powerpc: convert various functions to use ptdescs
[linux-2.6-block.git] / arch / powerpc / mm / book3s64 / mmu_context.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
14cf11af
PM
2/*
3 * MMU context allocation for 64-bit kernels.
4 *
5 * Copyright (C) 2004 Anton Blanchard, IBM Corp. <anton@samba.org>
14cf11af
PM
6 */
7
14cf11af
PM
8#include <linux/sched.h>
9#include <linux/kernel.h>
10#include <linux/errno.h>
11#include <linux/string.h>
12#include <linux/types.h>
13#include <linux/mm.h>
4fb158f6 14#include <linux/pkeys.h>
14cf11af
PM
15#include <linux/spinlock.h>
16#include <linux/idr.h>
4b16f8e2 17#include <linux/export.h>
5a0e3ad6 18#include <linux/gfp.h>
851d2e2f 19#include <linux/slab.h>
01b0f0ea 20#include <linux/cpu.h>
14cf11af
PM
21
22#include <asm/mmu_context.h>
5c1f6ee9 23#include <asm/pgalloc.h>
14cf11af 24
ef1edbba
ME
25#include "internal.h"
26
7317ac87 27static DEFINE_IDA(mmu_context_ida);
14cf11af 28
c1ff840d 29static int alloc_context_id(int min_id, int max_id)
14cf11af 30{
b3fa6417 31 return ida_alloc_range(&mmu_context_ida, min_id, max_id, GFP_KERNEL);
e85a4710 32}
a336f2f5 33
387e220a 34#ifdef CONFIG_PPC_64S_HASH_MMU
c13f2b2b 35void __init hash__reserve_context_id(int id)
82228e36 36{
b3fa6417 37 int result = ida_alloc_range(&mmu_context_ida, id, id, GFP_KERNEL);
82228e36
AK
38
39 WARN(result != id, "mmu: Failed to reserve context id %d (rc %d)\n", id, result);
40}
41
a336f2f5
ME
42int hash__alloc_context_id(void)
43{
e6f81a92
AK
44 unsigned long max;
45
46 if (mmu_has_feature(MMU_FTR_68_BIT_VA))
47 max = MAX_USER_CONTEXT;
48 else
49 max = MAX_USER_CONTEXT_65BIT_VA;
50
51 return alloc_context_id(MIN_USER_CONTEXT, max);
a336f2f5
ME
52}
53EXPORT_SYMBOL_GPL(hash__alloc_context_id);
387e220a 54#endif
a336f2f5 55
387e220a 56#ifdef CONFIG_PPC_64S_HASH_MMU
ca72d883
ME
57static int realloc_context_ids(mm_context_t *ctx)
58{
59 int i, id;
60
61 /*
62 * id 0 (aka. ctx->id) is special, we always allocate a new one, even if
63 * there wasn't one allocated previously (which happens in the exec
64 * case where ctx is newly allocated).
65 *
66 * We have to be a bit careful here. We must keep the existing ids in
67 * the array, so that we can test if they're non-zero to decide if we
68 * need to allocate a new one. However in case of error we must free the
69 * ids we've allocated but *not* any of the existing ones (or risk a
70 * UAF). That's why we decrement i at the start of the error handling
71 * loop, to skip the id that we just tested but couldn't reallocate.
72 */
73 for (i = 0; i < ARRAY_SIZE(ctx->extended_id); i++) {
74 if (i == 0 || ctx->extended_id[i]) {
75 id = hash__alloc_context_id();
76 if (id < 0)
77 goto error;
78
79 ctx->extended_id[i] = id;
80 }
81 }
82
83 /* The caller expects us to return id */
84 return ctx->id;
85
86error:
87 for (i--; i >= 0; i--) {
88 if (ctx->extended_id[i])
89 ida_free(&mmu_context_ida, ctx->extended_id[i]);
90 }
91
92 return id;
93}
94
760573c1
ME
95static int hash__init_new_context(struct mm_struct *mm)
96{
97 int index;
98
ef629cc5
AK
99 mm->context.hash_context = kmalloc(sizeof(struct hash_mm_context),
100 GFP_KERNEL);
65565a68 101 if (!mm->context.hash_context)
70110186 102 return -ENOMEM;
70110186 103
760573c1
ME
104 /*
105 * The old code would re-promote on fork, we don't do that when using
106 * slices as it could cause problem promoting slices that have been
107 * forced down to 4K.
108 *
109 * For book3s we have MMU_NO_CONTEXT set to be ~0. Hence check
110 * explicitly against context.id == 0. This ensures that we properly
111 * initialize context slice details for newly allocated mm's (which will
112 * have id == 0) and don't alter context slice inherited via fork (which
113 * will have id != 0).
114 *
115 * We should not be calling init_new_context() on init_mm. Hence a
116 * check against 0 is OK.
117 */
70110186
AK
118 if (mm->context.id == 0) {
119 memset(mm->context.hash_context, 0, sizeof(struct hash_mm_context));
1753dd18 120 slice_init_new_context_exec(mm);
70110186
AK
121 } else {
122 /* This is fork. Copy hash_context details from current->mm */
123 memcpy(mm->context.hash_context, current->mm->context.hash_context, sizeof(struct hash_mm_context));
ef629cc5 124#ifdef CONFIG_PPC_SUBPAGE_PROT
7a7d744f 125 /* inherit subpage prot details if we have one. */
ef629cc5
AK
126 if (current->mm->context.hash_context->spt) {
127 mm->context.hash_context->spt = kmalloc(sizeof(struct subpage_prot_table),
128 GFP_KERNEL);
129 if (!mm->context.hash_context->spt) {
ef629cc5
AK
130 kfree(mm->context.hash_context);
131 return -ENOMEM;
132 }
133 }
134#endif
65565a68 135 }
70110186 136
ca72d883 137 index = realloc_context_ids(&mm->context);
65565a68
ME
138 if (index < 0) {
139#ifdef CONFIG_PPC_SUBPAGE_PROT
140 kfree(mm->context.hash_context->spt);
141#endif
142 kfree(mm->context.hash_context);
ca72d883 143 return index;
70110186 144 }
760573c1 145
4fb158f6 146 pkey_mm_init(mm);
760573c1
ME
147 return index;
148}
149
425d3314
NP
150void hash__setup_new_exec(void)
151{
152 slice_setup_new_exec();
5434ae74
NP
153
154 slb_setup_new_exec();
425d3314 155}
387e220a
NP
156#else
157static inline int hash__init_new_context(struct mm_struct *mm)
158{
159 BUILD_BUG();
160 return 0;
161}
162#endif
425d3314 163
760573c1 164static int radix__init_new_context(struct mm_struct *mm)
7e381c0f
AK
165{
166 unsigned long rts_field;
a25bd72b 167 int index, max_id;
760573c1 168
a25bd72b
BH
169 max_id = (1 << mmu_pid_bits) - 1;
170 index = alloc_context_id(mmu_base_pid, max_id);
760573c1
ME
171 if (index < 0)
172 return index;
7e381c0f
AK
173
174 /*
175 * set the process table entry,
176 */
b23d9c5b 177 rts_field = radix__get_tree_size();
7e381c0f 178 process_tb[index].prtb0 = cpu_to_be64(rts_field | __pa(mm->pgd) | RADIX_PGD_INDEX_SIZE);
760573c1 179
3a6a0470
BH
180 /*
181 * Order the above store with subsequent update of the PID
182 * register (at which point HW can start loading/caching
183 * the entry) and the corresponding load by the MMU from
184 * the L2 cache.
185 */
186 asm volatile("ptesync;isync" : : : "memory");
187
387e220a 188#ifdef CONFIG_PPC_64S_HASH_MMU
70110186 189 mm->context.hash_context = NULL;
387e220a 190#endif
1ab66d1f 191
760573c1 192 return index;
7e381c0f 193}
e85a4710
AG
194
195int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
196{
197 int index;
198
760573c1
ME
199 if (radix_enabled())
200 index = radix__init_new_context(mm);
201 else
202 index = hash__init_new_context(mm);
203
e85a4710
AG
204 if (index < 0)
205 return index;
206
9dfe5c53 207 mm->context.id = index;
14cf11af 208
5c1f6ee9 209 mm->context.pte_frag = NULL;
8a6c697b 210 mm->context.pmd_frag = NULL;
15b244a8 211#ifdef CONFIG_SPAPR_TCE_IOMMU
88f54a35 212 mm_iommu_init(mm);
5c1f6ee9 213#endif
a619e59c 214 atomic_set(&mm->context.active_cpus, 0);
aff6f8cb 215 atomic_set(&mm->context.copros, 0);
a619e59c 216
14cf11af
PM
217 return 0;
218}
219
e85a4710 220void __destroy_context(int context_id)
14cf11af 221{
b3fa6417 222 ida_free(&mmu_context_ida, context_id);
e85a4710
AG
223}
224EXPORT_SYMBOL_GPL(__destroy_context);
14cf11af 225
f384796c
AK
226static void destroy_contexts(mm_context_t *ctx)
227{
387e220a
NP
228 if (radix_enabled()) {
229 ida_free(&mmu_context_ida, ctx->id);
230 } else {
231#ifdef CONFIG_PPC_64S_HASH_MMU
232 int index, context_id;
f384796c 233
387e220a
NP
234 for (index = 0; index < ARRAY_SIZE(ctx->extended_id); index++) {
235 context_id = ctx->extended_id[index];
236 if (context_id)
237 ida_free(&mmu_context_ida, context_id);
238 }
239 kfree(ctx->hash_context);
240#else
241 BUILD_BUG(); // radix_enabled() should be constant true
242#endif
f384796c 243 }
f384796c
AK
244}
245
8a6c697b
AK
246static void pmd_frag_destroy(void *pmd_frag)
247{
248 int count;
4eaca961 249 struct ptdesc *ptdesc;
8a6c697b 250
4eaca961 251 ptdesc = virt_to_ptdesc(pmd_frag);
8a6c697b
AK
252 /* drop all the pending references */
253 count = ((unsigned long)pmd_frag & ~PAGE_MASK) >> PMD_FRAG_SIZE_SHIFT;
254 /* We allow PTE_FRAG_NR fragments from a PTE page */
4eaca961
VMO
255 if (atomic_sub_and_test(PMD_FRAG_NR - count, &ptdesc->pt_frag_refcount)) {
256 pagetable_pmd_dtor(ptdesc);
257 pagetable_free(ptdesc);
8a6c697b
AK
258 }
259}
260
34c604d2 261static void destroy_pagetable_cache(struct mm_struct *mm)
8a6c697b
AK
262{
263 void *frag;
264
265 frag = mm->context.pte_frag;
266 if (frag)
267 pte_frag_destroy(frag);
268
269 frag = mm->context.pmd_frag;
270 if (frag)
271 pmd_frag_destroy(frag);
272 return;
273}
274
e85a4710
AG
275void destroy_context(struct mm_struct *mm)
276{
15b244a8 277#ifdef CONFIG_SPAPR_TCE_IOMMU
4b6fad70 278 WARN_ON_ONCE(!list_empty(&mm->context.iommu_group_mem_list));
15b244a8 279#endif
7aec584e
AK
280 /*
281 * For tasks which were successfully initialized we end up calling
282 * arch_exit_mmap() which clears the process table entry. And
283 * arch_exit_mmap() is called before the required fullmm TLB flush
284 * which does a RIC=2 flush. Hence for an initialized task, we do clear
285 * any cached process table entries.
286 *
287 * The condition below handles the error case during task init. We have
288 * set the process table entry early and if we fail a task
289 * initialization, we need to ensure the process table entry is zeroed.
290 * We need not worry about process table entry caches because the task
291 * never ran with the PID value.
292 */
30b49ec7 293 if (radix_enabled())
7aec584e 294 process_tb[mm->context.id].prtb0 = 0;
30b49ec7
NP
295 else
296 subpage_prot_free(mm);
f384796c 297 destroy_contexts(&mm->context);
30b49ec7
NP
298 mm->context.id = MMU_NO_CONTEXT;
299}
300
301void arch_exit_mmap(struct mm_struct *mm)
302{
34c604d2
NP
303 destroy_pagetable_cache(mm);
304
c6bb0b8d
BH
305 if (radix_enabled()) {
306 /*
307 * Radix doesn't have a valid bit in the process table
308 * entries. However we know that at least P9 implementation
309 * will avoid caching an entry with an invalid RTS field,
310 * and 0 is invalid. So this will do.
30b49ec7
NP
311 *
312 * This runs before the "fullmm" tlb flush in exit_mmap,
313 * which does a RIC=2 tlbie to clear the process table
314 * entry. See the "fullmm" comments in tlb-radix.c.
315 *
316 * No barrier required here after the store because
317 * this process will do the invalidate, which starts with
318 * ptesync.
c6bb0b8d
BH
319 */
320 process_tb[mm->context.id].prtb0 = 0;
30b49ec7 321 }
14cf11af 322}
7e381c0f
AK
323
324#ifdef CONFIG_PPC_RADIX_MMU
325void radix__switch_mmu_context(struct mm_struct *prev, struct mm_struct *next)
326{
2bf1071a
NP
327 mtspr(SPRN_PID, next->context.id);
328 isync();
7e381c0f
AK
329}
330#endif
01b0f0ea
NP
331
332/**
333 * cleanup_cpu_mmu_context - Clean up MMU details for this CPU (newly offlined)
334 *
335 * This clears the CPU from mm_cpumask for all processes, and then flushes the
336 * local TLB to ensure TLB coherency in case the CPU is onlined again.
337 *
338 * KVM guest translations are not necessarily flushed here. If KVM started
339 * using mm_cpumask or the Linux APIs which do, this would have to be resolved.
340 */
341#ifdef CONFIG_HOTPLUG_CPU
342void cleanup_cpu_mmu_context(void)
343{
344 int cpu = smp_processor_id();
345
346 clear_tasks_mm_cpumask(cpu);
347 tlbiel_all();
348}
349#endif