Merge tag 'v3.10' into next
[linux-2.6-block.git] / arch / powerpc / mm / hugetlbpage.c
CommitLineData
1da177e4 1/*
41151e77 2 * PPC Huge TLB Page Support for Kernel.
1da177e4
LT
3 *
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
41151e77 5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
1da177e4
LT
6 *
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9 */
10
1da177e4 11#include <linux/mm.h>
883a3e52 12#include <linux/io.h>
5a0e3ad6 13#include <linux/slab.h>
1da177e4 14#include <linux/hugetlb.h>
342d3db7 15#include <linux/export.h>
41151e77
BB
16#include <linux/of_fdt.h>
17#include <linux/memblock.h>
18#include <linux/bootmem.h>
13020be8 19#include <linux/moduleparam.h>
883a3e52 20#include <asm/pgtable.h>
1da177e4
LT
21#include <asm/pgalloc.h>
22#include <asm/tlb.h>
41151e77 23#include <asm/setup.h>
29409997
AK
24#include <asm/hugetlb.h>
25
26#ifdef CONFIG_HUGETLB_PAGE
1da177e4 27
91224346
JT
28#define PAGE_SHIFT_64K 16
29#define PAGE_SHIFT_16M 24
30#define PAGE_SHIFT_16G 34
4ec161cf 31
41151e77 32unsigned int HPAGE_SHIFT;
ec4b2c0c 33
41151e77
BB
34/*
35 * Tracks gpages after the device tree is scanned and before the
a6146888
BB
36 * huge_boot_pages list is ready. On non-Freescale implementations, this is
37 * just used to track 16G pages and so is a single array. FSL-based
38 * implementations may have more than one gpage size, so we need multiple
39 * arrays
41151e77 40 */
881fde1d 41#ifdef CONFIG_PPC_FSL_BOOK3E
41151e77
BB
42#define MAX_NUMBER_GPAGES 128
43struct psize_gpages {
44 u64 gpage_list[MAX_NUMBER_GPAGES];
45 unsigned int nr_gpages;
46};
47static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
881fde1d
BB
48#else
49#define MAX_NUMBER_GPAGES 1024
50static u64 gpage_freearray[MAX_NUMBER_GPAGES];
51static unsigned nr_gpages;
41151e77 52#endif
f10a04c0 53
a4fe3ce7
DG
54#define hugepd_none(hpd) ((hpd).pd == 0)
55
e2b3d202
AK
56#ifdef CONFIG_PPC_BOOK3S_64
57/*
58 * At this point we do the placement change only for BOOK3S 64. This would
59 * possibly work on other subarchs.
60 */
61
62/*
63 * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have
64 * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD;
65 */
66int pmd_huge(pmd_t pmd)
67{
68 /*
69 * leaf pte for huge page, bottom two bits != 00
70 */
71 return ((pmd_val(pmd) & 0x3) != 0x0);
72}
73
74int pud_huge(pud_t pud)
75{
76 /*
77 * leaf pte for huge page, bottom two bits != 00
78 */
79 return ((pud_val(pud) & 0x3) != 0x0);
80}
81
82int pgd_huge(pgd_t pgd)
83{
84 /*
85 * leaf pte for huge page, bottom two bits != 00
86 */
87 return ((pgd_val(pgd) & 0x3) != 0x0);
88}
89#else
90int pmd_huge(pmd_t pmd)
91{
92 return 0;
93}
94
95int pud_huge(pud_t pud)
96{
97 return 0;
98}
99
100int pgd_huge(pgd_t pgd)
101{
102 return 0;
103}
104#endif
105
a4fe3ce7
DG
106pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
107{
12bc9f6f 108 /* Only called for hugetlbfs pages, hence can ignore THP */
a4fe3ce7
DG
109 return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
110}
111
f10a04c0 112static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
a4fe3ce7 113 unsigned long address, unsigned pdshift, unsigned pshift)
f10a04c0 114{
41151e77
BB
115 struct kmem_cache *cachep;
116 pte_t *new;
117
881fde1d 118#ifdef CONFIG_PPC_FSL_BOOK3E
41151e77
BB
119 int i;
120 int num_hugepd = 1 << (pshift - pdshift);
121 cachep = hugepte_cache;
881fde1d
BB
122#else
123 cachep = PGT_CACHE(pdshift - pshift);
41151e77
BB
124#endif
125
126 new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
f10a04c0 127
a4fe3ce7
DG
128 BUG_ON(pshift > HUGEPD_SHIFT_MASK);
129 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
130
f10a04c0
DG
131 if (! new)
132 return -ENOMEM;
133
134 spin_lock(&mm->page_table_lock);
881fde1d 135#ifdef CONFIG_PPC_FSL_BOOK3E
41151e77
BB
136 /*
137 * We have multiple higher-level entries that point to the same
138 * actual pte location. Fill in each as we go and backtrack on error.
139 * We need all of these so the DTLB pgtable walk code can find the
140 * right higher-level entry without knowing if it's a hugepage or not.
141 */
142 for (i = 0; i < num_hugepd; i++, hpdp++) {
143 if (unlikely(!hugepd_none(*hpdp)))
144 break;
145 else
cf9427b8 146 /* We use the old format for PPC_FSL_BOOK3E */
41151e77
BB
147 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
148 }
149 /* If we bailed from the for loop early, an error occurred, clean up */
150 if (i < num_hugepd) {
151 for (i = i - 1 ; i >= 0; i--, hpdp--)
152 hpdp->pd = 0;
153 kmem_cache_free(cachep, new);
154 }
a1cd5419
BB
155#else
156 if (!hugepd_none(*hpdp))
157 kmem_cache_free(cachep, new);
cf9427b8
AK
158 else {
159#ifdef CONFIG_PPC_BOOK3S_64
160 hpdp->pd = (unsigned long)new |
161 (shift_to_mmu_psize(pshift) << 2);
162#else
a1cd5419 163 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
cf9427b8
AK
164#endif
165 }
41151e77 166#endif
f10a04c0
DG
167 spin_unlock(&mm->page_table_lock);
168 return 0;
169}
170
a1cd5419
BB
171/*
172 * These macros define how to determine which level of the page table holds
173 * the hpdp.
174 */
175#ifdef CONFIG_PPC_FSL_BOOK3E
176#define HUGEPD_PGD_SHIFT PGDIR_SHIFT
177#define HUGEPD_PUD_SHIFT PUD_SHIFT
178#else
179#define HUGEPD_PGD_SHIFT PUD_SHIFT
180#define HUGEPD_PUD_SHIFT PMD_SHIFT
181#endif
182
e2b3d202
AK
183#ifdef CONFIG_PPC_BOOK3S_64
184/*
185 * At this point we do the placement change only for BOOK3S 64. This would
186 * possibly work on other subarchs.
187 */
188pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
189{
190 pgd_t *pg;
191 pud_t *pu;
192 pmd_t *pm;
193 hugepd_t *hpdp = NULL;
194 unsigned pshift = __ffs(sz);
195 unsigned pdshift = PGDIR_SHIFT;
196
197 addr &= ~(sz-1);
198 pg = pgd_offset(mm, addr);
199
200 if (pshift == PGDIR_SHIFT)
201 /* 16GB huge page */
202 return (pte_t *) pg;
203 else if (pshift > PUD_SHIFT)
204 /*
205 * We need to use hugepd table
206 */
207 hpdp = (hugepd_t *)pg;
208 else {
209 pdshift = PUD_SHIFT;
210 pu = pud_alloc(mm, pg, addr);
211 if (pshift == PUD_SHIFT)
212 return (pte_t *)pu;
213 else if (pshift > PMD_SHIFT)
214 hpdp = (hugepd_t *)pu;
215 else {
216 pdshift = PMD_SHIFT;
217 pm = pmd_alloc(mm, pu, addr);
218 if (pshift == PMD_SHIFT)
219 /* 16MB hugepage */
220 return (pte_t *)pm;
221 else
222 hpdp = (hugepd_t *)pm;
223 }
224 }
225 if (!hpdp)
226 return NULL;
227
228 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
229
230 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
231 return NULL;
232
233 return hugepte_offset(hpdp, addr, pdshift);
234}
235
236#else
237
a4fe3ce7 238pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
0b26425c 239{
a4fe3ce7
DG
240 pgd_t *pg;
241 pud_t *pu;
242 pmd_t *pm;
243 hugepd_t *hpdp = NULL;
244 unsigned pshift = __ffs(sz);
245 unsigned pdshift = PGDIR_SHIFT;
246
247 addr &= ~(sz-1);
248
249 pg = pgd_offset(mm, addr);
a1cd5419
BB
250
251 if (pshift >= HUGEPD_PGD_SHIFT) {
a4fe3ce7
DG
252 hpdp = (hugepd_t *)pg;
253 } else {
254 pdshift = PUD_SHIFT;
255 pu = pud_alloc(mm, pg, addr);
a1cd5419 256 if (pshift >= HUGEPD_PUD_SHIFT) {
a4fe3ce7
DG
257 hpdp = (hugepd_t *)pu;
258 } else {
259 pdshift = PMD_SHIFT;
260 pm = pmd_alloc(mm, pu, addr);
261 hpdp = (hugepd_t *)pm;
262 }
263 }
264
265 if (!hpdp)
266 return NULL;
267
268 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
269
270 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
271 return NULL;
272
273 return hugepte_offset(hpdp, addr, pdshift);
4ec161cf 274}
e2b3d202 275#endif
4ec161cf 276
881fde1d 277#ifdef CONFIG_PPC_FSL_BOOK3E
658013e9
JT
278/* Build list of addresses of gigantic pages. This function is used in early
279 * boot before the buddy or bootmem allocator is setup.
280 */
41151e77
BB
281void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
282{
283 unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
284 int i;
285
286 if (addr == 0)
287 return;
288
289 gpage_freearray[idx].nr_gpages = number_of_pages;
290
291 for (i = 0; i < number_of_pages; i++) {
292 gpage_freearray[idx].gpage_list[i] = addr;
293 addr += page_size;
294 }
295}
296
297/*
298 * Moves the gigantic page addresses from the temporary list to the
299 * huge_boot_pages list.
300 */
301int alloc_bootmem_huge_page(struct hstate *hstate)
302{
303 struct huge_bootmem_page *m;
304 int idx = shift_to_mmu_psize(hstate->order + PAGE_SHIFT);
305 int nr_gpages = gpage_freearray[idx].nr_gpages;
306
307 if (nr_gpages == 0)
308 return 0;
309
310#ifdef CONFIG_HIGHMEM
311 /*
312 * If gpages can be in highmem we can't use the trick of storing the
313 * data structure in the page; allocate space for this
314 */
315 m = alloc_bootmem(sizeof(struct huge_bootmem_page));
316 m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
317#else
318 m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
319#endif
320
321 list_add(&m->list, &huge_boot_pages);
322 gpage_freearray[idx].nr_gpages = nr_gpages;
323 gpage_freearray[idx].gpage_list[nr_gpages] = 0;
324 m->hstate = hstate;
325
326 return 1;
327}
328/*
329 * Scan the command line hugepagesz= options for gigantic pages; store those in
330 * a list that we use to allocate the memory once all options are parsed.
331 */
332
333unsigned long gpage_npages[MMU_PAGE_COUNT];
334
89528127
PG
335static int __init do_gpage_early_setup(char *param, char *val,
336 const char *unused)
41151e77
BB
337{
338 static phys_addr_t size;
339 unsigned long npages;
340
341 /*
342 * The hugepagesz and hugepages cmdline options are interleaved. We
343 * use the size variable to keep track of whether or not this was done
344 * properly and skip over instances where it is incorrect. Other
345 * command-line parsing code will issue warnings, so we don't need to.
346 *
347 */
348 if ((strcmp(param, "default_hugepagesz") == 0) ||
349 (strcmp(param, "hugepagesz") == 0)) {
350 size = memparse(val, NULL);
351 } else if (strcmp(param, "hugepages") == 0) {
352 if (size != 0) {
353 if (sscanf(val, "%lu", &npages) <= 0)
354 npages = 0;
355 gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
356 size = 0;
357 }
358 }
359 return 0;
360}
361
362
363/*
364 * This function allocates physical space for pages that are larger than the
365 * buddy allocator can handle. We want to allocate these in highmem because
366 * the amount of lowmem is limited. This means that this function MUST be
367 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
368 * allocate to grab highmem.
369 */
370void __init reserve_hugetlb_gpages(void)
371{
372 static __initdata char cmdline[COMMAND_LINE_SIZE];
373 phys_addr_t size, base;
374 int i;
375
376 strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
026cee00
PM
377 parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
378 &do_gpage_early_setup);
41151e77
BB
379
380 /*
381 * Walk gpage list in reverse, allocating larger page sizes first.
382 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
383 * When we reach the point in the list where pages are no longer
384 * considered gpages, we're done.
385 */
386 for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
387 if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
388 continue;
389 else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
390 break;
391
392 size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
393 base = memblock_alloc_base(size * gpage_npages[i], size,
394 MEMBLOCK_ALLOC_ANYWHERE);
395 add_gpage(base, size, gpage_npages[i]);
396 }
397}
398
881fde1d 399#else /* !PPC_FSL_BOOK3E */
41151e77
BB
400
401/* Build list of addresses of gigantic pages. This function is used in early
402 * boot before the buddy or bootmem allocator is setup.
403 */
404void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
658013e9
JT
405{
406 if (!addr)
407 return;
408 while (number_of_pages > 0) {
409 gpage_freearray[nr_gpages] = addr;
410 nr_gpages++;
411 number_of_pages--;
412 addr += page_size;
413 }
414}
415
ec4b2c0c 416/* Moves the gigantic page addresses from the temporary list to the
0d9ea754
JT
417 * huge_boot_pages list.
418 */
419int alloc_bootmem_huge_page(struct hstate *hstate)
ec4b2c0c
JT
420{
421 struct huge_bootmem_page *m;
422 if (nr_gpages == 0)
423 return 0;
424 m = phys_to_virt(gpage_freearray[--nr_gpages]);
425 gpage_freearray[nr_gpages] = 0;
426 list_add(&m->list, &huge_boot_pages);
0d9ea754 427 m->hstate = hstate;
ec4b2c0c
JT
428 return 1;
429}
41151e77 430#endif
ec4b2c0c 431
39dde65c
CK
432int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
433{
434 return 0;
435}
436
881fde1d 437#ifdef CONFIG_PPC_FSL_BOOK3E
41151e77
BB
438#define HUGEPD_FREELIST_SIZE \
439 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
440
441struct hugepd_freelist {
442 struct rcu_head rcu;
443 unsigned int index;
444 void *ptes[0];
445};
446
447static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
448
449static void hugepd_free_rcu_callback(struct rcu_head *head)
450{
451 struct hugepd_freelist *batch =
452 container_of(head, struct hugepd_freelist, rcu);
453 unsigned int i;
454
455 for (i = 0; i < batch->index; i++)
456 kmem_cache_free(hugepte_cache, batch->ptes[i]);
457
458 free_page((unsigned long)batch);
459}
460
461static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
462{
463 struct hugepd_freelist **batchp;
464
465 batchp = &__get_cpu_var(hugepd_freelist_cur);
466
467 if (atomic_read(&tlb->mm->mm_users) < 2 ||
468 cpumask_equal(mm_cpumask(tlb->mm),
469 cpumask_of(smp_processor_id()))) {
470 kmem_cache_free(hugepte_cache, hugepte);
471 return;
472 }
473
474 if (*batchp == NULL) {
475 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
476 (*batchp)->index = 0;
477 }
478
479 (*batchp)->ptes[(*batchp)->index++] = hugepte;
480 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
481 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
482 *batchp = NULL;
483 }
484}
485#endif
486
a4fe3ce7
DG
487static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
488 unsigned long start, unsigned long end,
489 unsigned long floor, unsigned long ceiling)
f10a04c0
DG
490{
491 pte_t *hugepte = hugepd_page(*hpdp);
41151e77
BB
492 int i;
493
a4fe3ce7 494 unsigned long pdmask = ~((1UL << pdshift) - 1);
41151e77
BB
495 unsigned int num_hugepd = 1;
496
881fde1d
BB
497#ifdef CONFIG_PPC_FSL_BOOK3E
498 /* Note: On fsl the hpdp may be the first of several */
41151e77 499 num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
881fde1d
BB
500#else
501 unsigned int shift = hugepd_shift(*hpdp);
41151e77 502#endif
a4fe3ce7
DG
503
504 start &= pdmask;
505 if (start < floor)
506 return;
507 if (ceiling) {
508 ceiling &= pdmask;
509 if (! ceiling)
510 return;
511 }
512 if (end - 1 > ceiling - 1)
513 return;
f10a04c0 514
41151e77
BB
515 for (i = 0; i < num_hugepd; i++, hpdp++)
516 hpdp->pd = 0;
517
f10a04c0 518 tlb->need_flush = 1;
881fde1d
BB
519
520#ifdef CONFIG_PPC_FSL_BOOK3E
41151e77 521 hugepd_free(tlb, hugepte);
881fde1d
BB
522#else
523 pgtable_free_tlb(tlb, hugepte, pdshift - shift);
41151e77 524#endif
f10a04c0
DG
525}
526
f10a04c0
DG
527static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
528 unsigned long addr, unsigned long end,
a4fe3ce7 529 unsigned long floor, unsigned long ceiling)
f10a04c0
DG
530{
531 pmd_t *pmd;
532 unsigned long next;
533 unsigned long start;
534
535 start = addr;
f10a04c0 536 do {
a1cd5419 537 pmd = pmd_offset(pud, addr);
f10a04c0 538 next = pmd_addr_end(addr, end);
8bbd9f04
AK
539 if (!is_hugepd(pmd)) {
540 /*
541 * if it is not hugepd pointer, we should already find
542 * it cleared.
543 */
544 WARN_ON(!pmd_none_or_clear_bad(pmd));
f10a04c0 545 continue;
8bbd9f04 546 }
a1cd5419
BB
547#ifdef CONFIG_PPC_FSL_BOOK3E
548 /*
549 * Increment next by the size of the huge mapping since
550 * there may be more than one entry at this level for a
551 * single hugepage, but all of them point to
552 * the same kmem cache that holds the hugepte.
553 */
554 next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
555#endif
a4fe3ce7
DG
556 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
557 addr, next, floor, ceiling);
a1cd5419 558 } while (addr = next, addr != end);
f10a04c0
DG
559
560 start &= PUD_MASK;
561 if (start < floor)
562 return;
563 if (ceiling) {
564 ceiling &= PUD_MASK;
565 if (!ceiling)
566 return;
1da177e4 567 }
f10a04c0
DG
568 if (end - 1 > ceiling - 1)
569 return;
1da177e4 570
f10a04c0
DG
571 pmd = pmd_offset(pud, start);
572 pud_clear(pud);
9e1b32ca 573 pmd_free_tlb(tlb, pmd, start);
f10a04c0 574}
f10a04c0
DG
575
576static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
577 unsigned long addr, unsigned long end,
578 unsigned long floor, unsigned long ceiling)
579{
580 pud_t *pud;
581 unsigned long next;
582 unsigned long start;
583
584 start = addr;
f10a04c0 585 do {
a1cd5419 586 pud = pud_offset(pgd, addr);
f10a04c0 587 next = pud_addr_end(addr, end);
a4fe3ce7 588 if (!is_hugepd(pud)) {
4ec161cf
JT
589 if (pud_none_or_clear_bad(pud))
590 continue;
0d9ea754 591 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
a4fe3ce7 592 ceiling);
4ec161cf 593 } else {
a1cd5419
BB
594#ifdef CONFIG_PPC_FSL_BOOK3E
595 /*
596 * Increment next by the size of the huge mapping since
597 * there may be more than one entry at this level for a
598 * single hugepage, but all of them point to
599 * the same kmem cache that holds the hugepte.
600 */
601 next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
602#endif
a4fe3ce7
DG
603 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
604 addr, next, floor, ceiling);
4ec161cf 605 }
a1cd5419 606 } while (addr = next, addr != end);
f10a04c0
DG
607
608 start &= PGDIR_MASK;
609 if (start < floor)
610 return;
611 if (ceiling) {
612 ceiling &= PGDIR_MASK;
613 if (!ceiling)
614 return;
615 }
616 if (end - 1 > ceiling - 1)
617 return;
618
619 pud = pud_offset(pgd, start);
620 pgd_clear(pgd);
9e1b32ca 621 pud_free_tlb(tlb, pud, start);
f10a04c0
DG
622}
623
624/*
625 * This function frees user-level page tables of a process.
626 *
627 * Must be called with pagetable lock held.
628 */
42b77728 629void hugetlb_free_pgd_range(struct mmu_gather *tlb,
f10a04c0
DG
630 unsigned long addr, unsigned long end,
631 unsigned long floor, unsigned long ceiling)
632{
633 pgd_t *pgd;
634 unsigned long next;
f10a04c0
DG
635
636 /*
a4fe3ce7
DG
637 * Because there are a number of different possible pagetable
638 * layouts for hugepage ranges, we limit knowledge of how
639 * things should be laid out to the allocation path
640 * (huge_pte_alloc(), above). Everything else works out the
641 * structure as it goes from information in the hugepd
642 * pointers. That means that we can't here use the
643 * optimization used in the normal page free_pgd_range(), of
644 * checking whether we're actually covering a large enough
645 * range to have to do anything at the top level of the walk
646 * instead of at the bottom.
f10a04c0 647 *
a4fe3ce7
DG
648 * To make sense of this, you should probably go read the big
649 * block comment at the top of the normal free_pgd_range(),
650 * too.
f10a04c0 651 */
f10a04c0 652
f10a04c0 653 do {
f10a04c0 654 next = pgd_addr_end(addr, end);
41151e77 655 pgd = pgd_offset(tlb->mm, addr);
a4fe3ce7 656 if (!is_hugepd(pgd)) {
0b26425c
DG
657 if (pgd_none_or_clear_bad(pgd))
658 continue;
659 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
660 } else {
881fde1d 661#ifdef CONFIG_PPC_FSL_BOOK3E
41151e77
BB
662 /*
663 * Increment next by the size of the huge mapping since
881fde1d
BB
664 * there may be more than one entry at the pgd level
665 * for a single hugepage, but all of them point to the
666 * same kmem cache that holds the hugepte.
41151e77
BB
667 */
668 next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
669#endif
a4fe3ce7
DG
670 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
671 addr, next, floor, ceiling);
0b26425c 672 }
41151e77 673 } while (addr = next, addr != end);
1da177e4
LT
674}
675
1da177e4
LT
676struct page *
677follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
678{
679 pte_t *ptep;
680 struct page *page;
a4fe3ce7
DG
681 unsigned shift;
682 unsigned long mask;
12bc9f6f
AK
683 /*
684 * Transparent hugepages are handled by generic code. We can skip them
685 * here.
686 */
a4fe3ce7 687 ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
1da177e4 688
0d9ea754 689 /* Verify it is a huge page else bail. */
12bc9f6f 690 if (!ptep || !shift || pmd_trans_huge(*(pmd_t *)ptep))
1da177e4
LT
691 return ERR_PTR(-EINVAL);
692
a4fe3ce7 693 mask = (1UL << shift) - 1;
1da177e4 694 page = pte_page(*ptep);
a4fe3ce7
DG
695 if (page)
696 page += (address & mask) / PAGE_SIZE;
1da177e4
LT
697
698 return page;
699}
700
1da177e4
LT
701struct page *
702follow_huge_pmd(struct mm_struct *mm, unsigned long address,
703 pmd_t *pmd, int write)
704{
705 BUG();
706 return NULL;
707}
708
39adfa54
DG
709static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
710 unsigned long sz)
711{
712 unsigned long __boundary = (addr + sz) & ~(sz-1);
713 return (__boundary - 1 < end - 1) ? __boundary : end;
714}
715
a4fe3ce7
DG
716int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
717 unsigned long addr, unsigned long end,
718 int write, struct page **pages, int *nr)
719{
720 pte_t *ptep;
721 unsigned long sz = 1UL << hugepd_shift(*hugepd);
39adfa54 722 unsigned long next;
a4fe3ce7
DG
723
724 ptep = hugepte_offset(hugepd, addr, pdshift);
725 do {
39adfa54 726 next = hugepte_addr_end(addr, end, sz);
a4fe3ce7
DG
727 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
728 return 0;
39adfa54 729 } while (ptep++, addr = next, addr != end);
a4fe3ce7
DG
730
731 return 1;
732}
1da177e4 733
76512959 734#ifdef CONFIG_PPC_MM_SLICES
1da177e4
LT
735unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
736 unsigned long len, unsigned long pgoff,
737 unsigned long flags)
738{
0d9ea754
JT
739 struct hstate *hstate = hstate_file(file);
740 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
48f797de 741
34d07177 742 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
1da177e4 743}
76512959 744#endif
1da177e4 745
3340289d
MG
746unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
747{
25c29f9e 748#ifdef CONFIG_PPC_MM_SLICES
3340289d
MG
749 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
750
751 return 1UL << mmu_psize_to_shift(psize);
41151e77
BB
752#else
753 if (!is_vm_hugetlb_page(vma))
754 return PAGE_SIZE;
755
756 return huge_page_size(hstate_vma(vma));
757#endif
758}
759
760static inline bool is_power_of_4(unsigned long x)
761{
762 if (is_power_of_2(x))
763 return (__ilog2(x) % 2) ? false : true;
764 return false;
3340289d
MG
765}
766
d1837cba 767static int __init add_huge_page_size(unsigned long long size)
4ec161cf 768{
d1837cba
DG
769 int shift = __ffs(size);
770 int mmu_psize;
a4fe3ce7 771
4ec161cf 772 /* Check that it is a page size supported by the hardware and
d1837cba 773 * that it fits within pagetable and slice limits. */
41151e77
BB
774#ifdef CONFIG_PPC_FSL_BOOK3E
775 if ((size < PAGE_SIZE) || !is_power_of_4(size))
776 return -EINVAL;
777#else
d1837cba
DG
778 if (!is_power_of_2(size)
779 || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
780 return -EINVAL;
41151e77 781#endif
91224346 782
d1837cba
DG
783 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
784 return -EINVAL;
785
786#ifdef CONFIG_SPU_FS_64K_LS
787 /* Disable support for 64K huge pages when 64K SPU local store
788 * support is enabled as the current implementation conflicts.
789 */
790 if (shift == PAGE_SHIFT_64K)
791 return -EINVAL;
792#endif /* CONFIG_SPU_FS_64K_LS */
793
794 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
795
796 /* Return if huge page size has already been setup */
797 if (size_to_hstate(size))
798 return 0;
799
800 hugetlb_add_hstate(shift - PAGE_SHIFT);
801
802 return 0;
4ec161cf
JT
803}
804
805static int __init hugepage_setup_sz(char *str)
806{
807 unsigned long long size;
4ec161cf
JT
808
809 size = memparse(str, &str);
810
d1837cba 811 if (add_huge_page_size(size) != 0)
4ec161cf
JT
812 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
813
814 return 1;
815}
816__setup("hugepagesz=", hugepage_setup_sz);
817
881fde1d 818#ifdef CONFIG_PPC_FSL_BOOK3E
41151e77
BB
819struct kmem_cache *hugepte_cache;
820static int __init hugetlbpage_init(void)
821{
822 int psize;
823
824 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
825 unsigned shift;
826
827 if (!mmu_psize_defs[psize].shift)
828 continue;
829
830 shift = mmu_psize_to_shift(psize);
831
832 /* Don't treat normal page sizes as huge... */
833 if (shift != PAGE_SHIFT)
834 if (add_huge_page_size(1ULL << shift) < 0)
835 continue;
836 }
837
838 /*
839 * Create a kmem cache for hugeptes. The bottom bits in the pte have
840 * size information encoded in them, so align them to allow this
841 */
842 hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t),
843 HUGEPD_SHIFT_MASK + 1, 0, NULL);
844 if (hugepte_cache == NULL)
845 panic("%s: Unable to create kmem cache for hugeptes\n",
846 __func__);
847
848 /* Default hpage size = 4M */
849 if (mmu_psize_defs[MMU_PAGE_4M].shift)
850 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
851 else
852 panic("%s: Unable to set default huge page size\n", __func__);
853
854
855 return 0;
856}
857#else
f10a04c0
DG
858static int __init hugetlbpage_init(void)
859{
a4fe3ce7 860 int psize;
0d9ea754 861
44ae3ab3 862 if (!mmu_has_feature(MMU_FTR_16M_PAGE))
f10a04c0 863 return -ENODEV;
00df438e 864
d1837cba
DG
865 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
866 unsigned shift;
867 unsigned pdshift;
0d9ea754 868
d1837cba
DG
869 if (!mmu_psize_defs[psize].shift)
870 continue;
00df438e 871
d1837cba
DG
872 shift = mmu_psize_to_shift(psize);
873
874 if (add_huge_page_size(1ULL << shift) < 0)
875 continue;
876
877 if (shift < PMD_SHIFT)
878 pdshift = PMD_SHIFT;
879 else if (shift < PUD_SHIFT)
880 pdshift = PUD_SHIFT;
881 else
882 pdshift = PGDIR_SHIFT;
e2b3d202
AK
883 /*
884 * if we have pdshift and shift value same, we don't
885 * use pgt cache for hugepd.
886 */
887 if (pdshift != shift) {
888 pgtable_cache_add(pdshift - shift, NULL);
889 if (!PGT_CACHE(pdshift - shift))
890 panic("hugetlbpage_init(): could not create "
891 "pgtable cache for %d bit pagesize\n", shift);
892 }
0d9ea754 893 }
f10a04c0 894
d1837cba
DG
895 /* Set default large page size. Currently, we pick 16M or 1M
896 * depending on what is available
897 */
898 if (mmu_psize_defs[MMU_PAGE_16M].shift)
899 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
900 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
901 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
902
f10a04c0
DG
903 return 0;
904}
41151e77 905#endif
f10a04c0 906module_init(hugetlbpage_init);
0895ecda
DG
907
908void flush_dcache_icache_hugepage(struct page *page)
909{
910 int i;
41151e77 911 void *start;
0895ecda
DG
912
913 BUG_ON(!PageCompound(page));
914
41151e77
BB
915 for (i = 0; i < (1UL << compound_order(page)); i++) {
916 if (!PageHighMem(page)) {
917 __flush_dcache_icache(page_address(page+i));
918 } else {
2480b208 919 start = kmap_atomic(page+i);
41151e77 920 __flush_dcache_icache(start);
2480b208 921 kunmap_atomic(start);
41151e77
BB
922 }
923 }
0895ecda 924}
29409997
AK
925
926#endif /* CONFIG_HUGETLB_PAGE */
927
928/*
929 * We have 4 cases for pgds and pmds:
930 * (1) invalid (all zeroes)
931 * (2) pointer to next table, as normal; bottom 6 bits == 0
932 * (3) leaf pte for huge page, bottom two bits != 00
933 * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table
0ac52dd7
AK
934 *
935 * So long as we atomically load page table pointers we are safe against teardown,
936 * we can follow the address down to the the page and take a ref on it.
29409997 937 */
0ac52dd7 938
29409997
AK
939pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
940{
0ac52dd7
AK
941 pgd_t pgd, *pgdp;
942 pud_t pud, *pudp;
943 pmd_t pmd, *pmdp;
29409997
AK
944 pte_t *ret_pte;
945 hugepd_t *hpdp = NULL;
946 unsigned pdshift = PGDIR_SHIFT;
947
948 if (shift)
949 *shift = 0;
950
0ac52dd7
AK
951 pgdp = pgdir + pgd_index(ea);
952 pgd = ACCESS_ONCE(*pgdp);
ac52ae47 953 /*
0ac52dd7
AK
954 * Always operate on the local stack value. This make sure the
955 * value don't get updated by a parallel THP split/collapse,
956 * page fault or a page unmap. The return pte_t * is still not
957 * stable. So should be checked there for above conditions.
ac52ae47 958 */
0ac52dd7 959 if (pgd_none(pgd))
ac52ae47 960 return NULL;
0ac52dd7
AK
961 else if (pgd_huge(pgd)) {
962 ret_pte = (pte_t *) pgdp;
29409997 963 goto out;
0ac52dd7
AK
964 } else if (is_hugepd(&pgd))
965 hpdp = (hugepd_t *)&pgd;
ac52ae47 966 else {
0ac52dd7
AK
967 /*
968 * Even if we end up with an unmap, the pgtable will not
969 * be freed, because we do an rcu free and here we are
970 * irq disabled
971 */
29409997 972 pdshift = PUD_SHIFT;
0ac52dd7
AK
973 pudp = pud_offset(&pgd, ea);
974 pud = ACCESS_ONCE(*pudp);
29409997 975
0ac52dd7 976 if (pud_none(pud))
ac52ae47 977 return NULL;
0ac52dd7
AK
978 else if (pud_huge(pud)) {
979 ret_pte = (pte_t *) pudp;
29409997 980 goto out;
0ac52dd7
AK
981 } else if (is_hugepd(&pud))
982 hpdp = (hugepd_t *)&pud;
ac52ae47 983 else {
29409997 984 pdshift = PMD_SHIFT;
0ac52dd7
AK
985 pmdp = pmd_offset(&pud, ea);
986 pmd = ACCESS_ONCE(*pmdp);
ac52ae47
AK
987 /*
988 * A hugepage collapse is captured by pmd_none, because
989 * it mark the pmd none and do a hpte invalidate.
990 *
991 * A hugepage split is captured by pmd_trans_splitting
992 * because we mark the pmd trans splitting and do a
993 * hpte invalidate
994 *
995 */
0ac52dd7 996 if (pmd_none(pmd) || pmd_trans_splitting(pmd))
ac52ae47 997 return NULL;
29409997 998
0ac52dd7
AK
999 if (pmd_huge(pmd) || pmd_large(pmd)) {
1000 ret_pte = (pte_t *) pmdp;
29409997 1001 goto out;
0ac52dd7
AK
1002 } else if (is_hugepd(&pmd))
1003 hpdp = (hugepd_t *)&pmd;
ac52ae47 1004 else
0ac52dd7 1005 return pte_offset_kernel(&pmd, ea);
29409997
AK
1006 }
1007 }
1008 if (!hpdp)
1009 return NULL;
1010
1011 ret_pte = hugepte_offset(hpdp, ea, pdshift);
1012 pdshift = hugepd_shift(*hpdp);
1013out:
1014 if (shift)
1015 *shift = pdshift;
1016 return ret_pte;
1017}
1018EXPORT_SYMBOL_GPL(find_linux_pte_or_hugepte);
1019
1020int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1021 unsigned long end, int write, struct page **pages, int *nr)
1022{
1023 unsigned long mask;
1024 unsigned long pte_end;
1025 struct page *head, *page, *tail;
1026 pte_t pte;
1027 int refs;
1028
1029 pte_end = (addr + sz) & ~(sz-1);
1030 if (pte_end < end)
1031 end = pte_end;
1032
7888b4dd 1033 pte = ACCESS_ONCE(*ptep);
29409997
AK
1034 mask = _PAGE_PRESENT | _PAGE_USER;
1035 if (write)
1036 mask |= _PAGE_RW;
1037
1038 if ((pte_val(pte) & mask) != mask)
1039 return 0;
1040
0ac52dd7
AK
1041#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1042 /*
1043 * check for splitting here
1044 */
1045 if (pmd_trans_splitting(pte_pmd(pte)))
1046 return 0;
1047#endif
1048
29409997
AK
1049 /* hugepages are never "special" */
1050 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1051
1052 refs = 0;
1053 head = pte_page(pte);
1054
1055 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
1056 tail = page;
1057 do {
1058 VM_BUG_ON(compound_head(page) != head);
1059 pages[*nr] = page;
1060 (*nr)++;
1061 page++;
1062 refs++;
1063 } while (addr += PAGE_SIZE, addr != end);
1064
1065 if (!page_cache_add_speculative(head, refs)) {
1066 *nr -= refs;
1067 return 0;
1068 }
1069
1070 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1071 /* Could be optimized better */
1072 *nr -= refs;
1073 while (refs--)
1074 put_page(head);
1075 return 0;
1076 }
1077
1078 /*
1079 * Any tail page need their mapcount reference taken before we
1080 * return.
1081 */
1082 while (refs--) {
1083 if (PageTail(tail))
1084 get_huge_page_tail(tail);
1085 tail++;
1086 }
1087
1088 return 1;
1089}