powerpc/pseries: Update CPU maps when device tree is updated
[linux-2.6-block.git] / arch / powerpc / mm / numa.c
CommitLineData
1da177e4
LT
1/*
2 * pSeries NUMA support
3 *
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11#include <linux/threads.h>
12#include <linux/bootmem.h>
13#include <linux/init.h>
14#include <linux/mm.h>
15#include <linux/mmzone.h>
4b16f8e2 16#include <linux/export.h>
1da177e4
LT
17#include <linux/nodemask.h>
18#include <linux/cpu.h>
19#include <linux/notifier.h>
95f72d1e 20#include <linux/memblock.h>
6df1646e 21#include <linux/of.h>
06eccea6 22#include <linux/pfn.h>
9eff1a38
JL
23#include <linux/cpuset.h>
24#include <linux/node.h>
45fb6cea 25#include <asm/sparsemem.h>
d9b2b2a2 26#include <asm/prom.h>
2249ca9d 27#include <asm/smp.h>
9eff1a38
JL
28#include <asm/firmware.h>
29#include <asm/paca.h>
39bf990e 30#include <asm/hvcall.h>
ae3a197e 31#include <asm/setup.h>
1da177e4
LT
32
33static int numa_enabled = 1;
34
1daa6d08
BS
35static char *cmdline __initdata;
36
1da177e4
LT
37static int numa_debug;
38#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
39
45fb6cea 40int numa_cpu_lookup_table[NR_CPUS];
25863de0 41cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
1da177e4 42struct pglist_data *node_data[MAX_NUMNODES];
45fb6cea
AB
43
44EXPORT_SYMBOL(numa_cpu_lookup_table);
25863de0 45EXPORT_SYMBOL(node_to_cpumask_map);
45fb6cea
AB
46EXPORT_SYMBOL(node_data);
47
1da177e4 48static int min_common_depth;
237a0989 49static int n_mem_addr_cells, n_mem_size_cells;
41eab6f8
AB
50static int form1_affinity;
51
52#define MAX_DISTANCE_REF_POINTS 4
53static int distance_ref_points_depth;
54static const unsigned int *distance_ref_points;
55static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
1da177e4 56
25863de0
AB
57/*
58 * Allocate node_to_cpumask_map based on number of available nodes
59 * Requires node_possible_map to be valid.
60 *
9512938b 61 * Note: cpumask_of_node() is not valid until after this is done.
25863de0
AB
62 */
63static void __init setup_node_to_cpumask_map(void)
64{
65 unsigned int node, num = 0;
66
67 /* setup nr_node_ids if not done yet */
68 if (nr_node_ids == MAX_NUMNODES) {
69 for_each_node_mask(node, node_possible_map)
70 num = node;
71 nr_node_ids = num + 1;
72 }
73
74 /* allocate the map */
75 for (node = 0; node < nr_node_ids; node++)
76 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
77
78 /* cpumask_of_node() will now work */
79 dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
80}
81
55671f3c 82static int __init fake_numa_create_new_node(unsigned long end_pfn,
1daa6d08
BS
83 unsigned int *nid)
84{
85 unsigned long long mem;
86 char *p = cmdline;
87 static unsigned int fake_nid;
88 static unsigned long long curr_boundary;
89
90 /*
91 * Modify node id, iff we started creating NUMA nodes
92 * We want to continue from where we left of the last time
93 */
94 if (fake_nid)
95 *nid = fake_nid;
96 /*
97 * In case there are no more arguments to parse, the
98 * node_id should be the same as the last fake node id
99 * (we've handled this above).
100 */
101 if (!p)
102 return 0;
103
104 mem = memparse(p, &p);
105 if (!mem)
106 return 0;
107
108 if (mem < curr_boundary)
109 return 0;
110
111 curr_boundary = mem;
112
113 if ((end_pfn << PAGE_SHIFT) > mem) {
114 /*
115 * Skip commas and spaces
116 */
117 while (*p == ',' || *p == ' ' || *p == '\t')
118 p++;
119
120 cmdline = p;
121 fake_nid++;
122 *nid = fake_nid;
123 dbg("created new fake_node with id %d\n", fake_nid);
124 return 1;
125 }
126 return 0;
127}
128
8f64e1f2 129/*
5dfe8660 130 * get_node_active_region - Return active region containing pfn
e8170372 131 * Active range returned is empty if none found.
5dfe8660
TH
132 * @pfn: The page to return the region for
133 * @node_ar: Returned set to the active region containing @pfn
8f64e1f2 134 */
5dfe8660
TH
135static void __init get_node_active_region(unsigned long pfn,
136 struct node_active_region *node_ar)
8f64e1f2 137{
5dfe8660
TH
138 unsigned long start_pfn, end_pfn;
139 int i, nid;
140
141 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
142 if (pfn >= start_pfn && pfn < end_pfn) {
143 node_ar->nid = nid;
144 node_ar->start_pfn = start_pfn;
145 node_ar->end_pfn = end_pfn;
146 break;
147 }
148 }
8f64e1f2
JT
149}
150
39bf990e 151static void map_cpu_to_node(int cpu, int node)
1da177e4
LT
152{
153 numa_cpu_lookup_table[cpu] = node;
45fb6cea 154
bf4b85b0
NL
155 dbg("adding cpu %d to node %d\n", cpu, node);
156
25863de0
AB
157 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
158 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
1da177e4
LT
159}
160
39bf990e 161#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
1da177e4
LT
162static void unmap_cpu_from_node(unsigned long cpu)
163{
164 int node = numa_cpu_lookup_table[cpu];
165
166 dbg("removing cpu %lu from node %d\n", cpu, node);
167
25863de0 168 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
429f4d8d 169 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
1da177e4
LT
170 } else {
171 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
172 cpu, node);
173 }
174}
39bf990e 175#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
1da177e4 176
1da177e4 177/* must hold reference to node during call */
a7f67bdf 178static const int *of_get_associativity(struct device_node *dev)
1da177e4 179{
e2eb6392 180 return of_get_property(dev, "ibm,associativity", NULL);
1da177e4
LT
181}
182
cf00085d
C
183/*
184 * Returns the property linux,drconf-usable-memory if
185 * it exists (the property exists only in kexec/kdump kernels,
186 * added by kexec-tools)
187 */
188static const u32 *of_get_usable_memory(struct device_node *memory)
189{
190 const u32 *prop;
191 u32 len;
192 prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
193 if (!prop || len < sizeof(unsigned int))
194 return 0;
195 return prop;
196}
197
41eab6f8
AB
198int __node_distance(int a, int b)
199{
200 int i;
201 int distance = LOCAL_DISTANCE;
202
203 if (!form1_affinity)
7122beee 204 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
41eab6f8
AB
205
206 for (i = 0; i < distance_ref_points_depth; i++) {
207 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
208 break;
209
210 /* Double the distance for each NUMA level */
211 distance *= 2;
212 }
213
214 return distance;
215}
216
217static void initialize_distance_lookup_table(int nid,
218 const unsigned int *associativity)
219{
220 int i;
221
222 if (!form1_affinity)
223 return;
224
225 for (i = 0; i < distance_ref_points_depth; i++) {
226 distance_lookup_table[nid][i] =
227 associativity[distance_ref_points[i]];
228 }
229}
230
482ec7c4
NL
231/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
232 * info is found.
233 */
9eff1a38 234static int associativity_to_nid(const unsigned int *associativity)
1da177e4 235{
482ec7c4 236 int nid = -1;
1da177e4
LT
237
238 if (min_common_depth == -1)
482ec7c4 239 goto out;
1da177e4 240
9eff1a38
JL
241 if (associativity[0] >= min_common_depth)
242 nid = associativity[min_common_depth];
bc16a759
NL
243
244 /* POWER4 LPAR uses 0xffff as invalid node */
482ec7c4
NL
245 if (nid == 0xffff || nid >= MAX_NUMNODES)
246 nid = -1;
41eab6f8 247
9eff1a38
JL
248 if (nid > 0 && associativity[0] >= distance_ref_points_depth)
249 initialize_distance_lookup_table(nid, associativity);
41eab6f8 250
482ec7c4 251out:
cf950b7a 252 return nid;
1da177e4
LT
253}
254
9eff1a38
JL
255/* Returns the nid associated with the given device tree node,
256 * or -1 if not found.
257 */
258static int of_node_to_nid_single(struct device_node *device)
259{
260 int nid = -1;
261 const unsigned int *tmp;
262
263 tmp = of_get_associativity(device);
264 if (tmp)
265 nid = associativity_to_nid(tmp);
266 return nid;
267}
268
953039c8
JK
269/* Walk the device tree upwards, looking for an associativity id */
270int of_node_to_nid(struct device_node *device)
271{
272 struct device_node *tmp;
273 int nid = -1;
274
275 of_node_get(device);
276 while (device) {
277 nid = of_node_to_nid_single(device);
278 if (nid != -1)
279 break;
280
281 tmp = device;
282 device = of_get_parent(tmp);
283 of_node_put(tmp);
284 }
285 of_node_put(device);
286
287 return nid;
288}
289EXPORT_SYMBOL_GPL(of_node_to_nid);
290
1da177e4
LT
291static int __init find_min_common_depth(void)
292{
41eab6f8 293 int depth;
e70606eb 294 struct device_node *root;
1da177e4 295
1c8ee733
DS
296 if (firmware_has_feature(FW_FEATURE_OPAL))
297 root = of_find_node_by_path("/ibm,opal");
298 else
299 root = of_find_node_by_path("/rtas");
e70606eb
ME
300 if (!root)
301 root = of_find_node_by_path("/");
1da177e4
LT
302
303 /*
41eab6f8
AB
304 * This property is a set of 32-bit integers, each representing
305 * an index into the ibm,associativity nodes.
306 *
307 * With form 0 affinity the first integer is for an SMP configuration
308 * (should be all 0's) and the second is for a normal NUMA
309 * configuration. We have only one level of NUMA.
310 *
311 * With form 1 affinity the first integer is the most significant
312 * NUMA boundary and the following are progressively less significant
313 * boundaries. There can be more than one level of NUMA.
1da177e4 314 */
e70606eb 315 distance_ref_points = of_get_property(root,
41eab6f8
AB
316 "ibm,associativity-reference-points",
317 &distance_ref_points_depth);
318
319 if (!distance_ref_points) {
320 dbg("NUMA: ibm,associativity-reference-points not found.\n");
321 goto err;
322 }
323
324 distance_ref_points_depth /= sizeof(int);
1da177e4 325
8002b0c5
NF
326 if (firmware_has_feature(FW_FEATURE_OPAL) ||
327 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
328 dbg("Using form 1 affinity\n");
1c8ee733 329 form1_affinity = 1;
4b83c330
AB
330 }
331
41eab6f8
AB
332 if (form1_affinity) {
333 depth = distance_ref_points[0];
1da177e4 334 } else {
41eab6f8
AB
335 if (distance_ref_points_depth < 2) {
336 printk(KERN_WARNING "NUMA: "
337 "short ibm,associativity-reference-points\n");
338 goto err;
339 }
340
341 depth = distance_ref_points[1];
1da177e4 342 }
1da177e4 343
41eab6f8
AB
344 /*
345 * Warn and cap if the hardware supports more than
346 * MAX_DISTANCE_REF_POINTS domains.
347 */
348 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
349 printk(KERN_WARNING "NUMA: distance array capped at "
350 "%d entries\n", MAX_DISTANCE_REF_POINTS);
351 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
352 }
353
e70606eb 354 of_node_put(root);
1da177e4 355 return depth;
41eab6f8
AB
356
357err:
e70606eb 358 of_node_put(root);
41eab6f8 359 return -1;
1da177e4
LT
360}
361
84c9fdd1 362static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
1da177e4
LT
363{
364 struct device_node *memory = NULL;
1da177e4
LT
365
366 memory = of_find_node_by_type(memory, "memory");
54c23310 367 if (!memory)
84c9fdd1 368 panic("numa.c: No memory nodes found!");
54c23310 369
a8bda5dd 370 *n_addr_cells = of_n_addr_cells(memory);
9213feea 371 *n_size_cells = of_n_size_cells(memory);
84c9fdd1 372 of_node_put(memory);
1da177e4
LT
373}
374
2011b1d0 375static unsigned long read_n_cells(int n, const unsigned int **buf)
1da177e4
LT
376{
377 unsigned long result = 0;
378
379 while (n--) {
380 result = (result << 32) | **buf;
381 (*buf)++;
382 }
383 return result;
384}
385
8342681d 386/*
95f72d1e 387 * Read the next memblock list entry from the ibm,dynamic-memory property
8342681d
NF
388 * and return the information in the provided of_drconf_cell structure.
389 */
390static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
391{
392 const u32 *cp;
393
394 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
395
396 cp = *cellp;
397 drmem->drc_index = cp[0];
398 drmem->reserved = cp[1];
399 drmem->aa_index = cp[2];
400 drmem->flags = cp[3];
401
402 *cellp = cp + 4;
403}
404
405/*
25985edc 406 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
8342681d 407 *
95f72d1e
YL
408 * The layout of the ibm,dynamic-memory property is a number N of memblock
409 * list entries followed by N memblock list entries. Each memblock list entry
25985edc 410 * contains information as laid out in the of_drconf_cell struct above.
8342681d
NF
411 */
412static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
413{
414 const u32 *prop;
415 u32 len, entries;
416
417 prop = of_get_property(memory, "ibm,dynamic-memory", &len);
418 if (!prop || len < sizeof(unsigned int))
419 return 0;
420
421 entries = *prop++;
422
423 /* Now that we know the number of entries, revalidate the size
424 * of the property read in to ensure we have everything
425 */
426 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
427 return 0;
428
429 *dm = prop;
430 return entries;
431}
432
433/*
25985edc 434 * Retrieve and validate the ibm,lmb-size property for drconf memory
8342681d
NF
435 * from the device tree.
436 */
3fdfd990 437static u64 of_get_lmb_size(struct device_node *memory)
8342681d
NF
438{
439 const u32 *prop;
440 u32 len;
441
3fdfd990 442 prop = of_get_property(memory, "ibm,lmb-size", &len);
8342681d
NF
443 if (!prop || len < sizeof(unsigned int))
444 return 0;
445
446 return read_n_cells(n_mem_size_cells, &prop);
447}
448
449struct assoc_arrays {
450 u32 n_arrays;
451 u32 array_sz;
452 const u32 *arrays;
453};
454
455/*
25985edc 456 * Retrieve and validate the list of associativity arrays for drconf
8342681d
NF
457 * memory from the ibm,associativity-lookup-arrays property of the
458 * device tree..
459 *
460 * The layout of the ibm,associativity-lookup-arrays property is a number N
461 * indicating the number of associativity arrays, followed by a number M
462 * indicating the size of each associativity array, followed by a list
463 * of N associativity arrays.
464 */
465static int of_get_assoc_arrays(struct device_node *memory,
466 struct assoc_arrays *aa)
467{
468 const u32 *prop;
469 u32 len;
470
471 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
472 if (!prop || len < 2 * sizeof(unsigned int))
473 return -1;
474
475 aa->n_arrays = *prop++;
476 aa->array_sz = *prop++;
477
42b2aa86 478 /* Now that we know the number of arrays and size of each array,
8342681d
NF
479 * revalidate the size of the property read in.
480 */
481 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
482 return -1;
483
484 aa->arrays = prop;
485 return 0;
486}
487
488/*
489 * This is like of_node_to_nid_single() for memory represented in the
490 * ibm,dynamic-reconfiguration-memory node.
491 */
492static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
493 struct assoc_arrays *aa)
494{
495 int default_nid = 0;
496 int nid = default_nid;
497 int index;
498
499 if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
500 !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
501 drmem->aa_index < aa->n_arrays) {
502 index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
503 nid = aa->arrays[index];
504
505 if (nid == 0xffff || nid >= MAX_NUMNODES)
506 nid = default_nid;
507 }
508
509 return nid;
510}
511
1da177e4
LT
512/*
513 * Figure out to which domain a cpu belongs and stick it there.
514 * Return the id of the domain used.
515 */
2e5ce39d 516static int __cpuinit numa_setup_cpu(unsigned long lcpu)
1da177e4 517{
cf950b7a 518 int nid = 0;
8b16cd23 519 struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
1da177e4
LT
520
521 if (!cpu) {
522 WARN_ON(1);
523 goto out;
524 }
525
953039c8 526 nid = of_node_to_nid_single(cpu);
1da177e4 527
482ec7c4 528 if (nid < 0 || !node_online(nid))
72c33688 529 nid = first_online_node;
1da177e4 530out:
cf950b7a 531 map_cpu_to_node(lcpu, nid);
1da177e4
LT
532
533 of_node_put(cpu);
534
cf950b7a 535 return nid;
1da177e4
LT
536}
537
74b85f37 538static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
1da177e4
LT
539 unsigned long action,
540 void *hcpu)
541{
542 unsigned long lcpu = (unsigned long)hcpu;
543 int ret = NOTIFY_DONE;
544
545 switch (action) {
546 case CPU_UP_PREPARE:
8bb78442 547 case CPU_UP_PREPARE_FROZEN:
2b261227 548 numa_setup_cpu(lcpu);
1da177e4
LT
549 ret = NOTIFY_OK;
550 break;
551#ifdef CONFIG_HOTPLUG_CPU
552 case CPU_DEAD:
8bb78442 553 case CPU_DEAD_FROZEN:
1da177e4 554 case CPU_UP_CANCELED:
8bb78442 555 case CPU_UP_CANCELED_FROZEN:
1da177e4
LT
556 unmap_cpu_from_node(lcpu);
557 break;
558 ret = NOTIFY_OK;
559#endif
560 }
561 return ret;
562}
563
564/*
565 * Check and possibly modify a memory region to enforce the memory limit.
566 *
567 * Returns the size the region should have to enforce the memory limit.
568 * This will either be the original value of size, a truncated value,
569 * or zero. If the returned value of size is 0 the region should be
25985edc 570 * discarded as it lies wholly above the memory limit.
1da177e4 571 */
45fb6cea
AB
572static unsigned long __init numa_enforce_memory_limit(unsigned long start,
573 unsigned long size)
1da177e4
LT
574{
575 /*
95f72d1e 576 * We use memblock_end_of_DRAM() in here instead of memory_limit because
1da177e4 577 * we've already adjusted it for the limit and it takes care of
fe55249d
MM
578 * having memory holes below the limit. Also, in the case of
579 * iommu_is_off, memory_limit is not set but is implicitly enforced.
1da177e4 580 */
1da177e4 581
95f72d1e 582 if (start + size <= memblock_end_of_DRAM())
1da177e4
LT
583 return size;
584
95f72d1e 585 if (start >= memblock_end_of_DRAM())
1da177e4
LT
586 return 0;
587
95f72d1e 588 return memblock_end_of_DRAM() - start;
1da177e4
LT
589}
590
cf00085d
C
591/*
592 * Reads the counter for a given entry in
593 * linux,drconf-usable-memory property
594 */
595static inline int __init read_usm_ranges(const u32 **usm)
596{
597 /*
3fdfd990 598 * For each lmb in ibm,dynamic-memory a corresponding
cf00085d
C
599 * entry in linux,drconf-usable-memory property contains
600 * a counter followed by that many (base, size) duple.
601 * read the counter from linux,drconf-usable-memory
602 */
603 return read_n_cells(n_mem_size_cells, usm);
604}
605
0204568a
PM
606/*
607 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
608 * node. This assumes n_mem_{addr,size}_cells have been set.
609 */
610static void __init parse_drconf_memory(struct device_node *memory)
611{
82b2521d 612 const u32 *uninitialized_var(dm), *usm;
cf00085d 613 unsigned int n, rc, ranges, is_kexec_kdump = 0;
3fdfd990 614 unsigned long lmb_size, base, size, sz;
8342681d 615 int nid;
aa709f3b 616 struct assoc_arrays aa = { .arrays = NULL };
8342681d
NF
617
618 n = of_get_drconf_memory(memory, &dm);
619 if (!n)
0204568a
PM
620 return;
621
3fdfd990
BH
622 lmb_size = of_get_lmb_size(memory);
623 if (!lmb_size)
8342681d
NF
624 return;
625
626 rc = of_get_assoc_arrays(memory, &aa);
627 if (rc)
0204568a
PM
628 return;
629
cf00085d
C
630 /* check if this is a kexec/kdump kernel */
631 usm = of_get_usable_memory(memory);
632 if (usm != NULL)
633 is_kexec_kdump = 1;
634
0204568a 635 for (; n != 0; --n) {
8342681d
NF
636 struct of_drconf_cell drmem;
637
638 read_drconf_cell(&drmem, &dm);
639
640 /* skip this block if the reserved bit is set in flags (0x80)
641 or if the block is not assigned to this partition (0x8) */
642 if ((drmem.flags & DRCONF_MEM_RESERVED)
643 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
0204568a 644 continue;
1daa6d08 645
cf00085d 646 base = drmem.base_addr;
3fdfd990 647 size = lmb_size;
cf00085d 648 ranges = 1;
8342681d 649
cf00085d
C
650 if (is_kexec_kdump) {
651 ranges = read_usm_ranges(&usm);
652 if (!ranges) /* there are no (base, size) duple */
653 continue;
654 }
655 do {
656 if (is_kexec_kdump) {
657 base = read_n_cells(n_mem_addr_cells, &usm);
658 size = read_n_cells(n_mem_size_cells, &usm);
659 }
660 nid = of_drconf_to_nid_single(&drmem, &aa);
661 fake_numa_create_new_node(
662 ((base + size) >> PAGE_SHIFT),
8342681d 663 &nid);
cf00085d
C
664 node_set_online(nid);
665 sz = numa_enforce_memory_limit(base, size);
666 if (sz)
1d7cfe18 667 memblock_set_node(base, sz, nid);
cf00085d 668 } while (--ranges);
0204568a
PM
669 }
670}
671
1da177e4
LT
672static int __init parse_numa_properties(void)
673{
94db7c5e 674 struct device_node *memory;
482ec7c4 675 int default_nid = 0;
1da177e4
LT
676 unsigned long i;
677
678 if (numa_enabled == 0) {
679 printk(KERN_WARNING "NUMA disabled by user\n");
680 return -1;
681 }
682
1da177e4
LT
683 min_common_depth = find_min_common_depth();
684
1da177e4
LT
685 if (min_common_depth < 0)
686 return min_common_depth;
687
bf4b85b0
NL
688 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
689
1da177e4 690 /*
482ec7c4
NL
691 * Even though we connect cpus to numa domains later in SMP
692 * init, we need to know the node ids now. This is because
693 * each node to be onlined must have NODE_DATA etc backing it.
1da177e4 694 */
482ec7c4 695 for_each_present_cpu(i) {
dfbe93a2 696 struct device_node *cpu;
cf950b7a 697 int nid;
1da177e4 698
8b16cd23 699 cpu = of_get_cpu_node(i, NULL);
482ec7c4 700 BUG_ON(!cpu);
953039c8 701 nid = of_node_to_nid_single(cpu);
482ec7c4 702 of_node_put(cpu);
1da177e4 703
482ec7c4
NL
704 /*
705 * Don't fall back to default_nid yet -- we will plug
706 * cpus into nodes once the memory scan has discovered
707 * the topology.
708 */
709 if (nid < 0)
710 continue;
711 node_set_online(nid);
1da177e4
LT
712 }
713
237a0989 714 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
94db7c5e
AB
715
716 for_each_node_by_type(memory, "memory") {
1da177e4
LT
717 unsigned long start;
718 unsigned long size;
cf950b7a 719 int nid;
1da177e4 720 int ranges;
a7f67bdf 721 const unsigned int *memcell_buf;
1da177e4
LT
722 unsigned int len;
723
e2eb6392 724 memcell_buf = of_get_property(memory,
ba759485
ME
725 "linux,usable-memory", &len);
726 if (!memcell_buf || len <= 0)
e2eb6392 727 memcell_buf = of_get_property(memory, "reg", &len);
1da177e4
LT
728 if (!memcell_buf || len <= 0)
729 continue;
730
cc5d0189
BH
731 /* ranges in cell */
732 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1da177e4
LT
733new_range:
734 /* these are order-sensitive, and modify the buffer pointer */
237a0989
MK
735 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
736 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1da177e4 737
482ec7c4
NL
738 /*
739 * Assumption: either all memory nodes or none will
740 * have associativity properties. If none, then
741 * everything goes to default_nid.
742 */
953039c8 743 nid = of_node_to_nid_single(memory);
482ec7c4
NL
744 if (nid < 0)
745 nid = default_nid;
1daa6d08
BS
746
747 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
482ec7c4 748 node_set_online(nid);
1da177e4 749
45fb6cea 750 if (!(size = numa_enforce_memory_limit(start, size))) {
1da177e4
LT
751 if (--ranges)
752 goto new_range;
753 else
754 continue;
755 }
756
1d7cfe18 757 memblock_set_node(start, size, nid);
1da177e4
LT
758
759 if (--ranges)
760 goto new_range;
761 }
762
0204568a 763 /*
dfbe93a2
AB
764 * Now do the same thing for each MEMBLOCK listed in the
765 * ibm,dynamic-memory property in the
766 * ibm,dynamic-reconfiguration-memory node.
0204568a
PM
767 */
768 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
769 if (memory)
770 parse_drconf_memory(memory);
771
1da177e4
LT
772 return 0;
773}
774
775static void __init setup_nonnuma(void)
776{
95f72d1e
YL
777 unsigned long top_of_ram = memblock_end_of_DRAM();
778 unsigned long total_ram = memblock_phys_mem_size();
c67c3cb4 779 unsigned long start_pfn, end_pfn;
28be7072
BH
780 unsigned int nid = 0;
781 struct memblock_region *reg;
1da177e4 782
e110b281 783 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1da177e4 784 top_of_ram, total_ram);
e110b281 785 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
1da177e4
LT
786 (top_of_ram - total_ram) >> 20);
787
28be7072 788 for_each_memblock(memory, reg) {
c7fc2de0
YL
789 start_pfn = memblock_region_memory_base_pfn(reg);
790 end_pfn = memblock_region_memory_end_pfn(reg);
1daa6d08
BS
791
792 fake_numa_create_new_node(end_pfn, &nid);
1d7cfe18
TH
793 memblock_set_node(PFN_PHYS(start_pfn),
794 PFN_PHYS(end_pfn - start_pfn), nid);
1daa6d08 795 node_set_online(nid);
c67c3cb4 796 }
1da177e4
LT
797}
798
4b703a23
AB
799void __init dump_numa_cpu_topology(void)
800{
801 unsigned int node;
802 unsigned int cpu, count;
803
804 if (min_common_depth == -1 || !numa_enabled)
805 return;
806
807 for_each_online_node(node) {
e110b281 808 printk(KERN_DEBUG "Node %d CPUs:", node);
4b703a23
AB
809
810 count = 0;
811 /*
812 * If we used a CPU iterator here we would miss printing
813 * the holes in the cpumap.
814 */
25863de0
AB
815 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
816 if (cpumask_test_cpu(cpu,
817 node_to_cpumask_map[node])) {
4b703a23
AB
818 if (count == 0)
819 printk(" %u", cpu);
820 ++count;
821 } else {
822 if (count > 1)
823 printk("-%u", cpu - 1);
824 count = 0;
825 }
826 }
827
828 if (count > 1)
25863de0 829 printk("-%u", nr_cpu_ids - 1);
4b703a23
AB
830 printk("\n");
831 }
832}
833
834static void __init dump_numa_memory_topology(void)
1da177e4
LT
835{
836 unsigned int node;
837 unsigned int count;
838
839 if (min_common_depth == -1 || !numa_enabled)
840 return;
841
842 for_each_online_node(node) {
843 unsigned long i;
844
e110b281 845 printk(KERN_DEBUG "Node %d Memory:", node);
1da177e4
LT
846
847 count = 0;
848
95f72d1e 849 for (i = 0; i < memblock_end_of_DRAM();
45fb6cea
AB
850 i += (1 << SECTION_SIZE_BITS)) {
851 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
1da177e4
LT
852 if (count == 0)
853 printk(" 0x%lx", i);
854 ++count;
855 } else {
856 if (count > 0)
857 printk("-0x%lx", i);
858 count = 0;
859 }
860 }
861
862 if (count > 0)
863 printk("-0x%lx", i);
864 printk("\n");
865 }
1da177e4
LT
866}
867
868/*
95f72d1e 869 * Allocate some memory, satisfying the memblock or bootmem allocator where
1da177e4
LT
870 * required. nid is the preferred node and end is the physical address of
871 * the highest address in the node.
872 *
0be210fd 873 * Returns the virtual address of the memory.
1da177e4 874 */
893473df 875static void __init *careful_zallocation(int nid, unsigned long size,
45fb6cea
AB
876 unsigned long align,
877 unsigned long end_pfn)
1da177e4 878{
0be210fd 879 void *ret;
45fb6cea 880 int new_nid;
0be210fd
DH
881 unsigned long ret_paddr;
882
95f72d1e 883 ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
1da177e4
LT
884
885 /* retry over all memory */
0be210fd 886 if (!ret_paddr)
95f72d1e 887 ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
1da177e4 888
0be210fd 889 if (!ret_paddr)
5d21ea2b 890 panic("numa.c: cannot allocate %lu bytes for node %d",
1da177e4
LT
891 size, nid);
892
0be210fd
DH
893 ret = __va(ret_paddr);
894
1da177e4 895 /*
c555e520 896 * We initialize the nodes in numeric order: 0, 1, 2...
95f72d1e 897 * and hand over control from the MEMBLOCK allocator to the
c555e520
DH
898 * bootmem allocator. If this function is called for
899 * node 5, then we know that all nodes <5 are using the
95f72d1e 900 * bootmem allocator instead of the MEMBLOCK allocator.
c555e520
DH
901 *
902 * So, check the nid from which this allocation came
903 * and double check to see if we need to use bootmem
95f72d1e 904 * instead of the MEMBLOCK. We don't free the MEMBLOCK memory
c555e520 905 * since it would be useless.
1da177e4 906 */
0be210fd 907 new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
45fb6cea 908 if (new_nid < nid) {
0be210fd 909 ret = __alloc_bootmem_node(NODE_DATA(new_nid),
1da177e4
LT
910 size, align, 0);
911
0be210fd 912 dbg("alloc_bootmem %p %lx\n", ret, size);
1da177e4
LT
913 }
914
893473df 915 memset(ret, 0, size);
0be210fd 916 return ret;
1da177e4
LT
917}
918
74b85f37
CS
919static struct notifier_block __cpuinitdata ppc64_numa_nb = {
920 .notifier_call = cpu_numa_callback,
921 .priority = 1 /* Must run before sched domains notifier. */
922};
923
28e86bdb 924static void __init mark_reserved_regions_for_nid(int nid)
4a618669
DH
925{
926 struct pglist_data *node = NODE_DATA(nid);
28be7072 927 struct memblock_region *reg;
4a618669 928
28be7072
BH
929 for_each_memblock(reserved, reg) {
930 unsigned long physbase = reg->base;
931 unsigned long size = reg->size;
4a618669 932 unsigned long start_pfn = physbase >> PAGE_SHIFT;
06eccea6 933 unsigned long end_pfn = PFN_UP(physbase + size);
4a618669
DH
934 struct node_active_region node_ar;
935 unsigned long node_end_pfn = node->node_start_pfn +
936 node->node_spanned_pages;
937
938 /*
95f72d1e 939 * Check to make sure that this memblock.reserved area is
4a618669
DH
940 * within the bounds of the node that we care about.
941 * Checking the nid of the start and end points is not
942 * sufficient because the reserved area could span the
943 * entire node.
944 */
945 if (end_pfn <= node->node_start_pfn ||
946 start_pfn >= node_end_pfn)
947 continue;
948
949 get_node_active_region(start_pfn, &node_ar);
950 while (start_pfn < end_pfn &&
951 node_ar.start_pfn < node_ar.end_pfn) {
952 unsigned long reserve_size = size;
953 /*
954 * if reserved region extends past active region
955 * then trim size to active region
956 */
957 if (end_pfn > node_ar.end_pfn)
958 reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
06eccea6 959 - physbase;
a4c74ddd
DH
960 /*
961 * Only worry about *this* node, others may not
962 * yet have valid NODE_DATA().
963 */
964 if (node_ar.nid == nid) {
965 dbg("reserve_bootmem %lx %lx nid=%d\n",
966 physbase, reserve_size, node_ar.nid);
967 reserve_bootmem_node(NODE_DATA(node_ar.nid),
968 physbase, reserve_size,
969 BOOTMEM_DEFAULT);
970 }
4a618669
DH
971 /*
972 * if reserved region is contained in the active region
973 * then done.
974 */
975 if (end_pfn <= node_ar.end_pfn)
976 break;
977
978 /*
979 * reserved region extends past the active region
980 * get next active region that contains this
981 * reserved region
982 */
983 start_pfn = node_ar.end_pfn;
984 physbase = start_pfn << PAGE_SHIFT;
985 size = size - reserve_size;
986 get_node_active_region(start_pfn, &node_ar);
987 }
988 }
989}
990
991
1da177e4
LT
992void __init do_init_bootmem(void)
993{
994 int nid;
1da177e4
LT
995
996 min_low_pfn = 0;
95f72d1e 997 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1da177e4
LT
998 max_pfn = max_low_pfn;
999
1000 if (parse_numa_properties())
1001 setup_nonnuma();
1002 else
4b703a23 1003 dump_numa_memory_topology();
1da177e4 1004
1da177e4 1005 for_each_online_node(nid) {
c67c3cb4 1006 unsigned long start_pfn, end_pfn;
0be210fd 1007 void *bootmem_vaddr;
1da177e4
LT
1008 unsigned long bootmap_pages;
1009
c67c3cb4 1010 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1da177e4 1011
4a618669
DH
1012 /*
1013 * Allocate the node structure node local if possible
1014 *
1015 * Be careful moving this around, as it relies on all
1016 * previous nodes' bootmem to be initialized and have
1017 * all reserved areas marked.
1018 */
893473df 1019 NODE_DATA(nid) = careful_zallocation(nid,
1da177e4 1020 sizeof(struct pglist_data),
45fb6cea 1021 SMP_CACHE_BYTES, end_pfn);
1da177e4
LT
1022
1023 dbg("node %d\n", nid);
1024 dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
1025
b61bfa3c 1026 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
45fb6cea
AB
1027 NODE_DATA(nid)->node_start_pfn = start_pfn;
1028 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1da177e4
LT
1029
1030 if (NODE_DATA(nid)->node_spanned_pages == 0)
1031 continue;
1032
45fb6cea
AB
1033 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
1034 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1da177e4 1035
45fb6cea 1036 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
893473df 1037 bootmem_vaddr = careful_zallocation(nid,
45fb6cea
AB
1038 bootmap_pages << PAGE_SHIFT,
1039 PAGE_SIZE, end_pfn);
1da177e4 1040
0be210fd 1041 dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1da177e4 1042
0be210fd
DH
1043 init_bootmem_node(NODE_DATA(nid),
1044 __pa(bootmem_vaddr) >> PAGE_SHIFT,
45fb6cea 1045 start_pfn, end_pfn);
1da177e4 1046
c67c3cb4 1047 free_bootmem_with_active_regions(nid, end_pfn);
4a618669
DH
1048 /*
1049 * Be very careful about moving this around. Future
893473df 1050 * calls to careful_zallocation() depend on this getting
4a618669
DH
1051 * done correctly.
1052 */
1053 mark_reserved_regions_for_nid(nid);
8f64e1f2 1054 sparse_memory_present_with_active_regions(nid);
4a618669 1055 }
d3f6204a
BH
1056
1057 init_bootmem_done = 1;
25863de0
AB
1058
1059 /*
1060 * Now bootmem is initialised we can create the node to cpumask
1061 * lookup tables and setup the cpu callback to populate them.
1062 */
1063 setup_node_to_cpumask_map();
1064
1065 register_cpu_notifier(&ppc64_numa_nb);
1066 cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
1067 (void *)(unsigned long)boot_cpuid);
1da177e4
LT
1068}
1069
1070void __init paging_init(void)
1071{
6391af17
MG
1072 unsigned long max_zone_pfns[MAX_NR_ZONES];
1073 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
95f72d1e 1074 max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
c67c3cb4 1075 free_area_init_nodes(max_zone_pfns);
1da177e4
LT
1076}
1077
1078static int __init early_numa(char *p)
1079{
1080 if (!p)
1081 return 0;
1082
1083 if (strstr(p, "off"))
1084 numa_enabled = 0;
1085
1086 if (strstr(p, "debug"))
1087 numa_debug = 1;
1088
1daa6d08
BS
1089 p = strstr(p, "fake=");
1090 if (p)
1091 cmdline = p + strlen("fake=");
1092
1da177e4
LT
1093 return 0;
1094}
1095early_param("numa", early_numa);
237a0989
MK
1096
1097#ifdef CONFIG_MEMORY_HOTPLUG
0db9360a 1098/*
0f16ef7f
NF
1099 * Find the node associated with a hot added memory section for
1100 * memory represented in the device tree by the property
1101 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
0db9360a
NF
1102 */
1103static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1104 unsigned long scn_addr)
1105{
1106 const u32 *dm;
0f16ef7f 1107 unsigned int drconf_cell_cnt, rc;
3fdfd990 1108 unsigned long lmb_size;
0db9360a 1109 struct assoc_arrays aa;
0f16ef7f 1110 int nid = -1;
0db9360a 1111
0f16ef7f
NF
1112 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1113 if (!drconf_cell_cnt)
1114 return -1;
0db9360a 1115
3fdfd990
BH
1116 lmb_size = of_get_lmb_size(memory);
1117 if (!lmb_size)
0f16ef7f 1118 return -1;
0db9360a
NF
1119
1120 rc = of_get_assoc_arrays(memory, &aa);
1121 if (rc)
0f16ef7f 1122 return -1;
0db9360a 1123
0f16ef7f 1124 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
0db9360a
NF
1125 struct of_drconf_cell drmem;
1126
1127 read_drconf_cell(&drmem, &dm);
1128
1129 /* skip this block if it is reserved or not assigned to
1130 * this partition */
1131 if ((drmem.flags & DRCONF_MEM_RESERVED)
1132 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1133 continue;
1134
0f16ef7f 1135 if ((scn_addr < drmem.base_addr)
3fdfd990 1136 || (scn_addr >= (drmem.base_addr + lmb_size)))
0f16ef7f
NF
1137 continue;
1138
0db9360a 1139 nid = of_drconf_to_nid_single(&drmem, &aa);
0f16ef7f
NF
1140 break;
1141 }
1142
1143 return nid;
1144}
1145
1146/*
1147 * Find the node associated with a hot added memory section for memory
1148 * represented in the device tree as a node (i.e. memory@XXXX) for
95f72d1e 1149 * each memblock.
0f16ef7f
NF
1150 */
1151int hot_add_node_scn_to_nid(unsigned long scn_addr)
1152{
94db7c5e 1153 struct device_node *memory;
0f16ef7f
NF
1154 int nid = -1;
1155
94db7c5e 1156 for_each_node_by_type(memory, "memory") {
0f16ef7f
NF
1157 unsigned long start, size;
1158 int ranges;
1159 const unsigned int *memcell_buf;
1160 unsigned int len;
1161
1162 memcell_buf = of_get_property(memory, "reg", &len);
1163 if (!memcell_buf || len <= 0)
1164 continue;
1165
1166 /* ranges in cell */
1167 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1168
1169 while (ranges--) {
1170 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1171 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1172
1173 if ((scn_addr < start) || (scn_addr >= (start + size)))
1174 continue;
1175
1176 nid = of_node_to_nid_single(memory);
1177 break;
1178 }
0db9360a 1179
0f16ef7f
NF
1180 if (nid >= 0)
1181 break;
0db9360a
NF
1182 }
1183
60831842
AB
1184 of_node_put(memory);
1185
0f16ef7f 1186 return nid;
0db9360a
NF
1187}
1188
237a0989
MK
1189/*
1190 * Find the node associated with a hot added memory section. Section
95f72d1e
YL
1191 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1192 * sections are fully contained within a single MEMBLOCK.
237a0989
MK
1193 */
1194int hot_add_scn_to_nid(unsigned long scn_addr)
1195{
1196 struct device_node *memory = NULL;
0f16ef7f 1197 int nid, found = 0;
237a0989
MK
1198
1199 if (!numa_enabled || (min_common_depth < 0))
72c33688 1200 return first_online_node;
0db9360a
NF
1201
1202 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1203 if (memory) {
1204 nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1205 of_node_put(memory);
0f16ef7f
NF
1206 } else {
1207 nid = hot_add_node_scn_to_nid(scn_addr);
0db9360a 1208 }
237a0989 1209
0f16ef7f 1210 if (nid < 0 || !node_online(nid))
72c33688 1211 nid = first_online_node;
237a0989 1212
0f16ef7f
NF
1213 if (NODE_DATA(nid)->node_spanned_pages)
1214 return nid;
237a0989 1215
0f16ef7f
NF
1216 for_each_online_node(nid) {
1217 if (NODE_DATA(nid)->node_spanned_pages) {
1218 found = 1;
1219 break;
237a0989 1220 }
237a0989 1221 }
0f16ef7f
NF
1222
1223 BUG_ON(!found);
1224 return nid;
237a0989 1225}
0f16ef7f 1226
cd34206e
NA
1227static u64 hot_add_drconf_memory_max(void)
1228{
1229 struct device_node *memory = NULL;
1230 unsigned int drconf_cell_cnt = 0;
1231 u64 lmb_size = 0;
1232 const u32 *dm = 0;
1233
1234 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1235 if (memory) {
1236 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1237 lmb_size = of_get_lmb_size(memory);
1238 of_node_put(memory);
1239 }
1240 return lmb_size * drconf_cell_cnt;
1241}
1242
1243/*
1244 * memory_hotplug_max - return max address of memory that may be added
1245 *
1246 * This is currently only used on systems that support drconfig memory
1247 * hotplug.
1248 */
1249u64 memory_hotplug_max(void)
1250{
1251 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1252}
237a0989 1253#endif /* CONFIG_MEMORY_HOTPLUG */
9eff1a38 1254
bd03403a 1255/* Virtual Processor Home Node (VPHN) support */
39bf990e 1256#ifdef CONFIG_PPC_SPLPAR
5de16699 1257static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
9eff1a38
JL
1258static cpumask_t cpu_associativity_changes_mask;
1259static int vphn_enabled;
5d88aa85
JL
1260static int prrn_enabled;
1261static void reset_topology_timer(void);
9eff1a38
JL
1262
1263/*
1264 * Store the current values of the associativity change counters in the
1265 * hypervisor.
1266 */
1267static void setup_cpu_associativity_change_counters(void)
1268{
cd9d6cc7 1269 int cpu;
9eff1a38 1270
5de16699
AB
1271 /* The VPHN feature supports a maximum of 8 reference points */
1272 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1273
9eff1a38 1274 for_each_possible_cpu(cpu) {
cd9d6cc7 1275 int i;
9eff1a38
JL
1276 u8 *counts = vphn_cpu_change_counts[cpu];
1277 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1278
5de16699 1279 for (i = 0; i < distance_ref_points_depth; i++)
9eff1a38 1280 counts[i] = hypervisor_counts[i];
9eff1a38
JL
1281 }
1282}
1283
1284/*
1285 * The hypervisor maintains a set of 8 associativity change counters in
1286 * the VPA of each cpu that correspond to the associativity levels in the
1287 * ibm,associativity-reference-points property. When an associativity
1288 * level changes, the corresponding counter is incremented.
1289 *
1290 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1291 * node associativity levels have changed.
1292 *
1293 * Returns the number of cpus with unhandled associativity changes.
1294 */
1295static int update_cpu_associativity_changes_mask(void)
1296{
5d88aa85 1297 int cpu;
9eff1a38
JL
1298 cpumask_t *changes = &cpu_associativity_changes_mask;
1299
9eff1a38
JL
1300 for_each_possible_cpu(cpu) {
1301 int i, changed = 0;
1302 u8 *counts = vphn_cpu_change_counts[cpu];
1303 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1304
5de16699 1305 for (i = 0; i < distance_ref_points_depth; i++) {
d69043e8 1306 if (hypervisor_counts[i] != counts[i]) {
9eff1a38
JL
1307 counts[i] = hypervisor_counts[i];
1308 changed = 1;
1309 }
1310 }
1311 if (changed) {
1312 cpumask_set_cpu(cpu, changes);
9eff1a38
JL
1313 }
1314 }
1315
5d88aa85 1316 return cpumask_weight(changes);
9eff1a38
JL
1317}
1318
c0e5e46f
AB
1319/*
1320 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1321 * the complete property we have to add the length in the first cell.
1322 */
1323#define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
9eff1a38
JL
1324
1325/*
1326 * Convert the associativity domain numbers returned from the hypervisor
1327 * to the sequence they would appear in the ibm,associativity property.
1328 */
1329static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked)
1330{
cd9d6cc7 1331 int i, nr_assoc_doms = 0;
9eff1a38
JL
1332 const u16 *field = (const u16*) packed;
1333
1334#define VPHN_FIELD_UNUSED (0xffff)
1335#define VPHN_FIELD_MSB (0x8000)
1336#define VPHN_FIELD_MASK (~VPHN_FIELD_MSB)
1337
c0e5e46f 1338 for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
9eff1a38
JL
1339 if (*field == VPHN_FIELD_UNUSED) {
1340 /* All significant fields processed, and remaining
1341 * fields contain the reserved value of all 1's.
1342 * Just store them.
1343 */
1344 unpacked[i] = *((u32*)field);
1345 field += 2;
7639adaa 1346 } else if (*field & VPHN_FIELD_MSB) {
9eff1a38
JL
1347 /* Data is in the lower 15 bits of this field */
1348 unpacked[i] = *field & VPHN_FIELD_MASK;
1349 field++;
1350 nr_assoc_doms++;
7639adaa 1351 } else {
9eff1a38
JL
1352 /* Data is in the lower 15 bits of this field
1353 * concatenated with the next 16 bit field
1354 */
1355 unpacked[i] = *((u32*)field);
1356 field += 2;
1357 nr_assoc_doms++;
1358 }
1359 }
1360
c0e5e46f
AB
1361 /* The first cell contains the length of the property */
1362 unpacked[0] = nr_assoc_doms;
1363
9eff1a38
JL
1364 return nr_assoc_doms;
1365}
1366
1367/*
1368 * Retrieve the new associativity information for a virtual processor's
1369 * home node.
1370 */
1371static long hcall_vphn(unsigned long cpu, unsigned int *associativity)
1372{
cd9d6cc7 1373 long rc;
9eff1a38
JL
1374 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1375 u64 flags = 1;
1376 int hwcpu = get_hard_smp_processor_id(cpu);
1377
1378 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1379 vphn_unpack_associativity(retbuf, associativity);
1380
1381 return rc;
1382}
1383
1384static long vphn_get_associativity(unsigned long cpu,
1385 unsigned int *associativity)
1386{
cd9d6cc7 1387 long rc;
9eff1a38
JL
1388
1389 rc = hcall_vphn(cpu, associativity);
1390
1391 switch (rc) {
1392 case H_FUNCTION:
1393 printk(KERN_INFO
1394 "VPHN is not supported. Disabling polling...\n");
1395 stop_topology_update();
1396 break;
1397 case H_HARDWARE:
1398 printk(KERN_ERR
1399 "hcall_vphn() experienced a hardware fault "
1400 "preventing VPHN. Disabling polling...\n");
1401 stop_topology_update();
1402 }
1403
1404 return rc;
1405}
1406
1407/*
1408 * Update the node maps and sysfs entries for each cpu whose home node
79c5fceb 1409 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
9eff1a38
JL
1410 */
1411int arch_update_cpu_topology(void)
1412{
79c5fceb 1413 int cpu, nid, old_nid, changed = 0;
9eff1a38 1414 unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0};
8a25a2fd 1415 struct device *dev;
9eff1a38 1416
5d88aa85 1417 for_each_cpu(cpu, &cpu_associativity_changes_mask) {
9eff1a38
JL
1418 vphn_get_associativity(cpu, associativity);
1419 nid = associativity_to_nid(associativity);
1420
1421 if (nid < 0 || !node_online(nid))
1422 nid = first_online_node;
1423
1424 old_nid = numa_cpu_lookup_table[cpu];
1425
1426 /* Disable hotplug while we update the cpu
1427 * masks and sysfs.
1428 */
1429 get_online_cpus();
1430 unregister_cpu_under_node(cpu, old_nid);
1431 unmap_cpu_from_node(cpu);
1432 map_cpu_to_node(cpu, nid);
1433 register_cpu_under_node(cpu, nid);
1434 put_online_cpus();
1435
8a25a2fd
KS
1436 dev = get_cpu_device(cpu);
1437 if (dev)
1438 kobject_uevent(&dev->kobj, KOBJ_CHANGE);
5d88aa85 1439 cpumask_clear_cpu(cpu, &cpu_associativity_changes_mask);
79c5fceb 1440 changed = 1;
9eff1a38
JL
1441 }
1442
79c5fceb 1443 return changed;
9eff1a38
JL
1444}
1445
1446static void topology_work_fn(struct work_struct *work)
1447{
1448 rebuild_sched_domains();
1449}
1450static DECLARE_WORK(topology_work, topology_work_fn);
1451
1452void topology_schedule_update(void)
1453{
1454 schedule_work(&topology_work);
1455}
1456
1457static void topology_timer_fn(unsigned long ignored)
1458{
5d88aa85 1459 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
9eff1a38 1460 topology_schedule_update();
5d88aa85
JL
1461 else if (vphn_enabled) {
1462 if (update_cpu_associativity_changes_mask() > 0)
1463 topology_schedule_update();
1464 reset_topology_timer();
1465 }
9eff1a38
JL
1466}
1467static struct timer_list topology_timer =
1468 TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1469
5d88aa85 1470static void reset_topology_timer(void)
9eff1a38
JL
1471{
1472 topology_timer.data = 0;
1473 topology_timer.expires = jiffies + 60 * HZ;
5d88aa85
JL
1474 mod_timer(&topology_timer, topology_timer.expires);
1475}
1476
1477static void stage_topology_update(int core_id)
1478{
1479 cpumask_or(&cpu_associativity_changes_mask,
1480 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1481 reset_topology_timer();
1482}
1483
1484static int dt_update_callback(struct notifier_block *nb,
1485 unsigned long action, void *data)
1486{
1487 struct of_prop_reconfig *update;
1488 int rc = NOTIFY_DONE;
1489
1490 switch (action) {
1491 case OF_RECONFIG_ADD_PROPERTY:
1492 case OF_RECONFIG_UPDATE_PROPERTY:
1493 update = (struct of_prop_reconfig *)data;
1494 if (!of_prop_cmp(update->dn->type, "cpu")) {
1495 u32 core_id;
1496 of_property_read_u32(update->dn, "reg", &core_id);
1497 stage_topology_update(core_id);
1498 rc = NOTIFY_OK;
1499 }
1500 break;
1501 }
1502
1503 return rc;
9eff1a38
JL
1504}
1505
5d88aa85
JL
1506static struct notifier_block dt_update_nb = {
1507 .notifier_call = dt_update_callback,
1508};
1509
9eff1a38 1510/*
5d88aa85 1511 * Start polling for associativity changes.
9eff1a38
JL
1512 */
1513int start_topology_update(void)
1514{
1515 int rc = 0;
1516
5d88aa85
JL
1517 if (firmware_has_feature(FW_FEATURE_PRRN)) {
1518 if (!prrn_enabled) {
1519 prrn_enabled = 1;
1520 vphn_enabled = 0;
1521 rc = of_reconfig_notifier_register(&dt_update_nb);
1522 }
1523 } else if (0 && firmware_has_feature(FW_FEATURE_VPHN) &&
1524 get_lppaca()->shared_proc) {
1525 /* Disabled until races with load balancing are fixed */
1526 if (!vphn_enabled) {
1527 prrn_enabled = 0;
1528 vphn_enabled = 1;
1529 setup_cpu_associativity_change_counters();
1530 init_timer_deferrable(&topology_timer);
1531 reset_topology_timer();
1532 }
9eff1a38
JL
1533 }
1534
1535 return rc;
1536}
1537__initcall(start_topology_update);
1538
1539/*
1540 * Disable polling for VPHN associativity changes.
1541 */
1542int stop_topology_update(void)
1543{
5d88aa85
JL
1544 int rc = 0;
1545
1546 if (prrn_enabled) {
1547 prrn_enabled = 0;
1548 rc = of_reconfig_notifier_unregister(&dt_update_nb);
1549 } else if (vphn_enabled) {
1550 vphn_enabled = 0;
1551 rc = del_timer_sync(&topology_timer);
1552 }
1553
1554 return rc;
9eff1a38 1555}
39bf990e 1556#endif /* CONFIG_PPC_SPLPAR */