powerpc: Fix the setup of CPU-to-Node mappings during CPU online
[linux-2.6-block.git] / arch / powerpc / mm / numa.c
CommitLineData
1da177e4
LT
1/*
2 * pSeries NUMA support
3 *
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11#include <linux/threads.h>
12#include <linux/bootmem.h>
13#include <linux/init.h>
14#include <linux/mm.h>
15#include <linux/mmzone.h>
4b16f8e2 16#include <linux/export.h>
1da177e4
LT
17#include <linux/nodemask.h>
18#include <linux/cpu.h>
19#include <linux/notifier.h>
95f72d1e 20#include <linux/memblock.h>
6df1646e 21#include <linux/of.h>
06eccea6 22#include <linux/pfn.h>
9eff1a38
JL
23#include <linux/cpuset.h>
24#include <linux/node.h>
30c05350 25#include <linux/stop_machine.h>
e04fa612
NF
26#include <linux/proc_fs.h>
27#include <linux/seq_file.h>
28#include <linux/uaccess.h>
191a7120 29#include <linux/slab.h>
3be7db6a 30#include <asm/cputhreads.h>
45fb6cea 31#include <asm/sparsemem.h>
d9b2b2a2 32#include <asm/prom.h>
2249ca9d 33#include <asm/smp.h>
d4edc5b6
SB
34#include <asm/cputhreads.h>
35#include <asm/topology.h>
9eff1a38
JL
36#include <asm/firmware.h>
37#include <asm/paca.h>
39bf990e 38#include <asm/hvcall.h>
ae3a197e 39#include <asm/setup.h>
176bbf14 40#include <asm/vdso.h>
1da177e4
LT
41
42static int numa_enabled = 1;
43
1daa6d08
BS
44static char *cmdline __initdata;
45
1da177e4
LT
46static int numa_debug;
47#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
48
45fb6cea 49int numa_cpu_lookup_table[NR_CPUS];
25863de0 50cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
1da177e4 51struct pglist_data *node_data[MAX_NUMNODES];
45fb6cea
AB
52
53EXPORT_SYMBOL(numa_cpu_lookup_table);
25863de0 54EXPORT_SYMBOL(node_to_cpumask_map);
45fb6cea
AB
55EXPORT_SYMBOL(node_data);
56
1da177e4 57static int min_common_depth;
237a0989 58static int n_mem_addr_cells, n_mem_size_cells;
41eab6f8
AB
59static int form1_affinity;
60
61#define MAX_DISTANCE_REF_POINTS 4
62static int distance_ref_points_depth;
b08a2a12 63static const __be32 *distance_ref_points;
41eab6f8 64static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
1da177e4 65
25863de0
AB
66/*
67 * Allocate node_to_cpumask_map based on number of available nodes
68 * Requires node_possible_map to be valid.
69 *
9512938b 70 * Note: cpumask_of_node() is not valid until after this is done.
25863de0
AB
71 */
72static void __init setup_node_to_cpumask_map(void)
73{
f9d531b8 74 unsigned int node;
25863de0
AB
75
76 /* setup nr_node_ids if not done yet */
f9d531b8
CS
77 if (nr_node_ids == MAX_NUMNODES)
78 setup_nr_node_ids();
25863de0
AB
79
80 /* allocate the map */
81 for (node = 0; node < nr_node_ids; node++)
82 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
83
84 /* cpumask_of_node() will now work */
85 dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
86}
87
55671f3c 88static int __init fake_numa_create_new_node(unsigned long end_pfn,
1daa6d08
BS
89 unsigned int *nid)
90{
91 unsigned long long mem;
92 char *p = cmdline;
93 static unsigned int fake_nid;
94 static unsigned long long curr_boundary;
95
96 /*
97 * Modify node id, iff we started creating NUMA nodes
98 * We want to continue from where we left of the last time
99 */
100 if (fake_nid)
101 *nid = fake_nid;
102 /*
103 * In case there are no more arguments to parse, the
104 * node_id should be the same as the last fake node id
105 * (we've handled this above).
106 */
107 if (!p)
108 return 0;
109
110 mem = memparse(p, &p);
111 if (!mem)
112 return 0;
113
114 if (mem < curr_boundary)
115 return 0;
116
117 curr_boundary = mem;
118
119 if ((end_pfn << PAGE_SHIFT) > mem) {
120 /*
121 * Skip commas and spaces
122 */
123 while (*p == ',' || *p == ' ' || *p == '\t')
124 p++;
125
126 cmdline = p;
127 fake_nid++;
128 *nid = fake_nid;
129 dbg("created new fake_node with id %d\n", fake_nid);
130 return 1;
131 }
132 return 0;
133}
134
8f64e1f2 135/*
5dfe8660 136 * get_node_active_region - Return active region containing pfn
e8170372 137 * Active range returned is empty if none found.
5dfe8660
TH
138 * @pfn: The page to return the region for
139 * @node_ar: Returned set to the active region containing @pfn
8f64e1f2 140 */
5dfe8660
TH
141static void __init get_node_active_region(unsigned long pfn,
142 struct node_active_region *node_ar)
8f64e1f2 143{
5dfe8660
TH
144 unsigned long start_pfn, end_pfn;
145 int i, nid;
146
147 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
148 if (pfn >= start_pfn && pfn < end_pfn) {
149 node_ar->nid = nid;
150 node_ar->start_pfn = start_pfn;
151 node_ar->end_pfn = end_pfn;
152 break;
153 }
154 }
8f64e1f2
JT
155}
156
d4edc5b6
SB
157static void reset_numa_cpu_lookup_table(void)
158{
159 unsigned int cpu;
160
161 for_each_possible_cpu(cpu)
162 numa_cpu_lookup_table[cpu] = -1;
163}
164
165static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
1da177e4
LT
166{
167 numa_cpu_lookup_table[cpu] = node;
d4edc5b6
SB
168}
169
170static void map_cpu_to_node(int cpu, int node)
171{
172 update_numa_cpu_lookup_table(cpu, node);
45fb6cea 173
bf4b85b0
NL
174 dbg("adding cpu %d to node %d\n", cpu, node);
175
25863de0
AB
176 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
177 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
1da177e4
LT
178}
179
39bf990e 180#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
1da177e4
LT
181static void unmap_cpu_from_node(unsigned long cpu)
182{
183 int node = numa_cpu_lookup_table[cpu];
184
185 dbg("removing cpu %lu from node %d\n", cpu, node);
186
25863de0 187 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
429f4d8d 188 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
1da177e4
LT
189 } else {
190 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
191 cpu, node);
192 }
193}
39bf990e 194#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
1da177e4 195
1da177e4 196/* must hold reference to node during call */
b08a2a12 197static const __be32 *of_get_associativity(struct device_node *dev)
1da177e4 198{
e2eb6392 199 return of_get_property(dev, "ibm,associativity", NULL);
1da177e4
LT
200}
201
cf00085d
C
202/*
203 * Returns the property linux,drconf-usable-memory if
204 * it exists (the property exists only in kexec/kdump kernels,
205 * added by kexec-tools)
206 */
b08a2a12 207static const __be32 *of_get_usable_memory(struct device_node *memory)
cf00085d 208{
b08a2a12 209 const __be32 *prop;
cf00085d
C
210 u32 len;
211 prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
212 if (!prop || len < sizeof(unsigned int))
ec32dd66 213 return NULL;
cf00085d
C
214 return prop;
215}
216
41eab6f8
AB
217int __node_distance(int a, int b)
218{
219 int i;
220 int distance = LOCAL_DISTANCE;
221
222 if (!form1_affinity)
7122beee 223 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
41eab6f8
AB
224
225 for (i = 0; i < distance_ref_points_depth; i++) {
226 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
227 break;
228
229 /* Double the distance for each NUMA level */
230 distance *= 2;
231 }
232
233 return distance;
234}
235
236static void initialize_distance_lookup_table(int nid,
b08a2a12 237 const __be32 *associativity)
41eab6f8
AB
238{
239 int i;
240
241 if (!form1_affinity)
242 return;
243
244 for (i = 0; i < distance_ref_points_depth; i++) {
b08a2a12
AP
245 const __be32 *entry;
246
247 entry = &associativity[be32_to_cpu(distance_ref_points[i])];
248 distance_lookup_table[nid][i] = of_read_number(entry, 1);
41eab6f8
AB
249 }
250}
251
482ec7c4
NL
252/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
253 * info is found.
254 */
b08a2a12 255static int associativity_to_nid(const __be32 *associativity)
1da177e4 256{
482ec7c4 257 int nid = -1;
1da177e4
LT
258
259 if (min_common_depth == -1)
482ec7c4 260 goto out;
1da177e4 261
b08a2a12
AP
262 if (of_read_number(associativity, 1) >= min_common_depth)
263 nid = of_read_number(&associativity[min_common_depth], 1);
bc16a759
NL
264
265 /* POWER4 LPAR uses 0xffff as invalid node */
482ec7c4
NL
266 if (nid == 0xffff || nid >= MAX_NUMNODES)
267 nid = -1;
41eab6f8 268
b08a2a12
AP
269 if (nid > 0 &&
270 of_read_number(associativity, 1) >= distance_ref_points_depth)
9eff1a38 271 initialize_distance_lookup_table(nid, associativity);
41eab6f8 272
482ec7c4 273out:
cf950b7a 274 return nid;
1da177e4
LT
275}
276
9eff1a38
JL
277/* Returns the nid associated with the given device tree node,
278 * or -1 if not found.
279 */
280static int of_node_to_nid_single(struct device_node *device)
281{
282 int nid = -1;
b08a2a12 283 const __be32 *tmp;
9eff1a38
JL
284
285 tmp = of_get_associativity(device);
286 if (tmp)
287 nid = associativity_to_nid(tmp);
288 return nid;
289}
290
953039c8
JK
291/* Walk the device tree upwards, looking for an associativity id */
292int of_node_to_nid(struct device_node *device)
293{
294 struct device_node *tmp;
295 int nid = -1;
296
297 of_node_get(device);
298 while (device) {
299 nid = of_node_to_nid_single(device);
300 if (nid != -1)
301 break;
302
303 tmp = device;
304 device = of_get_parent(tmp);
305 of_node_put(tmp);
306 }
307 of_node_put(device);
308
309 return nid;
310}
311EXPORT_SYMBOL_GPL(of_node_to_nid);
312
1da177e4
LT
313static int __init find_min_common_depth(void)
314{
41eab6f8 315 int depth;
e70606eb 316 struct device_node *root;
1da177e4 317
1c8ee733
DS
318 if (firmware_has_feature(FW_FEATURE_OPAL))
319 root = of_find_node_by_path("/ibm,opal");
320 else
321 root = of_find_node_by_path("/rtas");
e70606eb
ME
322 if (!root)
323 root = of_find_node_by_path("/");
1da177e4
LT
324
325 /*
41eab6f8
AB
326 * This property is a set of 32-bit integers, each representing
327 * an index into the ibm,associativity nodes.
328 *
329 * With form 0 affinity the first integer is for an SMP configuration
330 * (should be all 0's) and the second is for a normal NUMA
331 * configuration. We have only one level of NUMA.
332 *
333 * With form 1 affinity the first integer is the most significant
334 * NUMA boundary and the following are progressively less significant
335 * boundaries. There can be more than one level of NUMA.
1da177e4 336 */
e70606eb 337 distance_ref_points = of_get_property(root,
41eab6f8
AB
338 "ibm,associativity-reference-points",
339 &distance_ref_points_depth);
340
341 if (!distance_ref_points) {
342 dbg("NUMA: ibm,associativity-reference-points not found.\n");
343 goto err;
344 }
345
346 distance_ref_points_depth /= sizeof(int);
1da177e4 347
8002b0c5
NF
348 if (firmware_has_feature(FW_FEATURE_OPAL) ||
349 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
350 dbg("Using form 1 affinity\n");
1c8ee733 351 form1_affinity = 1;
4b83c330
AB
352 }
353
41eab6f8 354 if (form1_affinity) {
b08a2a12 355 depth = of_read_number(distance_ref_points, 1);
1da177e4 356 } else {
41eab6f8
AB
357 if (distance_ref_points_depth < 2) {
358 printk(KERN_WARNING "NUMA: "
359 "short ibm,associativity-reference-points\n");
360 goto err;
361 }
362
b08a2a12 363 depth = of_read_number(&distance_ref_points[1], 1);
1da177e4 364 }
1da177e4 365
41eab6f8
AB
366 /*
367 * Warn and cap if the hardware supports more than
368 * MAX_DISTANCE_REF_POINTS domains.
369 */
370 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
371 printk(KERN_WARNING "NUMA: distance array capped at "
372 "%d entries\n", MAX_DISTANCE_REF_POINTS);
373 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
374 }
375
e70606eb 376 of_node_put(root);
1da177e4 377 return depth;
41eab6f8
AB
378
379err:
e70606eb 380 of_node_put(root);
41eab6f8 381 return -1;
1da177e4
LT
382}
383
84c9fdd1 384static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
1da177e4
LT
385{
386 struct device_node *memory = NULL;
1da177e4
LT
387
388 memory = of_find_node_by_type(memory, "memory");
54c23310 389 if (!memory)
84c9fdd1 390 panic("numa.c: No memory nodes found!");
54c23310 391
a8bda5dd 392 *n_addr_cells = of_n_addr_cells(memory);
9213feea 393 *n_size_cells = of_n_size_cells(memory);
84c9fdd1 394 of_node_put(memory);
1da177e4
LT
395}
396
b08a2a12 397static unsigned long read_n_cells(int n, const __be32 **buf)
1da177e4
LT
398{
399 unsigned long result = 0;
400
401 while (n--) {
b08a2a12 402 result = (result << 32) | of_read_number(*buf, 1);
1da177e4
LT
403 (*buf)++;
404 }
405 return result;
406}
407
8342681d 408/*
95f72d1e 409 * Read the next memblock list entry from the ibm,dynamic-memory property
8342681d
NF
410 * and return the information in the provided of_drconf_cell structure.
411 */
b08a2a12 412static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp)
8342681d 413{
b08a2a12 414 const __be32 *cp;
8342681d
NF
415
416 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
417
418 cp = *cellp;
b08a2a12
AP
419 drmem->drc_index = of_read_number(cp, 1);
420 drmem->reserved = of_read_number(&cp[1], 1);
421 drmem->aa_index = of_read_number(&cp[2], 1);
422 drmem->flags = of_read_number(&cp[3], 1);
8342681d
NF
423
424 *cellp = cp + 4;
425}
426
427/*
25985edc 428 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
8342681d 429 *
95f72d1e
YL
430 * The layout of the ibm,dynamic-memory property is a number N of memblock
431 * list entries followed by N memblock list entries. Each memblock list entry
25985edc 432 * contains information as laid out in the of_drconf_cell struct above.
8342681d 433 */
b08a2a12 434static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm)
8342681d 435{
b08a2a12 436 const __be32 *prop;
8342681d
NF
437 u32 len, entries;
438
439 prop = of_get_property(memory, "ibm,dynamic-memory", &len);
440 if (!prop || len < sizeof(unsigned int))
441 return 0;
442
b08a2a12 443 entries = of_read_number(prop++, 1);
8342681d
NF
444
445 /* Now that we know the number of entries, revalidate the size
446 * of the property read in to ensure we have everything
447 */
448 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
449 return 0;
450
451 *dm = prop;
452 return entries;
453}
454
455/*
25985edc 456 * Retrieve and validate the ibm,lmb-size property for drconf memory
8342681d
NF
457 * from the device tree.
458 */
3fdfd990 459static u64 of_get_lmb_size(struct device_node *memory)
8342681d 460{
b08a2a12 461 const __be32 *prop;
8342681d
NF
462 u32 len;
463
3fdfd990 464 prop = of_get_property(memory, "ibm,lmb-size", &len);
8342681d
NF
465 if (!prop || len < sizeof(unsigned int))
466 return 0;
467
468 return read_n_cells(n_mem_size_cells, &prop);
469}
470
471struct assoc_arrays {
472 u32 n_arrays;
473 u32 array_sz;
b08a2a12 474 const __be32 *arrays;
8342681d
NF
475};
476
477/*
25985edc 478 * Retrieve and validate the list of associativity arrays for drconf
8342681d
NF
479 * memory from the ibm,associativity-lookup-arrays property of the
480 * device tree..
481 *
482 * The layout of the ibm,associativity-lookup-arrays property is a number N
483 * indicating the number of associativity arrays, followed by a number M
484 * indicating the size of each associativity array, followed by a list
485 * of N associativity arrays.
486 */
487static int of_get_assoc_arrays(struct device_node *memory,
488 struct assoc_arrays *aa)
489{
b08a2a12 490 const __be32 *prop;
8342681d
NF
491 u32 len;
492
493 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
494 if (!prop || len < 2 * sizeof(unsigned int))
495 return -1;
496
b08a2a12
AP
497 aa->n_arrays = of_read_number(prop++, 1);
498 aa->array_sz = of_read_number(prop++, 1);
8342681d 499
42b2aa86 500 /* Now that we know the number of arrays and size of each array,
8342681d
NF
501 * revalidate the size of the property read in.
502 */
503 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
504 return -1;
505
506 aa->arrays = prop;
507 return 0;
508}
509
510/*
511 * This is like of_node_to_nid_single() for memory represented in the
512 * ibm,dynamic-reconfiguration-memory node.
513 */
514static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
515 struct assoc_arrays *aa)
516{
517 int default_nid = 0;
518 int nid = default_nid;
519 int index;
520
521 if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
522 !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
523 drmem->aa_index < aa->n_arrays) {
524 index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
b08a2a12 525 nid = of_read_number(&aa->arrays[index], 1);
8342681d
NF
526
527 if (nid == 0xffff || nid >= MAX_NUMNODES)
528 nid = default_nid;
529 }
530
531 return nid;
532}
533
1da177e4
LT
534/*
535 * Figure out to which domain a cpu belongs and stick it there.
536 * Return the id of the domain used.
537 */
061d19f2 538static int numa_setup_cpu(unsigned long lcpu)
1da177e4 539{
d4edc5b6
SB
540 int nid;
541 struct device_node *cpu;
542
543 /*
544 * If a valid cpu-to-node mapping is already available, use it
545 * directly instead of querying the firmware, since it represents
546 * the most recent mapping notified to us by the platform (eg: VPHN).
547 */
548 if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
549 map_cpu_to_node(lcpu, nid);
550 return nid;
551 }
552
553 cpu = of_get_cpu_node(lcpu, NULL);
1da177e4
LT
554
555 if (!cpu) {
556 WARN_ON(1);
d4edc5b6 557 nid = 0;
1da177e4
LT
558 goto out;
559 }
560
953039c8 561 nid = of_node_to_nid_single(cpu);
1da177e4 562
482ec7c4 563 if (nid < 0 || !node_online(nid))
72c33688 564 nid = first_online_node;
1da177e4 565out:
cf950b7a 566 map_cpu_to_node(lcpu, nid);
1da177e4
LT
567
568 of_node_put(cpu);
569
cf950b7a 570 return nid;
1da177e4
LT
571}
572
061d19f2 573static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action,
1da177e4
LT
574 void *hcpu)
575{
576 unsigned long lcpu = (unsigned long)hcpu;
577 int ret = NOTIFY_DONE;
578
579 switch (action) {
580 case CPU_UP_PREPARE:
8bb78442 581 case CPU_UP_PREPARE_FROZEN:
2b261227 582 numa_setup_cpu(lcpu);
1da177e4
LT
583 ret = NOTIFY_OK;
584 break;
585#ifdef CONFIG_HOTPLUG_CPU
586 case CPU_DEAD:
8bb78442 587 case CPU_DEAD_FROZEN:
1da177e4 588 case CPU_UP_CANCELED:
8bb78442 589 case CPU_UP_CANCELED_FROZEN:
1da177e4
LT
590 unmap_cpu_from_node(lcpu);
591 break;
592 ret = NOTIFY_OK;
593#endif
594 }
595 return ret;
596}
597
598/*
599 * Check and possibly modify a memory region to enforce the memory limit.
600 *
601 * Returns the size the region should have to enforce the memory limit.
602 * This will either be the original value of size, a truncated value,
603 * or zero. If the returned value of size is 0 the region should be
25985edc 604 * discarded as it lies wholly above the memory limit.
1da177e4 605 */
45fb6cea
AB
606static unsigned long __init numa_enforce_memory_limit(unsigned long start,
607 unsigned long size)
1da177e4
LT
608{
609 /*
95f72d1e 610 * We use memblock_end_of_DRAM() in here instead of memory_limit because
1da177e4 611 * we've already adjusted it for the limit and it takes care of
fe55249d
MM
612 * having memory holes below the limit. Also, in the case of
613 * iommu_is_off, memory_limit is not set but is implicitly enforced.
1da177e4 614 */
1da177e4 615
95f72d1e 616 if (start + size <= memblock_end_of_DRAM())
1da177e4
LT
617 return size;
618
95f72d1e 619 if (start >= memblock_end_of_DRAM())
1da177e4
LT
620 return 0;
621
95f72d1e 622 return memblock_end_of_DRAM() - start;
1da177e4
LT
623}
624
cf00085d
C
625/*
626 * Reads the counter for a given entry in
627 * linux,drconf-usable-memory property
628 */
b08a2a12 629static inline int __init read_usm_ranges(const __be32 **usm)
cf00085d
C
630{
631 /*
3fdfd990 632 * For each lmb in ibm,dynamic-memory a corresponding
cf00085d
C
633 * entry in linux,drconf-usable-memory property contains
634 * a counter followed by that many (base, size) duple.
635 * read the counter from linux,drconf-usable-memory
636 */
637 return read_n_cells(n_mem_size_cells, usm);
638}
639
0204568a
PM
640/*
641 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
642 * node. This assumes n_mem_{addr,size}_cells have been set.
643 */
644static void __init parse_drconf_memory(struct device_node *memory)
645{
b08a2a12 646 const __be32 *uninitialized_var(dm), *usm;
cf00085d 647 unsigned int n, rc, ranges, is_kexec_kdump = 0;
3fdfd990 648 unsigned long lmb_size, base, size, sz;
8342681d 649 int nid;
aa709f3b 650 struct assoc_arrays aa = { .arrays = NULL };
8342681d
NF
651
652 n = of_get_drconf_memory(memory, &dm);
653 if (!n)
0204568a
PM
654 return;
655
3fdfd990
BH
656 lmb_size = of_get_lmb_size(memory);
657 if (!lmb_size)
8342681d
NF
658 return;
659
660 rc = of_get_assoc_arrays(memory, &aa);
661 if (rc)
0204568a
PM
662 return;
663
cf00085d
C
664 /* check if this is a kexec/kdump kernel */
665 usm = of_get_usable_memory(memory);
666 if (usm != NULL)
667 is_kexec_kdump = 1;
668
0204568a 669 for (; n != 0; --n) {
8342681d
NF
670 struct of_drconf_cell drmem;
671
672 read_drconf_cell(&drmem, &dm);
673
674 /* skip this block if the reserved bit is set in flags (0x80)
675 or if the block is not assigned to this partition (0x8) */
676 if ((drmem.flags & DRCONF_MEM_RESERVED)
677 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
0204568a 678 continue;
1daa6d08 679
cf00085d 680 base = drmem.base_addr;
3fdfd990 681 size = lmb_size;
cf00085d 682 ranges = 1;
8342681d 683
cf00085d
C
684 if (is_kexec_kdump) {
685 ranges = read_usm_ranges(&usm);
686 if (!ranges) /* there are no (base, size) duple */
687 continue;
688 }
689 do {
690 if (is_kexec_kdump) {
691 base = read_n_cells(n_mem_addr_cells, &usm);
692 size = read_n_cells(n_mem_size_cells, &usm);
693 }
694 nid = of_drconf_to_nid_single(&drmem, &aa);
695 fake_numa_create_new_node(
696 ((base + size) >> PAGE_SHIFT),
8342681d 697 &nid);
cf00085d
C
698 node_set_online(nid);
699 sz = numa_enforce_memory_limit(base, size);
700 if (sz)
1d7cfe18 701 memblock_set_node(base, sz, nid);
cf00085d 702 } while (--ranges);
0204568a
PM
703 }
704}
705
1da177e4
LT
706static int __init parse_numa_properties(void)
707{
94db7c5e 708 struct device_node *memory;
482ec7c4 709 int default_nid = 0;
1da177e4
LT
710 unsigned long i;
711
712 if (numa_enabled == 0) {
713 printk(KERN_WARNING "NUMA disabled by user\n");
714 return -1;
715 }
716
1da177e4
LT
717 min_common_depth = find_min_common_depth();
718
1da177e4
LT
719 if (min_common_depth < 0)
720 return min_common_depth;
721
bf4b85b0
NL
722 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
723
1da177e4 724 /*
482ec7c4
NL
725 * Even though we connect cpus to numa domains later in SMP
726 * init, we need to know the node ids now. This is because
727 * each node to be onlined must have NODE_DATA etc backing it.
1da177e4 728 */
482ec7c4 729 for_each_present_cpu(i) {
dfbe93a2 730 struct device_node *cpu;
cf950b7a 731 int nid;
1da177e4 732
8b16cd23 733 cpu = of_get_cpu_node(i, NULL);
482ec7c4 734 BUG_ON(!cpu);
953039c8 735 nid = of_node_to_nid_single(cpu);
482ec7c4 736 of_node_put(cpu);
1da177e4 737
482ec7c4
NL
738 /*
739 * Don't fall back to default_nid yet -- we will plug
740 * cpus into nodes once the memory scan has discovered
741 * the topology.
742 */
743 if (nid < 0)
744 continue;
745 node_set_online(nid);
1da177e4
LT
746 }
747
237a0989 748 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
94db7c5e
AB
749
750 for_each_node_by_type(memory, "memory") {
1da177e4
LT
751 unsigned long start;
752 unsigned long size;
cf950b7a 753 int nid;
1da177e4 754 int ranges;
b08a2a12 755 const __be32 *memcell_buf;
1da177e4
LT
756 unsigned int len;
757
e2eb6392 758 memcell_buf = of_get_property(memory,
ba759485
ME
759 "linux,usable-memory", &len);
760 if (!memcell_buf || len <= 0)
e2eb6392 761 memcell_buf = of_get_property(memory, "reg", &len);
1da177e4
LT
762 if (!memcell_buf || len <= 0)
763 continue;
764
cc5d0189
BH
765 /* ranges in cell */
766 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1da177e4
LT
767new_range:
768 /* these are order-sensitive, and modify the buffer pointer */
237a0989
MK
769 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
770 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1da177e4 771
482ec7c4
NL
772 /*
773 * Assumption: either all memory nodes or none will
774 * have associativity properties. If none, then
775 * everything goes to default_nid.
776 */
953039c8 777 nid = of_node_to_nid_single(memory);
482ec7c4
NL
778 if (nid < 0)
779 nid = default_nid;
1daa6d08
BS
780
781 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
482ec7c4 782 node_set_online(nid);
1da177e4 783
45fb6cea 784 if (!(size = numa_enforce_memory_limit(start, size))) {
1da177e4
LT
785 if (--ranges)
786 goto new_range;
787 else
788 continue;
789 }
790
1d7cfe18 791 memblock_set_node(start, size, nid);
1da177e4
LT
792
793 if (--ranges)
794 goto new_range;
795 }
796
0204568a 797 /*
dfbe93a2
AB
798 * Now do the same thing for each MEMBLOCK listed in the
799 * ibm,dynamic-memory property in the
800 * ibm,dynamic-reconfiguration-memory node.
0204568a
PM
801 */
802 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
803 if (memory)
804 parse_drconf_memory(memory);
805
1da177e4
LT
806 return 0;
807}
808
809static void __init setup_nonnuma(void)
810{
95f72d1e
YL
811 unsigned long top_of_ram = memblock_end_of_DRAM();
812 unsigned long total_ram = memblock_phys_mem_size();
c67c3cb4 813 unsigned long start_pfn, end_pfn;
28be7072
BH
814 unsigned int nid = 0;
815 struct memblock_region *reg;
1da177e4 816
e110b281 817 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1da177e4 818 top_of_ram, total_ram);
e110b281 819 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
1da177e4
LT
820 (top_of_ram - total_ram) >> 20);
821
28be7072 822 for_each_memblock(memory, reg) {
c7fc2de0
YL
823 start_pfn = memblock_region_memory_base_pfn(reg);
824 end_pfn = memblock_region_memory_end_pfn(reg);
1daa6d08
BS
825
826 fake_numa_create_new_node(end_pfn, &nid);
1d7cfe18
TH
827 memblock_set_node(PFN_PHYS(start_pfn),
828 PFN_PHYS(end_pfn - start_pfn), nid);
1daa6d08 829 node_set_online(nid);
c67c3cb4 830 }
1da177e4
LT
831}
832
4b703a23
AB
833void __init dump_numa_cpu_topology(void)
834{
835 unsigned int node;
836 unsigned int cpu, count;
837
838 if (min_common_depth == -1 || !numa_enabled)
839 return;
840
841 for_each_online_node(node) {
e110b281 842 printk(KERN_DEBUG "Node %d CPUs:", node);
4b703a23
AB
843
844 count = 0;
845 /*
846 * If we used a CPU iterator here we would miss printing
847 * the holes in the cpumap.
848 */
25863de0
AB
849 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
850 if (cpumask_test_cpu(cpu,
851 node_to_cpumask_map[node])) {
4b703a23
AB
852 if (count == 0)
853 printk(" %u", cpu);
854 ++count;
855 } else {
856 if (count > 1)
857 printk("-%u", cpu - 1);
858 count = 0;
859 }
860 }
861
862 if (count > 1)
25863de0 863 printk("-%u", nr_cpu_ids - 1);
4b703a23
AB
864 printk("\n");
865 }
866}
867
868static void __init dump_numa_memory_topology(void)
1da177e4
LT
869{
870 unsigned int node;
871 unsigned int count;
872
873 if (min_common_depth == -1 || !numa_enabled)
874 return;
875
876 for_each_online_node(node) {
877 unsigned long i;
878
e110b281 879 printk(KERN_DEBUG "Node %d Memory:", node);
1da177e4
LT
880
881 count = 0;
882
95f72d1e 883 for (i = 0; i < memblock_end_of_DRAM();
45fb6cea
AB
884 i += (1 << SECTION_SIZE_BITS)) {
885 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
1da177e4
LT
886 if (count == 0)
887 printk(" 0x%lx", i);
888 ++count;
889 } else {
890 if (count > 0)
891 printk("-0x%lx", i);
892 count = 0;
893 }
894 }
895
896 if (count > 0)
897 printk("-0x%lx", i);
898 printk("\n");
899 }
1da177e4
LT
900}
901
902/*
95f72d1e 903 * Allocate some memory, satisfying the memblock or bootmem allocator where
1da177e4
LT
904 * required. nid is the preferred node and end is the physical address of
905 * the highest address in the node.
906 *
0be210fd 907 * Returns the virtual address of the memory.
1da177e4 908 */
893473df 909static void __init *careful_zallocation(int nid, unsigned long size,
45fb6cea
AB
910 unsigned long align,
911 unsigned long end_pfn)
1da177e4 912{
0be210fd 913 void *ret;
45fb6cea 914 int new_nid;
0be210fd
DH
915 unsigned long ret_paddr;
916
95f72d1e 917 ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
1da177e4
LT
918
919 /* retry over all memory */
0be210fd 920 if (!ret_paddr)
95f72d1e 921 ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
1da177e4 922
0be210fd 923 if (!ret_paddr)
5d21ea2b 924 panic("numa.c: cannot allocate %lu bytes for node %d",
1da177e4
LT
925 size, nid);
926
0be210fd
DH
927 ret = __va(ret_paddr);
928
1da177e4 929 /*
c555e520 930 * We initialize the nodes in numeric order: 0, 1, 2...
95f72d1e 931 * and hand over control from the MEMBLOCK allocator to the
c555e520
DH
932 * bootmem allocator. If this function is called for
933 * node 5, then we know that all nodes <5 are using the
95f72d1e 934 * bootmem allocator instead of the MEMBLOCK allocator.
c555e520
DH
935 *
936 * So, check the nid from which this allocation came
937 * and double check to see if we need to use bootmem
95f72d1e 938 * instead of the MEMBLOCK. We don't free the MEMBLOCK memory
c555e520 939 * since it would be useless.
1da177e4 940 */
0be210fd 941 new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
45fb6cea 942 if (new_nid < nid) {
0be210fd 943 ret = __alloc_bootmem_node(NODE_DATA(new_nid),
1da177e4
LT
944 size, align, 0);
945
0be210fd 946 dbg("alloc_bootmem %p %lx\n", ret, size);
1da177e4
LT
947 }
948
893473df 949 memset(ret, 0, size);
0be210fd 950 return ret;
1da177e4
LT
951}
952
061d19f2 953static struct notifier_block ppc64_numa_nb = {
74b85f37
CS
954 .notifier_call = cpu_numa_callback,
955 .priority = 1 /* Must run before sched domains notifier. */
956};
957
28e86bdb 958static void __init mark_reserved_regions_for_nid(int nid)
4a618669
DH
959{
960 struct pglist_data *node = NODE_DATA(nid);
28be7072 961 struct memblock_region *reg;
4a618669 962
28be7072
BH
963 for_each_memblock(reserved, reg) {
964 unsigned long physbase = reg->base;
965 unsigned long size = reg->size;
4a618669 966 unsigned long start_pfn = physbase >> PAGE_SHIFT;
06eccea6 967 unsigned long end_pfn = PFN_UP(physbase + size);
4a618669 968 struct node_active_region node_ar;
6408068e 969 unsigned long node_end_pfn = pgdat_end_pfn(node);
4a618669
DH
970
971 /*
95f72d1e 972 * Check to make sure that this memblock.reserved area is
4a618669
DH
973 * within the bounds of the node that we care about.
974 * Checking the nid of the start and end points is not
975 * sufficient because the reserved area could span the
976 * entire node.
977 */
978 if (end_pfn <= node->node_start_pfn ||
979 start_pfn >= node_end_pfn)
980 continue;
981
982 get_node_active_region(start_pfn, &node_ar);
983 while (start_pfn < end_pfn &&
984 node_ar.start_pfn < node_ar.end_pfn) {
985 unsigned long reserve_size = size;
986 /*
987 * if reserved region extends past active region
988 * then trim size to active region
989 */
990 if (end_pfn > node_ar.end_pfn)
991 reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
06eccea6 992 - physbase;
a4c74ddd
DH
993 /*
994 * Only worry about *this* node, others may not
995 * yet have valid NODE_DATA().
996 */
997 if (node_ar.nid == nid) {
998 dbg("reserve_bootmem %lx %lx nid=%d\n",
999 physbase, reserve_size, node_ar.nid);
1000 reserve_bootmem_node(NODE_DATA(node_ar.nid),
1001 physbase, reserve_size,
1002 BOOTMEM_DEFAULT);
1003 }
4a618669
DH
1004 /*
1005 * if reserved region is contained in the active region
1006 * then done.
1007 */
1008 if (end_pfn <= node_ar.end_pfn)
1009 break;
1010
1011 /*
1012 * reserved region extends past the active region
1013 * get next active region that contains this
1014 * reserved region
1015 */
1016 start_pfn = node_ar.end_pfn;
1017 physbase = start_pfn << PAGE_SHIFT;
1018 size = size - reserve_size;
1019 get_node_active_region(start_pfn, &node_ar);
1020 }
1021 }
1022}
1023
1024
1da177e4
LT
1025void __init do_init_bootmem(void)
1026{
1027 int nid;
1da177e4
LT
1028
1029 min_low_pfn = 0;
95f72d1e 1030 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1da177e4
LT
1031 max_pfn = max_low_pfn;
1032
1033 if (parse_numa_properties())
1034 setup_nonnuma();
1035 else
4b703a23 1036 dump_numa_memory_topology();
1da177e4 1037
1da177e4 1038 for_each_online_node(nid) {
c67c3cb4 1039 unsigned long start_pfn, end_pfn;
0be210fd 1040 void *bootmem_vaddr;
1da177e4
LT
1041 unsigned long bootmap_pages;
1042
c67c3cb4 1043 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1da177e4 1044
4a618669
DH
1045 /*
1046 * Allocate the node structure node local if possible
1047 *
1048 * Be careful moving this around, as it relies on all
1049 * previous nodes' bootmem to be initialized and have
1050 * all reserved areas marked.
1051 */
893473df 1052 NODE_DATA(nid) = careful_zallocation(nid,
1da177e4 1053 sizeof(struct pglist_data),
45fb6cea 1054 SMP_CACHE_BYTES, end_pfn);
1da177e4
LT
1055
1056 dbg("node %d\n", nid);
1057 dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
1058
b61bfa3c 1059 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
45fb6cea
AB
1060 NODE_DATA(nid)->node_start_pfn = start_pfn;
1061 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1da177e4
LT
1062
1063 if (NODE_DATA(nid)->node_spanned_pages == 0)
1064 continue;
1065
45fb6cea
AB
1066 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
1067 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1da177e4 1068
45fb6cea 1069 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
893473df 1070 bootmem_vaddr = careful_zallocation(nid,
45fb6cea
AB
1071 bootmap_pages << PAGE_SHIFT,
1072 PAGE_SIZE, end_pfn);
1da177e4 1073
0be210fd 1074 dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1da177e4 1075
0be210fd
DH
1076 init_bootmem_node(NODE_DATA(nid),
1077 __pa(bootmem_vaddr) >> PAGE_SHIFT,
45fb6cea 1078 start_pfn, end_pfn);
1da177e4 1079
c67c3cb4 1080 free_bootmem_with_active_regions(nid, end_pfn);
4a618669
DH
1081 /*
1082 * Be very careful about moving this around. Future
893473df 1083 * calls to careful_zallocation() depend on this getting
4a618669
DH
1084 * done correctly.
1085 */
1086 mark_reserved_regions_for_nid(nid);
8f64e1f2 1087 sparse_memory_present_with_active_regions(nid);
4a618669 1088 }
d3f6204a
BH
1089
1090 init_bootmem_done = 1;
25863de0
AB
1091
1092 /*
1093 * Now bootmem is initialised we can create the node to cpumask
1094 * lookup tables and setup the cpu callback to populate them.
1095 */
1096 setup_node_to_cpumask_map();
1097
d4edc5b6 1098 reset_numa_cpu_lookup_table();
25863de0
AB
1099 register_cpu_notifier(&ppc64_numa_nb);
1100 cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
1101 (void *)(unsigned long)boot_cpuid);
1da177e4
LT
1102}
1103
1104void __init paging_init(void)
1105{
6391af17
MG
1106 unsigned long max_zone_pfns[MAX_NR_ZONES];
1107 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
95f72d1e 1108 max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
c67c3cb4 1109 free_area_init_nodes(max_zone_pfns);
1da177e4
LT
1110}
1111
1112static int __init early_numa(char *p)
1113{
1114 if (!p)
1115 return 0;
1116
1117 if (strstr(p, "off"))
1118 numa_enabled = 0;
1119
1120 if (strstr(p, "debug"))
1121 numa_debug = 1;
1122
1daa6d08
BS
1123 p = strstr(p, "fake=");
1124 if (p)
1125 cmdline = p + strlen("fake=");
1126
1da177e4
LT
1127 return 0;
1128}
1129early_param("numa", early_numa);
237a0989
MK
1130
1131#ifdef CONFIG_MEMORY_HOTPLUG
0db9360a 1132/*
0f16ef7f
NF
1133 * Find the node associated with a hot added memory section for
1134 * memory represented in the device tree by the property
1135 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
0db9360a
NF
1136 */
1137static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1138 unsigned long scn_addr)
1139{
b08a2a12 1140 const __be32 *dm;
0f16ef7f 1141 unsigned int drconf_cell_cnt, rc;
3fdfd990 1142 unsigned long lmb_size;
0db9360a 1143 struct assoc_arrays aa;
0f16ef7f 1144 int nid = -1;
0db9360a 1145
0f16ef7f
NF
1146 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1147 if (!drconf_cell_cnt)
1148 return -1;
0db9360a 1149
3fdfd990
BH
1150 lmb_size = of_get_lmb_size(memory);
1151 if (!lmb_size)
0f16ef7f 1152 return -1;
0db9360a
NF
1153
1154 rc = of_get_assoc_arrays(memory, &aa);
1155 if (rc)
0f16ef7f 1156 return -1;
0db9360a 1157
0f16ef7f 1158 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
0db9360a
NF
1159 struct of_drconf_cell drmem;
1160
1161 read_drconf_cell(&drmem, &dm);
1162
1163 /* skip this block if it is reserved or not assigned to
1164 * this partition */
1165 if ((drmem.flags & DRCONF_MEM_RESERVED)
1166 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1167 continue;
1168
0f16ef7f 1169 if ((scn_addr < drmem.base_addr)
3fdfd990 1170 || (scn_addr >= (drmem.base_addr + lmb_size)))
0f16ef7f
NF
1171 continue;
1172
0db9360a 1173 nid = of_drconf_to_nid_single(&drmem, &aa);
0f16ef7f
NF
1174 break;
1175 }
1176
1177 return nid;
1178}
1179
1180/*
1181 * Find the node associated with a hot added memory section for memory
1182 * represented in the device tree as a node (i.e. memory@XXXX) for
95f72d1e 1183 * each memblock.
0f16ef7f 1184 */
ec32dd66 1185static int hot_add_node_scn_to_nid(unsigned long scn_addr)
0f16ef7f 1186{
94db7c5e 1187 struct device_node *memory;
0f16ef7f
NF
1188 int nid = -1;
1189
94db7c5e 1190 for_each_node_by_type(memory, "memory") {
0f16ef7f
NF
1191 unsigned long start, size;
1192 int ranges;
b08a2a12 1193 const __be32 *memcell_buf;
0f16ef7f
NF
1194 unsigned int len;
1195
1196 memcell_buf = of_get_property(memory, "reg", &len);
1197 if (!memcell_buf || len <= 0)
1198 continue;
1199
1200 /* ranges in cell */
1201 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1202
1203 while (ranges--) {
1204 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1205 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1206
1207 if ((scn_addr < start) || (scn_addr >= (start + size)))
1208 continue;
1209
1210 nid = of_node_to_nid_single(memory);
1211 break;
1212 }
0db9360a 1213
0f16ef7f
NF
1214 if (nid >= 0)
1215 break;
0db9360a
NF
1216 }
1217
60831842
AB
1218 of_node_put(memory);
1219
0f16ef7f 1220 return nid;
0db9360a
NF
1221}
1222
237a0989
MK
1223/*
1224 * Find the node associated with a hot added memory section. Section
95f72d1e
YL
1225 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1226 * sections are fully contained within a single MEMBLOCK.
237a0989
MK
1227 */
1228int hot_add_scn_to_nid(unsigned long scn_addr)
1229{
1230 struct device_node *memory = NULL;
0f16ef7f 1231 int nid, found = 0;
237a0989
MK
1232
1233 if (!numa_enabled || (min_common_depth < 0))
72c33688 1234 return first_online_node;
0db9360a
NF
1235
1236 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1237 if (memory) {
1238 nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1239 of_node_put(memory);
0f16ef7f
NF
1240 } else {
1241 nid = hot_add_node_scn_to_nid(scn_addr);
0db9360a 1242 }
237a0989 1243
0f16ef7f 1244 if (nid < 0 || !node_online(nid))
72c33688 1245 nid = first_online_node;
237a0989 1246
0f16ef7f
NF
1247 if (NODE_DATA(nid)->node_spanned_pages)
1248 return nid;
237a0989 1249
0f16ef7f
NF
1250 for_each_online_node(nid) {
1251 if (NODE_DATA(nid)->node_spanned_pages) {
1252 found = 1;
1253 break;
237a0989 1254 }
237a0989 1255 }
0f16ef7f
NF
1256
1257 BUG_ON(!found);
1258 return nid;
237a0989 1259}
0f16ef7f 1260
cd34206e
NA
1261static u64 hot_add_drconf_memory_max(void)
1262{
1263 struct device_node *memory = NULL;
1264 unsigned int drconf_cell_cnt = 0;
1265 u64 lmb_size = 0;
ec32dd66 1266 const __be32 *dm = NULL;
cd34206e
NA
1267
1268 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1269 if (memory) {
1270 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1271 lmb_size = of_get_lmb_size(memory);
1272 of_node_put(memory);
1273 }
1274 return lmb_size * drconf_cell_cnt;
1275}
1276
1277/*
1278 * memory_hotplug_max - return max address of memory that may be added
1279 *
1280 * This is currently only used on systems that support drconfig memory
1281 * hotplug.
1282 */
1283u64 memory_hotplug_max(void)
1284{
1285 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1286}
237a0989 1287#endif /* CONFIG_MEMORY_HOTPLUG */
9eff1a38 1288
bd03403a 1289/* Virtual Processor Home Node (VPHN) support */
39bf990e 1290#ifdef CONFIG_PPC_SPLPAR
30c05350
NF
1291struct topology_update_data {
1292 struct topology_update_data *next;
1293 unsigned int cpu;
1294 int old_nid;
1295 int new_nid;
1296};
1297
5de16699 1298static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
9eff1a38
JL
1299static cpumask_t cpu_associativity_changes_mask;
1300static int vphn_enabled;
5d88aa85
JL
1301static int prrn_enabled;
1302static void reset_topology_timer(void);
9eff1a38
JL
1303
1304/*
1305 * Store the current values of the associativity change counters in the
1306 * hypervisor.
1307 */
1308static void setup_cpu_associativity_change_counters(void)
1309{
cd9d6cc7 1310 int cpu;
9eff1a38 1311
5de16699
AB
1312 /* The VPHN feature supports a maximum of 8 reference points */
1313 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1314
9eff1a38 1315 for_each_possible_cpu(cpu) {
cd9d6cc7 1316 int i;
9eff1a38
JL
1317 u8 *counts = vphn_cpu_change_counts[cpu];
1318 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1319
5de16699 1320 for (i = 0; i < distance_ref_points_depth; i++)
9eff1a38 1321 counts[i] = hypervisor_counts[i];
9eff1a38
JL
1322 }
1323}
1324
1325/*
1326 * The hypervisor maintains a set of 8 associativity change counters in
1327 * the VPA of each cpu that correspond to the associativity levels in the
1328 * ibm,associativity-reference-points property. When an associativity
1329 * level changes, the corresponding counter is incremented.
1330 *
1331 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1332 * node associativity levels have changed.
1333 *
1334 * Returns the number of cpus with unhandled associativity changes.
1335 */
1336static int update_cpu_associativity_changes_mask(void)
1337{
5d88aa85 1338 int cpu;
9eff1a38
JL
1339 cpumask_t *changes = &cpu_associativity_changes_mask;
1340
9eff1a38
JL
1341 for_each_possible_cpu(cpu) {
1342 int i, changed = 0;
1343 u8 *counts = vphn_cpu_change_counts[cpu];
1344 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1345
5de16699 1346 for (i = 0; i < distance_ref_points_depth; i++) {
d69043e8 1347 if (hypervisor_counts[i] != counts[i]) {
9eff1a38
JL
1348 counts[i] = hypervisor_counts[i];
1349 changed = 1;
1350 }
1351 }
1352 if (changed) {
3be7db6a
RJ
1353 cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1354 cpu = cpu_last_thread_sibling(cpu);
9eff1a38
JL
1355 }
1356 }
1357
5d88aa85 1358 return cpumask_weight(changes);
9eff1a38
JL
1359}
1360
c0e5e46f
AB
1361/*
1362 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1363 * the complete property we have to add the length in the first cell.
1364 */
1365#define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
9eff1a38
JL
1366
1367/*
1368 * Convert the associativity domain numbers returned from the hypervisor
1369 * to the sequence they would appear in the ibm,associativity property.
1370 */
b08a2a12 1371static int vphn_unpack_associativity(const long *packed, __be32 *unpacked)
9eff1a38 1372{
cd9d6cc7 1373 int i, nr_assoc_doms = 0;
b08a2a12 1374 const __be16 *field = (const __be16 *) packed;
9eff1a38
JL
1375
1376#define VPHN_FIELD_UNUSED (0xffff)
1377#define VPHN_FIELD_MSB (0x8000)
1378#define VPHN_FIELD_MASK (~VPHN_FIELD_MSB)
1379
c0e5e46f 1380 for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
b08a2a12 1381 if (be16_to_cpup(field) == VPHN_FIELD_UNUSED) {
9eff1a38
JL
1382 /* All significant fields processed, and remaining
1383 * fields contain the reserved value of all 1's.
1384 * Just store them.
1385 */
b08a2a12 1386 unpacked[i] = *((__be32 *)field);
9eff1a38 1387 field += 2;
b08a2a12 1388 } else if (be16_to_cpup(field) & VPHN_FIELD_MSB) {
9eff1a38 1389 /* Data is in the lower 15 bits of this field */
b08a2a12
AP
1390 unpacked[i] = cpu_to_be32(
1391 be16_to_cpup(field) & VPHN_FIELD_MASK);
9eff1a38
JL
1392 field++;
1393 nr_assoc_doms++;
7639adaa 1394 } else {
9eff1a38
JL
1395 /* Data is in the lower 15 bits of this field
1396 * concatenated with the next 16 bit field
1397 */
b08a2a12 1398 unpacked[i] = *((__be32 *)field);
9eff1a38
JL
1399 field += 2;
1400 nr_assoc_doms++;
1401 }
1402 }
1403
c0e5e46f 1404 /* The first cell contains the length of the property */
b08a2a12 1405 unpacked[0] = cpu_to_be32(nr_assoc_doms);
c0e5e46f 1406
9eff1a38
JL
1407 return nr_assoc_doms;
1408}
1409
1410/*
1411 * Retrieve the new associativity information for a virtual processor's
1412 * home node.
1413 */
b08a2a12 1414static long hcall_vphn(unsigned long cpu, __be32 *associativity)
9eff1a38 1415{
cd9d6cc7 1416 long rc;
9eff1a38
JL
1417 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1418 u64 flags = 1;
1419 int hwcpu = get_hard_smp_processor_id(cpu);
1420
1421 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1422 vphn_unpack_associativity(retbuf, associativity);
1423
1424 return rc;
1425}
1426
1427static long vphn_get_associativity(unsigned long cpu,
b08a2a12 1428 __be32 *associativity)
9eff1a38 1429{
cd9d6cc7 1430 long rc;
9eff1a38
JL
1431
1432 rc = hcall_vphn(cpu, associativity);
1433
1434 switch (rc) {
1435 case H_FUNCTION:
1436 printk(KERN_INFO
1437 "VPHN is not supported. Disabling polling...\n");
1438 stop_topology_update();
1439 break;
1440 case H_HARDWARE:
1441 printk(KERN_ERR
1442 "hcall_vphn() experienced a hardware fault "
1443 "preventing VPHN. Disabling polling...\n");
1444 stop_topology_update();
1445 }
1446
1447 return rc;
1448}
1449
30c05350
NF
1450/*
1451 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1452 * characteristics change. This function doesn't perform any locking and is
1453 * only safe to call from stop_machine().
1454 */
1455static int update_cpu_topology(void *data)
1456{
1457 struct topology_update_data *update;
1458 unsigned long cpu;
1459
1460 if (!data)
1461 return -EINVAL;
1462
3be7db6a 1463 cpu = smp_processor_id();
30c05350
NF
1464
1465 for (update = data; update; update = update->next) {
1466 if (cpu != update->cpu)
1467 continue;
1468
30c05350
NF
1469 unmap_cpu_from_node(update->cpu);
1470 map_cpu_to_node(update->cpu, update->new_nid);
176bbf14 1471 vdso_getcpu_init();
30c05350
NF
1472 }
1473
1474 return 0;
1475}
1476
d4edc5b6
SB
1477static int update_lookup_table(void *data)
1478{
1479 struct topology_update_data *update;
1480
1481 if (!data)
1482 return -EINVAL;
1483
1484 /*
1485 * Upon topology update, the numa-cpu lookup table needs to be updated
1486 * for all threads in the core, including offline CPUs, to ensure that
1487 * future hotplug operations respect the cpu-to-node associativity
1488 * properly.
1489 */
1490 for (update = data; update; update = update->next) {
1491 int nid, base, j;
1492
1493 nid = update->new_nid;
1494 base = cpu_first_thread_sibling(update->cpu);
1495
1496 for (j = 0; j < threads_per_core; j++) {
1497 update_numa_cpu_lookup_table(base + j, nid);
1498 }
1499 }
1500
1501 return 0;
1502}
1503
9eff1a38
JL
1504/*
1505 * Update the node maps and sysfs entries for each cpu whose home node
79c5fceb 1506 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
9eff1a38
JL
1507 */
1508int arch_update_cpu_topology(void)
1509{
3be7db6a 1510 unsigned int cpu, sibling, changed = 0;
30c05350 1511 struct topology_update_data *updates, *ud;
b08a2a12 1512 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
176bbf14 1513 cpumask_t updated_cpus;
8a25a2fd 1514 struct device *dev;
3be7db6a 1515 int weight, new_nid, i = 0;
9eff1a38 1516
30c05350
NF
1517 weight = cpumask_weight(&cpu_associativity_changes_mask);
1518 if (!weight)
1519 return 0;
1520
1521 updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1522 if (!updates)
1523 return 0;
9eff1a38 1524
176bbf14
JL
1525 cpumask_clear(&updated_cpus);
1526
5d88aa85 1527 for_each_cpu(cpu, &cpu_associativity_changes_mask) {
3be7db6a
RJ
1528 /*
1529 * If siblings aren't flagged for changes, updates list
1530 * will be too short. Skip on this update and set for next
1531 * update.
1532 */
1533 if (!cpumask_subset(cpu_sibling_mask(cpu),
1534 &cpu_associativity_changes_mask)) {
1535 pr_info("Sibling bits not set for associativity "
1536 "change, cpu%d\n", cpu);
1537 cpumask_or(&cpu_associativity_changes_mask,
1538 &cpu_associativity_changes_mask,
1539 cpu_sibling_mask(cpu));
1540 cpu = cpu_last_thread_sibling(cpu);
1541 continue;
1542 }
9eff1a38 1543
3be7db6a
RJ
1544 /* Use associativity from first thread for all siblings */
1545 vphn_get_associativity(cpu, associativity);
1546 new_nid = associativity_to_nid(associativity);
1547 if (new_nid < 0 || !node_online(new_nid))
1548 new_nid = first_online_node;
1549
1550 if (new_nid == numa_cpu_lookup_table[cpu]) {
1551 cpumask_andnot(&cpu_associativity_changes_mask,
1552 &cpu_associativity_changes_mask,
1553 cpu_sibling_mask(cpu));
1554 cpu = cpu_last_thread_sibling(cpu);
1555 continue;
1556 }
9eff1a38 1557
3be7db6a
RJ
1558 for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1559 ud = &updates[i++];
1560 ud->cpu = sibling;
1561 ud->new_nid = new_nid;
1562 ud->old_nid = numa_cpu_lookup_table[sibling];
1563 cpumask_set_cpu(sibling, &updated_cpus);
1564 if (i < weight)
1565 ud->next = &updates[i];
1566 }
1567 cpu = cpu_last_thread_sibling(cpu);
30c05350
NF
1568 }
1569
176bbf14 1570 stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
30c05350 1571
d4edc5b6
SB
1572 /*
1573 * Update the numa-cpu lookup table with the new mappings, even for
1574 * offline CPUs. It is best to perform this update from the stop-
1575 * machine context.
1576 */
1577 stop_machine(update_lookup_table, &updates[0],
1578 cpumask_of(raw_smp_processor_id()));
1579
30c05350 1580 for (ud = &updates[0]; ud; ud = ud->next) {
dd023217
NF
1581 unregister_cpu_under_node(ud->cpu, ud->old_nid);
1582 register_cpu_under_node(ud->cpu, ud->new_nid);
1583
30c05350 1584 dev = get_cpu_device(ud->cpu);
8a25a2fd
KS
1585 if (dev)
1586 kobject_uevent(&dev->kobj, KOBJ_CHANGE);
30c05350 1587 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
79c5fceb 1588 changed = 1;
9eff1a38
JL
1589 }
1590
30c05350 1591 kfree(updates);
79c5fceb 1592 return changed;
9eff1a38
JL
1593}
1594
1595static void topology_work_fn(struct work_struct *work)
1596{
1597 rebuild_sched_domains();
1598}
1599static DECLARE_WORK(topology_work, topology_work_fn);
1600
ec32dd66 1601static void topology_schedule_update(void)
9eff1a38
JL
1602{
1603 schedule_work(&topology_work);
1604}
1605
1606static void topology_timer_fn(unsigned long ignored)
1607{
5d88aa85 1608 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
9eff1a38 1609 topology_schedule_update();
5d88aa85
JL
1610 else if (vphn_enabled) {
1611 if (update_cpu_associativity_changes_mask() > 0)
1612 topology_schedule_update();
1613 reset_topology_timer();
1614 }
9eff1a38
JL
1615}
1616static struct timer_list topology_timer =
1617 TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1618
5d88aa85 1619static void reset_topology_timer(void)
9eff1a38
JL
1620{
1621 topology_timer.data = 0;
1622 topology_timer.expires = jiffies + 60 * HZ;
5d88aa85 1623 mod_timer(&topology_timer, topology_timer.expires);
9eff1a38
JL
1624}
1625
601abdc3
NF
1626#ifdef CONFIG_SMP
1627
5d88aa85
JL
1628static void stage_topology_update(int core_id)
1629{
1630 cpumask_or(&cpu_associativity_changes_mask,
1631 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1632 reset_topology_timer();
1633}
1634
1635static int dt_update_callback(struct notifier_block *nb,
1636 unsigned long action, void *data)
1637{
1638 struct of_prop_reconfig *update;
1639 int rc = NOTIFY_DONE;
1640
1641 switch (action) {
5d88aa85
JL
1642 case OF_RECONFIG_UPDATE_PROPERTY:
1643 update = (struct of_prop_reconfig *)data;
30c05350
NF
1644 if (!of_prop_cmp(update->dn->type, "cpu") &&
1645 !of_prop_cmp(update->prop->name, "ibm,associativity")) {
5d88aa85
JL
1646 u32 core_id;
1647 of_property_read_u32(update->dn, "reg", &core_id);
1648 stage_topology_update(core_id);
1649 rc = NOTIFY_OK;
1650 }
1651 break;
1652 }
1653
1654 return rc;
9eff1a38
JL
1655}
1656
5d88aa85
JL
1657static struct notifier_block dt_update_nb = {
1658 .notifier_call = dt_update_callback,
1659};
1660
601abdc3
NF
1661#endif
1662
9eff1a38 1663/*
5d88aa85 1664 * Start polling for associativity changes.
9eff1a38
JL
1665 */
1666int start_topology_update(void)
1667{
1668 int rc = 0;
1669
5d88aa85
JL
1670 if (firmware_has_feature(FW_FEATURE_PRRN)) {
1671 if (!prrn_enabled) {
1672 prrn_enabled = 1;
1673 vphn_enabled = 0;
601abdc3 1674#ifdef CONFIG_SMP
5d88aa85 1675 rc = of_reconfig_notifier_register(&dt_update_nb);
601abdc3 1676#endif
5d88aa85 1677 }
b7abef04 1678 } else if (firmware_has_feature(FW_FEATURE_VPHN) &&
f13c13a0 1679 lppaca_shared_proc(get_lppaca())) {
5d88aa85
JL
1680 if (!vphn_enabled) {
1681 prrn_enabled = 0;
1682 vphn_enabled = 1;
1683 setup_cpu_associativity_change_counters();
1684 init_timer_deferrable(&topology_timer);
1685 reset_topology_timer();
1686 }
9eff1a38
JL
1687 }
1688
1689 return rc;
1690}
9eff1a38
JL
1691
1692/*
1693 * Disable polling for VPHN associativity changes.
1694 */
1695int stop_topology_update(void)
1696{
5d88aa85
JL
1697 int rc = 0;
1698
1699 if (prrn_enabled) {
1700 prrn_enabled = 0;
601abdc3 1701#ifdef CONFIG_SMP
5d88aa85 1702 rc = of_reconfig_notifier_unregister(&dt_update_nb);
601abdc3 1703#endif
5d88aa85
JL
1704 } else if (vphn_enabled) {
1705 vphn_enabled = 0;
1706 rc = del_timer_sync(&topology_timer);
1707 }
1708
1709 return rc;
9eff1a38 1710}
e04fa612
NF
1711
1712int prrn_is_enabled(void)
1713{
1714 return prrn_enabled;
1715}
1716
1717static int topology_read(struct seq_file *file, void *v)
1718{
1719 if (vphn_enabled || prrn_enabled)
1720 seq_puts(file, "on\n");
1721 else
1722 seq_puts(file, "off\n");
1723
1724 return 0;
1725}
1726
1727static int topology_open(struct inode *inode, struct file *file)
1728{
1729 return single_open(file, topology_read, NULL);
1730}
1731
1732static ssize_t topology_write(struct file *file, const char __user *buf,
1733 size_t count, loff_t *off)
1734{
1735 char kbuf[4]; /* "on" or "off" plus null. */
1736 int read_len;
1737
1738 read_len = count < 3 ? count : 3;
1739 if (copy_from_user(kbuf, buf, read_len))
1740 return -EINVAL;
1741
1742 kbuf[read_len] = '\0';
1743
1744 if (!strncmp(kbuf, "on", 2))
1745 start_topology_update();
1746 else if (!strncmp(kbuf, "off", 3))
1747 stop_topology_update();
1748 else
1749 return -EINVAL;
1750
1751 return count;
1752}
1753
1754static const struct file_operations topology_ops = {
1755 .read = seq_read,
1756 .write = topology_write,
1757 .open = topology_open,
1758 .release = single_release
1759};
1760
1761static int topology_update_init(void)
1762{
1763 start_topology_update();
1764 proc_create("powerpc/topology_updates", 644, NULL, &topology_ops);
1765
1766 return 0;
9eff1a38 1767}
e04fa612 1768device_initcall(topology_update_init);
39bf990e 1769#endif /* CONFIG_PPC_SPLPAR */