCH_207S) && offset == 1)
458 asm volatile("slbie %0" : : "r" (slbie_data));
459
82d8f4c2
NP
460 } else {
461 struct slb_shadow *p = get_slb_shadow();
462 unsigned long ksp_esid_data =
463 be64_to_cpu(p->save_area[KSTACK_INDEX].esid);
464 unsigned long ksp_vsid_data =
465 be64_to_cpu(p->save_area[KSTACK_INDEX].vsid);
466
5434ae74 467 asm volatile(PPC_SLBIA(1) "\n"
82d8f4c2
NP
468 "slbmte %0,%1\n"
469 "isync"
470 :: "r"(ksp_vsid_data),
471 "r"(ksp_esid_data));
126b11b2
NP
472
473 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
1da177e4 474 }
1da177e4 475
82d8f4c2 476 get_paca()->slb_cache_ptr = 0;
505ea82e 477 }
126b11b2 478 get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
54be0b9c
ME
479
480 copy_mm_to_paca(mm);
1da177e4 481
1da177e4 482 /*
5434ae74
NP
483 * We gradually age out SLBs after a number of context switches to
484 * reduce reload overhead of unused entries (like we do with FP/VEC
485 * reload). Each time we wrap 256 switches, take an entry out of the
486 * SLB preload cache.
1da177e4 487 */
5434ae74
NP
488 tsk->thread.load_slb++;
489 if (!tsk->thread.load_slb) {
490 unsigned long pc = KSTK_EIP(tsk);
1da177e4 491
5434ae74
NP
492 preload_age(ti);
493 preload_add(ti, pc);
494 }
495
496 for (i = 0; i < ti->slb_preload_nr; i++) {
497 unsigned char idx;
498 unsigned long ea;
1da177e4 499
5434ae74
NP
500 idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
501 ea = (unsigned long)ti->slb_preload_esid[idx] << SID_SHIFT;
1da177e4 502
5434ae74
NP
503 slb_allocate_user(mm, ea);
504 }
1da177e4 505
5434ae74
NP
506 /*
507 * Synchronize slbmte preloads with possible subsequent user memory
508 * address accesses by the kernel (user mode won't happen until
509 * rfid, which is safe).
510 */
511 asm volatile("isync" : : : "memory");
46db2f86
BK
512}
513
54be0b9c
ME
514void slb_set_size(u16 size)
515{
54be0b9c 516 mmu_slb_size = size;
8fed04d0
NP
517}
518
1da177e4
LT
519void slb_initialize(void)
520{
bf72aeba 521 unsigned long linear_llp, vmalloc_llp, io_llp;
85376e2a 522 unsigned long lflags;
3c726f8d 523 static int slb_encoding_inited;
cec08e7a 524#ifdef CONFIG_SPARSEMEM_VMEMMAP
cec08e7a
BH
525 unsigned long vmemmap_llp;
526#endif
3c726f8d
BH
527
528 /* Prepare our SLB miss handler based on our page size */
529 linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
bf72aeba
PM
530 io_llp = mmu_psize_defs[mmu_io_psize].sllp;
531 vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
532 get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
cec08e7a
BH
533#ifdef CONFIG_SPARSEMEM_VMEMMAP
534 vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
535#endif
3c726f8d
BH
536 if (!slb_encoding_inited) {
537 slb_encoding_inited = 1;
651e2dd2
ME
538 pr_devel("SLB: linear LLP = %04lx\n", linear_llp);
539 pr_devel("SLB: io LLP = %04lx\n", io_llp);
cec08e7a 540#ifdef CONFIG_SPARSEMEM_VMEMMAP
651e2dd2 541 pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
cec08e7a 542#endif
3c726f8d
BH
543 }
544
09b4438d 545 get_paca()->stab_rr = SLB_NUM_BOLTED - 1;
126b11b2
NP
546 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
547 get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
56291e19 548
3c726f8d 549 lflags = SLB_VSID_KERNEL | linear_llp;
1da177e4 550
2be682af 551 /* Invalidate the entire SLB (even entry 0) & all the ERATS */
175587cc
PM
552 asm volatile("isync":::"memory");
553 asm volatile("slbmte %0,%0"::"r" (0) : "memory");
554 asm volatile("isync; slbia; isync":::"memory");
1d15010c 555 create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
175587cc 556
3b575064
PM
557 /* For the boot cpu, we're running on the stack in init_thread_union,
558 * which is in the first segment of the linear mapping, and also
559 * get_paca()->kstack hasn't been initialized yet.
560 * For secondary cpus, we need to bolt the kernel stack entry now.
561 */
1d15010c 562 slb_shadow_clear(KSTACK_INDEX);
3b575064
PM
563 if (raw_smp_processor_id() != boot_cpuid &&
564 (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
565 create_shadowed_slbe(get_paca()->kstack,
1d15010c 566 mmu_kernel_ssize, lflags, KSTACK_INDEX);
dfbe0d3b 567
175587cc 568 asm volatile("isync":::"memory");
1da177e4 569}
f384796c 570
48e7b769 571static void slb_cache_update(unsigned long esid_data)
f384796c 572{
f384796c
AK
573 int slb_cache_index;
574
82d8f4c2
NP
575 if (cpu_has_feature(CPU_FTR_ARCH_300))
576 return; /* ISAv3.0B and later does not use slb_cache */
577
54be0b9c 578 /*
48e7b769 579 * Now update slb cache entries
54be0b9c 580 */
48e7b769
NP
581 slb_cache_index = local_paca->slb_cache_ptr;
582 if (slb_cache_index < SLB_CACHE_ENTRIES) {
583 /*
584 * We have space in slb cache for optimized switch_slb().
585 * Top 36 bits from esid_data as per ISA
586 */
587 local_paca->slb_cache[slb_cache_index++] = esid_data >> 28;
588 local_paca->slb_cache_ptr++;
589 } else {
590 /*
591 * Our cache is full and the current cache content strictly
592 * doesn't indicate the active SLB conents. Bump the ptr
593 * so that switch_slb() will ignore the cache.
594 */
595 local_paca->slb_cache_ptr = SLB_CACHE_ENTRIES + 1;
596 }
597}
54be0b9c 598
126b11b2 599static enum slb_index alloc_slb_index(bool kernel)
48e7b769
NP
600{
601 enum slb_index index;
54be0b9c 602
126b11b2
NP
603 /*
604 * The allocation bitmaps can become out of synch with the SLB
605 * when the _switch code does slbie when bolting a new stack
606 * segment and it must not be anywhere else in the SLB. This leaves
607 * a kernel allocated entry that is unused in the SLB. With very
608 * large systems or small segment sizes, the bitmaps could slowly
609 * fill with these entries. They will eventually be cleared out
610 * by the round robin allocator in that case, so it's probably not
611 * worth accounting for.
612 */
613
614 /*
615 * SLBs beyond 32 entries are allocated with stab_rr only
616 * POWER7/8/9 have 32 SLB entries, this could be expanded if a
617 * future CPU has more.
618 */
619 if (local_paca->slb_used_bitmap != U32_MAX) {
620 index = ffz(local_paca->slb_used_bitmap);
621 local_paca->slb_used_bitmap |= 1U << index;
622 if (kernel)
623 local_paca->slb_kern_bitmap |= 1U << index;
624 } else {
625 /* round-robin replacement of slb starting at SLB_NUM_BOLTED. */
626 index = local_paca->stab_rr;
627 if (index < (mmu_slb_size - 1))
628 index++;
629 else
630 index = SLB_NUM_BOLTED;
631 local_paca->stab_rr = index;
632 if (index < 32) {
633 if (kernel)
634 local_paca->slb_kern_bitmap |= 1U << index;
635 else
636 local_paca->slb_kern_bitmap &= ~(1U << index);
637 }
638 }
639 BUG_ON(index < SLB_NUM_BOLTED);
54be0b9c 640
48e7b769
NP
641 return index;
642}
643
644static long slb_insert_entry(unsigned long ea, unsigned long context,
645 unsigned long flags, int ssize, bool kernel)
646{
647 unsigned long vsid;
648 unsigned long vsid_data, esid_data;
649 enum slb_index index;
650
651 vsid = get_vsid(context, ea, ssize);
652 if (!vsid)
653 return -EFAULT;
654
655 /*
656 * There must not be a kernel SLB fault in alloc_slb_index or before
657 * slbmte here or the allocation bitmaps could get out of whack with
658 * the SLB.
659 *
660 * User SLB faults or preloads take this path which might get inlined
661 * into the caller, so add compiler barriers here to ensure unsafe
662 * memory accesses do not come between.
663 */
664 barrier();
665
126b11b2 666 index = alloc_slb_index(kernel);
48e7b769
NP
667
668 vsid_data = __mk_vsid_data(vsid, ssize, flags);
54be0b9c
ME
669 esid_data = mk_esid_data(ea, ssize, index);
670
671 /*
672 * No need for an isync before or after this slbmte. The exception
673 * we enter with and the rfid we exit with are context synchronizing.
48e7b769
NP
674 * User preloads should add isync afterwards in case the kernel
675 * accesses user memory before it returns to userspace with rfid.
54be0b9c 676 */
0ae79068 677 assert_slb_presence(false, ea);
48e7b769 678 asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data));
54be0b9c 679
48e7b769
NP
680 barrier();
681
682 if (!kernel)
683 slb_cache_update(esid_data);
684
685 return 0;
686}
687
688static long slb_allocate_kernel(unsigned long ea, unsigned long id)
689{
690 unsigned long context;
691 unsigned long flags;
692 int ssize;
693
48e7b769 694 if (id == KERNEL_REGION_ID) {
4ffe713b
AK
695
696 /* We only support upto MAX_PHYSMEM_BITS */
0034d395 697 if ((ea & EA_MASK) > (1UL << MAX_PHYSMEM_BITS))
4ffe713b
AK
698 return -EFAULT;
699
48e7b769 700 flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_linear_psize].sllp;
4ffe713b 701
48e7b769
NP
702#ifdef CONFIG_SPARSEMEM_VMEMMAP
703 } else if (id == VMEMMAP_REGION_ID) {
4ffe713b 704
0034d395 705 if (ea >= H_VMEMMAP_END)
4ffe713b
AK
706 return -EFAULT;
707
48e7b769
NP
708 flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmemmap_psize].sllp;
709#endif
710 } else if (id == VMALLOC_REGION_ID) {
4ffe713b 711
0034d395 712 if (ea >= H_VMALLOC_END)
4ffe713b
AK
713 return -EFAULT;
714
0034d395
AK
715 flags = local_paca->vmalloc_sllp;
716
717 } else if (id == IO_REGION_ID) {
718
719 if (ea >= H_KERN_IO_END)
720 return -EFAULT;
721
722 flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_io_psize].sllp;
723
f384796c 724 } else {
48e7b769 725 return -EFAULT;
f384796c 726 }
48e7b769
NP
727
728 ssize = MMU_SEGSIZE_1T;
729 if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
730 ssize = MMU_SEGSIZE_256M;
731
4ffe713b 732 context = get_kernel_context(ea);
0034d395 733
48e7b769 734 return slb_insert_entry(ea, context, flags, ssize, true);
f384796c
AK
735}
736
48e7b769 737static long slb_allocate_user(struct mm_struct *mm, unsigned long ea)
5e46e29e 738{
48e7b769
NP
739 unsigned long context;
740 unsigned long flags;
54be0b9c 741 int bpsize;
48e7b769 742 int ssize;
655deecf
NP
743
744 /*
48e7b769
NP
745 * consider this as bad access if we take a SLB miss
746 * on an address above addr limit.
655deecf 747 */
60458fba 748 if (ea >= mm_ctx_slb_addr_limit(&mm->context))
48e7b769
NP
749 return -EFAULT;
750
c9f80734 751 context = get_user_context(&mm->context, ea);
48e7b769
NP
752 if (!context)
753 return -EFAULT;
754
755 if (unlikely(ea >= H_PGTABLE_RANGE)) {
756 WARN_ON(1);
757 return -EFAULT;
758 }
759
760 ssize = user_segment_size(ea);
761
54be0b9c 762 bpsize = get_slice_psize(mm, ea);
48e7b769
NP
763 flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp;
764
765 return slb_insert_entry(ea, context, flags, ssize, false);
5e46e29e
NP
766}
767
48e7b769 768long do_slb_fault(struct pt_regs *regs, unsigned long ea)
f384796c 769{
0034d395 770 unsigned long id = get_region_id(ea);
5e46e29e 771
48e7b769
NP
772 /* IRQs are not reconciled here, so can't check irqs_disabled */
773 VM_WARN_ON(mfmsr() & MSR_EE);
f384796c 774
48e7b769
NP
775 if (unlikely(!(regs->msr & MSR_RI)))
776 return -EINVAL;
f384796c
AK
777
778 /*
48e7b769
NP
779 * SLB kernel faults must be very careful not to touch anything
780 * that is not bolted. E.g., PACA and global variables are okay,
781 * mm->context stuff is not.
782 *
783 * SLB user faults can access all of kernel memory, but must be
784 * careful not to touch things like IRQ state because it is not
785 * "reconciled" here. The difficulty is that we must use
786 * fast_exception_return to return from kernel SLB faults without
787 * looking at possible non-bolted memory. We could test user vs
788 * kernel faults in the interrupt handler asm and do a full fault,
789 * reconcile, ret_from_except for user faults which would make them
790 * first class kernel code. But for performance it's probably nicer
791 * if they go via fast_exception_return too.
f384796c 792 */
48e7b769 793 if (id >= KERNEL_REGION_ID) {
e15a4fea
NP
794 long err;
795#ifdef CONFIG_DEBUG_VM
796 /* Catch recursive kernel SLB faults. */
797 BUG_ON(local_paca->in_kernel_slb_handler);
798 local_paca->in_kernel_slb_handler = 1;
799#endif
800 err = slb_allocate_kernel(ea, id);
801#ifdef CONFIG_DEBUG_VM
802 local_paca->in_kernel_slb_handler = 0;
803#endif
804 return err;
48e7b769
NP
805 } else {
806 struct mm_struct *mm = current->mm;
5434ae74 807 long err;
f384796c 808
48e7b769
NP
809 if (unlikely(!mm))
810 return -EFAULT;
5e46e29e 811
5434ae74
NP
812 err = slb_allocate_user(mm, ea);
813 if (!err)
814 preload_add(current_thread_info(), ea);
815
816 return err;
48e7b769
NP
817 }
818}
5e46e29e 819
48e7b769
NP
820void do_bad_slb_fault(struct pt_regs *regs, unsigned long ea, long err)
821{
822 if (err == -EFAULT) {
823 if (user_mode(regs))
824 _exception(SIGSEGV, regs, SEGV_BNDERR, ea);
825 else
826 bad_page_fault(regs, ea, SIGSEGV);
827 } else if (err == -EINVAL) {
828 unrecoverable_exception(regs);
829 } else {
830 BUG();
831 }
f384796c 832}