mm: allow VM_FAULT_RETRY for multiple times
[linux-block.git] / arch / powerpc / mm / fault.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
14cf11af 2/*
14cf11af
PM
3 * PowerPC version
4 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 *
6 * Derived from "arch/i386/mm/fault.c"
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 *
9 * Modified by Cort Dougan and Paul Mackerras.
10 *
11 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
14cf11af
PM
12 */
13
14cf11af
PM
14#include <linux/signal.h>
15#include <linux/sched.h>
68db0cf1 16#include <linux/sched/task_stack.h>
14cf11af
PM
17#include <linux/kernel.h>
18#include <linux/errno.h>
19#include <linux/string.h>
20#include <linux/types.h>
0e36b0d1 21#include <linux/pagemap.h>
14cf11af
PM
22#include <linux/ptrace.h>
23#include <linux/mman.h>
24#include <linux/mm.h>
25#include <linux/interrupt.h>
26#include <linux/highmem.h>
8a39b05f 27#include <linux/extable.h>
14cf11af 28#include <linux/kprobes.h>
1eeb66a1 29#include <linux/kdebug.h>
cdd6c482 30#include <linux/perf_event.h>
76462232 31#include <linux/ratelimit.h>
ba12eede 32#include <linux/context_tracking.h>
9d57472f 33#include <linux/hugetlb.h>
70ffdb93 34#include <linux/uaccess.h>
14cf11af 35
40900194 36#include <asm/firmware.h>
14cf11af
PM
37#include <asm/page.h>
38#include <asm/pgtable.h>
39#include <asm/mmu.h>
40#include <asm/mmu_context.h>
14cf11af 41#include <asm/siginfo.h>
ae3a197e 42#include <asm/debug.h>
5e5be3ae 43#include <asm/kup.h>
4f9e87c0 44
14cf11af 45/*
0e36b0d1 46 * Check whether the instruction inst is a store using
14cf11af
PM
47 * an update addressing form which will update r1.
48 */
0e36b0d1 49static bool store_updates_sp(unsigned int inst)
14cf11af 50{
14cf11af
PM
51 /* check for 1 in the rA field */
52 if (((inst >> 16) & 0x1f) != 1)
8f5ca0b3 53 return false;
14cf11af
PM
54 /* check major opcode */
55 switch (inst >> 26) {
8a0b1120
CL
56 case OP_STWU:
57 case OP_STBU:
58 case OP_STHU:
59 case OP_STFSU:
60 case OP_STFDU:
8f5ca0b3 61 return true;
8a0b1120 62 case OP_STD: /* std or stdu */
14cf11af 63 return (inst & 3) == 1;
8a0b1120 64 case OP_31:
14cf11af
PM
65 /* check minor opcode */
66 switch ((inst >> 1) & 0x3ff) {
8a0b1120
CL
67 case OP_31_XOP_STDUX:
68 case OP_31_XOP_STWUX:
69 case OP_31_XOP_STBUX:
70 case OP_31_XOP_STHUX:
71 case OP_31_XOP_STFSUX:
72 case OP_31_XOP_STFDUX:
8f5ca0b3 73 return true;
14cf11af
PM
74 }
75 }
8f5ca0b3 76 return false;
14cf11af 77}
9be72573
BH
78/*
79 * do_page_fault error handling helpers
80 */
81
c3350602 82static int
cd60ab7a 83__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
c3350602
BH
84{
85 /*
86 * If we are in kernel mode, bail out with a SEGV, this will
87 * be caught by the assembly which will restore the non-volatile
88 * registers before calling bad_page_fault()
89 */
90 if (!user_mode(regs))
91 return SIGSEGV;
92
cd60ab7a 93 _exception(SIGSEGV, regs, si_code, address);
c3350602
BH
94
95 return 0;
96}
97
98static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
99{
cd60ab7a 100 return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
c3350602
BH
101}
102
9f2ee693 103static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
c3350602
BH
104{
105 struct mm_struct *mm = current->mm;
106
107 /*
108 * Something tried to access memory that isn't in our memory map..
109 * Fix it, but check if it's kernel or user first..
110 */
111 up_read(&mm->mmap_sem);
112
cd60ab7a 113 return __bad_area_nosemaphore(regs, address, si_code);
c3350602
BH
114}
115
116static noinline int bad_area(struct pt_regs *regs, unsigned long address)
117{
9f2ee693 118 return __bad_area(regs, address, SEGV_MAPERR);
99cd1302
RP
119}
120
121static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address,
122 int pkey)
123{
8eb2ba25
EB
124 /*
125 * If we are in kernel mode, bail out with a SEGV, this will
126 * be caught by the assembly which will restore the non-volatile
127 * registers before calling bad_page_fault()
128 */
129 if (!user_mode(regs))
130 return SIGSEGV;
131
5d8fb8a5 132 _exception_pkey(regs, address, pkey);
8eb2ba25
EB
133
134 return 0;
c3350602
BH
135}
136
ecb101ae
JS
137static noinline int bad_access(struct pt_regs *regs, unsigned long address)
138{
9f2ee693 139 return __bad_area(regs, address, SEGV_ACCERR);
ecb101ae
JS
140}
141
3913fdd7 142static int do_sigbus(struct pt_regs *regs, unsigned long address,
50a7ca3c 143 vm_fault_t fault)
9be72573 144{
63af5262 145 if (!user_mode(regs))
b5c8f0fd 146 return SIGBUS;
63af5262
AB
147
148 current->thread.trap_nr = BUS_ADRERR;
3913fdd7
AB
149#ifdef CONFIG_MEMORY_FAILURE
150 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
f654fc07
EB
151 unsigned int lsb = 0; /* shutup gcc */
152
3913fdd7
AB
153 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
154 current->comm, current->pid, address);
f654fc07
EB
155
156 if (fault & VM_FAULT_HWPOISON_LARGE)
157 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
158 if (fault & VM_FAULT_HWPOISON)
159 lsb = PAGE_SHIFT;
160
f8eac901 161 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
f654fc07 162 return 0;
3913fdd7 163 }
9d57472f 164
3913fdd7 165#endif
2e1661d2 166 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
b5c8f0fd 167 return 0;
9be72573
BH
168}
169
50a7ca3c
SJ
170static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
171 vm_fault_t fault)
9be72573
BH
172{
173 /*
b5c8f0fd
BH
174 * Kernel page fault interrupted by SIGKILL. We have no reason to
175 * continue processing.
9be72573 176 */
b5c8f0fd
BH
177 if (fatal_signal_pending(current) && !user_mode(regs))
178 return SIGKILL;
9be72573
BH
179
180 /* Out of memory */
c2d23f91 181 if (fault & VM_FAULT_OOM) {
c2d23f91
DR
182 /*
183 * We ran out of memory, or some other thing happened to us that
184 * made us unable to handle the page fault gracefully.
185 */
186 if (!user_mode(regs))
b5c8f0fd 187 return SIGSEGV;
c2d23f91 188 pagefault_out_of_memory();
b5c8f0fd
BH
189 } else {
190 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
191 VM_FAULT_HWPOISON_LARGE))
192 return do_sigbus(regs, addr, fault);
193 else if (fault & VM_FAULT_SIGSEGV)
194 return bad_area_nosemaphore(regs, addr);
195 else
196 BUG();
c2d23f91 197 }
b5c8f0fd 198 return 0;
9be72573 199}
14cf11af 200
d3ca5874 201/* Is this a bad kernel fault ? */
de78a9c4 202static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
5e5be3ae 203 unsigned long address, bool is_write)
d3ca5874 204{
de78a9c4
CL
205 int is_exec = TRAP(regs) == 0x400;
206
ffca395b
CL
207 /* NX faults set DSISR_PROTFAULT on the 8xx, DSISR_NOEXEC_OR_G on others */
208 if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT |
209 DSISR_PROTFAULT))) {
0fb1c25a
CL
210 pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
211 address >= TASK_SIZE ? "exec-protected" : "user",
212 address,
213 from_kuid(&init_user_ns, current_uid()));
5e5be3ae
ME
214
215 // Kernel exec fault is always bad
216 return true;
d3ca5874 217 }
de78a9c4
CL
218
219 if (!is_exec && address < TASK_SIZE && (error_code & DSISR_PROTFAULT) &&
220 !search_exception_tables(regs->nip)) {
221 pr_crit_ratelimited("Kernel attempted to access user page (%lx) - exploit attempt? (uid: %d)\n",
222 address,
223 from_kuid(&init_user_ns, current_uid()));
224 }
225
5e5be3ae
ME
226 // Kernel fault on kernel address is bad
227 if (address >= TASK_SIZE)
228 return true;
229
230 // Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
231 if (!search_exception_tables(regs->nip))
232 return true;
233
234 // Read/write fault in a valid region (the exception table search passed
235 // above), but blocked by KUAP is bad, it can never succeed.
6ec20aa2 236 if (bad_kuap_fault(regs, address, is_write))
5e5be3ae
ME
237 return true;
238
239 // What's left? Kernel fault on user in well defined regions (extable
240 // matched), and allowed by KUAP in the faulting context.
241 return false;
d3ca5874
BH
242}
243
8f5ca0b3 244static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
0e36b0d1
CL
245 struct vm_area_struct *vma, unsigned int flags,
246 bool *must_retry)
8f5ca0b3
BH
247{
248 /*
249 * N.B. The POWER/Open ABI allows programs to access up to
250 * 288 bytes below the stack pointer.
251 * The kernel signal delivery code writes up to about 1.5kB
252 * below the stack pointer (r1) before decrementing it.
253 * The exec code can write slightly over 640kB to the stack
254 * before setting the user r1. Thus we allow the stack to
255 * expand to 1MB without further checks.
256 */
257 if (address + 0x100000 < vma->vm_end) {
0e36b0d1 258 unsigned int __user *nip = (unsigned int __user *)regs->nip;
8f5ca0b3
BH
259 /* get user regs even if this fault is in kernel mode */
260 struct pt_regs *uregs = current->thread.regs;
261 if (uregs == NULL)
262 return true;
263
264 /*
265 * A user-mode access to an address a long way below
266 * the stack pointer is only valid if the instruction
267 * is one which would update the stack pointer to the
268 * address accessed if the instruction completed,
269 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
270 * (or the byte, halfword, float or double forms).
271 *
272 * If we don't check this then any write to the area
273 * between the last mapped region and the stack will
274 * expand the stack rather than segfaulting.
275 */
0e36b0d1
CL
276 if (address + 2048 >= uregs->gpr[1])
277 return false;
278
279 if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) &&
96d4f267 280 access_ok(nip, sizeof(*nip))) {
0e36b0d1 281 unsigned int inst;
0e36b0d1 282
def0bfdb 283 if (!probe_user_read(&inst, nip, sizeof(inst)))
0e36b0d1
CL
284 return !store_updates_sp(inst);
285 *must_retry = true;
286 }
287 return true;
8f5ca0b3
BH
288 }
289 return false;
290}
291
bd0d63f8
BH
292static bool access_error(bool is_write, bool is_exec,
293 struct vm_area_struct *vma)
294{
295 /*
296 * Allow execution from readable areas if the MMU does not
297 * provide separate controls over reading and executing.
298 *
299 * Note: That code used to not be enabled for 4xx/BookE.
300 * It is now as I/D cache coherency for these is done at
301 * set_pte_at() time and I see no reason why the test
302 * below wouldn't be valid on those processors. This -may-
303 * break programs compiled with a really old ABI though.
304 */
305 if (is_exec) {
306 return !(vma->vm_flags & VM_EXEC) &&
307 (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
308 !(vma->vm_flags & (VM_READ | VM_WRITE)));
309 }
310
311 if (is_write) {
312 if (unlikely(!(vma->vm_flags & VM_WRITE)))
313 return true;
314 return false;
315 }
316
317 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
318 return true;
f2ed480f
AK
319 /*
320 * We should ideally do the vma pkey access check here. But in the
321 * fault path, handle_mm_fault() also does the same check. To avoid
322 * these multiple checks, we skip it here and handle access error due
323 * to pkeys later.
324 */
bd0d63f8
BH
325 return false;
326}
327
3da02648
BH
328#ifdef CONFIG_PPC_SMLPAR
329static inline void cmo_account_page_fault(void)
330{
331 if (firmware_has_feature(FW_FEATURE_CMO)) {
332 u32 page_ins;
333
334 preempt_disable();
335 page_ins = be32_to_cpu(get_lppaca()->page_ins);
336 page_ins += 1 << PAGE_FACTOR;
337 get_lppaca()->page_ins = cpu_to_be32(page_ins);
338 preempt_enable();
339 }
340}
341#else
342static inline void cmo_account_page_fault(void) { }
343#endif /* CONFIG_PPC_SMLPAR */
344
5b3e84fc 345#ifdef CONFIG_PPC_BOOK3S
374f3f59
AK
346static void sanity_check_fault(bool is_write, bool is_user,
347 unsigned long error_code, unsigned long address)
2865d08d 348{
374f3f59
AK
349 /*
350 * Userspace trying to access kernel address, we get PROTFAULT for that.
351 */
352 if (is_user && address >= TASK_SIZE) {
0f9aee0c
CL
353 if ((long)address == -1)
354 return;
355
374f3f59
AK
356 pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
357 current->comm, current->pid, address,
358 from_kuid(&init_user_ns, current_uid()));
359 return;
360 }
361
2865d08d
BH
362 /*
363 * For hash translation mode, we should never get a
364 * PROTFAULT. Any update to pte to reduce access will result in us
365 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
366 * fault instead of DSISR_PROTFAULT.
367 *
368 * A pte update to relax the access will not result in a hash page table
369 * entry invalidate and hence can result in DSISR_PROTFAULT.
370 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
371 * the special !is_write in the below conditional.
372 *
373 * For platforms that doesn't supports coherent icache and do support
374 * per page noexec bit, we do setup things such that we do the
375 * sync between D/I cache via fault. But that is handled via low level
376 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
377 * here in such case.
378 *
379 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
380 * check should handle those and hence we should fall to the bad_area
381 * handling correctly.
382 *
383 * For embedded with per page exec support that doesn't support coherent
384 * icache we do get PROTFAULT and we handle that D/I cache sync in
385 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
386 * is conditional for server MMU.
387 *
388 * For radix, we can get prot fault for autonuma case, because radix
389 * page table will have them marked noaccess for user.
390 */
374f3f59
AK
391 if (radix_enabled() || is_write)
392 return;
393
394 WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
2865d08d
BH
395}
396#else
374f3f59
AK
397static void sanity_check_fault(bool is_write, bool is_user,
398 unsigned long error_code, unsigned long address) { }
5b3e84fc 399#endif /* CONFIG_PPC_BOOK3S */
2865d08d 400
41b464e5
BH
401/*
402 * Define the correct "is_write" bit in error_code based
403 * on the processor family
404 */
405#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
406#define page_fault_is_write(__err) ((__err) & ESR_DST)
f3d96e69 407#define page_fault_is_bad(__err) (0)
41b464e5
BH
408#else
409#define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE)
968159c0 410#if defined(CONFIG_PPC_8xx)
4915349b 411#define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G)
f3d96e69
BH
412#elif defined(CONFIG_PPC64)
413#define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S)
414#else
415#define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S)
416#endif
41b464e5
BH
417#endif
418
14cf11af
PM
419/*
420 * For 600- and 800-family processors, the error_code parameter is DSISR
421 * for a data fault, SRR1 for an instruction fault. For 400-family processors
422 * the error_code parameter is ESR for a data fault, 0 for an instruction
423 * fault.
424 * For 64-bit processors, the error_code parameter is
425 * - DSISR for a non-SLB data access fault,
426 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
427 * - 0 any SLB fault.
428 *
429 * The return value is 0 if the fault was handled, or the signal
430 * number if this is a kernel fault that can't be handled here.
431 */
7afad422
BH
432static int __do_page_fault(struct pt_regs *regs, unsigned long address,
433 unsigned long error_code)
14cf11af
PM
434{
435 struct vm_area_struct * vma;
436 struct mm_struct *mm = current->mm;
dde16072 437 unsigned int flags = FAULT_FLAG_DEFAULT;
c433ec04 438 int is_exec = TRAP(regs) == 0x400;
da929f6a 439 int is_user = user_mode(regs);
41b464e5 440 int is_write = page_fault_is_write(error_code);
50a7ca3c 441 vm_fault_t fault, major = 0;
0e36b0d1 442 bool must_retry = false;
b98cca44 443 bool kprobe_fault = kprobe_page_fault(regs, 11);
14cf11af 444
b98cca44 445 if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
65d47fd4 446 return 0;
14cf11af 447
f3d96e69 448 if (unlikely(page_fault_is_bad(error_code))) {
65d47fd4 449 if (is_user) {
f3d96e69 450 _exception(SIGBUS, regs, BUS_OBJERR, address);
65d47fd4
BH
451 return 0;
452 }
453 return SIGBUS;
e6c8290a 454 }
e6c8290a 455
2865d08d 456 /* Additional sanity check(s) */
374f3f59 457 sanity_check_fault(is_write, is_user, error_code, address);
2865d08d 458
d7df2443
BH
459 /*
460 * The kernel should never take an execute fault nor should it
de78a9c4
CL
461 * take a page fault to a kernel address or a page fault to a user
462 * address outside of dedicated places
d7df2443 463 */
5e5be3ae 464 if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write)))
65d47fd4 465 return SIGSEGV;
14cf11af 466
11ccdd33
BH
467 /*
468 * If we're in an interrupt, have no user context or are running
469 * in a region with pagefaults disabled then we must not take the fault
470 */
471 if (unlikely(faulthandler_disabled() || !mm)) {
472 if (is_user)
473 printk_ratelimited(KERN_ERR "Page fault in user mode"
474 " with faulthandler_disabled()=%d"
475 " mm=%p\n",
476 faulthandler_disabled(), mm);
477 return bad_area_nosemaphore(regs, address);
478 }
479
a546498f
BH
480 /* We restore the interrupt state now */
481 if (!arch_irq_disabled_regs(regs))
482 local_irq_enable();
483
a8b0ca17 484 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
7dd1fcc2 485
99cd1302
RP
486 if (error_code & DSISR_KEYFAULT)
487 return bad_key_fault_exception(regs, address,
488 get_mm_addr_key(mm, address));
e6c2a479 489
69e044dd
AK
490 /*
491 * We want to do this outside mmap_sem, because reading code around nip
492 * can result in fault, which will cause a deadlock when called with
493 * mmap_sem held
494 */
da929f6a 495 if (is_user)
759496ba 496 flags |= FAULT_FLAG_USER;
d2e0d2c5
BH
497 if (is_write)
498 flags |= FAULT_FLAG_WRITE;
499 if (is_exec)
500 flags |= FAULT_FLAG_INSTRUCTION;
759496ba 501
14cf11af
PM
502 /* When running in the kernel we expect faults to occur only to
503 * addresses in user space. All other faults represent errors in the
fc5266ea
AB
504 * kernel and should generate an OOPS. Unfortunately, in the case of an
505 * erroneous fault occurring in a code path which already holds mmap_sem
14cf11af
PM
506 * we will deadlock attempting to validate the fault against the
507 * address space. Luckily the kernel only validly references user
508 * space from well defined areas of code, which are listed in the
509 * exceptions table.
510 *
511 * As the vast majority of faults will be valid we will only perform
fc5266ea 512 * the source reference check when there is a possibility of a deadlock.
14cf11af
PM
513 * Attempt to lock the address space, if we cannot we then validate the
514 * source. If this is invalid we can skip the address space check,
515 * thus avoiding the deadlock.
516 */
b15021d9 517 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
da929f6a 518 if (!is_user && !search_exception_tables(regs->nip))
c3350602 519 return bad_area_nosemaphore(regs, address);
14cf11af 520
9be72573 521retry:
14cf11af 522 down_read(&mm->mmap_sem);
a546498f
BH
523 } else {
524 /*
525 * The above down_read_trylock() might have succeeded in
526 * which case we'll have missed the might_sleep() from
527 * down_read():
528 */
529 might_sleep();
14cf11af
PM
530 }
531
532 vma = find_vma(mm, address);
b15021d9 533 if (unlikely(!vma))
c3350602 534 return bad_area(regs, address);
b15021d9 535 if (likely(vma->vm_start <= address))
14cf11af 536 goto good_area;
b15021d9 537 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
c3350602 538 return bad_area(regs, address);
14cf11af 539
8f5ca0b3 540 /* The stack is being expanded, check if it's valid */
0e36b0d1
CL
541 if (unlikely(bad_stack_expansion(regs, address, vma, flags,
542 &must_retry))) {
543 if (!must_retry)
544 return bad_area(regs, address);
545
546 up_read(&mm->mmap_sem);
547 if (fault_in_pages_readable((const char __user *)regs->nip,
548 sizeof(unsigned int)))
549 return bad_area_nosemaphore(regs, address);
550 goto retry;
551 }
14cf11af 552
8f5ca0b3 553 /* Try to expand it */
b15021d9 554 if (unlikely(expand_stack(vma, address)))
c3350602 555 return bad_area(regs, address);
14cf11af
PM
556
557good_area:
bd0d63f8 558 if (unlikely(access_error(is_write, is_exec, vma)))
ecb101ae 559 return bad_access(regs, address);
14cf11af
PM
560
561 /*
562 * If for any reason at all we couldn't handle the fault,
563 * make sure we exit gracefully rather than endlessly redo
564 * the fault.
565 */
dcddffd4 566 fault = handle_mm_fault(vma, address, flags);
e6c2a479
RP
567
568#ifdef CONFIG_PPC_MEM_KEYS
569 /*
f2ed480f
AK
570 * we skipped checking for access error due to key earlier.
571 * Check that using handle_mm_fault error return.
e6c2a479
RP
572 */
573 if (unlikely(fault & VM_FAULT_SIGSEGV) &&
f2ed480f
AK
574 !arch_vma_access_permitted(vma, is_write, is_exec, 0)) {
575
e6c2a479
RP
576 int pkey = vma_pkey(vma);
577
f2ed480f
AK
578 up_read(&mm->mmap_sem);
579 return bad_key_fault_exception(regs, address, pkey);
e6c2a479
RP
580 }
581#endif /* CONFIG_PPC_MEM_KEYS */
582
f43bb27e 583 major |= fault & VM_FAULT_MAJOR;
14c02e41 584
c9a0dad1
PX
585 if (fault_signal_pending(fault, regs))
586 return user_mode(regs) ? 0 : SIGBUS;
587
14c02e41
LD
588 /*
589 * Handle the retry right now, the mmap_sem has been released in that
590 * case.
591 */
592 if (unlikely(fault & VM_FAULT_RETRY)) {
14c02e41 593 if (flags & FAULT_FLAG_ALLOW_RETRY) {
14c02e41 594 flags |= FAULT_FLAG_TRIED;
c9a0dad1 595 goto retry;
14c02e41 596 }
14cf11af 597 }
9be72573 598
b5c8f0fd
BH
599 up_read(&current->mm->mmap_sem);
600
601 if (unlikely(fault & VM_FAULT_ERROR))
602 return mm_fault_error(regs, address, fault);
603
9be72573 604 /*
14c02e41 605 * Major/minor page fault accounting.
9be72573 606 */
f43bb27e 607 if (major) {
14c02e41 608 current->maj_flt++;
04aafdc6 609 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
3da02648 610 cmo_account_page_fault();
14c02e41
LD
611 } else {
612 current->min_flt++;
04aafdc6 613 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
ac17dc8e 614 }
c3350602 615 return 0;
7afad422
BH
616}
617NOKPROBE_SYMBOL(__do_page_fault);
618
619int do_page_fault(struct pt_regs *regs, unsigned long address,
620 unsigned long error_code)
621{
622 enum ctx_state prev_state = exception_enter();
623 int rc = __do_page_fault(regs, address, error_code);
ba12eede
LZ
624 exception_exit(prev_state);
625 return rc;
14cf11af 626}
03465f89 627NOKPROBE_SYMBOL(do_page_fault);
14cf11af
PM
628
629/*
630 * bad_page_fault is called when we have a bad access from the kernel.
631 * It is called from the DSI and ISI handlers in head.S and from some
632 * of the procedures in traps.c.
633 */
634void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
635{
636 const struct exception_table_entry *entry;
46ddcb39 637 int is_write = page_fault_is_write(regs->dsisr);
14cf11af
PM
638
639 /* Are we prepared to handle this fault? */
640 if ((entry = search_exception_tables(regs->nip)) != NULL) {
61a92f70 641 regs->nip = extable_fixup(entry);
14cf11af
PM
642 return;
643 }
644
645 /* kernel has accessed a bad area */
723925b7 646
2271db20 647 switch (TRAP(regs)) {
a416dd8d
ME
648 case 0x300:
649 case 0x380:
d7b45615 650 case 0xe00:
46ddcb39 651 pr_alert("BUG: %s on %s at 0x%08lx\n",
49a502ea 652 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" :
46ddcb39
CL
653 "Unable to handle kernel data access",
654 is_write ? "write" : "read", regs->dar);
a416dd8d
ME
655 break;
656 case 0x400:
657 case 0x480:
49a502ea
CL
658 pr_alert("BUG: Unable to handle kernel instruction fetch%s",
659 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
a416dd8d 660 break;
eab861a7 661 case 0x600:
49a502ea
CL
662 pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
663 regs->dar);
eab861a7 664 break;
a416dd8d 665 default:
49a502ea
CL
666 pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
667 regs->dar);
a416dd8d 668 break;
723925b7
OJ
669 }
670 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
671 regs->nip);
672
a70857e4 673 if (task_stack_end_corrupted(current))
28b54990
AB
674 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
675
14cf11af
PM
676 die("Kernel access of bad area", regs, sig);
677}