Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6
[linux-2.6-block.git] / arch / powerpc / mm / hugetlbpage.c
CommitLineData
1da177e4
LT
1/*
2 * PPC64 (POWER4) Huge TLB Page Support for Kernel.
3 *
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 *
6 * Based on the IA-32 version:
7 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
8 */
9
10#include <linux/init.h>
11#include <linux/fs.h>
12#include <linux/mm.h>
13#include <linux/hugetlb.h>
14#include <linux/pagemap.h>
15#include <linux/smp_lock.h>
16#include <linux/slab.h>
17#include <linux/err.h>
18#include <linux/sysctl.h>
19#include <asm/mman.h>
20#include <asm/pgalloc.h>
21#include <asm/tlb.h>
22#include <asm/tlbflush.h>
23#include <asm/mmu_context.h>
24#include <asm/machdep.h>
25#include <asm/cputable.h>
26#include <asm/tlb.h>
27
28#include <linux/sysctl.h>
29
c594adad
DG
30#define NUM_LOW_AREAS (0x100000000UL >> SID_SHIFT)
31#define NUM_HIGH_AREAS (PGTABLE_RANGE >> HTLB_AREA_SHIFT)
32
e28f7faf
DG
33/* Modelled after find_linux_pte() */
34pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
1da177e4 35{
e28f7faf
DG
36 pgd_t *pg;
37 pud_t *pu;
38 pmd_t *pm;
39 pte_t *pt;
1da177e4 40
e28f7faf 41 BUG_ON(! in_hugepage_area(mm->context, addr));
1da177e4 42
e28f7faf
DG
43 addr &= HPAGE_MASK;
44
45 pg = pgd_offset(mm, addr);
46 if (!pgd_none(*pg)) {
47 pu = pud_offset(pg, addr);
48 if (!pud_none(*pu)) {
49 pm = pmd_offset(pu, addr);
3c726f8d
BH
50#ifdef CONFIG_PPC_64K_PAGES
51 /* Currently, we use the normal PTE offset within full
52 * size PTE pages, thus our huge PTEs are scattered in
53 * the PTE page and we do waste some. We may change
54 * that in the future, but the current mecanism keeps
55 * things much simpler
56 */
57 if (!pmd_none(*pm)) {
58 /* Note: pte_offset_* are all equivalent on
59 * ppc64 as we don't have HIGHMEM
60 */
61 pt = pte_offset_kernel(pm, addr);
62 return pt;
63 }
64#else /* CONFIG_PPC_64K_PAGES */
65 /* On 4k pages, we put huge PTEs in the PMD page */
e28f7faf 66 pt = (pte_t *)pm;
e28f7faf 67 return pt;
3c726f8d 68#endif /* CONFIG_PPC_64K_PAGES */
e28f7faf
DG
69 }
70 }
1da177e4 71
e28f7faf 72 return NULL;
1da177e4
LT
73}
74
e28f7faf 75pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr)
1da177e4 76{
e28f7faf
DG
77 pgd_t *pg;
78 pud_t *pu;
79 pmd_t *pm;
80 pte_t *pt;
1da177e4 81
1da177e4
LT
82 BUG_ON(! in_hugepage_area(mm->context, addr));
83
e28f7faf 84 addr &= HPAGE_MASK;
1da177e4 85
e28f7faf
DG
86 pg = pgd_offset(mm, addr);
87 pu = pud_alloc(mm, pg, addr);
1da177e4 88
e28f7faf
DG
89 if (pu) {
90 pm = pmd_alloc(mm, pu, addr);
91 if (pm) {
3c726f8d
BH
92#ifdef CONFIG_PPC_64K_PAGES
93 /* See comment in huge_pte_offset. Note that if we ever
94 * want to put the page size in the PMD, we would have
95 * to open code our own pte_alloc* function in order
96 * to populate and set the size atomically
97 */
98 pt = pte_alloc_map(mm, pm, addr);
99#else /* CONFIG_PPC_64K_PAGES */
e28f7faf 100 pt = (pte_t *)pm;
3c726f8d 101#endif /* CONFIG_PPC_64K_PAGES */
e28f7faf 102 return pt;
1da177e4
LT
103 }
104 }
105
e28f7faf 106 return NULL;
1da177e4
LT
107}
108
e28f7faf
DG
109void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
110 pte_t *ptep, pte_t pte)
111{
e28f7faf 112 if (pte_present(*ptep)) {
3c726f8d
BH
113 /* We open-code pte_clear because we need to pass the right
114 * argument to hpte_update (huge / !huge)
115 */
116 unsigned long old = pte_update(ptep, ~0UL);
117 if (old & _PAGE_HASHPTE)
118 hpte_update(mm, addr & HPAGE_MASK, ptep, old, 1);
e28f7faf
DG
119 flush_tlb_pending();
120 }
3c726f8d 121 *ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
1da177e4
LT
122}
123
e28f7faf
DG
124pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
125 pte_t *ptep)
1da177e4 126{
e28f7faf 127 unsigned long old = pte_update(ptep, ~0UL);
1da177e4 128
e28f7faf 129 if (old & _PAGE_HASHPTE)
3c726f8d
BH
130 hpte_update(mm, addr & HPAGE_MASK, ptep, old, 1);
131 *ptep = __pte(0);
1da177e4 132
e28f7faf 133 return __pte(old);
1da177e4
LT
134}
135
23ed6cb9
DG
136struct slb_flush_info {
137 struct mm_struct *mm;
138 u16 newareas;
139};
140
c594adad 141static void flush_low_segments(void *parm)
1da177e4 142{
23ed6cb9 143 struct slb_flush_info *fi = parm;
1da177e4
LT
144 unsigned long i;
145
23ed6cb9
DG
146 BUILD_BUG_ON((sizeof(fi->newareas)*8) != NUM_LOW_AREAS);
147
148 if (current->active_mm != fi->mm)
149 return;
1da177e4 150
23ed6cb9
DG
151 /* Only need to do anything if this CPU is working in the same
152 * mm as the one which has changed */
153
154 /* update the paca copy of the context struct */
155 get_paca()->context = current->active_mm->context;
c594adad 156
23ed6cb9 157 asm volatile("isync" : : : "memory");
c594adad 158 for (i = 0; i < NUM_LOW_AREAS; i++) {
23ed6cb9 159 if (! (fi->newareas & (1U << i)))
1da177e4 160 continue;
14b34661
DG
161 asm volatile("slbie %0"
162 : : "r" ((i << SID_SHIFT) | SLBIE_C));
1da177e4 163 }
1da177e4
LT
164 asm volatile("isync" : : : "memory");
165}
166
c594adad
DG
167static void flush_high_segments(void *parm)
168{
23ed6cb9 169 struct slb_flush_info *fi = parm;
c594adad
DG
170 unsigned long i, j;
171
c594adad 172
23ed6cb9
DG
173 BUILD_BUG_ON((sizeof(fi->newareas)*8) != NUM_HIGH_AREAS);
174
175 if (current->active_mm != fi->mm)
176 return;
177
178 /* Only need to do anything if this CPU is working in the same
179 * mm as the one which has changed */
c594adad 180
23ed6cb9
DG
181 /* update the paca copy of the context struct */
182 get_paca()->context = current->active_mm->context;
183
184 asm volatile("isync" : : : "memory");
c594adad 185 for (i = 0; i < NUM_HIGH_AREAS; i++) {
23ed6cb9 186 if (! (fi->newareas & (1U << i)))
c594adad
DG
187 continue;
188 for (j = 0; j < (1UL << (HTLB_AREA_SHIFT-SID_SHIFT)); j++)
189 asm volatile("slbie %0"
14b34661 190 :: "r" (((i << HTLB_AREA_SHIFT)
23ed6cb9 191 + (j << SID_SHIFT)) | SLBIE_C));
c594adad 192 }
c594adad
DG
193 asm volatile("isync" : : : "memory");
194}
195
196static int prepare_low_area_for_htlb(struct mm_struct *mm, unsigned long area)
1da177e4 197{
c594adad
DG
198 unsigned long start = area << SID_SHIFT;
199 unsigned long end = (area+1) << SID_SHIFT;
1da177e4 200 struct vm_area_struct *vma;
1da177e4 201
c594adad 202 BUG_ON(area >= NUM_LOW_AREAS);
1da177e4
LT
203
204 /* Check no VMAs are in the region */
205 vma = find_vma(mm, start);
206 if (vma && (vma->vm_start < end))
207 return -EBUSY;
208
1da177e4
LT
209 return 0;
210}
211
c594adad
DG
212static int prepare_high_area_for_htlb(struct mm_struct *mm, unsigned long area)
213{
214 unsigned long start = area << HTLB_AREA_SHIFT;
215 unsigned long end = (area+1) << HTLB_AREA_SHIFT;
216 struct vm_area_struct *vma;
217
218 BUG_ON(area >= NUM_HIGH_AREAS);
219
7d24f0b8
DG
220 /* Hack, so that each addresses is controlled by exactly one
221 * of the high or low area bitmaps, the first high area starts
222 * at 4GB, not 0 */
223 if (start == 0)
224 start = 0x100000000UL;
225
c594adad
DG
226 /* Check no VMAs are in the region */
227 vma = find_vma(mm, start);
228 if (vma && (vma->vm_start < end))
229 return -EBUSY;
230
231 return 0;
232}
233
234static int open_low_hpage_areas(struct mm_struct *mm, u16 newareas)
1da177e4
LT
235{
236 unsigned long i;
23ed6cb9 237 struct slb_flush_info fi;
1da177e4 238
c594adad
DG
239 BUILD_BUG_ON((sizeof(newareas)*8) != NUM_LOW_AREAS);
240 BUILD_BUG_ON((sizeof(mm->context.low_htlb_areas)*8) != NUM_LOW_AREAS);
241
242 newareas &= ~(mm->context.low_htlb_areas);
243 if (! newareas)
1da177e4
LT
244 return 0; /* The segments we want are already open */
245
c594adad
DG
246 for (i = 0; i < NUM_LOW_AREAS; i++)
247 if ((1 << i) & newareas)
248 if (prepare_low_area_for_htlb(mm, i) != 0)
249 return -EBUSY;
250
251 mm->context.low_htlb_areas |= newareas;
252
c594adad
DG
253 /* the context change must make it to memory before the flush,
254 * so that further SLB misses do the right thing. */
255 mb();
23ed6cb9
DG
256
257 fi.mm = mm;
258 fi.newareas = newareas;
259 on_each_cpu(flush_low_segments, &fi, 0, 1);
c594adad
DG
260
261 return 0;
262}
263
264static int open_high_hpage_areas(struct mm_struct *mm, u16 newareas)
265{
23ed6cb9 266 struct slb_flush_info fi;
c594adad
DG
267 unsigned long i;
268
269 BUILD_BUG_ON((sizeof(newareas)*8) != NUM_HIGH_AREAS);
270 BUILD_BUG_ON((sizeof(mm->context.high_htlb_areas)*8)
271 != NUM_HIGH_AREAS);
272
273 newareas &= ~(mm->context.high_htlb_areas);
274 if (! newareas)
275 return 0; /* The areas we want are already open */
276
277 for (i = 0; i < NUM_HIGH_AREAS; i++)
278 if ((1 << i) & newareas)
279 if (prepare_high_area_for_htlb(mm, i) != 0)
1da177e4
LT
280 return -EBUSY;
281
c594adad 282 mm->context.high_htlb_areas |= newareas;
1da177e4
LT
283
284 /* update the paca copy of the context struct */
285 get_paca()->context = mm->context;
286
287 /* the context change must make it to memory before the flush,
288 * so that further SLB misses do the right thing. */
289 mb();
23ed6cb9
DG
290
291 fi.mm = mm;
292 fi.newareas = newareas;
293 on_each_cpu(flush_high_segments, &fi, 0, 1);
1da177e4
LT
294
295 return 0;
296}
297
298int prepare_hugepage_range(unsigned long addr, unsigned long len)
299{
5e391dc9 300 int err = 0;
c594adad
DG
301
302 if ( (addr+len) < addr )
303 return -EINVAL;
304
5e391dc9 305 if (addr < 0x100000000UL)
c594adad 306 err = open_low_hpage_areas(current->mm,
1da177e4 307 LOW_ESID_MASK(addr, len));
9a94c579 308 if ((addr + len) > 0x100000000UL)
c594adad
DG
309 err = open_high_hpage_areas(current->mm,
310 HTLB_AREA_MASK(addr, len));
311 if (err) {
312 printk(KERN_DEBUG "prepare_hugepage_range(%lx, %lx)"
313 " failed (lowmask: 0x%04hx, highmask: 0x%04hx)\n",
314 addr, len,
315 LOW_ESID_MASK(addr, len), HTLB_AREA_MASK(addr, len));
1da177e4
LT
316 return err;
317 }
318
c594adad 319 return 0;
1da177e4
LT
320}
321
1da177e4
LT
322struct page *
323follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
324{
325 pte_t *ptep;
326 struct page *page;
327
328 if (! in_hugepage_area(mm->context, address))
329 return ERR_PTR(-EINVAL);
330
331 ptep = huge_pte_offset(mm, address);
332 page = pte_page(*ptep);
333 if (page)
334 page += (address % HPAGE_SIZE) / PAGE_SIZE;
335
336 return page;
337}
338
339int pmd_huge(pmd_t pmd)
340{
341 return 0;
342}
343
344struct page *
345follow_huge_pmd(struct mm_struct *mm, unsigned long address,
346 pmd_t *pmd, int write)
347{
348 BUG();
349 return NULL;
350}
351
1da177e4
LT
352/* Because we have an exclusive hugepage region which lies within the
353 * normal user address space, we have to take special measures to make
354 * non-huge mmap()s evade the hugepage reserved regions. */
355unsigned long arch_get_unmapped_area(struct file *filp, unsigned long addr,
356 unsigned long len, unsigned long pgoff,
357 unsigned long flags)
358{
359 struct mm_struct *mm = current->mm;
360 struct vm_area_struct *vma;
361 unsigned long start_addr;
362
363 if (len > TASK_SIZE)
364 return -ENOMEM;
365
366 if (addr) {
367 addr = PAGE_ALIGN(addr);
368 vma = find_vma(mm, addr);
369 if (((TASK_SIZE - len) >= addr)
370 && (!vma || (addr+len) <= vma->vm_start)
371 && !is_hugepage_only_range(mm, addr,len))
372 return addr;
373 }
1363c3cd
WW
374 if (len > mm->cached_hole_size) {
375 start_addr = addr = mm->free_area_cache;
376 } else {
377 start_addr = addr = TASK_UNMAPPED_BASE;
378 mm->cached_hole_size = 0;
379 }
1da177e4
LT
380
381full_search:
382 vma = find_vma(mm, addr);
383 while (TASK_SIZE - len >= addr) {
384 BUG_ON(vma && (addr >= vma->vm_end));
385
386 if (touches_hugepage_low_range(mm, addr, len)) {
387 addr = ALIGN(addr+1, 1<<SID_SHIFT);
388 vma = find_vma(mm, addr);
389 continue;
390 }
c594adad
DG
391 if (touches_hugepage_high_range(mm, addr, len)) {
392 addr = ALIGN(addr+1, 1UL<<HTLB_AREA_SHIFT);
1da177e4
LT
393 vma = find_vma(mm, addr);
394 continue;
395 }
396 if (!vma || addr + len <= vma->vm_start) {
397 /*
398 * Remember the place where we stopped the search:
399 */
400 mm->free_area_cache = addr + len;
401 return addr;
402 }
1363c3cd
WW
403 if (addr + mm->cached_hole_size < vma->vm_start)
404 mm->cached_hole_size = vma->vm_start - addr;
1da177e4
LT
405 addr = vma->vm_end;
406 vma = vma->vm_next;
407 }
408
409 /* Make sure we didn't miss any holes */
410 if (start_addr != TASK_UNMAPPED_BASE) {
411 start_addr = addr = TASK_UNMAPPED_BASE;
1363c3cd 412 mm->cached_hole_size = 0;
1da177e4
LT
413 goto full_search;
414 }
415 return -ENOMEM;
416}
417
418/*
419 * This mmap-allocator allocates new areas top-down from below the
420 * stack's low limit (the base):
421 *
422 * Because we have an exclusive hugepage region which lies within the
423 * normal user address space, we have to take special measures to make
424 * non-huge mmap()s evade the hugepage reserved regions.
425 */
426unsigned long
427arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
428 const unsigned long len, const unsigned long pgoff,
429 const unsigned long flags)
430{
431 struct vm_area_struct *vma, *prev_vma;
432 struct mm_struct *mm = current->mm;
433 unsigned long base = mm->mmap_base, addr = addr0;
1363c3cd 434 unsigned long largest_hole = mm->cached_hole_size;
1da177e4
LT
435 int first_time = 1;
436
437 /* requested length too big for entire address space */
438 if (len > TASK_SIZE)
439 return -ENOMEM;
440
441 /* dont allow allocations above current base */
442 if (mm->free_area_cache > base)
443 mm->free_area_cache = base;
444
445 /* requesting a specific address */
446 if (addr) {
447 addr = PAGE_ALIGN(addr);
448 vma = find_vma(mm, addr);
449 if (TASK_SIZE - len >= addr &&
450 (!vma || addr + len <= vma->vm_start)
451 && !is_hugepage_only_range(mm, addr,len))
452 return addr;
453 }
454
1363c3cd
WW
455 if (len <= largest_hole) {
456 largest_hole = 0;
457 mm->free_area_cache = base;
458 }
1da177e4
LT
459try_again:
460 /* make sure it can fit in the remaining address space */
461 if (mm->free_area_cache < len)
462 goto fail;
463
464 /* either no address requested or cant fit in requested address hole */
465 addr = (mm->free_area_cache - len) & PAGE_MASK;
466 do {
467hugepage_recheck:
468 if (touches_hugepage_low_range(mm, addr, len)) {
469 addr = (addr & ((~0) << SID_SHIFT)) - len;
470 goto hugepage_recheck;
c594adad
DG
471 } else if (touches_hugepage_high_range(mm, addr, len)) {
472 addr = (addr & ((~0UL) << HTLB_AREA_SHIFT)) - len;
473 goto hugepage_recheck;
1da177e4
LT
474 }
475
476 /*
477 * Lookup failure means no vma is above this address,
478 * i.e. return with success:
479 */
480 if (!(vma = find_vma_prev(mm, addr, &prev_vma)))
481 return addr;
482
483 /*
484 * new region fits between prev_vma->vm_end and
485 * vma->vm_start, use it:
486 */
487 if (addr+len <= vma->vm_start &&
1363c3cd 488 (!prev_vma || (addr >= prev_vma->vm_end))) {
1da177e4 489 /* remember the address as a hint for next time */
1363c3cd
WW
490 mm->cached_hole_size = largest_hole;
491 return (mm->free_area_cache = addr);
492 } else {
1da177e4 493 /* pull free_area_cache down to the first hole */
1363c3cd 494 if (mm->free_area_cache == vma->vm_end) {
1da177e4 495 mm->free_area_cache = vma->vm_start;
1363c3cd
WW
496 mm->cached_hole_size = largest_hole;
497 }
498 }
499
500 /* remember the largest hole we saw so far */
501 if (addr + largest_hole < vma->vm_start)
502 largest_hole = vma->vm_start - addr;
1da177e4
LT
503
504 /* try just below the current vma->vm_start */
505 addr = vma->vm_start-len;
506 } while (len <= vma->vm_start);
507
508fail:
509 /*
510 * if hint left us with no space for the requested
511 * mapping then try again:
512 */
513 if (first_time) {
514 mm->free_area_cache = base;
1363c3cd 515 largest_hole = 0;
1da177e4
LT
516 first_time = 0;
517 goto try_again;
518 }
519 /*
520 * A failed mmap() very likely causes application failure,
521 * so fall back to the bottom-up function here. This scenario
522 * can happen with large stack limits and large mmap()
523 * allocations.
524 */
525 mm->free_area_cache = TASK_UNMAPPED_BASE;
1363c3cd 526 mm->cached_hole_size = ~0UL;
1da177e4
LT
527 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
528 /*
529 * Restore the topdown base:
530 */
531 mm->free_area_cache = base;
1363c3cd 532 mm->cached_hole_size = ~0UL;
1da177e4
LT
533
534 return addr;
535}
536
456752f7
DG
537static int htlb_check_hinted_area(unsigned long addr, unsigned long len)
538{
539 struct vm_area_struct *vma;
540
541 vma = find_vma(current->mm, addr);
542 if (!vma || ((addr + len) <= vma->vm_start))
543 return 0;
544
545 return -ENOMEM;
546}
547
1da177e4
LT
548static unsigned long htlb_get_low_area(unsigned long len, u16 segmask)
549{
550 unsigned long addr = 0;
551 struct vm_area_struct *vma;
552
553 vma = find_vma(current->mm, addr);
554 while (addr + len <= 0x100000000UL) {
555 BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
556
557 if (! __within_hugepage_low_range(addr, len, segmask)) {
558 addr = ALIGN(addr+1, 1<<SID_SHIFT);
559 vma = find_vma(current->mm, addr);
560 continue;
561 }
562
563 if (!vma || (addr + len) <= vma->vm_start)
564 return addr;
565 addr = ALIGN(vma->vm_end, HPAGE_SIZE);
566 /* Depending on segmask this might not be a confirmed
567 * hugepage region, so the ALIGN could have skipped
568 * some VMAs */
569 vma = find_vma(current->mm, addr);
570 }
571
572 return -ENOMEM;
573}
574
c594adad 575static unsigned long htlb_get_high_area(unsigned long len, u16 areamask)
1da177e4 576{
c594adad 577 unsigned long addr = 0x100000000UL;
1da177e4
LT
578 struct vm_area_struct *vma;
579
580 vma = find_vma(current->mm, addr);
c594adad 581 while (addr + len <= TASK_SIZE_USER64) {
1da177e4 582 BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
c594adad
DG
583
584 if (! __within_hugepage_high_range(addr, len, areamask)) {
585 addr = ALIGN(addr+1, 1UL<<HTLB_AREA_SHIFT);
586 vma = find_vma(current->mm, addr);
587 continue;
588 }
1da177e4
LT
589
590 if (!vma || (addr + len) <= vma->vm_start)
591 return addr;
592 addr = ALIGN(vma->vm_end, HPAGE_SIZE);
c594adad
DG
593 /* Depending on segmask this might not be a confirmed
594 * hugepage region, so the ALIGN could have skipped
595 * some VMAs */
596 vma = find_vma(current->mm, addr);
1da177e4
LT
597 }
598
599 return -ENOMEM;
600}
601
602unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
603 unsigned long len, unsigned long pgoff,
604 unsigned long flags)
605{
c594adad
DG
606 int lastshift;
607 u16 areamask, curareas;
608
3c726f8d
BH
609 if (HPAGE_SHIFT == 0)
610 return -EINVAL;
1da177e4
LT
611 if (len & ~HPAGE_MASK)
612 return -EINVAL;
613
614 if (!cpu_has_feature(CPU_FTR_16M_PAGE))
615 return -EINVAL;
616
456752f7
DG
617 /* Paranoia, caller should have dealt with this */
618 BUG_ON((addr + len) < addr);
619
1da177e4 620 if (test_thread_flag(TIF_32BIT)) {
456752f7
DG
621 /* Paranoia, caller should have dealt with this */
622 BUG_ON((addr + len) > 0x100000000UL);
623
c594adad 624 curareas = current->mm->context.low_htlb_areas;
1da177e4 625
456752f7
DG
626 /* First see if we can use the hint address */
627 if (addr && (htlb_check_hinted_area(addr, len) == 0)) {
628 areamask = LOW_ESID_MASK(addr, len);
629 if (open_low_hpage_areas(current->mm, areamask) == 0)
630 return addr;
631 }
632
633 /* Next see if we can map in the existing low areas */
c594adad 634 addr = htlb_get_low_area(len, curareas);
1da177e4
LT
635 if (addr != -ENOMEM)
636 return addr;
637
456752f7 638 /* Finally go looking for areas to open */
c594adad
DG
639 lastshift = 0;
640 for (areamask = LOW_ESID_MASK(0x100000000UL-len, len);
641 ! lastshift; areamask >>=1) {
642 if (areamask & 1)
1da177e4
LT
643 lastshift = 1;
644
c594adad 645 addr = htlb_get_low_area(len, curareas | areamask);
1da177e4 646 if ((addr != -ENOMEM)
c594adad 647 && open_low_hpage_areas(current->mm, areamask) == 0)
1da177e4
LT
648 return addr;
649 }
1da177e4 650 } else {
c594adad
DG
651 curareas = current->mm->context.high_htlb_areas;
652
456752f7
DG
653 /* First see if we can use the hint address */
654 /* We discourage 64-bit processes from doing hugepage
655 * mappings below 4GB (must use MAP_FIXED) */
656 if ((addr >= 0x100000000UL)
657 && (htlb_check_hinted_area(addr, len) == 0)) {
658 areamask = HTLB_AREA_MASK(addr, len);
659 if (open_high_hpage_areas(current->mm, areamask) == 0)
660 return addr;
661 }
662
663 /* Next see if we can map in the existing high areas */
c594adad
DG
664 addr = htlb_get_high_area(len, curareas);
665 if (addr != -ENOMEM)
666 return addr;
667
456752f7 668 /* Finally go looking for areas to open */
c594adad
DG
669 lastshift = 0;
670 for (areamask = HTLB_AREA_MASK(TASK_SIZE_USER64-len, len);
671 ! lastshift; areamask >>=1) {
672 if (areamask & 1)
673 lastshift = 1;
674
675 addr = htlb_get_high_area(len, curareas | areamask);
676 if ((addr != -ENOMEM)
677 && open_high_hpage_areas(current->mm, areamask) == 0)
678 return addr;
679 }
1da177e4 680 }
c594adad
DG
681 printk(KERN_DEBUG "hugetlb_get_unmapped_area() unable to open"
682 " enough areas\n");
683 return -ENOMEM;
1da177e4
LT
684}
685
cbf52afd
DG
686/*
687 * Called by asm hashtable.S for doing lazy icache flush
688 */
689static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags,
690 pte_t pte, int trap)
691{
692 struct page *page;
693 int i;
694
695 if (!pfn_valid(pte_pfn(pte)))
696 return rflags;
697
698 page = pte_page(pte);
699
700 /* page is dirty */
701 if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
702 if (trap == 0x400) {
703 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++)
704 __flush_dcache_icache(page_address(page+i));
705 set_bit(PG_arch_1, &page->flags);
706 } else {
707 rflags |= HPTE_R_N;
708 }
709 }
710 return rflags;
711}
712
1da177e4 713int hash_huge_page(struct mm_struct *mm, unsigned long access,
cbf52afd
DG
714 unsigned long ea, unsigned long vsid, int local,
715 unsigned long trap)
1da177e4
LT
716{
717 pte_t *ptep;
3c726f8d
BH
718 unsigned long old_pte, new_pte;
719 unsigned long va, rflags, pa;
1da177e4
LT
720 long slot;
721 int err = 1;
722
1da177e4
LT
723 ptep = huge_pte_offset(mm, ea);
724
725 /* Search the Linux page table for a match with va */
726 va = (vsid << 28) | (ea & 0x0fffffff);
1da177e4
LT
727
728 /*
729 * If no pte found or not present, send the problem up to
730 * do_page_fault
731 */
732 if (unlikely(!ptep || pte_none(*ptep)))
733 goto out;
734
1da177e4
LT
735 /*
736 * Check the user's access rights to the page. If access should be
737 * prevented then send the problem up to do_page_fault.
738 */
739 if (unlikely(access & ~pte_val(*ptep)))
740 goto out;
741 /*
742 * At this point, we have a pte (old_pte) which can be used to build
743 * or update an HPTE. There are 2 cases:
744 *
745 * 1. There is a valid (present) pte with no associated HPTE (this is
746 * the most common case)
747 * 2. There is a valid (present) pte with an associated HPTE. The
748 * current values of the pp bits in the HPTE prevent access
749 * because we are doing software DIRTY bit management and the
750 * page is currently not DIRTY.
751 */
752
753
3c726f8d
BH
754 do {
755 old_pte = pte_val(*ptep);
756 if (old_pte & _PAGE_BUSY)
757 goto out;
758 new_pte = old_pte | _PAGE_BUSY |
759 _PAGE_ACCESSED | _PAGE_HASHPTE;
760 } while(old_pte != __cmpxchg_u64((unsigned long *)ptep,
761 old_pte, new_pte));
762
763 rflags = 0x2 | (!(new_pte & _PAGE_RW));
1da177e4 764 /* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
3c726f8d 765 rflags |= ((new_pte & _PAGE_EXEC) ? 0 : HPTE_R_N);
cbf52afd
DG
766 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
767 /* No CPU has hugepages but lacks no execute, so we
768 * don't need to worry about that case */
769 rflags = hash_huge_page_do_lazy_icache(rflags, __pte(old_pte),
770 trap);
1da177e4
LT
771
772 /* Check if pte already has an hpte (case 2) */
3c726f8d 773 if (unlikely(old_pte & _PAGE_HASHPTE)) {
1da177e4
LT
774 /* There MIGHT be an HPTE for this pte */
775 unsigned long hash, slot;
776
3c726f8d
BH
777 hash = hpt_hash(va, HPAGE_SHIFT);
778 if (old_pte & _PAGE_F_SECOND)
1da177e4
LT
779 hash = ~hash;
780 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
3c726f8d 781 slot += (old_pte & _PAGE_F_GIX) >> 12;
1da177e4 782
325c82a0
BH
783 if (ppc_md.hpte_updatepp(slot, rflags, va, mmu_huge_psize,
784 local) == -1)
3c726f8d 785 old_pte &= ~_PAGE_HPTEFLAGS;
1da177e4
LT
786 }
787
3c726f8d
BH
788 if (likely(!(old_pte & _PAGE_HASHPTE))) {
789 unsigned long hash = hpt_hash(va, HPAGE_SHIFT);
1da177e4
LT
790 unsigned long hpte_group;
791
3c726f8d 792 pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT;
1da177e4
LT
793
794repeat:
795 hpte_group = ((hash & htab_hash_mask) *
796 HPTES_PER_GROUP) & ~0x7UL;
797
3c726f8d
BH
798 /* clear HPTE slot informations in new PTE */
799 new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HASHPTE;
1da177e4
LT
800
801 /* Add in WIMG bits */
802 /* XXX We should store these in the pte */
3c726f8d 803 /* --BenH: I think they are ... */
96e28449 804 rflags |= _PAGE_COHERENT;
1da177e4 805
3c726f8d
BH
806 /* Insert into the hash table, primary slot */
807 slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, 0,
808 mmu_huge_psize);
1da177e4
LT
809
810 /* Primary is full, try the secondary */
811 if (unlikely(slot == -1)) {
3c726f8d 812 new_pte |= _PAGE_F_SECOND;
1da177e4
LT
813 hpte_group = ((~hash & htab_hash_mask) *
814 HPTES_PER_GROUP) & ~0x7UL;
3c726f8d 815 slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags,
67b10813 816 HPTE_V_SECONDARY,
3c726f8d 817 mmu_huge_psize);
1da177e4
LT
818 if (slot == -1) {
819 if (mftb() & 0x1)
67b10813
BH
820 hpte_group = ((hash & htab_hash_mask) *
821 HPTES_PER_GROUP)&~0x7UL;
1da177e4
LT
822
823 ppc_md.hpte_remove(hpte_group);
824 goto repeat;
825 }
826 }
827
828 if (unlikely(slot == -2))
829 panic("hash_huge_page: pte_insert failed\n");
830
3c726f8d 831 new_pte |= (slot << 12) & _PAGE_F_GIX;
1da177e4
LT
832 }
833
3c726f8d 834 /*
01edcd89 835 * No need to use ldarx/stdcx here
3c726f8d
BH
836 */
837 *ptep = __pte(new_pte & ~_PAGE_BUSY);
838
1da177e4
LT
839 err = 0;
840
841 out:
1da177e4
LT
842 return err;
843}