powerpc sstep: Add support for modsd, modud instructions
[linux-2.6-block.git] / arch / powerpc / lib / sstep.c
CommitLineData
14cf11af
PM
1/*
2 * Single-step support.
3 *
4 * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11#include <linux/kernel.h>
0d69a052 12#include <linux/kprobes.h>
14cf11af 13#include <linux/ptrace.h>
268bb0ce 14#include <linux/prefetch.h>
14cf11af
PM
15#include <asm/sstep.h>
16#include <asm/processor.h>
7c0f6ba6 17#include <linux/uaccess.h>
5e9d0e3d 18#include <asm/cpu_has_feature.h>
0016a4cf 19#include <asm/cputable.h>
14cf11af
PM
20
21extern char system_call_common[];
22
c032524f 23#ifdef CONFIG_PPC64
14cf11af 24/* Bits in SRR1 that are copied from MSR */
af308377 25#define MSR_MASK 0xffffffff87c0ffffUL
c032524f
PM
26#else
27#define MSR_MASK 0x87c0ffff
28#endif
14cf11af 29
0016a4cf
PM
30/* Bits in XER */
31#define XER_SO 0x80000000U
32#define XER_OV 0x40000000U
33#define XER_CA 0x20000000U
924c8feb
SD
34#define XER_OV32 0x00080000U
35#define XER_CA32 0x00040000U
0016a4cf 36
cd64d169 37#ifdef CONFIG_PPC_FPU
0016a4cf
PM
38/*
39 * Functions in ldstfp.S
40 */
c22435a5
PM
41extern void get_fpr(int rn, double *p);
42extern void put_fpr(int rn, const double *p);
43extern void get_vr(int rn, __vector128 *p);
44extern void put_vr(int rn, __vector128 *p);
350779a2
PM
45extern void load_vsrn(int vsr, const void *p);
46extern void store_vsrn(int vsr, void *p);
47extern void conv_sp_to_dp(const float *sp, double *dp);
48extern void conv_dp_to_sp(const double *dp, float *sp);
49#endif
50
51#ifdef __powerpc64__
52/*
53 * Functions in quad.S
54 */
55extern int do_lq(unsigned long ea, unsigned long *regs);
56extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
57extern int do_lqarx(unsigned long ea, unsigned long *regs);
58extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
59 unsigned int *crp);
60#endif
61
62#ifdef __LITTLE_ENDIAN__
63#define IS_LE 1
64#define IS_BE 0
65#else
66#define IS_LE 0
67#define IS_BE 1
cd64d169 68#endif
0016a4cf 69
b91e136c
ME
70/*
71 * Emulate the truncation of 64 bit values in 32-bit mode.
72 */
71f6e58e
NR
73static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
74 unsigned long val)
b91e136c
ME
75{
76#ifdef __powerpc64__
77 if ((msr & MSR_64BIT) == 0)
78 val &= 0xffffffffUL;
79#endif
80 return val;
81}
82
14cf11af
PM
83/*
84 * Determine whether a conditional branch instruction would branch.
85 */
3cdfcbfd
PM
86static nokprobe_inline int branch_taken(unsigned int instr,
87 const struct pt_regs *regs,
88 struct instruction_op *op)
14cf11af
PM
89{
90 unsigned int bo = (instr >> 21) & 0x1f;
91 unsigned int bi;
92
93 if ((bo & 4) == 0) {
94 /* decrement counter */
3cdfcbfd
PM
95 op->type |= DECCTR;
96 if (((bo >> 1) & 1) ^ (regs->ctr == 1))
14cf11af
PM
97 return 0;
98 }
99 if ((bo & 0x10) == 0) {
100 /* check bit from CR */
101 bi = (instr >> 16) & 0x1f;
102 if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
103 return 0;
104 }
105 return 1;
106}
107
b9da9c8a
PM
108static nokprobe_inline long address_ok(struct pt_regs *regs,
109 unsigned long ea, int nb)
0016a4cf
PM
110{
111 if (!user_mode(regs))
112 return 1;
b9da9c8a
PM
113 if (__access_ok(ea, nb, USER_DS))
114 return 1;
115 if (__access_ok(ea, 1, USER_DS))
116 /* Access overlaps the end of the user region */
117 regs->dar = USER_DS.seg;
118 else
119 regs->dar = ea;
120 return 0;
0016a4cf
PM
121}
122
123/*
124 * Calculate effective address for a D-form instruction
125 */
3cdfcbfd
PM
126static nokprobe_inline unsigned long dform_ea(unsigned int instr,
127 const struct pt_regs *regs)
0016a4cf
PM
128{
129 int ra;
130 unsigned long ea;
131
132 ra = (instr >> 16) & 0x1f;
133 ea = (signed short) instr; /* sign-extend */
be96f633 134 if (ra)
0016a4cf 135 ea += regs->gpr[ra];
b91e136c 136
d120cdbc 137 return ea;
0016a4cf
PM
138}
139
140#ifdef __powerpc64__
141/*
142 * Calculate effective address for a DS-form instruction
143 */
3cdfcbfd
PM
144static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
145 const struct pt_regs *regs)
0016a4cf
PM
146{
147 int ra;
148 unsigned long ea;
149
150 ra = (instr >> 16) & 0x1f;
151 ea = (signed short) (instr & ~3); /* sign-extend */
be96f633 152 if (ra)
0016a4cf 153 ea += regs->gpr[ra];
b91e136c 154
d120cdbc 155 return ea;
0016a4cf 156}
350779a2
PM
157
158/*
159 * Calculate effective address for a DQ-form instruction
160 */
161static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
162 const struct pt_regs *regs)
163{
164 int ra;
165 unsigned long ea;
166
167 ra = (instr >> 16) & 0x1f;
168 ea = (signed short) (instr & ~0xf); /* sign-extend */
169 if (ra)
170 ea += regs->gpr[ra];
171
d120cdbc 172 return ea;
350779a2 173}
0016a4cf
PM
174#endif /* __powerpc64 */
175
176/*
177 * Calculate effective address for an X-form instruction
178 */
71f6e58e 179static nokprobe_inline unsigned long xform_ea(unsigned int instr,
3cdfcbfd 180 const struct pt_regs *regs)
0016a4cf
PM
181{
182 int ra, rb;
183 unsigned long ea;
184
185 ra = (instr >> 16) & 0x1f;
186 rb = (instr >> 11) & 0x1f;
187 ea = regs->gpr[rb];
be96f633 188 if (ra)
0016a4cf 189 ea += regs->gpr[ra];
b91e136c 190
d120cdbc 191 return ea;
0016a4cf
PM
192}
193
194/*
195 * Return the largest power of 2, not greater than sizeof(unsigned long),
196 * such that x is a multiple of it.
197 */
71f6e58e 198static nokprobe_inline unsigned long max_align(unsigned long x)
0016a4cf
PM
199{
200 x |= sizeof(unsigned long);
201 return x & -x; /* isolates rightmost bit */
202}
203
71f6e58e 204static nokprobe_inline unsigned long byterev_2(unsigned long x)
0016a4cf
PM
205{
206 return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
207}
208
71f6e58e 209static nokprobe_inline unsigned long byterev_4(unsigned long x)
0016a4cf
PM
210{
211 return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
212 ((x & 0xff00) << 8) | ((x & 0xff) << 24);
213}
214
215#ifdef __powerpc64__
71f6e58e 216static nokprobe_inline unsigned long byterev_8(unsigned long x)
0016a4cf
PM
217{
218 return (byterev_4(x) << 32) | byterev_4(x >> 32);
219}
220#endif
221
d955189a
PM
222static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
223{
224 switch (nb) {
225 case 2:
226 *(u16 *)ptr = byterev_2(*(u16 *)ptr);
227 break;
228 case 4:
229 *(u32 *)ptr = byterev_4(*(u32 *)ptr);
230 break;
231#ifdef __powerpc64__
232 case 8:
233 *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
234 break;
235 case 16: {
236 unsigned long *up = (unsigned long *)ptr;
237 unsigned long tmp;
238 tmp = byterev_8(up[0]);
239 up[0] = byterev_8(up[1]);
240 up[1] = tmp;
241 break;
242 }
243#endif
244 default:
245 WARN_ON_ONCE(1);
246 }
247}
248
71f6e58e 249static nokprobe_inline int read_mem_aligned(unsigned long *dest,
b9da9c8a
PM
250 unsigned long ea, int nb,
251 struct pt_regs *regs)
0016a4cf
PM
252{
253 int err = 0;
254 unsigned long x = 0;
255
256 switch (nb) {
257 case 1:
258 err = __get_user(x, (unsigned char __user *) ea);
259 break;
260 case 2:
261 err = __get_user(x, (unsigned short __user *) ea);
262 break;
263 case 4:
264 err = __get_user(x, (unsigned int __user *) ea);
265 break;
266#ifdef __powerpc64__
267 case 8:
268 err = __get_user(x, (unsigned long __user *) ea);
269 break;
270#endif
271 }
272 if (!err)
273 *dest = x;
b9da9c8a
PM
274 else
275 regs->dar = ea;
0016a4cf
PM
276 return err;
277}
278
e0a0986b
PM
279/*
280 * Copy from userspace to a buffer, using the largest possible
281 * aligned accesses, up to sizeof(long).
282 */
174b701d 283static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb,
b9da9c8a 284 struct pt_regs *regs)
0016a4cf 285{
e0a0986b
PM
286 int err = 0;
287 int c;
0016a4cf 288
0016a4cf
PM
289 for (; nb > 0; nb -= c) {
290 c = max_align(ea);
291 if (c > nb)
292 c = max_align(nb);
e0a0986b
PM
293 switch (c) {
294 case 1:
295 err = __get_user(*dest, (unsigned char __user *) ea);
296 break;
297 case 2:
298 err = __get_user(*(u16 *)dest,
299 (unsigned short __user *) ea);
300 break;
301 case 4:
302 err = __get_user(*(u32 *)dest,
303 (unsigned int __user *) ea);
304 break;
305#ifdef __powerpc64__
306 case 8:
307 err = __get_user(*(unsigned long *)dest,
308 (unsigned long __user *) ea);
309 break;
310#endif
311 }
b9da9c8a
PM
312 if (err) {
313 regs->dar = ea;
0016a4cf 314 return err;
b9da9c8a 315 }
e0a0986b 316 dest += c;
0016a4cf
PM
317 ea += c;
318 }
0016a4cf
PM
319 return 0;
320}
321
e0a0986b
PM
322static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
323 unsigned long ea, int nb,
324 struct pt_regs *regs)
325{
326 union {
327 unsigned long ul;
328 u8 b[sizeof(unsigned long)];
329 } u;
330 int i;
331 int err;
332
333 u.ul = 0;
334 i = IS_BE ? sizeof(unsigned long) - nb : 0;
b9da9c8a 335 err = copy_mem_in(&u.b[i], ea, nb, regs);
e0a0986b
PM
336 if (!err)
337 *dest = u.ul;
338 return err;
339}
340
0016a4cf
PM
341/*
342 * Read memory at address ea for nb bytes, return 0 for success
e0a0986b
PM
343 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
344 * If nb < sizeof(long), the result is right-justified on BE systems.
0016a4cf 345 */
71f6e58e 346static int read_mem(unsigned long *dest, unsigned long ea, int nb,
0016a4cf
PM
347 struct pt_regs *regs)
348{
349 if (!address_ok(regs, ea, nb))
350 return -EFAULT;
351 if ((ea & (nb - 1)) == 0)
b9da9c8a 352 return read_mem_aligned(dest, ea, nb, regs);
0016a4cf
PM
353 return read_mem_unaligned(dest, ea, nb, regs);
354}
71f6e58e 355NOKPROBE_SYMBOL(read_mem);
0016a4cf 356
71f6e58e 357static nokprobe_inline int write_mem_aligned(unsigned long val,
b9da9c8a
PM
358 unsigned long ea, int nb,
359 struct pt_regs *regs)
0016a4cf
PM
360{
361 int err = 0;
362
363 switch (nb) {
364 case 1:
365 err = __put_user(val, (unsigned char __user *) ea);
366 break;
367 case 2:
368 err = __put_user(val, (unsigned short __user *) ea);
369 break;
370 case 4:
371 err = __put_user(val, (unsigned int __user *) ea);
372 break;
373#ifdef __powerpc64__
374 case 8:
375 err = __put_user(val, (unsigned long __user *) ea);
376 break;
377#endif
378 }
b9da9c8a
PM
379 if (err)
380 regs->dar = ea;
0016a4cf
PM
381 return err;
382}
383
e0a0986b
PM
384/*
385 * Copy from a buffer to userspace, using the largest possible
386 * aligned accesses, up to sizeof(long).
387 */
174b701d 388static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb,
b9da9c8a 389 struct pt_regs *regs)
0016a4cf 390{
e0a0986b
PM
391 int err = 0;
392 int c;
0016a4cf 393
0016a4cf
PM
394 for (; nb > 0; nb -= c) {
395 c = max_align(ea);
396 if (c > nb)
397 c = max_align(nb);
e0a0986b
PM
398 switch (c) {
399 case 1:
400 err = __put_user(*dest, (unsigned char __user *) ea);
401 break;
402 case 2:
403 err = __put_user(*(u16 *)dest,
404 (unsigned short __user *) ea);
405 break;
406 case 4:
407 err = __put_user(*(u32 *)dest,
408 (unsigned int __user *) ea);
409 break;
410#ifdef __powerpc64__
411 case 8:
412 err = __put_user(*(unsigned long *)dest,
413 (unsigned long __user *) ea);
414 break;
415#endif
416 }
b9da9c8a
PM
417 if (err) {
418 regs->dar = ea;
0016a4cf 419 return err;
b9da9c8a 420 }
e0a0986b 421 dest += c;
17e8de7e 422 ea += c;
0016a4cf
PM
423 }
424 return 0;
425}
426
e0a0986b
PM
427static nokprobe_inline int write_mem_unaligned(unsigned long val,
428 unsigned long ea, int nb,
429 struct pt_regs *regs)
430{
431 union {
432 unsigned long ul;
433 u8 b[sizeof(unsigned long)];
434 } u;
435 int i;
436
437 u.ul = val;
438 i = IS_BE ? sizeof(unsigned long) - nb : 0;
b9da9c8a 439 return copy_mem_out(&u.b[i], ea, nb, regs);
e0a0986b
PM
440}
441
0016a4cf
PM
442/*
443 * Write memory at address ea for nb bytes, return 0 for success
e0a0986b 444 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
0016a4cf 445 */
71f6e58e 446static int write_mem(unsigned long val, unsigned long ea, int nb,
0016a4cf
PM
447 struct pt_regs *regs)
448{
449 if (!address_ok(regs, ea, nb))
450 return -EFAULT;
451 if ((ea & (nb - 1)) == 0)
b9da9c8a 452 return write_mem_aligned(val, ea, nb, regs);
0016a4cf
PM
453 return write_mem_unaligned(val, ea, nb, regs);
454}
71f6e58e 455NOKPROBE_SYMBOL(write_mem);
0016a4cf 456
cd64d169 457#ifdef CONFIG_PPC_FPU
14cf11af 458/*
c22435a5
PM
459 * These access either the real FP register or the image in the
460 * thread_struct, depending on regs->msr & MSR_FP.
0016a4cf 461 */
d2b65ac6
PM
462static int do_fp_load(struct instruction_op *op, unsigned long ea,
463 struct pt_regs *regs, bool cross_endian)
0016a4cf 464{
d2b65ac6 465 int err, rn, nb;
c22435a5 466 union {
d2b65ac6
PM
467 int i;
468 unsigned int u;
c22435a5 469 float f;
1f41fb79
PM
470 double d[2];
471 unsigned long l[2];
472 u8 b[2 * sizeof(double)];
c22435a5 473 } u;
0016a4cf 474
d2b65ac6 475 nb = GETSIZE(op->type);
0016a4cf
PM
476 if (!address_ok(regs, ea, nb))
477 return -EFAULT;
d2b65ac6 478 rn = op->reg;
b9da9c8a 479 err = copy_mem_in(u.b, ea, nb, regs);
c22435a5
PM
480 if (err)
481 return err;
d955189a
PM
482 if (unlikely(cross_endian)) {
483 do_byte_reverse(u.b, min(nb, 8));
484 if (nb == 16)
485 do_byte_reverse(&u.b[8], 8);
486 }
c22435a5 487 preempt_disable();
d2b65ac6
PM
488 if (nb == 4) {
489 if (op->type & FPCONV)
490 conv_sp_to_dp(&u.f, &u.d[0]);
491 else if (op->type & SIGNEXT)
492 u.l[0] = u.i;
493 else
494 u.l[0] = u.u;
495 }
c22435a5 496 if (regs->msr & MSR_FP)
1f41fb79 497 put_fpr(rn, &u.d[0]);
c22435a5 498 else
1f41fb79
PM
499 current->thread.TS_FPR(rn) = u.l[0];
500 if (nb == 16) {
501 /* lfdp */
502 rn |= 1;
503 if (regs->msr & MSR_FP)
504 put_fpr(rn, &u.d[1]);
505 else
506 current->thread.TS_FPR(rn) = u.l[1];
507 }
c22435a5
PM
508 preempt_enable();
509 return 0;
0016a4cf 510}
71f6e58e 511NOKPROBE_SYMBOL(do_fp_load);
0016a4cf 512
d2b65ac6
PM
513static int do_fp_store(struct instruction_op *op, unsigned long ea,
514 struct pt_regs *regs, bool cross_endian)
0016a4cf 515{
d2b65ac6 516 int rn, nb;
c22435a5 517 union {
d2b65ac6 518 unsigned int u;
c22435a5 519 float f;
1f41fb79
PM
520 double d[2];
521 unsigned long l[2];
522 u8 b[2 * sizeof(double)];
c22435a5 523 } u;
0016a4cf 524
d2b65ac6 525 nb = GETSIZE(op->type);
0016a4cf
PM
526 if (!address_ok(regs, ea, nb))
527 return -EFAULT;
d2b65ac6 528 rn = op->reg;
c22435a5
PM
529 preempt_disable();
530 if (regs->msr & MSR_FP)
1f41fb79 531 get_fpr(rn, &u.d[0]);
c22435a5 532 else
1f41fb79 533 u.l[0] = current->thread.TS_FPR(rn);
d2b65ac6
PM
534 if (nb == 4) {
535 if (op->type & FPCONV)
536 conv_dp_to_sp(&u.d[0], &u.f);
537 else
538 u.u = u.l[0];
539 }
1f41fb79
PM
540 if (nb == 16) {
541 rn |= 1;
542 if (regs->msr & MSR_FP)
543 get_fpr(rn, &u.d[1]);
544 else
545 u.l[1] = current->thread.TS_FPR(rn);
546 }
c22435a5 547 preempt_enable();
d955189a
PM
548 if (unlikely(cross_endian)) {
549 do_byte_reverse(u.b, min(nb, 8));
550 if (nb == 16)
551 do_byte_reverse(&u.b[8], 8);
552 }
b9da9c8a 553 return copy_mem_out(u.b, ea, nb, regs);
0016a4cf 554}
71f6e58e 555NOKPROBE_SYMBOL(do_fp_store);
cd64d169 556#endif
0016a4cf
PM
557
558#ifdef CONFIG_ALTIVEC
559/* For Altivec/VMX, no need to worry about alignment */
c22435a5 560static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
d955189a
PM
561 int size, struct pt_regs *regs,
562 bool cross_endian)
0016a4cf 563{
c22435a5
PM
564 int err;
565 union {
566 __vector128 v;
567 u8 b[sizeof(__vector128)];
568 } u = {};
569
0016a4cf
PM
570 if (!address_ok(regs, ea & ~0xfUL, 16))
571 return -EFAULT;
c22435a5
PM
572 /* align to multiple of size */
573 ea &= ~(size - 1);
b9da9c8a 574 err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
c22435a5
PM
575 if (err)
576 return err;
d955189a
PM
577 if (unlikely(cross_endian))
578 do_byte_reverse(&u.b[ea & 0xf], size);
c22435a5
PM
579 preempt_disable();
580 if (regs->msr & MSR_VEC)
581 put_vr(rn, &u.v);
582 else
583 current->thread.vr_state.vr[rn] = u.v;
584 preempt_enable();
585 return 0;
0016a4cf
PM
586}
587
c22435a5 588static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
d955189a
PM
589 int size, struct pt_regs *regs,
590 bool cross_endian)
0016a4cf 591{
c22435a5
PM
592 union {
593 __vector128 v;
594 u8 b[sizeof(__vector128)];
595 } u;
596
0016a4cf
PM
597 if (!address_ok(regs, ea & ~0xfUL, 16))
598 return -EFAULT;
c22435a5
PM
599 /* align to multiple of size */
600 ea &= ~(size - 1);
601
602 preempt_disable();
603 if (regs->msr & MSR_VEC)
604 get_vr(rn, &u.v);
605 else
606 u.v = current->thread.vr_state.vr[rn];
607 preempt_enable();
d955189a
PM
608 if (unlikely(cross_endian))
609 do_byte_reverse(&u.b[ea & 0xf], size);
b9da9c8a 610 return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
0016a4cf
PM
611}
612#endif /* CONFIG_ALTIVEC */
613
350779a2
PM
614#ifdef __powerpc64__
615static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
d955189a 616 int reg, bool cross_endian)
0016a4cf
PM
617{
618 int err;
0016a4cf
PM
619
620 if (!address_ok(regs, ea, 16))
621 return -EFAULT;
350779a2 622 /* if aligned, should be atomic */
d955189a
PM
623 if ((ea & 0xf) == 0) {
624 err = do_lq(ea, &regs->gpr[reg]);
625 } else {
626 err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
627 if (!err)
628 err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
629 }
630 if (!err && unlikely(cross_endian))
631 do_byte_reverse(&regs->gpr[reg], 16);
0016a4cf
PM
632 return err;
633}
634
350779a2 635static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
d955189a 636 int reg, bool cross_endian)
0016a4cf
PM
637{
638 int err;
d955189a 639 unsigned long vals[2];
0016a4cf
PM
640
641 if (!address_ok(regs, ea, 16))
642 return -EFAULT;
d955189a
PM
643 vals[0] = regs->gpr[reg];
644 vals[1] = regs->gpr[reg + 1];
645 if (unlikely(cross_endian))
646 do_byte_reverse(vals, 16);
647
350779a2
PM
648 /* if aligned, should be atomic */
649 if ((ea & 0xf) == 0)
d955189a 650 return do_stq(ea, vals[0], vals[1]);
350779a2 651
d955189a 652 err = write_mem(vals[IS_LE], ea, 8, regs);
0016a4cf 653 if (!err)
d955189a 654 err = write_mem(vals[IS_BE], ea + 8, 8, regs);
0016a4cf
PM
655 return err;
656}
350779a2
PM
657#endif /* __powerpc64 */
658
659#ifdef CONFIG_VSX
660void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
d955189a 661 const void *mem, bool rev)
350779a2
PM
662{
663 int size, read_size;
664 int i, j;
665 const unsigned int *wp;
666 const unsigned short *hp;
667 const unsigned char *bp;
668
669 size = GETSIZE(op->type);
670 reg->d[0] = reg->d[1] = 0;
671
672 switch (op->element_size) {
673 case 16:
674 /* whole vector; lxv[x] or lxvl[l] */
675 if (size == 0)
676 break;
677 memcpy(reg, mem, size);
d955189a
PM
678 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
679 rev = !rev;
680 if (rev)
681 do_byte_reverse(reg, 16);
350779a2
PM
682 break;
683 case 8:
684 /* scalar loads, lxvd2x, lxvdsx */
685 read_size = (size >= 8) ? 8 : size;
686 i = IS_LE ? 8 : 8 - read_size;
687 memcpy(&reg->b[i], mem, read_size);
d955189a
PM
688 if (rev)
689 do_byte_reverse(&reg->b[i], 8);
350779a2
PM
690 if (size < 8) {
691 if (op->type & SIGNEXT) {
692 /* size == 4 is the only case here */
693 reg->d[IS_LE] = (signed int) reg->d[IS_LE];
694 } else if (op->vsx_flags & VSX_FPCONV) {
695 preempt_disable();
696 conv_sp_to_dp(&reg->fp[1 + IS_LE],
697 &reg->dp[IS_LE]);
698 preempt_enable();
699 }
700 } else {
d955189a
PM
701 if (size == 16) {
702 unsigned long v = *(unsigned long *)(mem + 8);
703 reg->d[IS_BE] = !rev ? v : byterev_8(v);
704 } else if (op->vsx_flags & VSX_SPLAT)
350779a2
PM
705 reg->d[IS_BE] = reg->d[IS_LE];
706 }
707 break;
708 case 4:
709 /* lxvw4x, lxvwsx */
710 wp = mem;
711 for (j = 0; j < size / 4; ++j) {
712 i = IS_LE ? 3 - j : j;
d955189a 713 reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
350779a2
PM
714 }
715 if (op->vsx_flags & VSX_SPLAT) {
716 u32 val = reg->w[IS_LE ? 3 : 0];
717 for (; j < 4; ++j) {
718 i = IS_LE ? 3 - j : j;
719 reg->w[i] = val;
720 }
721 }
722 break;
723 case 2:
724 /* lxvh8x */
725 hp = mem;
726 for (j = 0; j < size / 2; ++j) {
727 i = IS_LE ? 7 - j : j;
d955189a 728 reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
350779a2
PM
729 }
730 break;
731 case 1:
732 /* lxvb16x */
733 bp = mem;
734 for (j = 0; j < size; ++j) {
735 i = IS_LE ? 15 - j : j;
736 reg->b[i] = *bp++;
737 }
738 break;
739 }
740}
741EXPORT_SYMBOL_GPL(emulate_vsx_load);
742NOKPROBE_SYMBOL(emulate_vsx_load);
743
744void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
d955189a 745 void *mem, bool rev)
350779a2
PM
746{
747 int size, write_size;
748 int i, j;
749 union vsx_reg buf;
750 unsigned int *wp;
751 unsigned short *hp;
752 unsigned char *bp;
753
754 size = GETSIZE(op->type);
755
756 switch (op->element_size) {
757 case 16:
758 /* stxv, stxvx, stxvl, stxvll */
759 if (size == 0)
760 break;
d955189a
PM
761 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
762 rev = !rev;
763 if (rev) {
350779a2
PM
764 /* reverse 16 bytes */
765 buf.d[0] = byterev_8(reg->d[1]);
766 buf.d[1] = byterev_8(reg->d[0]);
767 reg = &buf;
768 }
769 memcpy(mem, reg, size);
770 break;
771 case 8:
772 /* scalar stores, stxvd2x */
773 write_size = (size >= 8) ? 8 : size;
774 i = IS_LE ? 8 : 8 - write_size;
775 if (size < 8 && op->vsx_flags & VSX_FPCONV) {
776 buf.d[0] = buf.d[1] = 0;
777 preempt_disable();
778 conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
779 preempt_enable();
780 reg = &buf;
781 }
782 memcpy(mem, &reg->b[i], write_size);
783 if (size == 16)
784 memcpy(mem + 8, &reg->d[IS_BE], 8);
d955189a
PM
785 if (unlikely(rev)) {
786 do_byte_reverse(mem, write_size);
787 if (size == 16)
788 do_byte_reverse(mem + 8, 8);
789 }
350779a2
PM
790 break;
791 case 4:
792 /* stxvw4x */
793 wp = mem;
794 for (j = 0; j < size / 4; ++j) {
795 i = IS_LE ? 3 - j : j;
d955189a 796 *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
350779a2
PM
797 }
798 break;
799 case 2:
800 /* stxvh8x */
801 hp = mem;
802 for (j = 0; j < size / 2; ++j) {
803 i = IS_LE ? 7 - j : j;
d955189a 804 *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
350779a2
PM
805 }
806 break;
807 case 1:
808 /* stvxb16x */
809 bp = mem;
810 for (j = 0; j < size; ++j) {
811 i = IS_LE ? 15 - j : j;
812 *bp++ = reg->b[i];
813 }
814 break;
815 }
816}
817EXPORT_SYMBOL_GPL(emulate_vsx_store);
818NOKPROBE_SYMBOL(emulate_vsx_store);
c22435a5
PM
819
820static nokprobe_inline int do_vsx_load(struct instruction_op *op,
d955189a
PM
821 unsigned long ea, struct pt_regs *regs,
822 bool cross_endian)
c22435a5
PM
823{
824 int reg = op->reg;
825 u8 mem[16];
826 union vsx_reg buf;
827 int size = GETSIZE(op->type);
828
b9da9c8a 829 if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
c22435a5
PM
830 return -EFAULT;
831
d955189a 832 emulate_vsx_load(op, &buf, mem, cross_endian);
c22435a5
PM
833 preempt_disable();
834 if (reg < 32) {
835 /* FP regs + extensions */
836 if (regs->msr & MSR_FP) {
837 load_vsrn(reg, &buf);
838 } else {
839 current->thread.fp_state.fpr[reg][0] = buf.d[0];
840 current->thread.fp_state.fpr[reg][1] = buf.d[1];
841 }
842 } else {
843 if (regs->msr & MSR_VEC)
844 load_vsrn(reg, &buf);
845 else
846 current->thread.vr_state.vr[reg - 32] = buf.v;
847 }
848 preempt_enable();
849 return 0;
850}
851
852static nokprobe_inline int do_vsx_store(struct instruction_op *op,
d955189a
PM
853 unsigned long ea, struct pt_regs *regs,
854 bool cross_endian)
c22435a5
PM
855{
856 int reg = op->reg;
857 u8 mem[16];
858 union vsx_reg buf;
859 int size = GETSIZE(op->type);
860
861 if (!address_ok(regs, ea, size))
862 return -EFAULT;
863
864 preempt_disable();
865 if (reg < 32) {
866 /* FP regs + extensions */
867 if (regs->msr & MSR_FP) {
868 store_vsrn(reg, &buf);
869 } else {
870 buf.d[0] = current->thread.fp_state.fpr[reg][0];
871 buf.d[1] = current->thread.fp_state.fpr[reg][1];
872 }
873 } else {
874 if (regs->msr & MSR_VEC)
875 store_vsrn(reg, &buf);
876 else
877 buf.v = current->thread.vr_state.vr[reg - 32];
878 }
879 preempt_enable();
d955189a 880 emulate_vsx_store(op, &buf, mem, cross_endian);
b9da9c8a 881 return copy_mem_out(mem, ea, size, regs);
c22435a5 882}
0016a4cf
PM
883#endif /* CONFIG_VSX */
884
b2543f7b
PM
885int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
886{
887 int err;
888 unsigned long i, size;
889
890#ifdef __powerpc64__
891 size = ppc64_caches.l1d.block_size;
892 if (!(regs->msr & MSR_64BIT))
893 ea &= 0xffffffffUL;
894#else
895 size = L1_CACHE_BYTES;
896#endif
897 ea &= ~(size - 1);
898 if (!address_ok(regs, ea, size))
899 return -EFAULT;
900 for (i = 0; i < size; i += sizeof(long)) {
901 err = __put_user(0, (unsigned long __user *) (ea + i));
b9da9c8a
PM
902 if (err) {
903 regs->dar = ea;
b2543f7b 904 return err;
b9da9c8a 905 }
b2543f7b
PM
906 }
907 return 0;
908}
909NOKPROBE_SYMBOL(emulate_dcbz);
910
0016a4cf
PM
911#define __put_user_asmx(x, addr, err, op, cr) \
912 __asm__ __volatile__( \
913 "1: " op " %2,0,%3\n" \
914 " mfcr %1\n" \
915 "2:\n" \
916 ".section .fixup,\"ax\"\n" \
917 "3: li %0,%4\n" \
918 " b 2b\n" \
919 ".previous\n" \
24bfa6a9 920 EX_TABLE(1b, 3b) \
0016a4cf
PM
921 : "=r" (err), "=r" (cr) \
922 : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
923
924#define __get_user_asmx(x, addr, err, op) \
925 __asm__ __volatile__( \
926 "1: "op" %1,0,%2\n" \
927 "2:\n" \
928 ".section .fixup,\"ax\"\n" \
929 "3: li %0,%3\n" \
930 " b 2b\n" \
931 ".previous\n" \
24bfa6a9 932 EX_TABLE(1b, 3b) \
0016a4cf
PM
933 : "=r" (err), "=r" (x) \
934 : "r" (addr), "i" (-EFAULT), "0" (err))
935
936#define __cacheop_user_asmx(addr, err, op) \
937 __asm__ __volatile__( \
938 "1: "op" 0,%1\n" \
939 "2:\n" \
940 ".section .fixup,\"ax\"\n" \
941 "3: li %0,%3\n" \
942 " b 2b\n" \
943 ".previous\n" \
24bfa6a9 944 EX_TABLE(1b, 3b) \
0016a4cf
PM
945 : "=r" (err) \
946 : "r" (addr), "i" (-EFAULT), "0" (err))
947
3cdfcbfd 948static nokprobe_inline void set_cr0(const struct pt_regs *regs,
ad47ff3e 949 struct instruction_op *op)
0016a4cf 950{
ad47ff3e 951 long val = op->val;
0016a4cf 952
3cdfcbfd
PM
953 op->type |= SETCC;
954 op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
0016a4cf 955#ifdef __powerpc64__
b91e136c 956 if (!(regs->msr & MSR_64BIT))
0016a4cf
PM
957 val = (int) val;
958#endif
959 if (val < 0)
3cdfcbfd 960 op->ccval |= 0x80000000;
0016a4cf 961 else if (val > 0)
3cdfcbfd 962 op->ccval |= 0x40000000;
0016a4cf 963 else
3cdfcbfd 964 op->ccval |= 0x20000000;
0016a4cf
PM
965}
966
dc39c1d6
SD
967static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
968{
969 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
970 if (val)
971 op->xerval |= XER_CA32;
972 else
973 op->xerval &= ~XER_CA32;
974 }
975}
976
3cdfcbfd
PM
977static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
978 struct instruction_op *op, int rd,
0016a4cf
PM
979 unsigned long val1, unsigned long val2,
980 unsigned long carry_in)
981{
982 unsigned long val = val1 + val2;
983
984 if (carry_in)
985 ++val;
3cdfcbfd
PM
986 op->type = COMPUTE + SETREG + SETXER;
987 op->reg = rd;
988 op->val = val;
0016a4cf 989#ifdef __powerpc64__
b91e136c 990 if (!(regs->msr & MSR_64BIT)) {
0016a4cf
PM
991 val = (unsigned int) val;
992 val1 = (unsigned int) val1;
993 }
994#endif
3cdfcbfd 995 op->xerval = regs->xer;
0016a4cf 996 if (val < val1 || (carry_in && val == val1))
3cdfcbfd 997 op->xerval |= XER_CA;
0016a4cf 998 else
3cdfcbfd 999 op->xerval &= ~XER_CA;
dc39c1d6
SD
1000
1001 set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1002 (carry_in && (unsigned int)val == (unsigned int)val1));
0016a4cf
PM
1003}
1004
3cdfcbfd
PM
1005static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1006 struct instruction_op *op,
1007 long v1, long v2, int crfld)
0016a4cf
PM
1008{
1009 unsigned int crval, shift;
1010
3cdfcbfd 1011 op->type = COMPUTE + SETCC;
0016a4cf
PM
1012 crval = (regs->xer >> 31) & 1; /* get SO bit */
1013 if (v1 < v2)
1014 crval |= 8;
1015 else if (v1 > v2)
1016 crval |= 4;
1017 else
1018 crval |= 2;
1019 shift = (7 - crfld) * 4;
3cdfcbfd 1020 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
0016a4cf
PM
1021}
1022
3cdfcbfd
PM
1023static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1024 struct instruction_op *op,
1025 unsigned long v1,
1026 unsigned long v2, int crfld)
0016a4cf
PM
1027{
1028 unsigned int crval, shift;
1029
3cdfcbfd 1030 op->type = COMPUTE + SETCC;
0016a4cf
PM
1031 crval = (regs->xer >> 31) & 1; /* get SO bit */
1032 if (v1 < v2)
1033 crval |= 8;
1034 else if (v1 > v2)
1035 crval |= 4;
1036 else
1037 crval |= 2;
1038 shift = (7 - crfld) * 4;
3cdfcbfd 1039 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
0016a4cf
PM
1040}
1041
3cdfcbfd
PM
1042static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1043 struct instruction_op *op,
1044 unsigned long v1, unsigned long v2)
02c0f62a
MB
1045{
1046 unsigned long long out_val, mask;
1047 int i;
1048
1049 out_val = 0;
1050 for (i = 0; i < 8; i++) {
1051 mask = 0xffUL << (i * 8);
1052 if ((v1 & mask) == (v2 & mask))
1053 out_val |= mask;
1054 }
3cdfcbfd 1055 op->val = out_val;
02c0f62a
MB
1056}
1057
dcbd19b4
MB
1058/*
1059 * The size parameter is used to adjust the equivalent popcnt instruction.
1060 * popcntb = 8, popcntw = 32, popcntd = 64
1061 */
3cdfcbfd
PM
1062static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1063 struct instruction_op *op,
1064 unsigned long v1, int size)
dcbd19b4
MB
1065{
1066 unsigned long long out = v1;
1067
20acf7fc
FT
1068 out -= (out >> 1) & 0x5555555555555555ULL;
1069 out = (0x3333333333333333ULL & out) +
1070 (0x3333333333333333ULL & (out >> 2));
1071 out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
dcbd19b4
MB
1072
1073 if (size == 8) { /* popcntb */
3cdfcbfd 1074 op->val = out;
dcbd19b4
MB
1075 return;
1076 }
1077 out += out >> 8;
1078 out += out >> 16;
1079 if (size == 32) { /* popcntw */
20acf7fc 1080 op->val = out & 0x0000003f0000003fULL;
dcbd19b4
MB
1081 return;
1082 }
1083
1084 out = (out + (out >> 32)) & 0x7f;
3cdfcbfd 1085 op->val = out; /* popcntd */
dcbd19b4
MB
1086}
1087
f312793d 1088#ifdef CONFIG_PPC64
3cdfcbfd
PM
1089static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1090 struct instruction_op *op,
1091 unsigned long v1, unsigned long v2)
f312793d
MB
1092{
1093 unsigned char perm, idx;
1094 unsigned int i;
1095
1096 perm = 0;
1097 for (i = 0; i < 8; i++) {
1098 idx = (v1 >> (i * 8)) & 0xff;
1099 if (idx < 64)
1100 if (v2 & PPC_BIT(idx))
1101 perm |= 1 << i;
1102 }
3cdfcbfd 1103 op->val = perm;
f312793d
MB
1104}
1105#endif /* CONFIG_PPC64 */
2c979c48
MB
1106/*
1107 * The size parameter adjusts the equivalent prty instruction.
1108 * prtyw = 32, prtyd = 64
1109 */
3cdfcbfd
PM
1110static nokprobe_inline void do_prty(const struct pt_regs *regs,
1111 struct instruction_op *op,
1112 unsigned long v, int size)
2c979c48
MB
1113{
1114 unsigned long long res = v ^ (v >> 8);
1115
1116 res ^= res >> 16;
1117 if (size == 32) { /* prtyw */
20acf7fc 1118 op->val = res & 0x0000000100000001ULL;
2c979c48
MB
1119 return;
1120 }
1121
1122 res ^= res >> 32;
3cdfcbfd 1123 op->val = res & 1; /*prtyd */
2c979c48 1124}
f312793d 1125
71f6e58e 1126static nokprobe_inline int trap_compare(long v1, long v2)
cf87c3f6
PM
1127{
1128 int ret = 0;
1129
1130 if (v1 < v2)
1131 ret |= 0x10;
1132 else if (v1 > v2)
1133 ret |= 0x08;
1134 else
1135 ret |= 0x04;
1136 if ((unsigned long)v1 < (unsigned long)v2)
1137 ret |= 0x02;
1138 else if ((unsigned long)v1 > (unsigned long)v2)
1139 ret |= 0x01;
1140 return ret;
1141}
1142
0016a4cf
PM
1143/*
1144 * Elements of 32-bit rotate and mask instructions.
1145 */
1146#define MASK32(mb, me) ((0xffffffffUL >> (mb)) + \
1147 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1148#ifdef __powerpc64__
1149#define MASK64_L(mb) (~0UL >> (mb))
1150#define MASK64_R(me) ((signed long)-0x8000000000000000L >> (me))
1151#define MASK64(mb, me) (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1152#define DATA32(x) (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1153#else
1154#define DATA32(x) (x)
1155#endif
1156#define ROTATE(x, n) ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1157
1158/*
3cdfcbfd
PM
1159 * Decode an instruction, and return information about it in *op
1160 * without changing *regs.
1161 * Integer arithmetic and logical instructions, branches, and barrier
1162 * instructions can be emulated just using the information in *op.
1163 *
1164 * Return value is 1 if the instruction can be emulated just by
1165 * updating *regs with the information in *op, -1 if we need the
1166 * GPRs but *regs doesn't contain the full register set, or 0
1167 * otherwise.
14cf11af 1168 */
3cdfcbfd
PM
1169int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1170 unsigned int instr)
14cf11af 1171{
930d6288 1172 unsigned int opcode, ra, rb, rc, rd, spr, u;
14cf11af 1173 unsigned long int imm;
0016a4cf 1174 unsigned long int val, val2;
be96f633 1175 unsigned int mb, me, sh;
0016a4cf 1176 long ival;
14cf11af 1177
be96f633
PM
1178 op->type = COMPUTE;
1179
14cf11af
PM
1180 opcode = instr >> 26;
1181 switch (opcode) {
1182 case 16: /* bc */
be96f633 1183 op->type = BRANCH;
14cf11af
PM
1184 imm = (signed short)(instr & 0xfffc);
1185 if ((instr & 2) == 0)
1186 imm += regs->nip;
3cdfcbfd 1187 op->val = truncate_if_32bit(regs->msr, imm);
14cf11af 1188 if (instr & 1)
3cdfcbfd
PM
1189 op->type |= SETLK;
1190 if (branch_taken(instr, regs, op))
1191 op->type |= BRTAKEN;
14cf11af 1192 return 1;
c032524f 1193#ifdef CONFIG_PPC64
14cf11af 1194 case 17: /* sc */
be96f633
PM
1195 if ((instr & 0xfe2) == 2)
1196 op->type = SYSCALL;
1197 else
1198 op->type = UNKNOWN;
1199 return 0;
c032524f 1200#endif
14cf11af 1201 case 18: /* b */
3cdfcbfd 1202 op->type = BRANCH | BRTAKEN;
14cf11af
PM
1203 imm = instr & 0x03fffffc;
1204 if (imm & 0x02000000)
1205 imm -= 0x04000000;
1206 if ((instr & 2) == 0)
1207 imm += regs->nip;
3cdfcbfd 1208 op->val = truncate_if_32bit(regs->msr, imm);
b91e136c 1209 if (instr & 1)
3cdfcbfd 1210 op->type |= SETLK;
14cf11af
PM
1211 return 1;
1212 case 19:
0016a4cf 1213 switch ((instr >> 1) & 0x3ff) {
cf87c3f6 1214 case 0: /* mcrf */
3cdfcbfd 1215 op->type = COMPUTE + SETCC;
87c4b83e
AB
1216 rd = 7 - ((instr >> 23) & 0x7);
1217 ra = 7 - ((instr >> 18) & 0x7);
1218 rd *= 4;
1219 ra *= 4;
cf87c3f6 1220 val = (regs->ccr >> ra) & 0xf;
3cdfcbfd
PM
1221 op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1222 return 1;
cf87c3f6 1223
0016a4cf
PM
1224 case 16: /* bclr */
1225 case 528: /* bcctr */
be96f633 1226 op->type = BRANCH;
14cf11af 1227 imm = (instr & 0x400)? regs->ctr: regs->link;
3cdfcbfd 1228 op->val = truncate_if_32bit(regs->msr, imm);
14cf11af 1229 if (instr & 1)
3cdfcbfd
PM
1230 op->type |= SETLK;
1231 if (branch_taken(instr, regs, op))
1232 op->type |= BRTAKEN;
14cf11af 1233 return 1;
0016a4cf
PM
1234
1235 case 18: /* rfid, scary */
be96f633
PM
1236 if (regs->msr & MSR_PR)
1237 goto priv;
1238 op->type = RFI;
1239 return 0;
0016a4cf
PM
1240
1241 case 150: /* isync */
3cdfcbfd
PM
1242 op->type = BARRIER | BARRIER_ISYNC;
1243 return 1;
0016a4cf
PM
1244
1245 case 33: /* crnor */
1246 case 129: /* crandc */
1247 case 193: /* crxor */
1248 case 225: /* crnand */
1249 case 257: /* crand */
1250 case 289: /* creqv */
1251 case 417: /* crorc */
1252 case 449: /* cror */
3cdfcbfd 1253 op->type = COMPUTE + SETCC;
0016a4cf
PM
1254 ra = (instr >> 16) & 0x1f;
1255 rb = (instr >> 11) & 0x1f;
1256 rd = (instr >> 21) & 0x1f;
1257 ra = (regs->ccr >> (31 - ra)) & 1;
1258 rb = (regs->ccr >> (31 - rb)) & 1;
1259 val = (instr >> (6 + ra * 2 + rb)) & 1;
3cdfcbfd 1260 op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
0016a4cf 1261 (val << (31 - rd));
3cdfcbfd 1262 return 1;
0016a4cf
PM
1263 }
1264 break;
1265 case 31:
1266 switch ((instr >> 1) & 0x3ff) {
1267 case 598: /* sync */
3cdfcbfd 1268 op->type = BARRIER + BARRIER_SYNC;
0016a4cf
PM
1269#ifdef __powerpc64__
1270 switch ((instr >> 21) & 3) {
1271 case 1: /* lwsync */
3cdfcbfd
PM
1272 op->type = BARRIER + BARRIER_LWSYNC;
1273 break;
0016a4cf 1274 case 2: /* ptesync */
3cdfcbfd
PM
1275 op->type = BARRIER + BARRIER_PTESYNC;
1276 break;
0016a4cf
PM
1277 }
1278#endif
3cdfcbfd 1279 return 1;
0016a4cf
PM
1280
1281 case 854: /* eieio */
3cdfcbfd
PM
1282 op->type = BARRIER + BARRIER_EIEIO;
1283 return 1;
0016a4cf
PM
1284 }
1285 break;
1286 }
1287
1288 /* Following cases refer to regs->gpr[], so we need all regs */
1289 if (!FULL_REGS(regs))
3cdfcbfd 1290 return -1;
0016a4cf
PM
1291
1292 rd = (instr >> 21) & 0x1f;
1293 ra = (instr >> 16) & 0x1f;
1294 rb = (instr >> 11) & 0x1f;
930d6288 1295 rc = (instr >> 6) & 0x1f;
0016a4cf
PM
1296
1297 switch (opcode) {
cf87c3f6
PM
1298#ifdef __powerpc64__
1299 case 2: /* tdi */
1300 if (rd & trap_compare(regs->gpr[ra], (short) instr))
1301 goto trap;
3cdfcbfd 1302 return 1;
cf87c3f6
PM
1303#endif
1304 case 3: /* twi */
1305 if (rd & trap_compare((int)regs->gpr[ra], (short) instr))
1306 goto trap;
3cdfcbfd 1307 return 1;
cf87c3f6 1308
930d6288
SD
1309#ifdef __powerpc64__
1310 case 4:
1311 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1312 return -1;
1313
1314 switch (instr & 0x3f) {
1315 case 48: /* maddhd */
1316 asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
1317 "=r" (op->val) : "r" (regs->gpr[ra]),
1318 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1319 goto compute_done;
1320
1321 case 49: /* maddhdu */
1322 asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
1323 "=r" (op->val) : "r" (regs->gpr[ra]),
1324 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1325 goto compute_done;
1326
1327 case 51: /* maddld */
1328 asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
1329 "=r" (op->val) : "r" (regs->gpr[ra]),
1330 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1331 goto compute_done;
1332 }
1333
1334 /*
1335 * There are other instructions from ISA 3.0 with the same
1336 * primary opcode which do not have emulation support yet.
1337 */
1338 return -1;
1339#endif
1340
0016a4cf 1341 case 7: /* mulli */
3cdfcbfd
PM
1342 op->val = regs->gpr[ra] * (short) instr;
1343 goto compute_done;
0016a4cf
PM
1344
1345 case 8: /* subfic */
1346 imm = (short) instr;
3cdfcbfd
PM
1347 add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1348 return 1;
0016a4cf
PM
1349
1350 case 10: /* cmpli */
1351 imm = (unsigned short) instr;
1352 val = regs->gpr[ra];
1353#ifdef __powerpc64__
1354 if ((rd & 1) == 0)
1355 val = (unsigned int) val;
1356#endif
3cdfcbfd
PM
1357 do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1358 return 1;
0016a4cf
PM
1359
1360 case 11: /* cmpi */
1361 imm = (short) instr;
1362 val = regs->gpr[ra];
1363#ifdef __powerpc64__
1364 if ((rd & 1) == 0)
1365 val = (int) val;
1366#endif
3cdfcbfd
PM
1367 do_cmp_signed(regs, op, val, imm, rd >> 2);
1368 return 1;
0016a4cf
PM
1369
1370 case 12: /* addic */
1371 imm = (short) instr;
3cdfcbfd
PM
1372 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1373 return 1;
0016a4cf
PM
1374
1375 case 13: /* addic. */
1376 imm = (short) instr;
3cdfcbfd 1377 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
ad47ff3e 1378 set_cr0(regs, op);
3cdfcbfd 1379 return 1;
0016a4cf
PM
1380
1381 case 14: /* addi */
1382 imm = (short) instr;
1383 if (ra)
1384 imm += regs->gpr[ra];
3cdfcbfd
PM
1385 op->val = imm;
1386 goto compute_done;
0016a4cf
PM
1387
1388 case 15: /* addis */
1389 imm = ((short) instr) << 16;
1390 if (ra)
1391 imm += regs->gpr[ra];
3cdfcbfd
PM
1392 op->val = imm;
1393 goto compute_done;
0016a4cf 1394
958465ee
PM
1395 case 19:
1396 if (((instr >> 1) & 0x1f) == 2) {
1397 /* addpcis */
1398 imm = (short) (instr & 0xffc1); /* d0 + d2 fields */
1399 imm |= (instr >> 15) & 0x3e; /* d1 field */
1400 op->val = regs->nip + (imm << 16) + 4;
1401 goto compute_done;
1402 }
1403 op->type = UNKNOWN;
1404 return 0;
1405
0016a4cf
PM
1406 case 20: /* rlwimi */
1407 mb = (instr >> 6) & 0x1f;
1408 me = (instr >> 1) & 0x1f;
1409 val = DATA32(regs->gpr[rd]);
1410 imm = MASK32(mb, me);
3cdfcbfd 1411 op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
0016a4cf
PM
1412 goto logical_done;
1413
1414 case 21: /* rlwinm */
1415 mb = (instr >> 6) & 0x1f;
1416 me = (instr >> 1) & 0x1f;
1417 val = DATA32(regs->gpr[rd]);
3cdfcbfd 1418 op->val = ROTATE(val, rb) & MASK32(mb, me);
0016a4cf
PM
1419 goto logical_done;
1420
1421 case 23: /* rlwnm */
1422 mb = (instr >> 6) & 0x1f;
1423 me = (instr >> 1) & 0x1f;
1424 rb = regs->gpr[rb] & 0x1f;
1425 val = DATA32(regs->gpr[rd]);
3cdfcbfd 1426 op->val = ROTATE(val, rb) & MASK32(mb, me);
0016a4cf
PM
1427 goto logical_done;
1428
1429 case 24: /* ori */
3cdfcbfd
PM
1430 op->val = regs->gpr[rd] | (unsigned short) instr;
1431 goto logical_done_nocc;
0016a4cf
PM
1432
1433 case 25: /* oris */
1434 imm = (unsigned short) instr;
3cdfcbfd
PM
1435 op->val = regs->gpr[rd] | (imm << 16);
1436 goto logical_done_nocc;
0016a4cf
PM
1437
1438 case 26: /* xori */
3cdfcbfd
PM
1439 op->val = regs->gpr[rd] ^ (unsigned short) instr;
1440 goto logical_done_nocc;
0016a4cf
PM
1441
1442 case 27: /* xoris */
1443 imm = (unsigned short) instr;
3cdfcbfd
PM
1444 op->val = regs->gpr[rd] ^ (imm << 16);
1445 goto logical_done_nocc;
0016a4cf
PM
1446
1447 case 28: /* andi. */
3cdfcbfd 1448 op->val = regs->gpr[rd] & (unsigned short) instr;
ad47ff3e 1449 set_cr0(regs, op);
3cdfcbfd 1450 goto logical_done_nocc;
0016a4cf
PM
1451
1452 case 29: /* andis. */
1453 imm = (unsigned short) instr;
3cdfcbfd 1454 op->val = regs->gpr[rd] & (imm << 16);
ad47ff3e 1455 set_cr0(regs, op);
3cdfcbfd 1456 goto logical_done_nocc;
0016a4cf
PM
1457
1458#ifdef __powerpc64__
1459 case 30: /* rld* */
1460 mb = ((instr >> 6) & 0x1f) | (instr & 0x20);
1461 val = regs->gpr[rd];
1462 if ((instr & 0x10) == 0) {
1463 sh = rb | ((instr & 2) << 4);
1464 val = ROTATE(val, sh);
1465 switch ((instr >> 2) & 3) {
1466 case 0: /* rldicl */
3cdfcbfd
PM
1467 val &= MASK64_L(mb);
1468 break;
0016a4cf 1469 case 1: /* rldicr */
3cdfcbfd
PM
1470 val &= MASK64_R(mb);
1471 break;
0016a4cf 1472 case 2: /* rldic */
3cdfcbfd
PM
1473 val &= MASK64(mb, 63 - sh);
1474 break;
0016a4cf
PM
1475 case 3: /* rldimi */
1476 imm = MASK64(mb, 63 - sh);
3cdfcbfd 1477 val = (regs->gpr[ra] & ~imm) |
0016a4cf 1478 (val & imm);
0016a4cf 1479 }
3cdfcbfd
PM
1480 op->val = val;
1481 goto logical_done;
0016a4cf
PM
1482 } else {
1483 sh = regs->gpr[rb] & 0x3f;
1484 val = ROTATE(val, sh);
1485 switch ((instr >> 1) & 7) {
1486 case 0: /* rldcl */
3cdfcbfd 1487 op->val = val & MASK64_L(mb);
0016a4cf
PM
1488 goto logical_done;
1489 case 1: /* rldcr */
3cdfcbfd 1490 op->val = val & MASK64_R(mb);
0016a4cf
PM
1491 goto logical_done;
1492 }
14cf11af 1493 }
0016a4cf 1494#endif
3cdfcbfd
PM
1495 op->type = UNKNOWN; /* illegal instruction */
1496 return 0;
0016a4cf 1497
14cf11af 1498 case 31:
f1bbb99f
PM
1499 /* isel occupies 32 minor opcodes */
1500 if (((instr >> 1) & 0x1f) == 15) {
1501 mb = (instr >> 6) & 0x1f; /* bc field */
1502 val = (regs->ccr >> (31 - mb)) & 1;
1503 val2 = (ra) ? regs->gpr[ra] : 0;
1504
1505 op->val = (val) ? val2 : regs->gpr[rb];
1506 goto compute_done;
1507 }
1508
0016a4cf 1509 switch ((instr >> 1) & 0x3ff) {
cf87c3f6
PM
1510 case 4: /* tw */
1511 if (rd == 0x1f ||
1512 (rd & trap_compare((int)regs->gpr[ra],
1513 (int)regs->gpr[rb])))
1514 goto trap;
3cdfcbfd 1515 return 1;
cf87c3f6
PM
1516#ifdef __powerpc64__
1517 case 68: /* td */
1518 if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1519 goto trap;
3cdfcbfd 1520 return 1;
cf87c3f6 1521#endif
0016a4cf
PM
1522 case 83: /* mfmsr */
1523 if (regs->msr & MSR_PR)
be96f633
PM
1524 goto priv;
1525 op->type = MFMSR;
1526 op->reg = rd;
1527 return 0;
0016a4cf
PM
1528 case 146: /* mtmsr */
1529 if (regs->msr & MSR_PR)
be96f633
PM
1530 goto priv;
1531 op->type = MTMSR;
1532 op->reg = rd;
1533 op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1534 return 0;
c032524f 1535#ifdef CONFIG_PPC64
0016a4cf 1536 case 178: /* mtmsrd */
0016a4cf 1537 if (regs->msr & MSR_PR)
be96f633
PM
1538 goto priv;
1539 op->type = MTMSR;
1540 op->reg = rd;
1541 /* only MSR_EE and MSR_RI get changed if bit 15 set */
1542 /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1543 imm = (instr & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1544 op->val = imm;
1545 return 0;
c032524f 1546#endif
be96f633 1547
0016a4cf 1548 case 19: /* mfcr */
3cdfcbfd 1549 imm = 0xffffffffUL;
64e756c5
AB
1550 if ((instr >> 20) & 1) {
1551 imm = 0xf0000000UL;
1552 for (sh = 0; sh < 8; ++sh) {
3cdfcbfd 1553 if (instr & (0x80000 >> sh))
64e756c5 1554 break;
64e756c5
AB
1555 imm >>= 4;
1556 }
64e756c5 1557 }
3cdfcbfd
PM
1558 op->val = regs->ccr & imm;
1559 goto compute_done;
0016a4cf
PM
1560
1561 case 144: /* mtcrf */
3cdfcbfd 1562 op->type = COMPUTE + SETCC;
0016a4cf
PM
1563 imm = 0xf0000000UL;
1564 val = regs->gpr[rd];
5bcaa4cc 1565 op->ccval = regs->ccr;
0016a4cf
PM
1566 for (sh = 0; sh < 8; ++sh) {
1567 if (instr & (0x80000 >> sh))
5bcaa4cc 1568 op->ccval = (op->ccval & ~imm) |
0016a4cf
PM
1569 (val & imm);
1570 imm >>= 4;
1571 }
3cdfcbfd 1572 return 1;
0016a4cf
PM
1573
1574 case 339: /* mfspr */
be96f633 1575 spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
3cdfcbfd
PM
1576 op->type = MFSPR;
1577 op->reg = rd;
1578 op->spr = spr;
1579 if (spr == SPRN_XER || spr == SPRN_LR ||
1580 spr == SPRN_CTR)
1581 return 1;
1582 return 0;
0016a4cf
PM
1583
1584 case 467: /* mtspr */
be96f633 1585 spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
3cdfcbfd
PM
1586 op->type = MTSPR;
1587 op->val = regs->gpr[rd];
1588 op->spr = spr;
1589 if (spr == SPRN_XER || spr == SPRN_LR ||
1590 spr == SPRN_CTR)
1591 return 1;
1592 return 0;
0016a4cf
PM
1593
1594/*
1595 * Compare instructions
1596 */
1597 case 0: /* cmp */
1598 val = regs->gpr[ra];
1599 val2 = regs->gpr[rb];
1600#ifdef __powerpc64__
1601 if ((rd & 1) == 0) {
1602 /* word (32-bit) compare */
1603 val = (int) val;
1604 val2 = (int) val2;
1605 }
1606#endif
3cdfcbfd
PM
1607 do_cmp_signed(regs, op, val, val2, rd >> 2);
1608 return 1;
0016a4cf
PM
1609
1610 case 32: /* cmpl */
1611 val = regs->gpr[ra];
1612 val2 = regs->gpr[rb];
1613#ifdef __powerpc64__
1614 if ((rd & 1) == 0) {
1615 /* word (32-bit) compare */
1616 val = (unsigned int) val;
1617 val2 = (unsigned int) val2;
1618 }
1619#endif
3cdfcbfd
PM
1620 do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1621 return 1;
0016a4cf 1622
02c0f62a 1623 case 508: /* cmpb */
3cdfcbfd
PM
1624 do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1625 goto logical_done_nocc;
02c0f62a 1626
0016a4cf
PM
1627/*
1628 * Arithmetic instructions
1629 */
1630 case 8: /* subfc */
3cdfcbfd 1631 add_with_carry(regs, op, rd, ~regs->gpr[ra],
0016a4cf
PM
1632 regs->gpr[rb], 1);
1633 goto arith_done;
1634#ifdef __powerpc64__
1635 case 9: /* mulhdu */
3cdfcbfd 1636 asm("mulhdu %0,%1,%2" : "=r" (op->val) :
0016a4cf
PM
1637 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1638 goto arith_done;
1639#endif
1640 case 10: /* addc */
3cdfcbfd 1641 add_with_carry(regs, op, rd, regs->gpr[ra],
0016a4cf
PM
1642 regs->gpr[rb], 0);
1643 goto arith_done;
1644
1645 case 11: /* mulhwu */
3cdfcbfd 1646 asm("mulhwu %0,%1,%2" : "=r" (op->val) :
0016a4cf
PM
1647 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1648 goto arith_done;
1649
1650 case 40: /* subf */
3cdfcbfd 1651 op->val = regs->gpr[rb] - regs->gpr[ra];
0016a4cf
PM
1652 goto arith_done;
1653#ifdef __powerpc64__
1654 case 73: /* mulhd */
3cdfcbfd 1655 asm("mulhd %0,%1,%2" : "=r" (op->val) :
0016a4cf
PM
1656 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1657 goto arith_done;
1658#endif
1659 case 75: /* mulhw */
3cdfcbfd 1660 asm("mulhw %0,%1,%2" : "=r" (op->val) :
0016a4cf
PM
1661 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1662 goto arith_done;
1663
1664 case 104: /* neg */
3cdfcbfd 1665 op->val = -regs->gpr[ra];
0016a4cf
PM
1666 goto arith_done;
1667
1668 case 136: /* subfe */
3cdfcbfd
PM
1669 add_with_carry(regs, op, rd, ~regs->gpr[ra],
1670 regs->gpr[rb], regs->xer & XER_CA);
0016a4cf
PM
1671 goto arith_done;
1672
1673 case 138: /* adde */
3cdfcbfd
PM
1674 add_with_carry(regs, op, rd, regs->gpr[ra],
1675 regs->gpr[rb], regs->xer & XER_CA);
0016a4cf
PM
1676 goto arith_done;
1677
1678 case 200: /* subfze */
3cdfcbfd 1679 add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
0016a4cf
PM
1680 regs->xer & XER_CA);
1681 goto arith_done;
1682
1683 case 202: /* addze */
3cdfcbfd 1684 add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
0016a4cf
PM
1685 regs->xer & XER_CA);
1686 goto arith_done;
1687
1688 case 232: /* subfme */
3cdfcbfd 1689 add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
0016a4cf
PM
1690 regs->xer & XER_CA);
1691 goto arith_done;
1692#ifdef __powerpc64__
1693 case 233: /* mulld */
3cdfcbfd 1694 op->val = regs->gpr[ra] * regs->gpr[rb];
0016a4cf
PM
1695 goto arith_done;
1696#endif
1697 case 234: /* addme */
3cdfcbfd 1698 add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
0016a4cf
PM
1699 regs->xer & XER_CA);
1700 goto arith_done;
1701
1702 case 235: /* mullw */
1575fe06
AB
1703 op->val = (long)(int) regs->gpr[ra] *
1704 (int) regs->gpr[rb];
1705
0016a4cf 1706 goto arith_done;
6324320d
SD
1707#ifdef __powerpc64__
1708 case 265: /* modud */
1709 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1710 return -1;
1711 op->val = regs->gpr[ra] % regs->gpr[rb];
1712 goto compute_done;
1713#endif
0016a4cf 1714 case 266: /* add */
3cdfcbfd 1715 op->val = regs->gpr[ra] + regs->gpr[rb];
0016a4cf 1716 goto arith_done;
6c180071
PM
1717
1718 case 267: /* moduw */
1719 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1720 return -1;
1721 op->val = (unsigned int) regs->gpr[ra] %
1722 (unsigned int) regs->gpr[rb];
1723 goto compute_done;
0016a4cf
PM
1724#ifdef __powerpc64__
1725 case 457: /* divdu */
3cdfcbfd 1726 op->val = regs->gpr[ra] / regs->gpr[rb];
0016a4cf
PM
1727 goto arith_done;
1728#endif
1729 case 459: /* divwu */
3cdfcbfd 1730 op->val = (unsigned int) regs->gpr[ra] /
0016a4cf
PM
1731 (unsigned int) regs->gpr[rb];
1732 goto arith_done;
1733#ifdef __powerpc64__
1734 case 489: /* divd */
3cdfcbfd 1735 op->val = (long int) regs->gpr[ra] /
0016a4cf
PM
1736 (long int) regs->gpr[rb];
1737 goto arith_done;
1738#endif
1739 case 491: /* divw */
3cdfcbfd 1740 op->val = (int) regs->gpr[ra] /
0016a4cf
PM
1741 (int) regs->gpr[rb];
1742 goto arith_done;
1743
a23987ef
SD
1744 case 755: /* darn */
1745 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1746 return -1;
1747 switch (ra & 0x3) {
1748 case 0:
1749 /* 32-bit conditioned */
1750 asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
1751 goto compute_done;
1752
1753 case 1:
1754 /* 64-bit conditioned */
1755 asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
1756 goto compute_done;
1757
1758 case 2:
1759 /* 64-bit raw */
1760 asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
1761 goto compute_done;
1762 }
1763
1764 return -1;
6324320d
SD
1765#ifdef __powerpc64__
1766 case 777: /* modsd */
1767 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1768 return -1;
1769 op->val = (long int) regs->gpr[ra] %
1770 (long int) regs->gpr[rb];
1771 goto compute_done;
1772#endif
6c180071
PM
1773 case 779: /* modsw */
1774 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1775 return -1;
1776 op->val = (int) regs->gpr[ra] %
1777 (int) regs->gpr[rb];
1778 goto compute_done;
1779
0016a4cf
PM
1780
1781/*
1782 * Logical instructions
1783 */
1784 case 26: /* cntlzw */
b0490a04
SD
1785 val = (unsigned int) regs->gpr[rd];
1786 op->val = ( val ? __builtin_clz(val) : 32 );
0016a4cf
PM
1787 goto logical_done;
1788#ifdef __powerpc64__
1789 case 58: /* cntlzd */
b0490a04
SD
1790 val = regs->gpr[rd];
1791 op->val = ( val ? __builtin_clzl(val) : 64 );
0016a4cf
PM
1792 goto logical_done;
1793#endif
1794 case 28: /* and */
3cdfcbfd 1795 op->val = regs->gpr[rd] & regs->gpr[rb];
0016a4cf
PM
1796 goto logical_done;
1797
1798 case 60: /* andc */
3cdfcbfd 1799 op->val = regs->gpr[rd] & ~regs->gpr[rb];
0016a4cf
PM
1800 goto logical_done;
1801
dcbd19b4 1802 case 122: /* popcntb */
3cdfcbfd 1803 do_popcnt(regs, op, regs->gpr[rd], 8);
5762e083 1804 goto logical_done_nocc;
dcbd19b4 1805
0016a4cf 1806 case 124: /* nor */
3cdfcbfd 1807 op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
0016a4cf 1808 goto logical_done;
2c979c48
MB
1809
1810 case 154: /* prtyw */
3cdfcbfd 1811 do_prty(regs, op, regs->gpr[rd], 32);
5762e083 1812 goto logical_done_nocc;
2c979c48
MB
1813
1814 case 186: /* prtyd */
3cdfcbfd 1815 do_prty(regs, op, regs->gpr[rd], 64);
5762e083 1816 goto logical_done_nocc;
f312793d
MB
1817#ifdef CONFIG_PPC64
1818 case 252: /* bpermd */
3cdfcbfd 1819 do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
5762e083 1820 goto logical_done_nocc;
f312793d 1821#endif
0016a4cf 1822 case 284: /* xor */
3cdfcbfd 1823 op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
0016a4cf
PM
1824 goto logical_done;
1825
1826 case 316: /* xor */
3cdfcbfd 1827 op->val = regs->gpr[rd] ^ regs->gpr[rb];
0016a4cf
PM
1828 goto logical_done;
1829
dcbd19b4 1830 case 378: /* popcntw */
3cdfcbfd 1831 do_popcnt(regs, op, regs->gpr[rd], 32);
5762e083 1832 goto logical_done_nocc;
dcbd19b4 1833
0016a4cf 1834 case 412: /* orc */
3cdfcbfd 1835 op->val = regs->gpr[rd] | ~regs->gpr[rb];
0016a4cf
PM
1836 goto logical_done;
1837
1838 case 444: /* or */
3cdfcbfd 1839 op->val = regs->gpr[rd] | regs->gpr[rb];
0016a4cf
PM
1840 goto logical_done;
1841
1842 case 476: /* nand */
3cdfcbfd 1843 op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
0016a4cf 1844 goto logical_done;
dcbd19b4
MB
1845#ifdef CONFIG_PPC64
1846 case 506: /* popcntd */
3cdfcbfd 1847 do_popcnt(regs, op, regs->gpr[rd], 64);
5762e083 1848 goto logical_done_nocc;
32628b5c
SD
1849#endif
1850 case 538: /* cnttzw */
1851 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1852 return -1;
1853 val = (unsigned int) regs->gpr[rd];
1854 op->val = (val ? __builtin_ctz(val) : 32);
1855 goto logical_done;
1856#ifdef __powerpc64__
1857 case 570: /* cnttzd */
1858 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1859 return -1;
1860 val = regs->gpr[rd];
1861 op->val = (val ? __builtin_ctzl(val) : 64);
1862 goto logical_done;
dcbd19b4 1863#endif
0016a4cf 1864 case 922: /* extsh */
3cdfcbfd 1865 op->val = (signed short) regs->gpr[rd];
0016a4cf
PM
1866 goto logical_done;
1867
1868 case 954: /* extsb */
3cdfcbfd 1869 op->val = (signed char) regs->gpr[rd];
0016a4cf
PM
1870 goto logical_done;
1871#ifdef __powerpc64__
1872 case 986: /* extsw */
3cdfcbfd 1873 op->val = (signed int) regs->gpr[rd];
0016a4cf
PM
1874 goto logical_done;
1875#endif
1876
1877/*
1878 * Shift instructions
1879 */
1880 case 24: /* slw */
1881 sh = regs->gpr[rb] & 0x3f;
1882 if (sh < 32)
3cdfcbfd 1883 op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
0016a4cf 1884 else
3cdfcbfd 1885 op->val = 0;
0016a4cf
PM
1886 goto logical_done;
1887
1888 case 536: /* srw */
1889 sh = regs->gpr[rb] & 0x3f;
1890 if (sh < 32)
3cdfcbfd 1891 op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
0016a4cf 1892 else
3cdfcbfd 1893 op->val = 0;
0016a4cf
PM
1894 goto logical_done;
1895
1896 case 792: /* sraw */
3cdfcbfd 1897 op->type = COMPUTE + SETREG + SETXER;
0016a4cf
PM
1898 sh = regs->gpr[rb] & 0x3f;
1899 ival = (signed int) regs->gpr[rd];
3cdfcbfd
PM
1900 op->val = ival >> (sh < 32 ? sh : 31);
1901 op->xerval = regs->xer;
e698b966 1902 if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
3cdfcbfd 1903 op->xerval |= XER_CA;
0016a4cf 1904 else
3cdfcbfd 1905 op->xerval &= ~XER_CA;
0a75aff1 1906 set_ca32(op, op->xerval & XER_CA);
0016a4cf
PM
1907 goto logical_done;
1908
1909 case 824: /* srawi */
3cdfcbfd 1910 op->type = COMPUTE + SETREG + SETXER;
0016a4cf
PM
1911 sh = rb;
1912 ival = (signed int) regs->gpr[rd];
3cdfcbfd
PM
1913 op->val = ival >> sh;
1914 op->xerval = regs->xer;
e698b966 1915 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
3cdfcbfd 1916 op->xerval |= XER_CA;
0016a4cf 1917 else
3cdfcbfd 1918 op->xerval &= ~XER_CA;
0a75aff1 1919 set_ca32(op, op->xerval & XER_CA);
0016a4cf
PM
1920 goto logical_done;
1921
1922#ifdef __powerpc64__
1923 case 27: /* sld */
e698b966 1924 sh = regs->gpr[rb] & 0x7f;
0016a4cf 1925 if (sh < 64)
3cdfcbfd 1926 op->val = regs->gpr[rd] << sh;
0016a4cf 1927 else
3cdfcbfd 1928 op->val = 0;
0016a4cf
PM
1929 goto logical_done;
1930
1931 case 539: /* srd */
1932 sh = regs->gpr[rb] & 0x7f;
1933 if (sh < 64)
3cdfcbfd 1934 op->val = regs->gpr[rd] >> sh;
0016a4cf 1935 else
3cdfcbfd 1936 op->val = 0;
0016a4cf
PM
1937 goto logical_done;
1938
1939 case 794: /* srad */
3cdfcbfd 1940 op->type = COMPUTE + SETREG + SETXER;
0016a4cf
PM
1941 sh = regs->gpr[rb] & 0x7f;
1942 ival = (signed long int) regs->gpr[rd];
3cdfcbfd
PM
1943 op->val = ival >> (sh < 64 ? sh : 63);
1944 op->xerval = regs->xer;
e698b966 1945 if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
3cdfcbfd 1946 op->xerval |= XER_CA;
0016a4cf 1947 else
3cdfcbfd 1948 op->xerval &= ~XER_CA;
0a75aff1 1949 set_ca32(op, op->xerval & XER_CA);
0016a4cf
PM
1950 goto logical_done;
1951
1952 case 826: /* sradi with sh_5 = 0 */
1953 case 827: /* sradi with sh_5 = 1 */
3cdfcbfd 1954 op->type = COMPUTE + SETREG + SETXER;
0016a4cf
PM
1955 sh = rb | ((instr & 2) << 4);
1956 ival = (signed long int) regs->gpr[rd];
3cdfcbfd
PM
1957 op->val = ival >> sh;
1958 op->xerval = regs->xer;
e698b966 1959 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
3cdfcbfd 1960 op->xerval |= XER_CA;
0016a4cf 1961 else
3cdfcbfd 1962 op->xerval &= ~XER_CA;
0a75aff1 1963 set_ca32(op, op->xerval & XER_CA);
0016a4cf 1964 goto logical_done;
3e751acb
SD
1965
1966 case 890: /* extswsli with sh_5 = 0 */
1967 case 891: /* extswsli with sh_5 = 1 */
1968 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1969 return -1;
1970 op->type = COMPUTE + SETREG;
1971 sh = rb | ((instr & 2) << 4);
1972 val = (signed int) regs->gpr[rd];
1973 if (sh)
1974 op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
1975 else
1976 op->val = val;
1977 goto logical_done;
1978
0016a4cf
PM
1979#endif /* __powerpc64__ */
1980
1981/*
1982 * Cache instructions
1983 */
1984 case 54: /* dcbst */
be96f633
PM
1985 op->type = MKOP(CACHEOP, DCBST, 0);
1986 op->ea = xform_ea(instr, regs);
1987 return 0;
0016a4cf
PM
1988
1989 case 86: /* dcbf */
be96f633
PM
1990 op->type = MKOP(CACHEOP, DCBF, 0);
1991 op->ea = xform_ea(instr, regs);
1992 return 0;
0016a4cf
PM
1993
1994 case 246: /* dcbtst */
be96f633
PM
1995 op->type = MKOP(CACHEOP, DCBTST, 0);
1996 op->ea = xform_ea(instr, regs);
1997 op->reg = rd;
1998 return 0;
0016a4cf
PM
1999
2000 case 278: /* dcbt */
be96f633
PM
2001 op->type = MKOP(CACHEOP, DCBTST, 0);
2002 op->ea = xform_ea(instr, regs);
2003 op->reg = rd;
2004 return 0;
cf87c3f6
PM
2005
2006 case 982: /* icbi */
2007 op->type = MKOP(CACHEOP, ICBI, 0);
2008 op->ea = xform_ea(instr, regs);
2009 return 0;
b2543f7b
PM
2010
2011 case 1014: /* dcbz */
2012 op->type = MKOP(CACHEOP, DCBZ, 0);
2013 op->ea = xform_ea(instr, regs);
2014 return 0;
14cf11af 2015 }
0016a4cf 2016 break;
14cf11af 2017 }
0016a4cf 2018
350779a2
PM
2019/*
2020 * Loads and stores.
2021 */
be96f633
PM
2022 op->type = UNKNOWN;
2023 op->update_reg = ra;
2024 op->reg = rd;
2025 op->val = regs->gpr[rd];
2026 u = (instr >> 20) & UPDATE;
350779a2 2027 op->vsx_flags = 0;
0016a4cf
PM
2028
2029 switch (opcode) {
2030 case 31:
be96f633
PM
2031 u = instr & UPDATE;
2032 op->ea = xform_ea(instr, regs);
0016a4cf
PM
2033 switch ((instr >> 1) & 0x3ff) {
2034 case 20: /* lwarx */
be96f633
PM
2035 op->type = MKOP(LARX, 0, 4);
2036 break;
0016a4cf
PM
2037
2038 case 150: /* stwcx. */
be96f633
PM
2039 op->type = MKOP(STCX, 0, 4);
2040 break;
0016a4cf
PM
2041
2042#ifdef __powerpc64__
2043 case 84: /* ldarx */
be96f633
PM
2044 op->type = MKOP(LARX, 0, 8);
2045 break;
0016a4cf
PM
2046
2047 case 214: /* stdcx. */
be96f633
PM
2048 op->type = MKOP(STCX, 0, 8);
2049 break;
0016a4cf 2050
350779a2
PM
2051 case 52: /* lbarx */
2052 op->type = MKOP(LARX, 0, 1);
2053 break;
2054
2055 case 694: /* stbcx. */
2056 op->type = MKOP(STCX, 0, 1);
2057 break;
2058
2059 case 116: /* lharx */
2060 op->type = MKOP(LARX, 0, 2);
2061 break;
2062
2063 case 726: /* sthcx. */
2064 op->type = MKOP(STCX, 0, 2);
2065 break;
2066
2067 case 276: /* lqarx */
2068 if (!((rd & 1) || rd == ra || rd == rb))
2069 op->type = MKOP(LARX, 0, 16);
2070 break;
2071
2072 case 182: /* stqcx. */
2073 if (!(rd & 1))
2074 op->type = MKOP(STCX, 0, 16);
be96f633 2075 break;
0016a4cf
PM
2076#endif
2077
2078 case 23: /* lwzx */
2079 case 55: /* lwzux */
be96f633
PM
2080 op->type = MKOP(LOAD, u, 4);
2081 break;
0016a4cf
PM
2082
2083 case 87: /* lbzx */
2084 case 119: /* lbzux */
be96f633
PM
2085 op->type = MKOP(LOAD, u, 1);
2086 break;
0016a4cf
PM
2087
2088#ifdef CONFIG_ALTIVEC
e61ccc7b
PM
2089 /*
2090 * Note: for the load/store vector element instructions,
2091 * bits of the EA say which field of the VMX register to use.
2092 */
2093 case 7: /* lvebx */
2094 op->type = MKOP(LOAD_VMX, 0, 1);
2095 op->element_size = 1;
2096 break;
2097
2098 case 39: /* lvehx */
2099 op->type = MKOP(LOAD_VMX, 0, 2);
2100 op->element_size = 2;
2101 break;
2102
2103 case 71: /* lvewx */
2104 op->type = MKOP(LOAD_VMX, 0, 4);
2105 op->element_size = 4;
2106 break;
2107
0016a4cf
PM
2108 case 103: /* lvx */
2109 case 359: /* lvxl */
be96f633 2110 op->type = MKOP(LOAD_VMX, 0, 16);
350779a2 2111 op->element_size = 16;
be96f633 2112 break;
0016a4cf 2113
e61ccc7b
PM
2114 case 135: /* stvebx */
2115 op->type = MKOP(STORE_VMX, 0, 1);
2116 op->element_size = 1;
2117 break;
2118
2119 case 167: /* stvehx */
2120 op->type = MKOP(STORE_VMX, 0, 2);
2121 op->element_size = 2;
2122 break;
2123
2124 case 199: /* stvewx */
2125 op->type = MKOP(STORE_VMX, 0, 4);
2126 op->element_size = 4;
2127 break;
2128
0016a4cf
PM
2129 case 231: /* stvx */
2130 case 487: /* stvxl */
be96f633
PM
2131 op->type = MKOP(STORE_VMX, 0, 16);
2132 break;
0016a4cf
PM
2133#endif /* CONFIG_ALTIVEC */
2134
2135#ifdef __powerpc64__
350779a2
PM
2136 case 21: /* ldx */
2137 case 53: /* ldux */
2138 op->type = MKOP(LOAD, u, 8);
2139 break;
2140
0016a4cf
PM
2141 case 149: /* stdx */
2142 case 181: /* stdux */
be96f633
PM
2143 op->type = MKOP(STORE, u, 8);
2144 break;
0016a4cf
PM
2145#endif
2146
2147 case 151: /* stwx */
2148 case 183: /* stwux */
be96f633
PM
2149 op->type = MKOP(STORE, u, 4);
2150 break;
0016a4cf
PM
2151
2152 case 215: /* stbx */
2153 case 247: /* stbux */
be96f633
PM
2154 op->type = MKOP(STORE, u, 1);
2155 break;
0016a4cf
PM
2156
2157 case 279: /* lhzx */
2158 case 311: /* lhzux */
be96f633
PM
2159 op->type = MKOP(LOAD, u, 2);
2160 break;
0016a4cf
PM
2161
2162#ifdef __powerpc64__
2163 case 341: /* lwax */
2164 case 373: /* lwaux */
be96f633
PM
2165 op->type = MKOP(LOAD, SIGNEXT | u, 4);
2166 break;
0016a4cf
PM
2167#endif
2168
2169 case 343: /* lhax */
2170 case 375: /* lhaux */
be96f633
PM
2171 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2172 break;
0016a4cf
PM
2173
2174 case 407: /* sthx */
2175 case 439: /* sthux */
be96f633
PM
2176 op->type = MKOP(STORE, u, 2);
2177 break;
0016a4cf
PM
2178
2179#ifdef __powerpc64__
2180 case 532: /* ldbrx */
be96f633
PM
2181 op->type = MKOP(LOAD, BYTEREV, 8);
2182 break;
0016a4cf
PM
2183
2184#endif
c9f6f4ed
PM
2185 case 533: /* lswx */
2186 op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2187 break;
0016a4cf
PM
2188
2189 case 534: /* lwbrx */
be96f633
PM
2190 op->type = MKOP(LOAD, BYTEREV, 4);
2191 break;
0016a4cf 2192
c9f6f4ed
PM
2193 case 597: /* lswi */
2194 if (rb == 0)
2195 rb = 32; /* # bytes to load */
2196 op->type = MKOP(LOAD_MULTI, 0, rb);
d120cdbc 2197 op->ea = ra ? regs->gpr[ra] : 0;
c9f6f4ed
PM
2198 break;
2199
b69a1da9 2200#ifdef CONFIG_PPC_FPU
0016a4cf
PM
2201 case 535: /* lfsx */
2202 case 567: /* lfsux */
d2b65ac6 2203 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
be96f633 2204 break;
0016a4cf
PM
2205
2206 case 599: /* lfdx */
2207 case 631: /* lfdux */
be96f633
PM
2208 op->type = MKOP(LOAD_FP, u, 8);
2209 break;
0016a4cf
PM
2210
2211 case 663: /* stfsx */
2212 case 695: /* stfsux */
d2b65ac6 2213 op->type = MKOP(STORE_FP, u | FPCONV, 4);
be96f633 2214 break;
0016a4cf
PM
2215
2216 case 727: /* stfdx */
2217 case 759: /* stfdux */
be96f633
PM
2218 op->type = MKOP(STORE_FP, u, 8);
2219 break;
1f41fb79
PM
2220
2221#ifdef __powerpc64__
2222 case 791: /* lfdpx */
2223 op->type = MKOP(LOAD_FP, 0, 16);
2224 break;
2225
d2b65ac6
PM
2226 case 855: /* lfiwax */
2227 op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2228 break;
2229
2230 case 887: /* lfiwzx */
2231 op->type = MKOP(LOAD_FP, 0, 4);
2232 break;
2233
1f41fb79
PM
2234 case 919: /* stfdpx */
2235 op->type = MKOP(STORE_FP, 0, 16);
2236 break;
d2b65ac6
PM
2237
2238 case 983: /* stfiwx */
2239 op->type = MKOP(STORE_FP, 0, 4);
2240 break;
1f41fb79
PM
2241#endif /* __powerpc64 */
2242#endif /* CONFIG_PPC_FPU */
0016a4cf
PM
2243
2244#ifdef __powerpc64__
2245 case 660: /* stdbrx */
be96f633
PM
2246 op->type = MKOP(STORE, BYTEREV, 8);
2247 op->val = byterev_8(regs->gpr[rd]);
2248 break;
0016a4cf
PM
2249
2250#endif
c9f6f4ed
PM
2251 case 661: /* stswx */
2252 op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2253 break;
2254
0016a4cf 2255 case 662: /* stwbrx */
be96f633
PM
2256 op->type = MKOP(STORE, BYTEREV, 4);
2257 op->val = byterev_4(regs->gpr[rd]);
2258 break;
0016a4cf 2259
1f41fb79 2260 case 725: /* stswi */
c9f6f4ed
PM
2261 if (rb == 0)
2262 rb = 32; /* # bytes to store */
2263 op->type = MKOP(STORE_MULTI, 0, rb);
d120cdbc 2264 op->ea = ra ? regs->gpr[ra] : 0;
c9f6f4ed
PM
2265 break;
2266
0016a4cf 2267 case 790: /* lhbrx */
be96f633
PM
2268 op->type = MKOP(LOAD, BYTEREV, 2);
2269 break;
0016a4cf
PM
2270
2271 case 918: /* sthbrx */
be96f633
PM
2272 op->type = MKOP(STORE, BYTEREV, 2);
2273 op->val = byterev_2(regs->gpr[rd]);
2274 break;
0016a4cf
PM
2275
2276#ifdef CONFIG_VSX
350779a2
PM
2277 case 12: /* lxsiwzx */
2278 op->reg = rd | ((instr & 1) << 5);
2279 op->type = MKOP(LOAD_VSX, 0, 4);
2280 op->element_size = 8;
2281 break;
2282
2283 case 76: /* lxsiwax */
2284 op->reg = rd | ((instr & 1) << 5);
2285 op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2286 op->element_size = 8;
2287 break;
2288
2289 case 140: /* stxsiwx */
2290 op->reg = rd | ((instr & 1) << 5);
2291 op->type = MKOP(STORE_VSX, 0, 4);
2292 op->element_size = 8;
2293 break;
2294
2295 case 268: /* lxvx */
2296 op->reg = rd | ((instr & 1) << 5);
2297 op->type = MKOP(LOAD_VSX, 0, 16);
2298 op->element_size = 16;
2299 op->vsx_flags = VSX_CHECK_VEC;
2300 break;
2301
2302 case 269: /* lxvl */
2303 case 301: { /* lxvll */
2304 int nb;
2305 op->reg = rd | ((instr & 1) << 5);
2306 op->ea = ra ? regs->gpr[ra] : 0;
2307 nb = regs->gpr[rb] & 0xff;
2308 if (nb > 16)
2309 nb = 16;
2310 op->type = MKOP(LOAD_VSX, 0, nb);
2311 op->element_size = 16;
2312 op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2313 VSX_CHECK_VEC;
2314 break;
2315 }
2316 case 332: /* lxvdsx */
2317 op->reg = rd | ((instr & 1) << 5);
2318 op->type = MKOP(LOAD_VSX, 0, 8);
2319 op->element_size = 8;
2320 op->vsx_flags = VSX_SPLAT;
2321 break;
2322
2323 case 364: /* lxvwsx */
2324 op->reg = rd | ((instr & 1) << 5);
2325 op->type = MKOP(LOAD_VSX, 0, 4);
2326 op->element_size = 4;
2327 op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2328 break;
2329
2330 case 396: /* stxvx */
2331 op->reg = rd | ((instr & 1) << 5);
2332 op->type = MKOP(STORE_VSX, 0, 16);
2333 op->element_size = 16;
2334 op->vsx_flags = VSX_CHECK_VEC;
2335 break;
2336
2337 case 397: /* stxvl */
2338 case 429: { /* stxvll */
2339 int nb;
2340 op->reg = rd | ((instr & 1) << 5);
2341 op->ea = ra ? regs->gpr[ra] : 0;
2342 nb = regs->gpr[rb] & 0xff;
2343 if (nb > 16)
2344 nb = 16;
2345 op->type = MKOP(STORE_VSX, 0, nb);
2346 op->element_size = 16;
2347 op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2348 VSX_CHECK_VEC;
2349 break;
2350 }
2351 case 524: /* lxsspx */
2352 op->reg = rd | ((instr & 1) << 5);
2353 op->type = MKOP(LOAD_VSX, 0, 4);
2354 op->element_size = 8;
2355 op->vsx_flags = VSX_FPCONV;
2356 break;
2357
2358 case 588: /* lxsdx */
2359 op->reg = rd | ((instr & 1) << 5);
2360 op->type = MKOP(LOAD_VSX, 0, 8);
2361 op->element_size = 8;
2362 break;
2363
2364 case 652: /* stxsspx */
2365 op->reg = rd | ((instr & 1) << 5);
2366 op->type = MKOP(STORE_VSX, 0, 4);
2367 op->element_size = 8;
2368 op->vsx_flags = VSX_FPCONV;
2369 break;
2370
2371 case 716: /* stxsdx */
2372 op->reg = rd | ((instr & 1) << 5);
2373 op->type = MKOP(STORE_VSX, 0, 8);
2374 op->element_size = 8;
2375 break;
2376
2377 case 780: /* lxvw4x */
2378 op->reg = rd | ((instr & 1) << 5);
2379 op->type = MKOP(LOAD_VSX, 0, 16);
2380 op->element_size = 4;
2381 break;
2382
2383 case 781: /* lxsibzx */
2384 op->reg = rd | ((instr & 1) << 5);
2385 op->type = MKOP(LOAD_VSX, 0, 1);
2386 op->element_size = 8;
2387 op->vsx_flags = VSX_CHECK_VEC;
2388 break;
2389
2390 case 812: /* lxvh8x */
2391 op->reg = rd | ((instr & 1) << 5);
2392 op->type = MKOP(LOAD_VSX, 0, 16);
2393 op->element_size = 2;
2394 op->vsx_flags = VSX_CHECK_VEC;
2395 break;
2396
2397 case 813: /* lxsihzx */
2398 op->reg = rd | ((instr & 1) << 5);
2399 op->type = MKOP(LOAD_VSX, 0, 2);
2400 op->element_size = 8;
2401 op->vsx_flags = VSX_CHECK_VEC;
2402 break;
2403
0016a4cf 2404 case 844: /* lxvd2x */
be96f633 2405 op->reg = rd | ((instr & 1) << 5);
350779a2
PM
2406 op->type = MKOP(LOAD_VSX, 0, 16);
2407 op->element_size = 8;
2408 break;
2409
2410 case 876: /* lxvb16x */
2411 op->reg = rd | ((instr & 1) << 5);
2412 op->type = MKOP(LOAD_VSX, 0, 16);
2413 op->element_size = 1;
2414 op->vsx_flags = VSX_CHECK_VEC;
2415 break;
2416
2417 case 908: /* stxvw4x */
2418 op->reg = rd | ((instr & 1) << 5);
2419 op->type = MKOP(STORE_VSX, 0, 16);
2420 op->element_size = 4;
2421 break;
2422
2423 case 909: /* stxsibx */
2424 op->reg = rd | ((instr & 1) << 5);
2425 op->type = MKOP(STORE_VSX, 0, 1);
2426 op->element_size = 8;
2427 op->vsx_flags = VSX_CHECK_VEC;
2428 break;
2429
2430 case 940: /* stxvh8x */
2431 op->reg = rd | ((instr & 1) << 5);
2432 op->type = MKOP(STORE_VSX, 0, 16);
2433 op->element_size = 2;
2434 op->vsx_flags = VSX_CHECK_VEC;
2435 break;
2436
2437 case 941: /* stxsihx */
2438 op->reg = rd | ((instr & 1) << 5);
2439 op->type = MKOP(STORE_VSX, 0, 2);
2440 op->element_size = 8;
2441 op->vsx_flags = VSX_CHECK_VEC;
be96f633 2442 break;
0016a4cf
PM
2443
2444 case 972: /* stxvd2x */
be96f633 2445 op->reg = rd | ((instr & 1) << 5);
350779a2
PM
2446 op->type = MKOP(STORE_VSX, 0, 16);
2447 op->element_size = 8;
2448 break;
2449
2450 case 1004: /* stxvb16x */
2451 op->reg = rd | ((instr & 1) << 5);
2452 op->type = MKOP(STORE_VSX, 0, 16);
2453 op->element_size = 1;
2454 op->vsx_flags = VSX_CHECK_VEC;
be96f633 2455 break;
0016a4cf
PM
2456
2457#endif /* CONFIG_VSX */
2458 }
2459 break;
2460
2461 case 32: /* lwz */
2462 case 33: /* lwzu */
be96f633
PM
2463 op->type = MKOP(LOAD, u, 4);
2464 op->ea = dform_ea(instr, regs);
2465 break;
0016a4cf
PM
2466
2467 case 34: /* lbz */
2468 case 35: /* lbzu */
be96f633
PM
2469 op->type = MKOP(LOAD, u, 1);
2470 op->ea = dform_ea(instr, regs);
2471 break;
0016a4cf
PM
2472
2473 case 36: /* stw */
8e9f6937 2474 case 37: /* stwu */
be96f633
PM
2475 op->type = MKOP(STORE, u, 4);
2476 op->ea = dform_ea(instr, regs);
2477 break;
8e9f6937 2478
0016a4cf
PM
2479 case 38: /* stb */
2480 case 39: /* stbu */
be96f633
PM
2481 op->type = MKOP(STORE, u, 1);
2482 op->ea = dform_ea(instr, regs);
2483 break;
0016a4cf
PM
2484
2485 case 40: /* lhz */
2486 case 41: /* lhzu */
be96f633
PM
2487 op->type = MKOP(LOAD, u, 2);
2488 op->ea = dform_ea(instr, regs);
2489 break;
0016a4cf
PM
2490
2491 case 42: /* lha */
2492 case 43: /* lhau */
be96f633
PM
2493 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2494 op->ea = dform_ea(instr, regs);
2495 break;
0016a4cf
PM
2496
2497 case 44: /* sth */
2498 case 45: /* sthu */
be96f633
PM
2499 op->type = MKOP(STORE, u, 2);
2500 op->ea = dform_ea(instr, regs);
2501 break;
0016a4cf
PM
2502
2503 case 46: /* lmw */
0016a4cf
PM
2504 if (ra >= rd)
2505 break; /* invalid form, ra in range to load */
c9f6f4ed 2506 op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
be96f633
PM
2507 op->ea = dform_ea(instr, regs);
2508 break;
0016a4cf
PM
2509
2510 case 47: /* stmw */
c9f6f4ed 2511 op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
be96f633
PM
2512 op->ea = dform_ea(instr, regs);
2513 break;
0016a4cf 2514
cd64d169 2515#ifdef CONFIG_PPC_FPU
0016a4cf
PM
2516 case 48: /* lfs */
2517 case 49: /* lfsu */
d2b65ac6 2518 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
be96f633
PM
2519 op->ea = dform_ea(instr, regs);
2520 break;
0016a4cf
PM
2521
2522 case 50: /* lfd */
2523 case 51: /* lfdu */
be96f633
PM
2524 op->type = MKOP(LOAD_FP, u, 8);
2525 op->ea = dform_ea(instr, regs);
2526 break;
0016a4cf
PM
2527
2528 case 52: /* stfs */
2529 case 53: /* stfsu */
d2b65ac6 2530 op->type = MKOP(STORE_FP, u | FPCONV, 4);
be96f633
PM
2531 op->ea = dform_ea(instr, regs);
2532 break;
0016a4cf
PM
2533
2534 case 54: /* stfd */
2535 case 55: /* stfdu */
be96f633
PM
2536 op->type = MKOP(STORE_FP, u, 8);
2537 op->ea = dform_ea(instr, regs);
2538 break;
cd64d169 2539#endif
0016a4cf 2540
350779a2
PM
2541#ifdef __powerpc64__
2542 case 56: /* lq */
2543 if (!((rd & 1) || (rd == ra)))
2544 op->type = MKOP(LOAD, 0, 16);
2545 op->ea = dqform_ea(instr, regs);
2546 break;
2547#endif
2548
2549#ifdef CONFIG_VSX
1f41fb79 2550 case 57: /* lfdp, lxsd, lxssp */
350779a2
PM
2551 op->ea = dsform_ea(instr, regs);
2552 switch (instr & 3) {
1f41fb79
PM
2553 case 0: /* lfdp */
2554 if (rd & 1)
2555 break; /* reg must be even */
2556 op->type = MKOP(LOAD_FP, 0, 16);
2557 break;
350779a2
PM
2558 case 2: /* lxsd */
2559 op->reg = rd + 32;
2560 op->type = MKOP(LOAD_VSX, 0, 8);
2561 op->element_size = 8;
2562 op->vsx_flags = VSX_CHECK_VEC;
2563 break;
2564 case 3: /* lxssp */
2565 op->reg = rd + 32;
2566 op->type = MKOP(LOAD_VSX, 0, 4);
2567 op->element_size = 8;
2568 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2569 break;
2570 }
2571 break;
2572#endif /* CONFIG_VSX */
2573
0016a4cf
PM
2574#ifdef __powerpc64__
2575 case 58: /* ld[u], lwa */
be96f633 2576 op->ea = dsform_ea(instr, regs);
0016a4cf
PM
2577 switch (instr & 3) {
2578 case 0: /* ld */
be96f633
PM
2579 op->type = MKOP(LOAD, 0, 8);
2580 break;
0016a4cf 2581 case 1: /* ldu */
be96f633
PM
2582 op->type = MKOP(LOAD, UPDATE, 8);
2583 break;
0016a4cf 2584 case 2: /* lwa */
be96f633
PM
2585 op->type = MKOP(LOAD, SIGNEXT, 4);
2586 break;
0016a4cf
PM
2587 }
2588 break;
350779a2
PM
2589#endif
2590
2591#ifdef CONFIG_VSX
1f41fb79 2592 case 61: /* stfdp, lxv, stxsd, stxssp, stxv */
350779a2 2593 switch (instr & 7) {
1f41fb79
PM
2594 case 0: /* stfdp with LSB of DS field = 0 */
2595 case 4: /* stfdp with LSB of DS field = 1 */
2596 op->ea = dsform_ea(instr, regs);
2597 op->type = MKOP(STORE_FP, 0, 16);
2598 break;
2599
350779a2
PM
2600 case 1: /* lxv */
2601 op->ea = dqform_ea(instr, regs);
2602 if (instr & 8)
2603 op->reg = rd + 32;
2604 op->type = MKOP(LOAD_VSX, 0, 16);
2605 op->element_size = 16;
2606 op->vsx_flags = VSX_CHECK_VEC;
2607 break;
2608
2609 case 2: /* stxsd with LSB of DS field = 0 */
2610 case 6: /* stxsd with LSB of DS field = 1 */
2611 op->ea = dsform_ea(instr, regs);
2612 op->reg = rd + 32;
2613 op->type = MKOP(STORE_VSX, 0, 8);
2614 op->element_size = 8;
2615 op->vsx_flags = VSX_CHECK_VEC;
2616 break;
2617
2618 case 3: /* stxssp with LSB of DS field = 0 */
2619 case 7: /* stxssp with LSB of DS field = 1 */
2620 op->ea = dsform_ea(instr, regs);
2621 op->reg = rd + 32;
2622 op->type = MKOP(STORE_VSX, 0, 4);
2623 op->element_size = 8;
2624 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2625 break;
2626
2627 case 5: /* stxv */
2628 op->ea = dqform_ea(instr, regs);
2629 if (instr & 8)
2630 op->reg = rd + 32;
2631 op->type = MKOP(STORE_VSX, 0, 16);
2632 op->element_size = 16;
2633 op->vsx_flags = VSX_CHECK_VEC;
2634 break;
2635 }
2636 break;
2637#endif /* CONFIG_VSX */
0016a4cf 2638
350779a2 2639#ifdef __powerpc64__
0016a4cf 2640 case 62: /* std[u] */
be96f633 2641 op->ea = dsform_ea(instr, regs);
0016a4cf
PM
2642 switch (instr & 3) {
2643 case 0: /* std */
be96f633
PM
2644 op->type = MKOP(STORE, 0, 8);
2645 break;
0016a4cf 2646 case 1: /* stdu */
be96f633
PM
2647 op->type = MKOP(STORE, UPDATE, 8);
2648 break;
350779a2
PM
2649 case 2: /* stq */
2650 if (!(rd & 1))
2651 op->type = MKOP(STORE, 0, 16);
2652 break;
0016a4cf
PM
2653 }
2654 break;
2655#endif /* __powerpc64__ */
2656
2657 }
83afab4c
RB
2658
2659#ifdef CONFIG_VSX
2660 if ((GETTYPE(op->type) == LOAD_VSX ||
2661 GETTYPE(op->type) == STORE_VSX) &&
2662 !cpu_has_feature(CPU_FTR_VSX)) {
2663 return -1;
2664 }
2665#endif /* CONFIG_VSX */
2666
be96f633 2667 return 0;
0016a4cf
PM
2668
2669 logical_done:
2670 if (instr & 1)
ad47ff3e 2671 set_cr0(regs, op);
3cdfcbfd
PM
2672 logical_done_nocc:
2673 op->reg = ra;
2674 op->type |= SETREG;
2675 return 1;
0016a4cf
PM
2676
2677 arith_done:
2678 if (instr & 1)
ad47ff3e 2679 set_cr0(regs, op);
3cdfcbfd
PM
2680 compute_done:
2681 op->reg = rd;
2682 op->type |= SETREG;
be96f633
PM
2683 return 1;
2684
2685 priv:
2686 op->type = INTERRUPT | 0x700;
2687 op->val = SRR1_PROGPRIV;
2688 return 0;
2689
cf87c3f6
PM
2690 trap:
2691 op->type = INTERRUPT | 0x700;
2692 op->val = SRR1_PROGTRAP;
2693 return 0;
be96f633
PM
2694}
2695EXPORT_SYMBOL_GPL(analyse_instr);
71f6e58e 2696NOKPROBE_SYMBOL(analyse_instr);
be96f633
PM
2697
2698/*
2699 * For PPC32 we always use stwu with r1 to change the stack pointer.
2700 * So this emulated store may corrupt the exception frame, now we
2701 * have to provide the exception frame trampoline, which is pushed
2702 * below the kprobed function stack. So we only update gpr[1] but
2703 * don't emulate the real store operation. We will do real store
2704 * operation safely in exception return code by checking this flag.
2705 */
71f6e58e 2706static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
be96f633
PM
2707{
2708#ifdef CONFIG_PPC32
2709 /*
2710 * Check if we will touch kernel stack overflow
2711 */
2712 if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
2713 printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
2714 return -EINVAL;
2715 }
2716#endif /* CONFIG_PPC32 */
2717 /*
2718 * Check if we already set since that means we'll
2719 * lose the previous value.
2720 */
2721 WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
2722 set_thread_flag(TIF_EMULATE_STACK_STORE);
2723 return 0;
2724}
2725
71f6e58e 2726static nokprobe_inline void do_signext(unsigned long *valp, int size)
be96f633
PM
2727{
2728 switch (size) {
2729 case 2:
2730 *valp = (signed short) *valp;
2731 break;
2732 case 4:
2733 *valp = (signed int) *valp;
2734 break;
2735 }
2736}
2737
71f6e58e 2738static nokprobe_inline void do_byterev(unsigned long *valp, int size)
be96f633
PM
2739{
2740 switch (size) {
2741 case 2:
2742 *valp = byterev_2(*valp);
2743 break;
2744 case 4:
2745 *valp = byterev_4(*valp);
2746 break;
2747#ifdef __powerpc64__
2748 case 8:
2749 *valp = byterev_8(*valp);
2750 break;
2751#endif
2752 }
2753}
2754
3cdfcbfd
PM
2755/*
2756 * Emulate an instruction that can be executed just by updating
2757 * fields in *regs.
2758 */
2759void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
2760{
2761 unsigned long next_pc;
2762
2763 next_pc = truncate_if_32bit(regs->msr, regs->nip + 4);
e6684d07 2764 switch (GETTYPE(op->type)) {
3cdfcbfd
PM
2765 case COMPUTE:
2766 if (op->type & SETREG)
2767 regs->gpr[op->reg] = op->val;
2768 if (op->type & SETCC)
2769 regs->ccr = op->ccval;
2770 if (op->type & SETXER)
2771 regs->xer = op->xerval;
2772 break;
2773
2774 case BRANCH:
2775 if (op->type & SETLK)
2776 regs->link = next_pc;
2777 if (op->type & BRTAKEN)
2778 next_pc = op->val;
2779 if (op->type & DECCTR)
2780 --regs->ctr;
2781 break;
2782
2783 case BARRIER:
2784 switch (op->type & BARRIER_MASK) {
2785 case BARRIER_SYNC:
2786 mb();
2787 break;
2788 case BARRIER_ISYNC:
2789 isync();
2790 break;
2791 case BARRIER_EIEIO:
2792 eieio();
2793 break;
2794 case BARRIER_LWSYNC:
2795 asm volatile("lwsync" : : : "memory");
2796 break;
2797 case BARRIER_PTESYNC:
2798 asm volatile("ptesync" : : : "memory");
2799 break;
2800 }
2801 break;
2802
2803 case MFSPR:
2804 switch (op->spr) {
2805 case SPRN_XER:
2806 regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
2807 break;
2808 case SPRN_LR:
2809 regs->gpr[op->reg] = regs->link;
2810 break;
2811 case SPRN_CTR:
2812 regs->gpr[op->reg] = regs->ctr;
2813 break;
2814 default:
2815 WARN_ON_ONCE(1);
2816 }
2817 break;
2818
2819 case MTSPR:
2820 switch (op->spr) {
2821 case SPRN_XER:
2822 regs->xer = op->val & 0xffffffffUL;
2823 break;
2824 case SPRN_LR:
2825 regs->link = op->val;
2826 break;
2827 case SPRN_CTR:
2828 regs->ctr = op->val;
2829 break;
2830 default:
2831 WARN_ON_ONCE(1);
2832 }
2833 break;
2834
2835 default:
2836 WARN_ON_ONCE(1);
2837 }
2838 regs->nip = next_pc;
2839}
67ac0bfe 2840NOKPROBE_SYMBOL(emulate_update_regs);
3cdfcbfd 2841
be96f633 2842/*
a53d5182
PM
2843 * Emulate a previously-analysed load or store instruction.
2844 * Return values are:
2845 * 0 = instruction emulated successfully
2846 * -EFAULT = address out of range or access faulted (regs->dar
2847 * contains the faulting address)
2848 * -EACCES = misaligned access, instruction requires alignment
2849 * -EINVAL = unknown operation in *op
be96f633 2850 */
a53d5182 2851int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
be96f633 2852{
a53d5182 2853 int err, size, type;
c9f6f4ed 2854 int i, rd, nb;
a53d5182
PM
2855 unsigned int cr;
2856 unsigned long val;
d120cdbc 2857 unsigned long ea;
d955189a 2858 bool cross_endian;
be96f633 2859
be96f633 2860 err = 0;
a53d5182 2861 size = GETSIZE(op->type);
e6684d07 2862 type = GETTYPE(op->type);
d955189a 2863 cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
a53d5182 2864 ea = truncate_if_32bit(regs->msr, op->ea);
d120cdbc
PM
2865
2866 switch (type) {
be96f633 2867 case LARX:
d120cdbc 2868 if (ea & (size - 1))
a53d5182 2869 return -EACCES; /* can't handle misaligned */
d120cdbc 2870 if (!address_ok(regs, ea, size))
a53d5182 2871 return -EFAULT;
be96f633 2872 err = 0;
3b79b261 2873 val = 0;
be96f633 2874 switch (size) {
350779a2
PM
2875#ifdef __powerpc64__
2876 case 1:
d120cdbc 2877 __get_user_asmx(val, ea, err, "lbarx");
350779a2
PM
2878 break;
2879 case 2:
d120cdbc 2880 __get_user_asmx(val, ea, err, "lharx");
350779a2
PM
2881 break;
2882#endif
be96f633 2883 case 4:
d120cdbc 2884 __get_user_asmx(val, ea, err, "lwarx");
be96f633 2885 break;
dd217310 2886#ifdef __powerpc64__
be96f633 2887 case 8:
d120cdbc 2888 __get_user_asmx(val, ea, err, "ldarx");
be96f633 2889 break;
350779a2 2890 case 16:
a53d5182 2891 err = do_lqarx(ea, &regs->gpr[op->reg]);
b9da9c8a 2892 break;
dd217310 2893#endif
be96f633 2894 default:
a53d5182 2895 return -EINVAL;
be96f633 2896 }
b9da9c8a
PM
2897 if (err) {
2898 regs->dar = ea;
a53d5182 2899 break;
b9da9c8a
PM
2900 }
2901 if (size < 16)
a53d5182
PM
2902 regs->gpr[op->reg] = val;
2903 break;
be96f633
PM
2904
2905 case STCX:
d120cdbc 2906 if (ea & (size - 1))
a53d5182 2907 return -EACCES; /* can't handle misaligned */
d120cdbc 2908 if (!address_ok(regs, ea, size))
a53d5182 2909 return -EFAULT;
be96f633
PM
2910 err = 0;
2911 switch (size) {
350779a2
PM
2912#ifdef __powerpc64__
2913 case 1:
a53d5182 2914 __put_user_asmx(op->val, ea, err, "stbcx.", cr);
350779a2
PM
2915 break;
2916 case 2:
a53d5182 2917 __put_user_asmx(op->val, ea, err, "stbcx.", cr);
350779a2
PM
2918 break;
2919#endif
be96f633 2920 case 4:
a53d5182 2921 __put_user_asmx(op->val, ea, err, "stwcx.", cr);
be96f633 2922 break;
dd217310 2923#ifdef __powerpc64__
be96f633 2924 case 8:
a53d5182 2925 __put_user_asmx(op->val, ea, err, "stdcx.", cr);
be96f633 2926 break;
350779a2 2927 case 16:
a53d5182
PM
2928 err = do_stqcx(ea, regs->gpr[op->reg],
2929 regs->gpr[op->reg + 1], &cr);
350779a2 2930 break;
dd217310 2931#endif
be96f633 2932 default:
a53d5182 2933 return -EINVAL;
be96f633
PM
2934 }
2935 if (!err)
2936 regs->ccr = (regs->ccr & 0x0fffffff) |
2937 (cr & 0xe0000000) |
2938 ((regs->xer >> 3) & 0x10000000);
b9da9c8a
PM
2939 else
2940 regs->dar = ea;
a53d5182 2941 break;
be96f633
PM
2942
2943 case LOAD:
350779a2
PM
2944#ifdef __powerpc64__
2945 if (size == 16) {
a53d5182
PM
2946 err = emulate_lq(regs, ea, op->reg, cross_endian);
2947 break;
350779a2
PM
2948 }
2949#endif
a53d5182 2950 err = read_mem(&regs->gpr[op->reg], ea, size, regs);
be96f633 2951 if (!err) {
a53d5182
PM
2952 if (op->type & SIGNEXT)
2953 do_signext(&regs->gpr[op->reg], size);
2954 if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
2955 do_byterev(&regs->gpr[op->reg], size);
be96f633 2956 }
a53d5182 2957 break;
be96f633 2958
7048c846 2959#ifdef CONFIG_PPC_FPU
be96f633 2960 case LOAD_FP:
c22435a5
PM
2961 /*
2962 * If the instruction is in userspace, we can emulate it even
2963 * if the VMX state is not live, because we have the state
2964 * stored in the thread_struct. If the instruction is in
2965 * the kernel, we must not touch the state in the thread_struct.
2966 */
2967 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
ee0a54d7 2968 return 0;
d2b65ac6 2969 err = do_fp_load(op, ea, regs, cross_endian);
a53d5182 2970 break;
7048c846 2971#endif
be96f633
PM
2972#ifdef CONFIG_ALTIVEC
2973 case LOAD_VMX:
c22435a5 2974 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
ee0a54d7 2975 return 0;
a53d5182
PM
2976 err = do_vec_load(op->reg, ea, size, regs, cross_endian);
2977 break;
be96f633
PM
2978#endif
2979#ifdef CONFIG_VSX
350779a2 2980 case LOAD_VSX: {
350779a2
PM
2981 unsigned long msrbit = MSR_VSX;
2982
2983 /*
2984 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
2985 * when the target of the instruction is a vector register.
2986 */
a53d5182 2987 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
350779a2 2988 msrbit = MSR_VEC;
c22435a5 2989 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
ee0a54d7 2990 return 0;
a53d5182
PM
2991 err = do_vsx_load(op, ea, regs, cross_endian);
2992 break;
350779a2 2993 }
be96f633
PM
2994#endif
2995 case LOAD_MULTI:
d955189a
PM
2996 if (!address_ok(regs, ea, size))
2997 return -EFAULT;
a53d5182 2998 rd = op->reg;
c9f6f4ed 2999 for (i = 0; i < size; i += 4) {
d955189a
PM
3000 unsigned int v32 = 0;
3001
c9f6f4ed
PM
3002 nb = size - i;
3003 if (nb > 4)
3004 nb = 4;
d955189a 3005 err = copy_mem_in((u8 *) &v32, ea, nb, regs);
be96f633 3006 if (err)
a53d5182 3007 break;
d955189a
PM
3008 if (unlikely(cross_endian))
3009 v32 = byterev_4(v32);
3010 regs->gpr[rd] = v32;
d120cdbc 3011 ea += 4;
45f62159
PM
3012 /* reg number wraps from 31 to 0 for lsw[ix] */
3013 rd = (rd + 1) & 0x1f;
c9f6f4ed 3014 }
a53d5182 3015 break;
be96f633
PM
3016
3017 case STORE:
350779a2
PM
3018#ifdef __powerpc64__
3019 if (size == 16) {
a53d5182
PM
3020 err = emulate_stq(regs, ea, op->reg, cross_endian);
3021 break;
350779a2
PM
3022 }
3023#endif
a53d5182
PM
3024 if ((op->type & UPDATE) && size == sizeof(long) &&
3025 op->reg == 1 && op->update_reg == 1 &&
be96f633 3026 !(regs->msr & MSR_PR) &&
d120cdbc
PM
3027 ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
3028 err = handle_stack_update(ea, regs);
a53d5182 3029 break;
be96f633 3030 }
d955189a 3031 if (unlikely(cross_endian))
a53d5182
PM
3032 do_byterev(&op->val, size);
3033 err = write_mem(op->val, ea, size, regs);
3034 break;
be96f633 3035
7048c846 3036#ifdef CONFIG_PPC_FPU
be96f633 3037 case STORE_FP:
c22435a5 3038 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
ee0a54d7 3039 return 0;
d2b65ac6 3040 err = do_fp_store(op, ea, regs, cross_endian);
a53d5182 3041 break;
7048c846 3042#endif
be96f633
PM
3043#ifdef CONFIG_ALTIVEC
3044 case STORE_VMX:
c22435a5 3045 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
ee0a54d7 3046 return 0;
a53d5182
PM
3047 err = do_vec_store(op->reg, ea, size, regs, cross_endian);
3048 break;
be96f633
PM
3049#endif
3050#ifdef CONFIG_VSX
350779a2 3051 case STORE_VSX: {
350779a2
PM
3052 unsigned long msrbit = MSR_VSX;
3053
3054 /*
3055 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3056 * when the target of the instruction is a vector register.
3057 */
a53d5182 3058 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
350779a2 3059 msrbit = MSR_VEC;
c22435a5 3060 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
ee0a54d7 3061 return 0;
a53d5182
PM
3062 err = do_vsx_store(op, ea, regs, cross_endian);
3063 break;
350779a2 3064 }
be96f633
PM
3065#endif
3066 case STORE_MULTI:
d955189a
PM
3067 if (!address_ok(regs, ea, size))
3068 return -EFAULT;
a53d5182 3069 rd = op->reg;
c9f6f4ed 3070 for (i = 0; i < size; i += 4) {
d955189a
PM
3071 unsigned int v32 = regs->gpr[rd];
3072
c9f6f4ed
PM
3073 nb = size - i;
3074 if (nb > 4)
3075 nb = 4;
d955189a
PM
3076 if (unlikely(cross_endian))
3077 v32 = byterev_4(v32);
3078 err = copy_mem_out((u8 *) &v32, ea, nb, regs);
be96f633 3079 if (err)
a53d5182 3080 break;
d120cdbc 3081 ea += 4;
45f62159
PM
3082 /* reg number wraps from 31 to 0 for stsw[ix] */
3083 rd = (rd + 1) & 0x1f;
c9f6f4ed 3084 }
a53d5182
PM
3085 break;
3086
3087 default:
3088 return -EINVAL;
3089 }
3090
3091 if (err)
3092 return err;
3093
3094 if (op->type & UPDATE)
3095 regs->gpr[op->update_reg] = op->ea;
3096
3097 return 0;
3098}
3099NOKPROBE_SYMBOL(emulate_loadstore);
3100
3101/*
3102 * Emulate instructions that cause a transfer of control,
3103 * loads and stores, and a few other instructions.
3104 * Returns 1 if the step was emulated, 0 if not,
3105 * or -1 if the instruction is one that should not be stepped,
3106 * such as an rfid, or a mtmsrd that would clear MSR_RI.
3107 */
3108int emulate_step(struct pt_regs *regs, unsigned int instr)
3109{
3110 struct instruction_op op;
3111 int r, err, type;
3112 unsigned long val;
3113 unsigned long ea;
3114
3115 r = analyse_instr(&op, regs, instr);
3116 if (r < 0)
3117 return r;
3118 if (r > 0) {
3119 emulate_update_regs(regs, &op);
3120 return 1;
3121 }
3122
3123 err = 0;
e6684d07 3124 type = GETTYPE(op.type);
a53d5182
PM
3125
3126 if (OP_IS_LOAD_STORE(type)) {
3127 err = emulate_loadstore(regs, &op);
3128 if (err)
3129 return 0;
3130 goto instr_done;
3131 }
3132
3133 switch (type) {
3134 case CACHEOP:
3135 ea = truncate_if_32bit(regs->msr, op.ea);
3136 if (!address_ok(regs, ea, 8))
3137 return 0;
3138 switch (op.type & CACHEOP_MASK) {
3139 case DCBST:
3140 __cacheop_user_asmx(ea, err, "dcbst");
3141 break;
3142 case DCBF:
3143 __cacheop_user_asmx(ea, err, "dcbf");
3144 break;
3145 case DCBTST:
3146 if (op.reg == 0)
3147 prefetchw((void *) ea);
3148 break;
3149 case DCBT:
3150 if (op.reg == 0)
3151 prefetch((void *) ea);
3152 break;
3153 case ICBI:
3154 __cacheop_user_asmx(ea, err, "icbi");
3155 break;
3156 case DCBZ:
3157 err = emulate_dcbz(ea, regs);
3158 break;
3159 }
3160 if (err) {
3161 regs->dar = ea;
3162 return 0;
3163 }
be96f633
PM
3164 goto instr_done;
3165
3166 case MFMSR:
3167 regs->gpr[op.reg] = regs->msr & MSR_MASK;
3168 goto instr_done;
3169
3170 case MTMSR:
3171 val = regs->gpr[op.reg];
3172 if ((val & MSR_RI) == 0)
3173 /* can't step mtmsr[d] that would clear MSR_RI */
3174 return -1;
3175 /* here op.val is the mask of bits to change */
3176 regs->msr = (regs->msr & ~op.val) | (val & op.val);
3177 goto instr_done;
3178
3179#ifdef CONFIG_PPC64
3180 case SYSCALL: /* sc */
3181 /*
3182 * N.B. this uses knowledge about how the syscall
3183 * entry code works. If that is changed, this will
3184 * need to be changed also.
3185 */
3186 if (regs->gpr[0] == 0x1ebe &&
3187 cpu_has_feature(CPU_FTR_REAL_LE)) {
3188 regs->msr ^= MSR_LE;
3189 goto instr_done;
3190 }
3191 regs->gpr[9] = regs->gpr[13];
3192 regs->gpr[10] = MSR_KERNEL;
3193 regs->gpr[11] = regs->nip + 4;
3194 regs->gpr[12] = regs->msr & MSR_MASK;
3195 regs->gpr[13] = (unsigned long) get_paca();
3196 regs->nip = (unsigned long) &system_call_common;
3197 regs->msr = MSR_KERNEL;
3198 return 1;
3199
3200 case RFI:
3201 return -1;
3202#endif
3203 }
3204 return 0;
3205
be96f633
PM
3206 instr_done:
3207 regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
3208 return 1;
14cf11af 3209}
71f6e58e 3210NOKPROBE_SYMBOL(emulate_step);