Merge tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / arch / powerpc / mm / fault.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
14cf11af 2/*
14cf11af
PM
3 * PowerPC version
4 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 *
6 * Derived from "arch/i386/mm/fault.c"
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 *
9 * Modified by Cort Dougan and Paul Mackerras.
10 *
11 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
14cf11af
PM
12 */
13
14cf11af
PM
14#include <linux/signal.h>
15#include <linux/sched.h>
68db0cf1 16#include <linux/sched/task_stack.h>
14cf11af
PM
17#include <linux/kernel.h>
18#include <linux/errno.h>
19#include <linux/string.h>
20#include <linux/types.h>
0e36b0d1 21#include <linux/pagemap.h>
14cf11af
PM
22#include <linux/ptrace.h>
23#include <linux/mman.h>
24#include <linux/mm.h>
25#include <linux/interrupt.h>
26#include <linux/highmem.h>
8a39b05f 27#include <linux/extable.h>
14cf11af 28#include <linux/kprobes.h>
1eeb66a1 29#include <linux/kdebug.h>
cdd6c482 30#include <linux/perf_event.h>
76462232 31#include <linux/ratelimit.h>
ba12eede 32#include <linux/context_tracking.h>
9d57472f 33#include <linux/hugetlb.h>
70ffdb93 34#include <linux/uaccess.h>
90cbac0e 35#include <linux/kfence.h>
98c26a72 36#include <linux/pkeys.h>
14cf11af 37
40900194 38#include <asm/firmware.h>
3a96570f 39#include <asm/interrupt.h>
14cf11af 40#include <asm/page.h>
14cf11af
PM
41#include <asm/mmu.h>
42#include <asm/mmu_context.h>
14cf11af 43#include <asm/siginfo.h>
ae3a197e 44#include <asm/debug.h>
5e5be3ae 45#include <asm/kup.h>
8094892d 46#include <asm/inst.h>
4f9e87c0 47
773b3e53 48
9be72573
BH
49/*
50 * do_page_fault error handling helpers
51 */
52
c3350602 53static int
cd60ab7a 54__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
c3350602
BH
55{
56 /*
57 * If we are in kernel mode, bail out with a SEGV, this will
58 * be caught by the assembly which will restore the non-volatile
59 * registers before calling bad_page_fault()
60 */
61 if (!user_mode(regs))
62 return SIGSEGV;
63
cd60ab7a 64 _exception(SIGSEGV, regs, si_code, address);
c3350602
BH
65
66 return 0;
67}
68
69static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
70{
cd60ab7a 71 return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
c3350602
BH
72}
73
0cec9541
KW
74static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code,
75 struct mm_struct *mm, struct vm_area_struct *vma)
c3350602 76{
c3350602
BH
77
78 /*
79 * Something tried to access memory that isn't in our memory map..
80 * Fix it, but check if it's kernel or user first..
81 */
0cec9541
KW
82 if (mm)
83 mmap_read_unlock(mm);
84 else
85 vma_end_read(vma);
c3350602 86
cd60ab7a 87 return __bad_area_nosemaphore(regs, address, si_code);
c3350602
BH
88}
89
fe4a6856 90static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
0cec9541 91 struct mm_struct *mm,
fe4a6856 92 struct vm_area_struct *vma)
99cd1302 93{
fe4a6856
AK
94 int pkey;
95
96 /*
97 * We don't try to fetch the pkey from page table because reading
98 * page table without locking doesn't guarantee stable pte value.
99 * Hence the pkey value that we return to userspace can be different
100 * from the pkey that actually caused access error.
101 *
102 * It does *not* guarantee that the VMA we find here
103 * was the one that we faulted on.
104 *
105 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
106 * 2. T1 : set AMR to deny access to pkey=4, touches, page
107 * 3. T1 : faults...
108 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
c1e8d7c6 109 * 5. T1 : enters fault handler, takes mmap_lock, etc...
fe4a6856
AK
110 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
111 * faulted on a pte with its pkey=4.
112 */
113 pkey = vma_pkey(vma);
114
0cec9541
KW
115 if (mm)
116 mmap_read_unlock(mm);
117 else
118 vma_end_read(vma);
fe4a6856 119
8eb2ba25
EB
120 /*
121 * If we are in kernel mode, bail out with a SEGV, this will
122 * be caught by the assembly which will restore the non-volatile
123 * registers before calling bad_page_fault()
124 */
125 if (!user_mode(regs))
126 return SIGSEGV;
127
5d8fb8a5 128 _exception_pkey(regs, address, pkey);
8eb2ba25
EB
129
130 return 0;
c3350602
BH
131}
132
0cec9541
KW
133static noinline int bad_access(struct pt_regs *regs, unsigned long address,
134 struct mm_struct *mm, struct vm_area_struct *vma)
ecb101ae 135{
0cec9541 136 return __bad_area(regs, address, SEGV_ACCERR, mm, vma);
ecb101ae
JS
137}
138
3913fdd7 139static int do_sigbus(struct pt_regs *regs, unsigned long address,
50a7ca3c 140 vm_fault_t fault)
9be72573 141{
63af5262 142 if (!user_mode(regs))
b5c8f0fd 143 return SIGBUS;
63af5262
AB
144
145 current->thread.trap_nr = BUS_ADRERR;
3913fdd7
AB
146#ifdef CONFIG_MEMORY_FAILURE
147 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
f654fc07
EB
148 unsigned int lsb = 0; /* shutup gcc */
149
3913fdd7
AB
150 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
151 current->comm, current->pid, address);
f654fc07
EB
152
153 if (fault & VM_FAULT_HWPOISON_LARGE)
154 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
155 if (fault & VM_FAULT_HWPOISON)
156 lsb = PAGE_SHIFT;
157
f8eac901 158 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
f654fc07 159 return 0;
3913fdd7 160 }
9d57472f 161
3913fdd7 162#endif
2e1661d2 163 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
b5c8f0fd 164 return 0;
9be72573
BH
165}
166
50a7ca3c
SJ
167static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
168 vm_fault_t fault)
9be72573
BH
169{
170 /*
b5c8f0fd
BH
171 * Kernel page fault interrupted by SIGKILL. We have no reason to
172 * continue processing.
9be72573 173 */
b5c8f0fd
BH
174 if (fatal_signal_pending(current) && !user_mode(regs))
175 return SIGKILL;
9be72573
BH
176
177 /* Out of memory */
c2d23f91 178 if (fault & VM_FAULT_OOM) {
c2d23f91
DR
179 /*
180 * We ran out of memory, or some other thing happened to us that
181 * made us unable to handle the page fault gracefully.
182 */
183 if (!user_mode(regs))
b5c8f0fd 184 return SIGSEGV;
c2d23f91 185 pagefault_out_of_memory();
b5c8f0fd
BH
186 } else {
187 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
188 VM_FAULT_HWPOISON_LARGE))
189 return do_sigbus(regs, addr, fault);
190 else if (fault & VM_FAULT_SIGSEGV)
191 return bad_area_nosemaphore(regs, addr);
192 else
193 BUG();
c2d23f91 194 }
b5c8f0fd 195 return 0;
9be72573 196}
14cf11af 197
d3ca5874 198/* Is this a bad kernel fault ? */
de78a9c4 199static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
5e5be3ae 200 unsigned long address, bool is_write)
d3ca5874 201{
7153d4bf 202 int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
de78a9c4 203
cd5d5e60 204 if (is_exec) {
0fb1c25a
CL
205 pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
206 address >= TASK_SIZE ? "exec-protected" : "user",
207 address,
208 from_kuid(&init_user_ns, current_uid()));
5e5be3ae
ME
209
210 // Kernel exec fault is always bad
211 return true;
d3ca5874 212 }
de78a9c4 213
5e5be3ae
ME
214 // Kernel fault on kernel address is bad
215 if (address >= TASK_SIZE)
216 return true;
217
cbd7e6ca
CL
218 // Read/write fault blocked by KUAP is bad, it can never succeed.
219 if (bad_kuap_fault(regs, address, is_write)) {
220 pr_crit_ratelimited("Kernel attempted to %s user page (%lx) - exploit attempt? (uid: %d)\n",
221 is_write ? "write" : "read", address,
222 from_kuid(&init_user_ns, current_uid()));
5e5be3ae 223
cbd7e6ca
CL
224 // Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
225 if (!search_exception_tables(regs->nip))
226 return true;
227
228 // Read/write fault in a valid region (the exception table search passed
229 // above), but blocked by KUAP is bad, it can never succeed.
3dc12dfe 230 return WARN(true, "Bug: %s fault blocked by KUAP!", is_write ? "Write" : "Read");
cbd7e6ca 231 }
5e5be3ae 232
cbd7e6ca 233 // What's left? Kernel fault on user and allowed by KUAP in the faulting context.
5e5be3ae 234 return false;
d3ca5874
BH
235}
236
fe4a6856
AK
237static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
238 struct vm_area_struct *vma)
239{
fe4a6856
AK
240 /*
241 * Make sure to check the VMA so that we do not perform
242 * faults just to hit a pkey fault as soon as we fill in a
243 * page. Only called for current mm, hence foreign == 0
244 */
245 if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
246 return true;
247
248 return false;
249}
fe4a6856
AK
250
251static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
bd0d63f8
BH
252{
253 /*
254 * Allow execution from readable areas if the MMU does not
255 * provide separate controls over reading and executing.
256 *
257 * Note: That code used to not be enabled for 4xx/BookE.
258 * It is now as I/D cache coherency for these is done at
259 * set_pte_at() time and I see no reason why the test
260 * below wouldn't be valid on those processors. This -may-
261 * break programs compiled with a really old ABI though.
262 */
263 if (is_exec) {
264 return !(vma->vm_flags & VM_EXEC) &&
265 (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
266 !(vma->vm_flags & (VM_READ | VM_WRITE)));
267 }
268
269 if (is_write) {
270 if (unlikely(!(vma->vm_flags & VM_WRITE)))
271 return true;
272 return false;
273 }
274
395cac77 275 /*
b1fba034
CL
276 * VM_READ, VM_WRITE and VM_EXEC may imply read permissions, as
277 * defined in protection_map[]. In that case Read faults can only be
278 * caused by a PROT_NONE mapping. However a non exec access on a
279 * VM_EXEC only mapping is invalid anyway, so report it as such.
395cac77 280 */
f2c7e356 281 if (unlikely(!vma_is_accessible(vma)))
bd0d63f8 282 return true;
f2c7e356 283
b1fba034 284 if ((vma->vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)
f2c7e356
RC
285 return true;
286
f2ed480f
AK
287 /*
288 * We should ideally do the vma pkey access check here. But in the
289 * fault path, handle_mm_fault() also does the same check. To avoid
290 * these multiple checks, we skip it here and handle access error due
291 * to pkeys later.
292 */
bd0d63f8
BH
293 return false;
294}
295
3da02648
BH
296#ifdef CONFIG_PPC_SMLPAR
297static inline void cmo_account_page_fault(void)
298{
299 if (firmware_has_feature(FW_FEATURE_CMO)) {
300 u32 page_ins;
301
302 preempt_disable();
303 page_ins = be32_to_cpu(get_lppaca()->page_ins);
304 page_ins += 1 << PAGE_FACTOR;
305 get_lppaca()->page_ins = cpu_to_be32(page_ins);
306 preempt_enable();
307 }
308}
309#else
310static inline void cmo_account_page_fault(void) { }
311#endif /* CONFIG_PPC_SMLPAR */
312
374f3f59
AK
313static void sanity_check_fault(bool is_write, bool is_user,
314 unsigned long error_code, unsigned long address)
2865d08d 315{
374f3f59
AK
316 /*
317 * Userspace trying to access kernel address, we get PROTFAULT for that.
318 */
319 if (is_user && address >= TASK_SIZE) {
0f9aee0c
CL
320 if ((long)address == -1)
321 return;
322
374f3f59
AK
323 pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
324 current->comm, current->pid, address,
325 from_kuid(&init_user_ns, current_uid()));
326 return;
327 }
328
7ceb4002
CL
329 if (!IS_ENABLED(CONFIG_PPC_BOOK3S))
330 return;
331
2865d08d
BH
332 /*
333 * For hash translation mode, we should never get a
334 * PROTFAULT. Any update to pte to reduce access will result in us
335 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
336 * fault instead of DSISR_PROTFAULT.
337 *
338 * A pte update to relax the access will not result in a hash page table
339 * entry invalidate and hence can result in DSISR_PROTFAULT.
340 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
341 * the special !is_write in the below conditional.
342 *
343 * For platforms that doesn't supports coherent icache and do support
344 * per page noexec bit, we do setup things such that we do the
345 * sync between D/I cache via fault. But that is handled via low level
346 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
347 * here in such case.
348 *
349 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
350 * check should handle those and hence we should fall to the bad_area
351 * handling correctly.
352 *
353 * For embedded with per page exec support that doesn't support coherent
354 * icache we do get PROTFAULT and we handle that D/I cache sync in
355 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
356 * is conditional for server MMU.
357 *
358 * For radix, we can get prot fault for autonuma case, because radix
359 * page table will have them marked noaccess for user.
360 */
374f3f59
AK
361 if (radix_enabled() || is_write)
362 return;
363
364 WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
2865d08d 365}
2865d08d 366
41b464e5
BH
367/*
368 * Define the correct "is_write" bit in error_code based
369 * on the processor family
370 */
371#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
372#define page_fault_is_write(__err) ((__err) & ESR_DST)
373#else
374#define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE)
5250d026
CL
375#endif
376
377#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
378#define page_fault_is_bad(__err) (0)
379#elif defined(CONFIG_PPC_8xx)
4915349b 380#define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G)
f3d96e69 381#elif defined(CONFIG_PPC64)
335e1a91
HM
382static int page_fault_is_bad(unsigned long err)
383{
384 unsigned long flag = DSISR_BAD_FAULT_64S;
385
386 /*
387 * PAPR+ v2.11 § 14.15.3.4.1 (unreleased)
388 * If byte 0, bit 3 of pi-attribute-specifier-type in
389 * ibm,pi-features property is defined, ignore the DSI error
390 * which is caused by the paste instruction on the
391 * suspended NX window.
392 */
393 if (mmu_has_feature(MMU_FTR_NX_DSI))
394 flag &= ~DSISR_BAD_COPYPASTE;
395
396 return err & flag;
397}
f3d96e69
BH
398#else
399#define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S)
400#endif
41b464e5 401
14cf11af
PM
402/*
403 * For 600- and 800-family processors, the error_code parameter is DSISR
31d6490c
NP
404 * for a data fault, SRR1 for an instruction fault.
405 * For 400-family processors the error_code parameter is ESR for a data fault,
406 * 0 for an instruction fault.
407 * For 64-bit processors, the error_code parameter is DSISR for a data access
408 * fault, SRR1 & 0x08000000 for an instruction access fault.
14cf11af
PM
409 *
410 * The return value is 0 if the fault was handled, or the signal
411 * number if this is a kernel fault that can't be handled here.
412 */
a008f8f9 413static int ___do_page_fault(struct pt_regs *regs, unsigned long address,
7afad422 414 unsigned long error_code)
14cf11af
PM
415{
416 struct vm_area_struct * vma;
417 struct mm_struct *mm = current->mm;
dde16072 418 unsigned int flags = FAULT_FLAG_DEFAULT;
7153d4bf 419 int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
da929f6a 420 int is_user = user_mode(regs);
41b464e5 421 int is_write = page_fault_is_write(error_code);
50a7ca3c 422 vm_fault_t fault, major = 0;
b98cca44 423 bool kprobe_fault = kprobe_page_fault(regs, 11);
14cf11af 424
b98cca44 425 if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
65d47fd4 426 return 0;
14cf11af 427
f3d96e69 428 if (unlikely(page_fault_is_bad(error_code))) {
65d47fd4 429 if (is_user) {
f3d96e69 430 _exception(SIGBUS, regs, BUS_OBJERR, address);
65d47fd4
BH
431 return 0;
432 }
433 return SIGBUS;
e6c8290a 434 }
e6c8290a 435
2865d08d 436 /* Additional sanity check(s) */
374f3f59 437 sanity_check_fault(is_write, is_user, error_code, address);
2865d08d 438
d7df2443
BH
439 /*
440 * The kernel should never take an execute fault nor should it
de78a9c4
CL
441 * take a page fault to a kernel address or a page fault to a user
442 * address outside of dedicated places
d7df2443 443 */
90cbac0e
CL
444 if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) {
445 if (kfence_handle_page_fault(address, is_write, regs))
446 return 0;
447
65d47fd4 448 return SIGSEGV;
90cbac0e 449 }
14cf11af 450
11ccdd33
BH
451 /*
452 * If we're in an interrupt, have no user context or are running
453 * in a region with pagefaults disabled then we must not take the fault
454 */
455 if (unlikely(faulthandler_disabled() || !mm)) {
456 if (is_user)
457 printk_ratelimited(KERN_ERR "Page fault in user mode"
458 " with faulthandler_disabled()=%d"
459 " mm=%p\n",
460 faulthandler_disabled(), mm);
461 return bad_area_nosemaphore(regs, address);
462 }
463
e6f8a6c8 464 interrupt_cond_local_irq_enable(regs);
a546498f 465
a8b0ca17 466 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
7dd1fcc2 467
69e044dd 468 /*
c1e8d7c6 469 * We want to do this outside mmap_lock, because reading code around nip
69e044dd 470 * can result in fault, which will cause a deadlock when called with
c1e8d7c6 471 * mmap_lock held
69e044dd 472 */
da929f6a 473 if (is_user)
759496ba 474 flags |= FAULT_FLAG_USER;
d2e0d2c5
BH
475 if (is_write)
476 flags |= FAULT_FLAG_WRITE;
477 if (is_exec)
478 flags |= FAULT_FLAG_INSTRUCTION;
759496ba 479
70d4cbc8
LD
480 if (!(flags & FAULT_FLAG_USER))
481 goto lock_mmap;
482
483 vma = lock_vma_under_rcu(mm, address);
484 if (!vma)
485 goto lock_mmap;
486
487 if (unlikely(access_pkey_error(is_write, is_exec,
488 (error_code & DSISR_KEYFAULT), vma))) {
0cec9541
KW
489 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
490 return bad_access_pkey(regs, address, NULL, vma);
70d4cbc8
LD
491 }
492
493 if (unlikely(access_error(is_write, is_exec, vma))) {
0cec9541
KW
494 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
495 return bad_access(regs, address, NULL, vma);
70d4cbc8
LD
496 }
497
498 fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
4089eef0
SB
499 if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
500 vma_end_read(vma);
70d4cbc8
LD
501
502 if (!(fault & VM_FAULT_RETRY)) {
503 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
504 goto done;
505 }
506 count_vm_vma_lock_event(VMA_LOCK_RETRY);
46e714c7
SB
507 if (fault & VM_FAULT_MAJOR)
508 flags |= FAULT_FLAG_TRIED;
70d4cbc8
LD
509
510 if (fault_signal_pending(fault, regs))
511 return user_mode(regs) ? 0 : SIGBUS;
512
513lock_mmap:
70d4cbc8 514
14cf11af
PM
515 /* When running in the kernel we expect faults to occur only to
516 * addresses in user space. All other faults represent errors in the
fc5266ea 517 * kernel and should generate an OOPS. Unfortunately, in the case of an
c1e8d7c6 518 * erroneous fault occurring in a code path which already holds mmap_lock
14cf11af
PM
519 * we will deadlock attempting to validate the fault against the
520 * address space. Luckily the kernel only validly references user
521 * space from well defined areas of code, which are listed in the
e6fe228c 522 * exceptions table. lock_mm_and_find_vma() handles that logic.
14cf11af 523 */
9be72573 524retry:
e6fe228c 525 vma = lock_mm_and_find_vma(mm, address, regs);
b15021d9 526 if (unlikely(!vma))
e6fe228c 527 return bad_area_nosemaphore(regs, address);
14cf11af 528
fe4a6856
AK
529 if (unlikely(access_pkey_error(is_write, is_exec,
530 (error_code & DSISR_KEYFAULT), vma)))
0cec9541 531 return bad_access_pkey(regs, address, mm, vma);
fe4a6856 532
bd0d63f8 533 if (unlikely(access_error(is_write, is_exec, vma)))
0cec9541 534 return bad_access(regs, address, mm, vma);
14cf11af
PM
535
536 /*
537 * If for any reason at all we couldn't handle the fault,
538 * make sure we exit gracefully rather than endlessly redo
539 * the fault.
540 */
428fdc09 541 fault = handle_mm_fault(vma, address, flags, regs);
e6c2a479 542
f43bb27e 543 major |= fault & VM_FAULT_MAJOR;
14c02e41 544
c9a0dad1
PX
545 if (fault_signal_pending(fault, regs))
546 return user_mode(regs) ? 0 : SIGBUS;
547
d9272525
PX
548 /* The fault is fully completed (including releasing mmap lock) */
549 if (fault & VM_FAULT_COMPLETED)
550 goto out;
551
14c02e41 552 /*
c1e8d7c6 553 * Handle the retry right now, the mmap_lock has been released in that
14c02e41
LD
554 * case.
555 */
556 if (unlikely(fault & VM_FAULT_RETRY)) {
36ef159f
QZ
557 flags |= FAULT_FLAG_TRIED;
558 goto retry;
14cf11af 559 }
9be72573 560
d8ed45c5 561 mmap_read_unlock(current->mm);
b5c8f0fd 562
70d4cbc8 563done:
b5c8f0fd
BH
564 if (unlikely(fault & VM_FAULT_ERROR))
565 return mm_fault_error(regs, address, fault);
566
d9272525 567out:
9be72573 568 /*
14c02e41 569 * Major/minor page fault accounting.
9be72573 570 */
428fdc09 571 if (major)
3da02648 572 cmo_account_page_fault();
428fdc09 573
c3350602 574 return 0;
7afad422 575}
a008f8f9 576NOKPROBE_SYMBOL(___do_page_fault);
7afad422 577
c45ba4f4 578static __always_inline void __do_page_fault(struct pt_regs *regs)
7afad422 579{
4cb84284
NP
580 long err;
581
a008f8f9 582 err = ___do_page_fault(regs, regs->dar, regs->dsisr);
c45ba4f4
NP
583 if (unlikely(err))
584 bad_page_fault(regs, err);
a008f8f9 585}
a008f8f9 586
c45ba4f4 587DEFINE_INTERRUPT_HANDLER(do_page_fault)
a008f8f9 588{
c45ba4f4 589 __do_page_fault(regs);
14cf11af
PM
590}
591
a008f8f9
NP
592#ifdef CONFIG_PPC_BOOK3S_64
593/* Same as do_page_fault but interrupt entry has already run in do_hash_fault */
c45ba4f4 594void hash__do_page_fault(struct pt_regs *regs)
a008f8f9 595{
c45ba4f4 596 __do_page_fault(regs);
a008f8f9
NP
597}
598NOKPROBE_SYMBOL(hash__do_page_fault);
599#endif
600
14cf11af
PM
601/*
602 * bad_page_fault is called when we have a bad access from the kernel.
603 * It is called from the DSI and ISI handlers in head.S and from some
604 * of the procedures in traps.c.
605 */
c45ba4f4 606static void __bad_page_fault(struct pt_regs *regs, int sig)
14cf11af 607{
46ddcb39 608 int is_write = page_fault_is_write(regs->dsisr);
d4679ac8 609 const char *msg;
14cf11af 610
14cf11af 611 /* kernel has accessed a bad area */
723925b7 612
d4679ac8
ME
613 if (regs->dar < PAGE_SIZE)
614 msg = "Kernel NULL pointer dereference";
615 else
616 msg = "Unable to handle kernel data access";
617
2271db20 618 switch (TRAP(regs)) {
7153d4bf 619 case INTERRUPT_DATA_STORAGE:
7153d4bf 620 case INTERRUPT_H_DATA_STORAGE:
d4679ac8 621 pr_alert("BUG: %s on %s at 0x%08lx\n", msg,
46ddcb39 622 is_write ? "write" : "read", regs->dar);
a416dd8d 623 break;
d4679ac8
ME
624 case INTERRUPT_DATA_SEGMENT:
625 pr_alert("BUG: %s at 0x%08lx\n", msg, regs->dar);
626 break;
7153d4bf
XS
627 case INTERRUPT_INST_STORAGE:
628 case INTERRUPT_INST_SEGMENT:
49a502ea
CL
629 pr_alert("BUG: Unable to handle kernel instruction fetch%s",
630 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
a416dd8d 631 break;
7153d4bf 632 case INTERRUPT_ALIGNMENT:
49a502ea
CL
633 pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
634 regs->dar);
eab861a7 635 break;
a416dd8d 636 default:
49a502ea
CL
637 pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
638 regs->dar);
a416dd8d 639 break;
723925b7
OJ
640 }
641 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
642 regs->nip);
643
a70857e4 644 if (task_stack_end_corrupted(current))
28b54990
AB
645 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
646
14cf11af
PM
647 die("Kernel access of bad area", regs, sig);
648}
5f1888a0 649
8458c628 650void bad_page_fault(struct pt_regs *regs, int sig)
5f1888a0
CL
651{
652 const struct exception_table_entry *entry;
653
654 /* Are we prepared to handle this fault? */
655 entry = search_exception_tables(instruction_pointer(regs));
656 if (entry)
657 instruction_pointer_set(regs, extable_fixup(entry));
658 else
8458c628 659 __bad_page_fault(regs, sig);
5f1888a0 660}
71f47976
NP
661
662#ifdef CONFIG_PPC_BOOK3S_64
3a96570f 663DEFINE_INTERRUPT_HANDLER(do_bad_page_fault_segv)
71f47976
NP
664{
665 bad_page_fault(regs, SIGSEGV);
666}
935b534c
NP
667
668/*
669 * In radix, segment interrupts indicate the EA is not addressable by the
670 * page table geometry, so they are always sent here.
671 *
672 * In hash, this is called if do_slb_fault returns error. Typically it is
673 * because the EA was outside the region allowed by software.
674 */
675DEFINE_INTERRUPT_HANDLER(do_bad_segment_interrupt)
676{
677 int err = regs->result;
678
679 if (err == -EFAULT) {
680 if (user_mode(regs))
681 _exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
682 else
683 bad_page_fault(regs, SIGSEGV);
684 } else if (err == -EINVAL) {
685 unrecoverable_exception(regs);
686 } else {
687 BUG();
688 }
689}
71f47976 690#endif