powerpc/perf: Update cpu_hw_event to use `struct` for storing MMCR registers
[linux-2.6-block.git] / arch / powerpc / kvm / book3s_hv.c
CommitLineData
d2912cb1 1// SPDX-License-Identifier: GPL-2.0-only
de56a948
PM
2/*
3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5 *
6 * Authors:
7 * Paul Mackerras <paulus@au1.ibm.com>
8 * Alexander Graf <agraf@suse.de>
9 * Kevin Wolf <mail@kevin-wolf.de>
10 *
11 * Description: KVM functions specific to running on Book 3S
12 * processors in hypervisor mode (specifically POWER7 and later).
13 *
14 * This file is derived from arch/powerpc/kvm/book3s.c,
15 * by Alexander Graf <agraf@suse.de>.
de56a948
PM
16 */
17
18#include <linux/kvm_host.h>
4bb817ed 19#include <linux/kernel.h>
de56a948
PM
20#include <linux/err.h>
21#include <linux/slab.h>
22#include <linux/preempt.h>
174cd4b1 23#include <linux/sched/signal.h>
03441a34 24#include <linux/sched/stat.h>
de56a948 25#include <linux/delay.h>
66b15db6 26#include <linux/export.h>
de56a948
PM
27#include <linux/fs.h>
28#include <linux/anon_inodes.h>
07f8ab25 29#include <linux/cpu.h>
de56a948 30#include <linux/cpumask.h>
aa04b4cc
PM
31#include <linux/spinlock.h>
32#include <linux/page-flags.h>
2c9097e4 33#include <linux/srcu.h>
398a76c6 34#include <linux/miscdevice.h>
e23a808b 35#include <linux/debugfs.h>
d3989143
BH
36#include <linux/gfp.h>
37#include <linux/vmalloc.h>
38#include <linux/highmem.h>
39#include <linux/hugetlb.h>
40#include <linux/kvm_irqfd.h>
41#include <linux/irqbypass.h>
42#include <linux/module.h>
43#include <linux/compiler.h>
44#include <linux/of.h>
de56a948 45
d6ee76d3 46#include <asm/ftrace.h>
de56a948 47#include <asm/reg.h>
57900694 48#include <asm/ppc-opcode.h>
6de6638b 49#include <asm/asm-prototypes.h>
4bad7779 50#include <asm/archrandom.h>
e303c087 51#include <asm/debug.h>
57900694 52#include <asm/disassemble.h>
de56a948
PM
53#include <asm/cputable.h>
54#include <asm/cacheflush.h>
7c0f6ba6 55#include <linux/uaccess.h>
de56a948
PM
56#include <asm/io.h>
57#include <asm/kvm_ppc.h>
58#include <asm/kvm_book3s.h>
59#include <asm/mmu_context.h>
60#include <asm/lppaca.h>
61#include <asm/processor.h>
371fefd6 62#include <asm/cputhreads.h>
aa04b4cc 63#include <asm/page.h>
de1d9248 64#include <asm/hvcall.h>
ae3a197e 65#include <asm/switch_to.h>
512691d4 66#include <asm/smp.h>
66feed61 67#include <asm/dbell.h>
fd7bacbc 68#include <asm/hmi.h>
c57875f5 69#include <asm/pnv-pci.h>
7a84084c 70#include <asm/mmu.h>
f725758b
PM
71#include <asm/opal.h>
72#include <asm/xics.h>
5af50993 73#include <asm/xive.h>
c1fe190c 74#include <asm/hw_breakpoint.h>
ca9f4942 75#include <asm/kvm_book3s_uvmem.h>
c3262257 76#include <asm/ultravisor.h>
de56a948 77
3a167bea
AK
78#include "book3s.h"
79
3c78f78a
SW
80#define CREATE_TRACE_POINTS
81#include "trace_hv.h"
82
de56a948
PM
83/* #define EXIT_DEBUG */
84/* #define EXIT_DEBUG_SIMPLE */
85/* #define EXIT_DEBUG_INT */
86
913d3ff9
PM
87/* Used to indicate that a guest page fault needs to be handled */
88#define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
f7af5209
SW
89/* Used to indicate that a guest passthrough interrupt needs to be handled */
90#define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
913d3ff9 91
c7b67670
PM
92/* Used as a "null" value for timebase values */
93#define TB_NIL (~(u64)0)
94
699a0ea0
PM
95static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
96
b4deba5c 97static int dynamic_mt_modes = 6;
57ad583f 98module_param(dynamic_mt_modes, int, 0644);
b4deba5c 99MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
ec257165 100static int target_smt_mode;
57ad583f 101module_param(target_smt_mode, int, 0644);
ec257165 102MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
9678cdaa 103
516f7898
PM
104static bool indep_threads_mode = true;
105module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
106MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
107
aa227864
PM
108static bool one_vm_per_core;
109module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
110MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");
111
520fe9c6
SW
112#ifdef CONFIG_KVM_XICS
113static struct kernel_param_ops module_param_ops = {
114 .set = param_set_int,
115 .get = param_get_int,
116};
117
57ad583f 118module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
644abbb2
SW
119MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
120
57ad583f 121module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
520fe9c6
SW
122MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
123#endif
124
aa069a99
PM
125/* If set, guests are allowed to create and control nested guests */
126static bool nested = true;
127module_param(nested, bool, S_IRUGO | S_IWUSR);
128MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
129
130static inline bool nesting_enabled(struct kvm *kvm)
131{
132 return kvm->arch.nested_enable && kvm_is_radix(kvm);
133}
134
00608e1f
PM
135/* If set, the threads on each CPU core have to be in the same MMU mode */
136static bool no_mixing_hpt_and_radix;
137
32fad281 138static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
19ccb76a 139
7aa15842
PM
140/*
141 * RWMR values for POWER8. These control the rate at which PURR
142 * and SPURR count and should be set according to the number of
143 * online threads in the vcore being run.
144 */
0abb75b7
NMG
145#define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL
146#define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL
147#define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL
148#define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL
149#define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL
150#define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL
151#define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL
152#define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL
7aa15842
PM
153
154static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
155 RWMR_RPA_P8_1THREAD,
156 RWMR_RPA_P8_1THREAD,
157 RWMR_RPA_P8_2THREAD,
158 RWMR_RPA_P8_3THREAD,
159 RWMR_RPA_P8_4THREAD,
160 RWMR_RPA_P8_5THREAD,
161 RWMR_RPA_P8_6THREAD,
162 RWMR_RPA_P8_7THREAD,
163 RWMR_RPA_P8_8THREAD,
164};
165
7b5f8272
SJS
166static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
167 int *ip)
168{
169 int i = *ip;
170 struct kvm_vcpu *vcpu;
171
172 while (++i < MAX_SMT_THREADS) {
173 vcpu = READ_ONCE(vc->runnable_threads[i]);
174 if (vcpu) {
175 *ip = i;
176 return vcpu;
177 }
178 }
179 return NULL;
180}
181
182/* Used to traverse the list of runnable threads for a given vcore */
183#define for_each_runnable_thread(i, vcpu, vc) \
184 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
185
66feed61
PM
186static bool kvmppc_ipi_thread(int cpu)
187{
1704a81c
PM
188 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
189
f3c18e93
PM
190 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
191 if (kvmhv_on_pseries())
192 return false;
193
1704a81c
PM
194 /* On POWER9 we can use msgsnd to IPI any cpu */
195 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
196 msg |= get_hard_smp_processor_id(cpu);
197 smp_mb();
198 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
199 return true;
200 }
201
66feed61
PM
202 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
203 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
204 preempt_disable();
205 if (cpu_first_thread_sibling(cpu) ==
206 cpu_first_thread_sibling(smp_processor_id())) {
66feed61
PM
207 msg |= cpu_thread_in_core(cpu);
208 smp_mb();
209 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
210 preempt_enable();
211 return true;
212 }
213 preempt_enable();
214 }
215
216#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
f725758b 217 if (cpu >= 0 && cpu < nr_cpu_ids) {
d2e60075 218 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
f725758b
PM
219 xics_wake_cpu(cpu);
220 return true;
221 }
222 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
66feed61
PM
223 return true;
224 }
225#endif
226
227 return false;
228}
229
3a167bea 230static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
54695c30 231{
ec257165 232 int cpu;
da4ad88c 233 struct rcuwait *waitp;
54695c30 234
da4ad88c
DB
235 waitp = kvm_arch_vcpu_get_wait(vcpu);
236 if (rcuwait_wake_up(waitp))
54695c30 237 ++vcpu->stat.halt_wakeup;
54695c30 238
3deda5e5
PM
239 cpu = READ_ONCE(vcpu->arch.thread_cpu);
240 if (cpu >= 0 && kvmppc_ipi_thread(cpu))
66feed61 241 return;
54695c30
BH
242
243 /* CPU points to the first thread of the core */
ec257165 244 cpu = vcpu->cpu;
66feed61
PM
245 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
246 smp_send_reschedule(cpu);
54695c30
BH
247}
248
c7b67670
PM
249/*
250 * We use the vcpu_load/put functions to measure stolen time.
251 * Stolen time is counted as time when either the vcpu is able to
252 * run as part of a virtual core, but the task running the vcore
253 * is preempted or sleeping, or when the vcpu needs something done
254 * in the kernel by the task running the vcpu, but that task is
255 * preempted or sleeping. Those two things have to be counted
256 * separately, since one of the vcpu tasks will take on the job
257 * of running the core, and the other vcpu tasks in the vcore will
258 * sleep waiting for it to do that, but that sleep shouldn't count
259 * as stolen time.
260 *
261 * Hence we accumulate stolen time when the vcpu can run as part of
262 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
263 * needs its task to do other things in the kernel (for example,
264 * service a page fault) in busy_stolen. We don't accumulate
265 * stolen time for a vcore when it is inactive, or for a vcpu
266 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
267 * a misnomer; it means that the vcpu task is not executing in
268 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
269 * the kernel. We don't have any way of dividing up that time
270 * between time that the vcpu is genuinely stopped, time that
271 * the task is actively working on behalf of the vcpu, and time
272 * that the task is preempted, so we don't count any of it as
273 * stolen.
274 *
275 * Updates to busy_stolen are protected by arch.tbacct_lock;
2711e248
PM
276 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
277 * lock. The stolen times are measured in units of timebase ticks.
278 * (Note that the != TB_NIL checks below are purely defensive;
279 * they should never fail.)
c7b67670
PM
280 */
281
ec257165
PM
282static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
283{
284 unsigned long flags;
285
286 spin_lock_irqsave(&vc->stoltb_lock, flags);
287 vc->preempt_tb = mftb();
288 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
289}
290
291static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
292{
293 unsigned long flags;
294
295 spin_lock_irqsave(&vc->stoltb_lock, flags);
296 if (vc->preempt_tb != TB_NIL) {
297 vc->stolen_tb += mftb() - vc->preempt_tb;
298 vc->preempt_tb = TB_NIL;
299 }
300 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
301}
302
3a167bea 303static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
de56a948 304{
0456ec4f 305 struct kvmppc_vcore *vc = vcpu->arch.vcore;
bf3d32e1 306 unsigned long flags;
0456ec4f 307
2711e248
PM
308 /*
309 * We can test vc->runner without taking the vcore lock,
310 * because only this task ever sets vc->runner to this
311 * vcpu, and once it is set to this vcpu, only this task
312 * ever sets it to NULL.
313 */
ec257165
PM
314 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
315 kvmppc_core_end_stolen(vc);
316
2711e248 317 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
c7b67670
PM
318 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
319 vcpu->arch.busy_preempt != TB_NIL) {
320 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
321 vcpu->arch.busy_preempt = TB_NIL;
322 }
bf3d32e1 323 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
de56a948
PM
324}
325
3a167bea 326static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
de56a948 327{
0456ec4f 328 struct kvmppc_vcore *vc = vcpu->arch.vcore;
bf3d32e1 329 unsigned long flags;
0456ec4f 330
ec257165
PM
331 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
332 kvmppc_core_start_stolen(vc);
333
2711e248 334 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
c7b67670
PM
335 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
336 vcpu->arch.busy_preempt = mftb();
bf3d32e1 337 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
de56a948
PM
338}
339
5358a963 340static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
de56a948
PM
341{
342 vcpu->arch.pvr = pvr;
343}
344
5358a963 345static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
388cc6e1 346{
2ee13be3 347 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
388cc6e1
PM
348 struct kvmppc_vcore *vc = vcpu->arch.vcore;
349
2ee13be3
SJS
350 /* We can (emulate) our own architecture version and anything older */
351 if (cpu_has_feature(CPU_FTR_ARCH_300))
352 host_pcr_bit = PCR_ARCH_300;
353 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
354 host_pcr_bit = PCR_ARCH_207;
355 else if (cpu_has_feature(CPU_FTR_ARCH_206))
356 host_pcr_bit = PCR_ARCH_206;
357 else
358 host_pcr_bit = PCR_ARCH_205;
359
360 /* Determine lowest PCR bit needed to run guest in given PVR level */
361 guest_pcr_bit = host_pcr_bit;
388cc6e1 362 if (arch_compat) {
388cc6e1
PM
363 switch (arch_compat) {
364 case PVR_ARCH_205:
2ee13be3 365 guest_pcr_bit = PCR_ARCH_205;
388cc6e1
PM
366 break;
367 case PVR_ARCH_206:
368 case PVR_ARCH_206p:
2ee13be3 369 guest_pcr_bit = PCR_ARCH_206;
5557ae0e
PM
370 break;
371 case PVR_ARCH_207:
2ee13be3
SJS
372 guest_pcr_bit = PCR_ARCH_207;
373 break;
374 case PVR_ARCH_300:
375 guest_pcr_bit = PCR_ARCH_300;
388cc6e1
PM
376 break;
377 default:
378 return -EINVAL;
379 }
380 }
381
2ee13be3
SJS
382 /* Check requested PCR bits don't exceed our capabilities */
383 if (guest_pcr_bit > host_pcr_bit)
384 return -EINVAL;
385
388cc6e1
PM
386 spin_lock(&vc->lock);
387 vc->arch_compat = arch_compat;
13c7bb3c
JN
388 /*
389 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
390 * Also set all reserved PCR bits
391 */
392 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
388cc6e1
PM
393 spin_unlock(&vc->lock);
394
395 return 0;
396}
397
5358a963 398static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
de56a948
PM
399{
400 int r;
401
402 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
403 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
173c520a 404 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
de56a948
PM
405 for (r = 0; r < 16; ++r)
406 pr_err("r%2d = %.16lx r%d = %.16lx\n",
407 r, kvmppc_get_gpr(vcpu, r),
408 r+16, kvmppc_get_gpr(vcpu, r+16));
409 pr_err("ctr = %.16lx lr = %.16lx\n",
173c520a 410 vcpu->arch.regs.ctr, vcpu->arch.regs.link);
de56a948
PM
411 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
412 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
413 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
414 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
415 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
416 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
fd0944ba
PM
417 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n",
418 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
de56a948
PM
419 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
420 pr_err("fault dar = %.16lx dsisr = %.8x\n",
421 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
422 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
423 for (r = 0; r < vcpu->arch.slb_max; ++r)
424 pr_err(" ESID = %.16llx VSID = %.16llx\n",
425 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
426 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
a0144e2a 427 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
de56a948
PM
428 vcpu->arch.last_inst);
429}
430
5358a963 431static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
a8606e20 432{
5a3f4936 433 return kvm_get_vcpu_by_id(kvm, id);
a8606e20
PM
434}
435
436static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
437{
f13c13a0 438 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
02407552 439 vpa->yield_count = cpu_to_be32(1);
a8606e20
PM
440}
441
55b665b0
PM
442static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
443 unsigned long addr, unsigned long len)
444{
445 /* check address is cacheline aligned */
446 if (addr & (L1_CACHE_BYTES - 1))
447 return -EINVAL;
448 spin_lock(&vcpu->arch.vpa_update_lock);
449 if (v->next_gpa != addr || v->len != len) {
450 v->next_gpa = addr;
451 v->len = addr ? len : 0;
452 v->update_pending = 1;
453 }
454 spin_unlock(&vcpu->arch.vpa_update_lock);
455 return 0;
456}
457
2e25aa5f
PM
458/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
459struct reg_vpa {
460 u32 dummy;
461 union {
02407552
AG
462 __be16 hword;
463 __be32 word;
2e25aa5f
PM
464 } length;
465};
466
467static int vpa_is_registered(struct kvmppc_vpa *vpap)
468{
469 if (vpap->update_pending)
470 return vpap->next_gpa != 0;
471 return vpap->pinned_addr != NULL;
472}
473
a8606e20
PM
474static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
475 unsigned long flags,
476 unsigned long vcpuid, unsigned long vpa)
477{
478 struct kvm *kvm = vcpu->kvm;
93e60249 479 unsigned long len, nb;
a8606e20
PM
480 void *va;
481 struct kvm_vcpu *tvcpu;
2e25aa5f
PM
482 int err;
483 int subfunc;
484 struct kvmppc_vpa *vpap;
a8606e20
PM
485
486 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
487 if (!tvcpu)
488 return H_PARAMETER;
489
2e25aa5f
PM
490 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
491 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
492 subfunc == H_VPA_REG_SLB) {
493 /* Registering new area - address must be cache-line aligned */
494 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
a8606e20 495 return H_PARAMETER;
2e25aa5f
PM
496
497 /* convert logical addr to kernel addr and read length */
93e60249
PM
498 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
499 if (va == NULL)
b2b2f165 500 return H_PARAMETER;
2e25aa5f 501 if (subfunc == H_VPA_REG_VPA)
02407552 502 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
a8606e20 503 else
02407552 504 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
c35635ef 505 kvmppc_unpin_guest_page(kvm, va, vpa, false);
2e25aa5f
PM
506
507 /* Check length */
508 if (len > nb || len < sizeof(struct reg_vpa))
509 return H_PARAMETER;
510 } else {
511 vpa = 0;
512 len = 0;
513 }
514
515 err = H_PARAMETER;
516 vpap = NULL;
517 spin_lock(&tvcpu->arch.vpa_update_lock);
518
519 switch (subfunc) {
520 case H_VPA_REG_VPA: /* register VPA */
eaac112e
NP
521 /*
522 * The size of our lppaca is 1kB because of the way we align
523 * it for the guest to avoid crossing a 4kB boundary. We only
524 * use 640 bytes of the structure though, so we should accept
525 * clients that set a size of 640.
526 */
499dcd41
NP
527 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
528 if (len < sizeof(struct lppaca))
a8606e20 529 break;
2e25aa5f
PM
530 vpap = &tvcpu->arch.vpa;
531 err = 0;
532 break;
533
534 case H_VPA_REG_DTL: /* register DTL */
535 if (len < sizeof(struct dtl_entry))
a8606e20 536 break;
2e25aa5f
PM
537 len -= len % sizeof(struct dtl_entry);
538
539 /* Check that they have previously registered a VPA */
540 err = H_RESOURCE;
541 if (!vpa_is_registered(&tvcpu->arch.vpa))
a8606e20 542 break;
2e25aa5f
PM
543
544 vpap = &tvcpu->arch.dtl;
545 err = 0;
546 break;
547
548 case H_VPA_REG_SLB: /* register SLB shadow buffer */
549 /* Check that they have previously registered a VPA */
550 err = H_RESOURCE;
551 if (!vpa_is_registered(&tvcpu->arch.vpa))
a8606e20 552 break;
2e25aa5f
PM
553
554 vpap = &tvcpu->arch.slb_shadow;
555 err = 0;
556 break;
557
558 case H_VPA_DEREG_VPA: /* deregister VPA */
559 /* Check they don't still have a DTL or SLB buf registered */
560 err = H_RESOURCE;
561 if (vpa_is_registered(&tvcpu->arch.dtl) ||
562 vpa_is_registered(&tvcpu->arch.slb_shadow))
a8606e20 563 break;
2e25aa5f
PM
564
565 vpap = &tvcpu->arch.vpa;
566 err = 0;
567 break;
568
569 case H_VPA_DEREG_DTL: /* deregister DTL */
570 vpap = &tvcpu->arch.dtl;
571 err = 0;
572 break;
573
574 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
575 vpap = &tvcpu->arch.slb_shadow;
576 err = 0;
577 break;
578 }
579
580 if (vpap) {
581 vpap->next_gpa = vpa;
582 vpap->len = len;
583 vpap->update_pending = 1;
a8606e20 584 }
93e60249 585
2e25aa5f
PM
586 spin_unlock(&tvcpu->arch.vpa_update_lock);
587
93e60249 588 return err;
a8606e20
PM
589}
590
081f323b 591static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
2e25aa5f 592{
081f323b 593 struct kvm *kvm = vcpu->kvm;
2e25aa5f
PM
594 void *va;
595 unsigned long nb;
081f323b 596 unsigned long gpa;
2e25aa5f 597
081f323b
PM
598 /*
599 * We need to pin the page pointed to by vpap->next_gpa,
600 * but we can't call kvmppc_pin_guest_page under the lock
601 * as it does get_user_pages() and down_read(). So we
602 * have to drop the lock, pin the page, then get the lock
603 * again and check that a new area didn't get registered
604 * in the meantime.
605 */
606 for (;;) {
607 gpa = vpap->next_gpa;
608 spin_unlock(&vcpu->arch.vpa_update_lock);
609 va = NULL;
610 nb = 0;
611 if (gpa)
c35635ef 612 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
081f323b
PM
613 spin_lock(&vcpu->arch.vpa_update_lock);
614 if (gpa == vpap->next_gpa)
615 break;
616 /* sigh... unpin that one and try again */
617 if (va)
c35635ef 618 kvmppc_unpin_guest_page(kvm, va, gpa, false);
081f323b
PM
619 }
620
621 vpap->update_pending = 0;
622 if (va && nb < vpap->len) {
623 /*
624 * If it's now too short, it must be that userspace
625 * has changed the mappings underlying guest memory,
626 * so unregister the region.
627 */
c35635ef 628 kvmppc_unpin_guest_page(kvm, va, gpa, false);
081f323b 629 va = NULL;
2e25aa5f
PM
630 }
631 if (vpap->pinned_addr)
c35635ef
PM
632 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
633 vpap->dirty);
634 vpap->gpa = gpa;
2e25aa5f 635 vpap->pinned_addr = va;
c35635ef 636 vpap->dirty = false;
2e25aa5f
PM
637 if (va)
638 vpap->pinned_end = va + vpap->len;
639}
640
641static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
642{
2f12f034
PM
643 if (!(vcpu->arch.vpa.update_pending ||
644 vcpu->arch.slb_shadow.update_pending ||
645 vcpu->arch.dtl.update_pending))
646 return;
647
2e25aa5f
PM
648 spin_lock(&vcpu->arch.vpa_update_lock);
649 if (vcpu->arch.vpa.update_pending) {
081f323b 650 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
55b665b0
PM
651 if (vcpu->arch.vpa.pinned_addr)
652 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
2e25aa5f
PM
653 }
654 if (vcpu->arch.dtl.update_pending) {
081f323b 655 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
2e25aa5f
PM
656 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
657 vcpu->arch.dtl_index = 0;
658 }
659 if (vcpu->arch.slb_shadow.update_pending)
081f323b 660 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
2e25aa5f
PM
661 spin_unlock(&vcpu->arch.vpa_update_lock);
662}
663
c7b67670
PM
664/*
665 * Return the accumulated stolen time for the vcore up until `now'.
666 * The caller should hold the vcore lock.
667 */
668static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
669{
670 u64 p;
2711e248 671 unsigned long flags;
c7b67670 672
2711e248
PM
673 spin_lock_irqsave(&vc->stoltb_lock, flags);
674 p = vc->stolen_tb;
c7b67670 675 if (vc->vcore_state != VCORE_INACTIVE &&
2711e248
PM
676 vc->preempt_tb != TB_NIL)
677 p += now - vc->preempt_tb;
678 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
c7b67670
PM
679 return p;
680}
681
0456ec4f
PM
682static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
683 struct kvmppc_vcore *vc)
684{
685 struct dtl_entry *dt;
686 struct lppaca *vpa;
c7b67670
PM
687 unsigned long stolen;
688 unsigned long core_stolen;
689 u64 now;
8b24e69f 690 unsigned long flags;
0456ec4f
PM
691
692 dt = vcpu->arch.dtl_ptr;
693 vpa = vcpu->arch.vpa.pinned_addr;
c7b67670
PM
694 now = mftb();
695 core_stolen = vcore_stolen_time(vc, now);
696 stolen = core_stolen - vcpu->arch.stolen_logged;
697 vcpu->arch.stolen_logged = core_stolen;
8b24e69f 698 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
c7b67670
PM
699 stolen += vcpu->arch.busy_stolen;
700 vcpu->arch.busy_stolen = 0;
8b24e69f 701 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
0456ec4f
PM
702 if (!dt || !vpa)
703 return;
704 memset(dt, 0, sizeof(struct dtl_entry));
705 dt->dispatch_reason = 7;
02407552
AG
706 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
707 dt->timebase = cpu_to_be64(now + vc->tb_offset);
708 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
709 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
710 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
0456ec4f
PM
711 ++dt;
712 if (dt == vcpu->arch.dtl.pinned_end)
713 dt = vcpu->arch.dtl.pinned_addr;
714 vcpu->arch.dtl_ptr = dt;
715 /* order writing *dt vs. writing vpa->dtl_idx */
716 smp_wmb();
02407552 717 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
c35635ef 718 vcpu->arch.dtl.dirty = true;
0456ec4f
PM
719}
720
1da4e2f4
PM
721/* See if there is a doorbell interrupt pending for a vcpu */
722static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
723{
724 int thr;
725 struct kvmppc_vcore *vc;
726
57900694
PM
727 if (vcpu->arch.doorbell_request)
728 return true;
729 /*
730 * Ensure that the read of vcore->dpdes comes after the read
731 * of vcpu->doorbell_request. This barrier matches the
6fabc9f2 732 * smp_wmb() in kvmppc_guest_entry_inject().
57900694
PM
733 */
734 smp_rmb();
1da4e2f4
PM
735 vc = vcpu->arch.vcore;
736 thr = vcpu->vcpu_id - vc->first_vcpuid;
737 return !!(vc->dpdes & (1 << thr));
738}
739
9642382e
MN
740static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
741{
742 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
743 return true;
744 if ((!vcpu->arch.vcore->arch_compat) &&
745 cpu_has_feature(CPU_FTR_ARCH_207S))
746 return true;
747 return false;
748}
749
750static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
751 unsigned long resource, unsigned long value1,
752 unsigned long value2)
753{
754 switch (resource) {
755 case H_SET_MODE_RESOURCE_SET_CIABR:
756 if (!kvmppc_power8_compatible(vcpu))
757 return H_P2;
758 if (value2)
759 return H_P4;
760 if (mflags)
761 return H_UNSUPPORTED_FLAG_START;
762 /* Guests can't breakpoint the hypervisor */
763 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
764 return H_P3;
765 vcpu->arch.ciabr = value1;
766 return H_SUCCESS;
767 case H_SET_MODE_RESOURCE_SET_DAWR:
768 if (!kvmppc_power8_compatible(vcpu))
769 return H_P2;
398e712c
MN
770 if (!ppc_breakpoint_available())
771 return H_P2;
9642382e
MN
772 if (mflags)
773 return H_UNSUPPORTED_FLAG_START;
774 if (value2 & DABRX_HYP)
775 return H_P4;
776 vcpu->arch.dawr = value1;
777 vcpu->arch.dawrx = value2;
778 return H_SUCCESS;
55d70042
NP
779 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
780 /* KVM does not support mflags=2 (AIL=2) */
781 if (mflags != 0 && mflags != 3)
782 return H_UNSUPPORTED_FLAG_START;
783 return H_TOO_HARD;
9642382e
MN
784 default:
785 return H_TOO_HARD;
786 }
787}
788
2d34d1c3
SJS
789/* Copy guest memory in place - must reside within a single memslot */
790static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
791 unsigned long len)
792{
793 struct kvm_memory_slot *to_memslot = NULL;
794 struct kvm_memory_slot *from_memslot = NULL;
795 unsigned long to_addr, from_addr;
796 int r;
797
798 /* Get HPA for from address */
799 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
800 if (!from_memslot)
801 return -EFAULT;
802 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
803 << PAGE_SHIFT))
804 return -EINVAL;
805 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
806 if (kvm_is_error_hva(from_addr))
807 return -EFAULT;
808 from_addr |= (from & (PAGE_SIZE - 1));
809
810 /* Get HPA for to address */
811 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
812 if (!to_memslot)
813 return -EFAULT;
814 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
815 << PAGE_SHIFT))
816 return -EINVAL;
817 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
818 if (kvm_is_error_hva(to_addr))
819 return -EFAULT;
820 to_addr |= (to & (PAGE_SIZE - 1));
821
822 /* Perform copy */
823 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
824 len);
825 if (r)
826 return -EFAULT;
827 mark_page_dirty(kvm, to >> PAGE_SHIFT);
828 return 0;
829}
830
831static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
832 unsigned long dest, unsigned long src)
833{
834 u64 pg_sz = SZ_4K; /* 4K page size */
835 u64 pg_mask = SZ_4K - 1;
836 int ret;
837
838 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
839 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
840 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
841 return H_PARAMETER;
842
843 /* dest (and src if copy_page flag set) must be page aligned */
844 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
845 return H_PARAMETER;
846
847 /* zero and/or copy the page as determined by the flags */
848 if (flags & H_COPY_PAGE) {
849 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
850 if (ret < 0)
851 return H_PARAMETER;
852 } else if (flags & H_ZERO_PAGE) {
853 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
854 if (ret < 0)
855 return H_PARAMETER;
856 }
857
858 /* We can ignore the remaining flags */
859
860 return H_SUCCESS;
861}
862
90fd09f8
SB
863static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
864{
865 struct kvmppc_vcore *vcore = target->arch.vcore;
866
867 /*
868 * We expect to have been called by the real mode handler
869 * (kvmppc_rm_h_confer()) which would have directly returned
870 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
871 * have useful work to do and should not confer) so we don't
872 * recheck that here.
873 */
874
875 spin_lock(&vcore->lock);
876 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
ec257165
PM
877 vcore->vcore_state != VCORE_INACTIVE &&
878 vcore->runner)
90fd09f8
SB
879 target = vcore->runner;
880 spin_unlock(&vcore->lock);
881
882 return kvm_vcpu_yield_to(target);
883}
884
885static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
886{
887 int yield_count = 0;
888 struct lppaca *lppaca;
889
890 spin_lock(&vcpu->arch.vpa_update_lock);
891 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
892 if (lppaca)
ecb6d618 893 yield_count = be32_to_cpu(lppaca->yield_count);
90fd09f8
SB
894 spin_unlock(&vcpu->arch.vpa_update_lock);
895 return yield_count;
896}
897
a8606e20
PM
898int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
899{
900 unsigned long req = kvmppc_get_gpr(vcpu, 3);
901 unsigned long target, ret = H_SUCCESS;
90fd09f8 902 int yield_count;
a8606e20 903 struct kvm_vcpu *tvcpu;
8e591cb7 904 int idx, rc;
a8606e20 905
699a0ea0
PM
906 if (req <= MAX_HCALL_OPCODE &&
907 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
908 return RESUME_HOST;
909
a8606e20
PM
910 switch (req) {
911 case H_CEDE:
a8606e20
PM
912 break;
913 case H_PROD:
914 target = kvmppc_get_gpr(vcpu, 4);
915 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
916 if (!tvcpu) {
917 ret = H_PARAMETER;
918 break;
919 }
920 tvcpu->arch.prodded = 1;
921 smp_mb();
8464c884
PM
922 if (tvcpu->arch.ceded)
923 kvmppc_fast_vcpu_kick_hv(tvcpu);
a8606e20
PM
924 break;
925 case H_CONFER:
42d7604d
PM
926 target = kvmppc_get_gpr(vcpu, 4);
927 if (target == -1)
928 break;
929 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
930 if (!tvcpu) {
931 ret = H_PARAMETER;
932 break;
933 }
90fd09f8
SB
934 yield_count = kvmppc_get_gpr(vcpu, 5);
935 if (kvmppc_get_yield_count(tvcpu) != yield_count)
936 break;
937 kvm_arch_vcpu_yield_to(tvcpu);
a8606e20
PM
938 break;
939 case H_REGISTER_VPA:
940 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
941 kvmppc_get_gpr(vcpu, 5),
942 kvmppc_get_gpr(vcpu, 6));
943 break;
8e591cb7
ME
944 case H_RTAS:
945 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
946 return RESUME_HOST;
947
c9438092 948 idx = srcu_read_lock(&vcpu->kvm->srcu);
8e591cb7 949 rc = kvmppc_rtas_hcall(vcpu);
c9438092 950 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8e591cb7
ME
951
952 if (rc == -ENOENT)
953 return RESUME_HOST;
954 else if (rc == 0)
955 break;
956
957 /* Send the error out to userspace via KVM_RUN */
958 return rc;
99342cf8
DG
959 case H_LOGICAL_CI_LOAD:
960 ret = kvmppc_h_logical_ci_load(vcpu);
961 if (ret == H_TOO_HARD)
962 return RESUME_HOST;
963 break;
964 case H_LOGICAL_CI_STORE:
965 ret = kvmppc_h_logical_ci_store(vcpu);
966 if (ret == H_TOO_HARD)
967 return RESUME_HOST;
968 break;
9642382e
MN
969 case H_SET_MODE:
970 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
971 kvmppc_get_gpr(vcpu, 5),
972 kvmppc_get_gpr(vcpu, 6),
973 kvmppc_get_gpr(vcpu, 7));
974 if (ret == H_TOO_HARD)
975 return RESUME_HOST;
976 break;
bc5ad3f3
BH
977 case H_XIRR:
978 case H_CPPR:
979 case H_EOI:
980 case H_IPI:
8e44ddc3
PM
981 case H_IPOLL:
982 case H_XIRR_X:
bc5ad3f3 983 if (kvmppc_xics_enabled(vcpu)) {
03f95332 984 if (xics_on_xive()) {
5af50993
BH
985 ret = H_NOT_AVAILABLE;
986 return RESUME_GUEST;
987 }
bc5ad3f3
BH
988 ret = kvmppc_xics_hcall(vcpu, req);
989 break;
d3695aa4
AK
990 }
991 return RESUME_HOST;
4bad7779
PM
992 case H_SET_DABR:
993 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
994 break;
995 case H_SET_XDABR:
996 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
997 kvmppc_get_gpr(vcpu, 5));
998 break;
e40542af 999#ifdef CONFIG_SPAPR_TCE_IOMMU
4bad7779
PM
1000 case H_GET_TCE:
1001 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1002 kvmppc_get_gpr(vcpu, 5));
1003 if (ret == H_TOO_HARD)
1004 return RESUME_HOST;
1005 break;
d3695aa4
AK
1006 case H_PUT_TCE:
1007 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1008 kvmppc_get_gpr(vcpu, 5),
1009 kvmppc_get_gpr(vcpu, 6));
1010 if (ret == H_TOO_HARD)
1011 return RESUME_HOST;
1012 break;
1013 case H_PUT_TCE_INDIRECT:
1014 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1015 kvmppc_get_gpr(vcpu, 5),
1016 kvmppc_get_gpr(vcpu, 6),
1017 kvmppc_get_gpr(vcpu, 7));
1018 if (ret == H_TOO_HARD)
1019 return RESUME_HOST;
1020 break;
1021 case H_STUFF_TCE:
1022 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1023 kvmppc_get_gpr(vcpu, 5),
1024 kvmppc_get_gpr(vcpu, 6),
1025 kvmppc_get_gpr(vcpu, 7));
1026 if (ret == H_TOO_HARD)
1027 return RESUME_HOST;
1028 break;
e40542af 1029#endif
4bad7779
PM
1030 case H_RANDOM:
1031 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
1032 ret = H_HARDWARE;
1033 break;
8e3f5fc1
PM
1034
1035 case H_SET_PARTITION_TABLE:
1036 ret = H_FUNCTION;
aa069a99 1037 if (nesting_enabled(vcpu->kvm))
8e3f5fc1
PM
1038 ret = kvmhv_set_partition_table(vcpu);
1039 break;
1040 case H_ENTER_NESTED:
1041 ret = H_FUNCTION;
aa069a99 1042 if (!nesting_enabled(vcpu->kvm))
360cae31
PM
1043 break;
1044 ret = kvmhv_enter_nested_guest(vcpu);
1045 if (ret == H_INTERRUPT) {
1046 kvmppc_set_gpr(vcpu, 3, 0);
6c08ec12 1047 vcpu->arch.hcall_needed = 0;
360cae31 1048 return -EINTR;
873db2cd
SJS
1049 } else if (ret == H_TOO_HARD) {
1050 kvmppc_set_gpr(vcpu, 3, 0);
1051 vcpu->arch.hcall_needed = 0;
1052 return RESUME_HOST;
360cae31 1053 }
8e3f5fc1
PM
1054 break;
1055 case H_TLB_INVALIDATE:
1056 ret = H_FUNCTION;
aa069a99
PM
1057 if (nesting_enabled(vcpu->kvm))
1058 ret = kvmhv_do_nested_tlbie(vcpu);
8e3f5fc1 1059 break;
6ff887b8
SJS
1060 case H_COPY_TOFROM_GUEST:
1061 ret = H_FUNCTION;
1062 if (nesting_enabled(vcpu->kvm))
1063 ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1064 break;
2d34d1c3
SJS
1065 case H_PAGE_INIT:
1066 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1067 kvmppc_get_gpr(vcpu, 5),
1068 kvmppc_get_gpr(vcpu, 6));
1069 break;
ca9f4942 1070 case H_SVM_PAGE_IN:
8c47b6ff
LD
1071 ret = H_UNSUPPORTED;
1072 if (kvmppc_get_srr1(vcpu) & MSR_S)
1073 ret = kvmppc_h_svm_page_in(vcpu->kvm,
1074 kvmppc_get_gpr(vcpu, 4),
1075 kvmppc_get_gpr(vcpu, 5),
1076 kvmppc_get_gpr(vcpu, 6));
ca9f4942
BR
1077 break;
1078 case H_SVM_PAGE_OUT:
8c47b6ff
LD
1079 ret = H_UNSUPPORTED;
1080 if (kvmppc_get_srr1(vcpu) & MSR_S)
1081 ret = kvmppc_h_svm_page_out(vcpu->kvm,
1082 kvmppc_get_gpr(vcpu, 4),
1083 kvmppc_get_gpr(vcpu, 5),
1084 kvmppc_get_gpr(vcpu, 6));
ca9f4942
BR
1085 break;
1086 case H_SVM_INIT_START:
8c47b6ff
LD
1087 ret = H_UNSUPPORTED;
1088 if (kvmppc_get_srr1(vcpu) & MSR_S)
1089 ret = kvmppc_h_svm_init_start(vcpu->kvm);
ca9f4942
BR
1090 break;
1091 case H_SVM_INIT_DONE:
8c47b6ff
LD
1092 ret = H_UNSUPPORTED;
1093 if (kvmppc_get_srr1(vcpu) & MSR_S)
1094 ret = kvmppc_h_svm_init_done(vcpu->kvm);
ca9f4942 1095 break;
3a43970d 1096 case H_SVM_INIT_ABORT:
e3326ae3
LD
1097 /*
1098 * Even if that call is made by the Ultravisor, the SSR1 value
1099 * is the guest context one, with the secure bit clear as it has
1100 * not yet been secured. So we can't check it here.
1101 * Instead the kvm->arch.secure_guest flag is checked inside
1102 * kvmppc_h_svm_init_abort().
1103 */
1104 ret = kvmppc_h_svm_init_abort(vcpu->kvm);
3a43970d 1105 break;
ca9f4942 1106
a8606e20
PM
1107 default:
1108 return RESUME_HOST;
1109 }
1110 kvmppc_set_gpr(vcpu, 3, ret);
1111 vcpu->arch.hcall_needed = 0;
1112 return RESUME_GUEST;
1113}
1114
4bad7779
PM
1115/*
1116 * Handle H_CEDE in the nested virtualization case where we haven't
1117 * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
1118 * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1119 * that the cede logic in kvmppc_run_single_vcpu() works properly.
1120 */
1121static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
1122{
1123 vcpu->arch.shregs.msr |= MSR_EE;
1124 vcpu->arch.ceded = 1;
1125 smp_mb();
1126 if (vcpu->arch.prodded) {
1127 vcpu->arch.prodded = 0;
1128 smp_mb();
1129 vcpu->arch.ceded = 0;
1130 }
1131}
1132
ae2113a4
PM
1133static int kvmppc_hcall_impl_hv(unsigned long cmd)
1134{
1135 switch (cmd) {
1136 case H_CEDE:
1137 case H_PROD:
1138 case H_CONFER:
1139 case H_REGISTER_VPA:
9642382e 1140 case H_SET_MODE:
99342cf8
DG
1141 case H_LOGICAL_CI_LOAD:
1142 case H_LOGICAL_CI_STORE:
ae2113a4
PM
1143#ifdef CONFIG_KVM_XICS
1144 case H_XIRR:
1145 case H_CPPR:
1146 case H_EOI:
1147 case H_IPI:
1148 case H_IPOLL:
1149 case H_XIRR_X:
1150#endif
2d34d1c3 1151 case H_PAGE_INIT:
ae2113a4
PM
1152 return 1;
1153 }
1154
1155 /* See if it's in the real-mode table */
1156 return kvmppc_hcall_impl_hv_realmode(cmd);
1157}
1158
8c99d345 1159static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
a59c1d9e
MS
1160{
1161 u32 last_inst;
1162
1163 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1164 EMULATE_DONE) {
1165 /*
1166 * Fetch failed, so return to guest and
1167 * try executing it again.
1168 */
1169 return RESUME_GUEST;
1170 }
1171
1172 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
8c99d345
TZ
1173 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1174 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
a59c1d9e
MS
1175 return RESUME_HOST;
1176 } else {
1177 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1178 return RESUME_GUEST;
1179 }
1180}
1181
57900694
PM
1182static void do_nothing(void *x)
1183{
1184}
1185
1186static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1187{
1188 int thr, cpu, pcpu, nthreads;
1189 struct kvm_vcpu *v;
1190 unsigned long dpdes;
1191
1192 nthreads = vcpu->kvm->arch.emul_smt_mode;
1193 dpdes = 0;
1194 cpu = vcpu->vcpu_id & ~(nthreads - 1);
1195 for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1196 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1197 if (!v)
1198 continue;
1199 /*
1200 * If the vcpu is currently running on a physical cpu thread,
1201 * interrupt it in order to pull it out of the guest briefly,
1202 * which will update its vcore->dpdes value.
1203 */
1204 pcpu = READ_ONCE(v->cpu);
1205 if (pcpu >= 0)
1206 smp_call_function_single(pcpu, do_nothing, NULL, 1);
1207 if (kvmppc_doorbell_pending(v))
1208 dpdes |= 1 << thr;
1209 }
1210 return dpdes;
1211}
1212
1213/*
1214 * On POWER9, emulate doorbell-related instructions in order to
1215 * give the guest the illusion of running on a multi-threaded core.
1216 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1217 * and mfspr DPDES.
1218 */
1219static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1220{
1221 u32 inst, rb, thr;
1222 unsigned long arg;
1223 struct kvm *kvm = vcpu->kvm;
1224 struct kvm_vcpu *tvcpu;
1225
57900694
PM
1226 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1227 return RESUME_GUEST;
1228 if (get_op(inst) != 31)
1229 return EMULATE_FAIL;
1230 rb = get_rb(inst);
1231 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1232 switch (get_xop(inst)) {
1233 case OP_31_XOP_MSGSNDP:
1234 arg = kvmppc_get_gpr(vcpu, rb);
1235 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1236 break;
1237 arg &= 0x3f;
1238 if (arg >= kvm->arch.emul_smt_mode)
1239 break;
1240 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1241 if (!tvcpu)
1242 break;
1243 if (!tvcpu->arch.doorbell_request) {
1244 tvcpu->arch.doorbell_request = 1;
1245 kvmppc_fast_vcpu_kick_hv(tvcpu);
1246 }
1247 break;
1248 case OP_31_XOP_MSGCLRP:
1249 arg = kvmppc_get_gpr(vcpu, rb);
1250 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1251 break;
1252 vcpu->arch.vcore->dpdes = 0;
1253 vcpu->arch.doorbell_request = 0;
1254 break;
1255 case OP_31_XOP_MFSPR:
1256 switch (get_sprn(inst)) {
1257 case SPRN_TIR:
1258 arg = thr;
1259 break;
1260 case SPRN_DPDES:
1261 arg = kvmppc_read_dpdes(vcpu);
1262 break;
1263 default:
1264 return EMULATE_FAIL;
1265 }
1266 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1267 break;
1268 default:
1269 return EMULATE_FAIL;
1270 }
1271 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1272 return RESUME_GUEST;
1273}
1274
8c99d345 1275static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
3a167bea 1276 struct task_struct *tsk)
de56a948 1277{
8c99d345 1278 struct kvm_run *run = vcpu->run;
de56a948
PM
1279 int r = RESUME_HOST;
1280
1281 vcpu->stat.sum_exits++;
1282
1c9e3d51
PM
1283 /*
1284 * This can happen if an interrupt occurs in the last stages
1285 * of guest entry or the first stages of guest exit (i.e. after
1286 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1287 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1288 * That can happen due to a bug, or due to a machine check
1289 * occurring at just the wrong time.
1290 */
1291 if (vcpu->arch.shregs.msr & MSR_HV) {
1292 printk(KERN_EMERG "KVM trap in HV mode!\n");
1293 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1294 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1295 vcpu->arch.shregs.msr);
1296 kvmppc_dump_regs(vcpu);
1297 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1298 run->hw.hardware_exit_reason = vcpu->arch.trap;
1299 return RESUME_HOST;
1300 }
de56a948
PM
1301 run->exit_reason = KVM_EXIT_UNKNOWN;
1302 run->ready_for_interrupt_injection = 1;
1303 switch (vcpu->arch.trap) {
1304 /* We're good on these - the host merely wanted to get our attention */
1305 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1306 vcpu->stat.dec_exits++;
1307 r = RESUME_GUEST;
1308 break;
1309 case BOOK3S_INTERRUPT_EXTERNAL:
5d00f66b 1310 case BOOK3S_INTERRUPT_H_DOORBELL:
84f7139c 1311 case BOOK3S_INTERRUPT_H_VIRT:
de56a948
PM
1312 vcpu->stat.ext_intr_exits++;
1313 r = RESUME_GUEST;
1314 break;
6de6638b 1315 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
dee6f24c 1316 case BOOK3S_INTERRUPT_HMI:
de56a948 1317 case BOOK3S_INTERRUPT_PERFMON:
6de6638b 1318 case BOOK3S_INTERRUPT_SYSTEM_RESET:
de56a948
PM
1319 r = RESUME_GUEST;
1320 break;
b4072df4 1321 case BOOK3S_INTERRUPT_MACHINE_CHECK:
884dfb72 1322 /* Print the MCE event to host console. */
c0577201 1323 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
884dfb72
PM
1324
1325 /*
1326 * If the guest can do FWNMI, exit to userspace so it can
1327 * deliver a FWNMI to the guest.
1328 * Otherwise we synthesize a machine check for the guest
1329 * so that it knows that the machine check occurred.
1330 */
1331 if (!vcpu->kvm->arch.fwnmi_enabled) {
1332 ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1333 kvmppc_core_queue_machine_check(vcpu, flags);
1334 r = RESUME_GUEST;
1335 break;
1336 }
1337
e20bbd3d
AP
1338 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1339 run->exit_reason = KVM_EXIT_NMI;
1340 run->hw.hardware_exit_reason = vcpu->arch.trap;
1341 /* Clear out the old NMI status from run->flags */
1342 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1343 /* Now set the NMI status */
1344 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1345 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1346 else
1347 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1348
1349 r = RESUME_HOST;
b4072df4 1350 break;
de56a948
PM
1351 case BOOK3S_INTERRUPT_PROGRAM:
1352 {
1353 ulong flags;
1354 /*
1355 * Normally program interrupts are delivered directly
1356 * to the guest by the hardware, but we can get here
1357 * as a result of a hypervisor emulation interrupt
1358 * (e40) getting turned into a 700 by BML RTAS.
1359 */
1360 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1361 kvmppc_core_queue_program(vcpu, flags);
1362 r = RESUME_GUEST;
1363 break;
1364 }
1365 case BOOK3S_INTERRUPT_SYSCALL:
1366 {
1367 /* hcall - punt to userspace */
1368 int i;
1369
27025a60
LPF
1370 /* hypercall with MSR_PR has already been handled in rmode,
1371 * and never reaches here.
1372 */
1373
de56a948
PM
1374 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1375 for (i = 0; i < 9; ++i)
1376 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1377 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1378 vcpu->arch.hcall_needed = 1;
1379 r = RESUME_HOST;
1380 break;
1381 }
1382 /*
342d3db7
PM
1383 * We get these next two if the guest accesses a page which it thinks
1384 * it has mapped but which is not actually present, either because
1385 * it is for an emulated I/O device or because the corresonding
1386 * host page has been paged out. Any other HDSI/HISI interrupts
1387 * have been handled already.
de56a948
PM
1388 */
1389 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
913d3ff9 1390 r = RESUME_PAGE_FAULT;
de56a948
PM
1391 break;
1392 case BOOK3S_INTERRUPT_H_INST_STORAGE:
913d3ff9 1393 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
32eb150a
PM
1394 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1395 DSISR_SRR1_MATCH_64S;
1396 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1397 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
913d3ff9 1398 r = RESUME_PAGE_FAULT;
de56a948
PM
1399 break;
1400 /*
1401 * This occurs if the guest executes an illegal instruction.
a59c1d9e
MS
1402 * If the guest debug is disabled, generate a program interrupt
1403 * to the guest. If guest debug is enabled, we need to check
1404 * whether the instruction is a software breakpoint instruction.
1405 * Accordingly return to Guest or Host.
de56a948
PM
1406 */
1407 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
4a157d61
PM
1408 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1409 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1410 swab32(vcpu->arch.emul_inst) :
1411 vcpu->arch.emul_inst;
a59c1d9e 1412 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
8c99d345 1413 r = kvmppc_emulate_debug_inst(vcpu);
a59c1d9e
MS
1414 } else {
1415 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1416 r = RESUME_GUEST;
1417 }
bd3048b8
ME
1418 break;
1419 /*
1420 * This occurs if the guest (kernel or userspace), does something that
57900694
PM
1421 * is prohibited by HFSCR.
1422 * On POWER9, this could be a doorbell instruction that we need
1423 * to emulate.
1424 * Otherwise, we just generate a program interrupt to the guest.
bd3048b8
ME
1425 */
1426 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
57900694 1427 r = EMULATE_FAIL;
36ee41d1 1428 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
53655ddd 1429 cpu_has_feature(CPU_FTR_ARCH_300))
57900694
PM
1430 r = kvmppc_emulate_doorbell_instr(vcpu);
1431 if (r == EMULATE_FAIL) {
1432 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1433 r = RESUME_GUEST;
1434 }
de56a948 1435 break;
4bb3c7a0
PM
1436
1437#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1438 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1439 /*
1440 * This occurs for various TM-related instructions that
1441 * we need to emulate on POWER9 DD2.2. We have already
1442 * handled the cases where the guest was in real-suspend
1443 * mode and was transitioning to transactional state.
1444 */
1445 r = kvmhv_p9_tm_emulation(vcpu);
1446 break;
1447#endif
1448
f7af5209
SW
1449 case BOOK3S_INTERRUPT_HV_RM_HARD:
1450 r = RESUME_PASSTHROUGH;
1451 break;
de56a948
PM
1452 default:
1453 kvmppc_dump_regs(vcpu);
1454 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1455 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1456 vcpu->arch.shregs.msr);
f3271d4c 1457 run->hw.hardware_exit_reason = vcpu->arch.trap;
de56a948 1458 r = RESUME_HOST;
de56a948
PM
1459 break;
1460 }
1461
de56a948
PM
1462 return r;
1463}
1464
8c99d345 1465static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
360cae31
PM
1466{
1467 int r;
1468 int srcu_idx;
1469
1470 vcpu->stat.sum_exits++;
1471
1472 /*
1473 * This can happen if an interrupt occurs in the last stages
1474 * of guest entry or the first stages of guest exit (i.e. after
1475 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1476 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1477 * That can happen due to a bug, or due to a machine check
1478 * occurring at just the wrong time.
1479 */
1480 if (vcpu->arch.shregs.msr & MSR_HV) {
1481 pr_emerg("KVM trap in HV mode while nested!\n");
1482 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1483 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1484 vcpu->arch.shregs.msr);
1485 kvmppc_dump_regs(vcpu);
1486 return RESUME_HOST;
1487 }
1488 switch (vcpu->arch.trap) {
1489 /* We're good on these - the host merely wanted to get our attention */
1490 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1491 vcpu->stat.dec_exits++;
1492 r = RESUME_GUEST;
1493 break;
1494 case BOOK3S_INTERRUPT_EXTERNAL:
1495 vcpu->stat.ext_intr_exits++;
1496 r = RESUME_HOST;
1497 break;
1498 case BOOK3S_INTERRUPT_H_DOORBELL:
1499 case BOOK3S_INTERRUPT_H_VIRT:
1500 vcpu->stat.ext_intr_exits++;
1501 r = RESUME_GUEST;
1502 break;
1503 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1504 case BOOK3S_INTERRUPT_HMI:
1505 case BOOK3S_INTERRUPT_PERFMON:
1506 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1507 r = RESUME_GUEST;
1508 break;
1509 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1510 /* Pass the machine check to the L1 guest */
1511 r = RESUME_HOST;
1512 /* Print the MCE event to host console. */
c0577201 1513 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
360cae31
PM
1514 break;
1515 /*
1516 * We get these next two if the guest accesses a page which it thinks
1517 * it has mapped but which is not actually present, either because
1518 * it is for an emulated I/O device or because the corresonding
1519 * host page has been paged out.
1520 */
1521 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1522 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8c99d345 1523 r = kvmhv_nested_page_fault(vcpu);
360cae31
PM
1524 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1525 break;
1526 case BOOK3S_INTERRUPT_H_INST_STORAGE:
1527 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1528 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1529 DSISR_SRR1_MATCH_64S;
1530 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1531 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1532 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8c99d345 1533 r = kvmhv_nested_page_fault(vcpu);
360cae31
PM
1534 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1535 break;
1536
1537#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1538 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1539 /*
1540 * This occurs for various TM-related instructions that
1541 * we need to emulate on POWER9 DD2.2. We have already
1542 * handled the cases where the guest was in real-suspend
1543 * mode and was transitioning to transactional state.
1544 */
1545 r = kvmhv_p9_tm_emulation(vcpu);
1546 break;
1547#endif
1548
1549 case BOOK3S_INTERRUPT_HV_RM_HARD:
1550 vcpu->arch.trap = 0;
1551 r = RESUME_GUEST;
03f95332 1552 if (!xics_on_xive())
360cae31
PM
1553 kvmppc_xics_rm_complete(vcpu, 0);
1554 break;
1555 default:
1556 r = RESUME_HOST;
1557 break;
1558 }
1559
1560 return r;
1561}
1562
3a167bea
AK
1563static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1564 struct kvm_sregs *sregs)
de56a948
PM
1565{
1566 int i;
1567
de56a948 1568 memset(sregs, 0, sizeof(struct kvm_sregs));
87916442 1569 sregs->pvr = vcpu->arch.pvr;
de56a948
PM
1570 for (i = 0; i < vcpu->arch.slb_max; i++) {
1571 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1572 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1573 }
1574
1575 return 0;
1576}
1577
3a167bea
AK
1578static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1579 struct kvm_sregs *sregs)
de56a948
PM
1580{
1581 int i, j;
1582
9333e6c4
PM
1583 /* Only accept the same PVR as the host's, since we can't spoof it */
1584 if (sregs->pvr != vcpu->arch.pvr)
1585 return -EINVAL;
de56a948
PM
1586
1587 j = 0;
1588 for (i = 0; i < vcpu->arch.slb_nr; i++) {
1589 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1590 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1591 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1592 ++j;
1593 }
1594 }
1595 vcpu->arch.slb_max = j;
1596
1597 return 0;
1598}
1599
a0840240
AK
1600static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1601 bool preserve_top32)
a0144e2a 1602{
8f902b00 1603 struct kvm *kvm = vcpu->kvm;
a0144e2a
PM
1604 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1605 u64 mask;
1606
1607 spin_lock(&vc->lock);
d682916a
AB
1608 /*
1609 * If ILE (interrupt little-endian) has changed, update the
1610 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1611 */
1612 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
d682916a
AB
1613 struct kvm_vcpu *vcpu;
1614 int i;
1615
d682916a
AB
1616 kvm_for_each_vcpu(i, vcpu, kvm) {
1617 if (vcpu->arch.vcore != vc)
1618 continue;
1619 if (new_lpcr & LPCR_ILE)
1620 vcpu->arch.intr_msr |= MSR_LE;
1621 else
1622 vcpu->arch.intr_msr &= ~MSR_LE;
1623 }
d682916a
AB
1624 }
1625
a0144e2a
PM
1626 /*
1627 * Userspace can only modify DPFD (default prefetch depth),
1628 * ILE (interrupt little-endian) and TC (translation control).
8cf4ecc0 1629 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
a0144e2a
PM
1630 */
1631 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
e0622bd9
PM
1632 if (cpu_has_feature(CPU_FTR_ARCH_207S))
1633 mask |= LPCR_AIL;
1bc3fe81
PM
1634 /*
1635 * On POWER9, allow userspace to enable large decrementer for the
1636 * guest, whether or not the host has it enabled.
1637 */
1638 if (cpu_has_feature(CPU_FTR_ARCH_300))
1639 mask |= LPCR_LD;
a0840240
AK
1640
1641 /* Broken 32-bit version of LPCR must not clear top bits */
1642 if (preserve_top32)
1643 mask &= 0xFFFFFFFF;
a0144e2a
PM
1644 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1645 spin_unlock(&vc->lock);
1646}
1647
3a167bea
AK
1648static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1649 union kvmppc_one_reg *val)
31f3438e 1650{
a136a8bd
PM
1651 int r = 0;
1652 long int i;
31f3438e 1653
a136a8bd 1654 switch (id) {
a59c1d9e
MS
1655 case KVM_REG_PPC_DEBUG_INST:
1656 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1657 break;
31f3438e 1658 case KVM_REG_PPC_HIOR:
a136a8bd
PM
1659 *val = get_reg_val(id, 0);
1660 break;
1661 case KVM_REG_PPC_DABR:
1662 *val = get_reg_val(id, vcpu->arch.dabr);
1663 break;
8563bf52
PM
1664 case KVM_REG_PPC_DABRX:
1665 *val = get_reg_val(id, vcpu->arch.dabrx);
1666 break;
a136a8bd
PM
1667 case KVM_REG_PPC_DSCR:
1668 *val = get_reg_val(id, vcpu->arch.dscr);
1669 break;
1670 case KVM_REG_PPC_PURR:
1671 *val = get_reg_val(id, vcpu->arch.purr);
1672 break;
1673 case KVM_REG_PPC_SPURR:
1674 *val = get_reg_val(id, vcpu->arch.spurr);
1675 break;
1676 case KVM_REG_PPC_AMR:
1677 *val = get_reg_val(id, vcpu->arch.amr);
1678 break;
1679 case KVM_REG_PPC_UAMOR:
1680 *val = get_reg_val(id, vcpu->arch.uamor);
1681 break;
b005255e 1682 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
a136a8bd
PM
1683 i = id - KVM_REG_PPC_MMCR0;
1684 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1685 break;
1686 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1687 i = id - KVM_REG_PPC_PMC1;
1688 *val = get_reg_val(id, vcpu->arch.pmc[i]);
31f3438e 1689 break;
b005255e
MN
1690 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1691 i = id - KVM_REG_PPC_SPMC1;
1692 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1693 break;
14941789
PM
1694 case KVM_REG_PPC_SIAR:
1695 *val = get_reg_val(id, vcpu->arch.siar);
1696 break;
1697 case KVM_REG_PPC_SDAR:
1698 *val = get_reg_val(id, vcpu->arch.sdar);
1699 break;
b005255e
MN
1700 case KVM_REG_PPC_SIER:
1701 *val = get_reg_val(id, vcpu->arch.sier);
a8bd19ef 1702 break;
b005255e
MN
1703 case KVM_REG_PPC_IAMR:
1704 *val = get_reg_val(id, vcpu->arch.iamr);
1705 break;
b005255e
MN
1706 case KVM_REG_PPC_PSPB:
1707 *val = get_reg_val(id, vcpu->arch.pspb);
1708 break;
b005255e 1709 case KVM_REG_PPC_DPDES:
ff42df49
PM
1710 /*
1711 * On POWER9, where we are emulating msgsndp etc.,
1712 * we return 1 bit for each vcpu, which can come from
1713 * either vcore->dpdes or doorbell_request.
1714 * On POWER8, doorbell_request is 0.
1715 */
1716 *val = get_reg_val(id, vcpu->arch.vcore->dpdes |
1717 vcpu->arch.doorbell_request);
b005255e 1718 break;
88b02cf9
PM
1719 case KVM_REG_PPC_VTB:
1720 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1721 break;
b005255e
MN
1722 case KVM_REG_PPC_DAWR:
1723 *val = get_reg_val(id, vcpu->arch.dawr);
1724 break;
1725 case KVM_REG_PPC_DAWRX:
1726 *val = get_reg_val(id, vcpu->arch.dawrx);
1727 break;
1728 case KVM_REG_PPC_CIABR:
1729 *val = get_reg_val(id, vcpu->arch.ciabr);
1730 break;
b005255e
MN
1731 case KVM_REG_PPC_CSIGR:
1732 *val = get_reg_val(id, vcpu->arch.csigr);
1733 break;
1734 case KVM_REG_PPC_TACR:
1735 *val = get_reg_val(id, vcpu->arch.tacr);
1736 break;
1737 case KVM_REG_PPC_TCSCR:
1738 *val = get_reg_val(id, vcpu->arch.tcscr);
1739 break;
1740 case KVM_REG_PPC_PID:
1741 *val = get_reg_val(id, vcpu->arch.pid);
1742 break;
1743 case KVM_REG_PPC_ACOP:
1744 *val = get_reg_val(id, vcpu->arch.acop);
1745 break;
1746 case KVM_REG_PPC_WORT:
1747 *val = get_reg_val(id, vcpu->arch.wort);
a8bd19ef 1748 break;
e9cf1e08
PM
1749 case KVM_REG_PPC_TIDR:
1750 *val = get_reg_val(id, vcpu->arch.tid);
1751 break;
1752 case KVM_REG_PPC_PSSCR:
1753 *val = get_reg_val(id, vcpu->arch.psscr);
1754 break;
55b665b0
PM
1755 case KVM_REG_PPC_VPA_ADDR:
1756 spin_lock(&vcpu->arch.vpa_update_lock);
1757 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1758 spin_unlock(&vcpu->arch.vpa_update_lock);
1759 break;
1760 case KVM_REG_PPC_VPA_SLB:
1761 spin_lock(&vcpu->arch.vpa_update_lock);
1762 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1763 val->vpaval.length = vcpu->arch.slb_shadow.len;
1764 spin_unlock(&vcpu->arch.vpa_update_lock);
1765 break;
1766 case KVM_REG_PPC_VPA_DTL:
1767 spin_lock(&vcpu->arch.vpa_update_lock);
1768 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1769 val->vpaval.length = vcpu->arch.dtl.len;
1770 spin_unlock(&vcpu->arch.vpa_update_lock);
1771 break;
93b0f4dc
PM
1772 case KVM_REG_PPC_TB_OFFSET:
1773 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1774 break;
a0144e2a 1775 case KVM_REG_PPC_LPCR:
a0840240 1776 case KVM_REG_PPC_LPCR_64:
a0144e2a
PM
1777 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1778 break;
4b8473c9
PM
1779 case KVM_REG_PPC_PPR:
1780 *val = get_reg_val(id, vcpu->arch.ppr);
1781 break;
a7d80d01
MN
1782#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1783 case KVM_REG_PPC_TFHAR:
1784 *val = get_reg_val(id, vcpu->arch.tfhar);
1785 break;
1786 case KVM_REG_PPC_TFIAR:
1787 *val = get_reg_val(id, vcpu->arch.tfiar);
1788 break;
1789 case KVM_REG_PPC_TEXASR:
1790 *val = get_reg_val(id, vcpu->arch.texasr);
1791 break;
1792 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1793 i = id - KVM_REG_PPC_TM_GPR0;
1794 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1795 break;
1796 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1797 {
1798 int j;
1799 i = id - KVM_REG_PPC_TM_VSR0;
1800 if (i < 32)
1801 for (j = 0; j < TS_FPRWIDTH; j++)
1802 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1803 else {
1804 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1805 val->vval = vcpu->arch.vr_tm.vr[i-32];
1806 else
1807 r = -ENXIO;
1808 }
1809 break;
1810 }
1811 case KVM_REG_PPC_TM_CR:
1812 *val = get_reg_val(id, vcpu->arch.cr_tm);
1813 break;
0d808df0
PM
1814 case KVM_REG_PPC_TM_XER:
1815 *val = get_reg_val(id, vcpu->arch.xer_tm);
1816 break;
a7d80d01
MN
1817 case KVM_REG_PPC_TM_LR:
1818 *val = get_reg_val(id, vcpu->arch.lr_tm);
1819 break;
1820 case KVM_REG_PPC_TM_CTR:
1821 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1822 break;
1823 case KVM_REG_PPC_TM_FPSCR:
1824 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1825 break;
1826 case KVM_REG_PPC_TM_AMR:
1827 *val = get_reg_val(id, vcpu->arch.amr_tm);
1828 break;
1829 case KVM_REG_PPC_TM_PPR:
1830 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1831 break;
1832 case KVM_REG_PPC_TM_VRSAVE:
1833 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1834 break;
1835 case KVM_REG_PPC_TM_VSCR:
1836 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1837 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1838 else
1839 r = -ENXIO;
1840 break;
1841 case KVM_REG_PPC_TM_DSCR:
1842 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1843 break;
1844 case KVM_REG_PPC_TM_TAR:
1845 *val = get_reg_val(id, vcpu->arch.tar_tm);
1846 break;
1847#endif
388cc6e1
PM
1848 case KVM_REG_PPC_ARCH_COMPAT:
1849 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1850 break;
5855564c
PM
1851 case KVM_REG_PPC_DEC_EXPIRY:
1852 *val = get_reg_val(id, vcpu->arch.dec_expires +
1853 vcpu->arch.vcore->tb_offset);
1854 break;
a1f15826
PM
1855 case KVM_REG_PPC_ONLINE:
1856 *val = get_reg_val(id, vcpu->arch.online);
1857 break;
30323418
PM
1858 case KVM_REG_PPC_PTCR:
1859 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
1860 break;
31f3438e 1861 default:
a136a8bd 1862 r = -EINVAL;
31f3438e
PM
1863 break;
1864 }
1865
1866 return r;
1867}
1868
3a167bea
AK
1869static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1870 union kvmppc_one_reg *val)
31f3438e 1871{
a136a8bd
PM
1872 int r = 0;
1873 long int i;
55b665b0 1874 unsigned long addr, len;
31f3438e 1875
a136a8bd 1876 switch (id) {
31f3438e 1877 case KVM_REG_PPC_HIOR:
31f3438e 1878 /* Only allow this to be set to zero */
a136a8bd 1879 if (set_reg_val(id, *val))
31f3438e
PM
1880 r = -EINVAL;
1881 break;
a136a8bd
PM
1882 case KVM_REG_PPC_DABR:
1883 vcpu->arch.dabr = set_reg_val(id, *val);
1884 break;
8563bf52
PM
1885 case KVM_REG_PPC_DABRX:
1886 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1887 break;
a136a8bd
PM
1888 case KVM_REG_PPC_DSCR:
1889 vcpu->arch.dscr = set_reg_val(id, *val);
1890 break;
1891 case KVM_REG_PPC_PURR:
1892 vcpu->arch.purr = set_reg_val(id, *val);
1893 break;
1894 case KVM_REG_PPC_SPURR:
1895 vcpu->arch.spurr = set_reg_val(id, *val);
1896 break;
1897 case KVM_REG_PPC_AMR:
1898 vcpu->arch.amr = set_reg_val(id, *val);
1899 break;
1900 case KVM_REG_PPC_UAMOR:
1901 vcpu->arch.uamor = set_reg_val(id, *val);
1902 break;
b005255e 1903 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
a136a8bd
PM
1904 i = id - KVM_REG_PPC_MMCR0;
1905 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1906 break;
1907 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1908 i = id - KVM_REG_PPC_PMC1;
1909 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1910 break;
b005255e
MN
1911 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1912 i = id - KVM_REG_PPC_SPMC1;
1913 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1914 break;
14941789
PM
1915 case KVM_REG_PPC_SIAR:
1916 vcpu->arch.siar = set_reg_val(id, *val);
1917 break;
1918 case KVM_REG_PPC_SDAR:
1919 vcpu->arch.sdar = set_reg_val(id, *val);
1920 break;
b005255e
MN
1921 case KVM_REG_PPC_SIER:
1922 vcpu->arch.sier = set_reg_val(id, *val);
a8bd19ef 1923 break;
b005255e
MN
1924 case KVM_REG_PPC_IAMR:
1925 vcpu->arch.iamr = set_reg_val(id, *val);
1926 break;
b005255e
MN
1927 case KVM_REG_PPC_PSPB:
1928 vcpu->arch.pspb = set_reg_val(id, *val);
1929 break;
b005255e
MN
1930 case KVM_REG_PPC_DPDES:
1931 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1932 break;
88b02cf9
PM
1933 case KVM_REG_PPC_VTB:
1934 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1935 break;
b005255e
MN
1936 case KVM_REG_PPC_DAWR:
1937 vcpu->arch.dawr = set_reg_val(id, *val);
1938 break;
1939 case KVM_REG_PPC_DAWRX:
1940 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1941 break;
1942 case KVM_REG_PPC_CIABR:
1943 vcpu->arch.ciabr = set_reg_val(id, *val);
1944 /* Don't allow setting breakpoints in hypervisor code */
1945 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1946 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
1947 break;
b005255e
MN
1948 case KVM_REG_PPC_CSIGR:
1949 vcpu->arch.csigr = set_reg_val(id, *val);
1950 break;
1951 case KVM_REG_PPC_TACR:
1952 vcpu->arch.tacr = set_reg_val(id, *val);
1953 break;
1954 case KVM_REG_PPC_TCSCR:
1955 vcpu->arch.tcscr = set_reg_val(id, *val);
1956 break;
1957 case KVM_REG_PPC_PID:
1958 vcpu->arch.pid = set_reg_val(id, *val);
1959 break;
1960 case KVM_REG_PPC_ACOP:
1961 vcpu->arch.acop = set_reg_val(id, *val);
1962 break;
1963 case KVM_REG_PPC_WORT:
1964 vcpu->arch.wort = set_reg_val(id, *val);
a8bd19ef 1965 break;
e9cf1e08
PM
1966 case KVM_REG_PPC_TIDR:
1967 vcpu->arch.tid = set_reg_val(id, *val);
1968 break;
1969 case KVM_REG_PPC_PSSCR:
1970 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1971 break;
55b665b0
PM
1972 case KVM_REG_PPC_VPA_ADDR:
1973 addr = set_reg_val(id, *val);
1974 r = -EINVAL;
1975 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1976 vcpu->arch.dtl.next_gpa))
1977 break;
1978 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1979 break;
1980 case KVM_REG_PPC_VPA_SLB:
1981 addr = val->vpaval.addr;
1982 len = val->vpaval.length;
1983 r = -EINVAL;
1984 if (addr && !vcpu->arch.vpa.next_gpa)
1985 break;
1986 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1987 break;
1988 case KVM_REG_PPC_VPA_DTL:
1989 addr = val->vpaval.addr;
1990 len = val->vpaval.length;
1991 r = -EINVAL;
9f8c8c78
PM
1992 if (addr && (len < sizeof(struct dtl_entry) ||
1993 !vcpu->arch.vpa.next_gpa))
55b665b0
PM
1994 break;
1995 len -= len % sizeof(struct dtl_entry);
1996 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1997 break;
93b0f4dc
PM
1998 case KVM_REG_PPC_TB_OFFSET:
1999 /* round up to multiple of 2^24 */
2000 vcpu->arch.vcore->tb_offset =
2001 ALIGN(set_reg_val(id, *val), 1UL << 24);
2002 break;
a0144e2a 2003 case KVM_REG_PPC_LPCR:
a0840240
AK
2004 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2005 break;
2006 case KVM_REG_PPC_LPCR_64:
2007 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
a0144e2a 2008 break;
4b8473c9
PM
2009 case KVM_REG_PPC_PPR:
2010 vcpu->arch.ppr = set_reg_val(id, *val);
2011 break;
a7d80d01
MN
2012#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2013 case KVM_REG_PPC_TFHAR:
2014 vcpu->arch.tfhar = set_reg_val(id, *val);
2015 break;
2016 case KVM_REG_PPC_TFIAR:
2017 vcpu->arch.tfiar = set_reg_val(id, *val);
2018 break;
2019 case KVM_REG_PPC_TEXASR:
2020 vcpu->arch.texasr = set_reg_val(id, *val);
2021 break;
2022 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2023 i = id - KVM_REG_PPC_TM_GPR0;
2024 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2025 break;
2026 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2027 {
2028 int j;
2029 i = id - KVM_REG_PPC_TM_VSR0;
2030 if (i < 32)
2031 for (j = 0; j < TS_FPRWIDTH; j++)
2032 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2033 else
2034 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2035 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2036 else
2037 r = -ENXIO;
2038 break;
2039 }
2040 case KVM_REG_PPC_TM_CR:
2041 vcpu->arch.cr_tm = set_reg_val(id, *val);
2042 break;
0d808df0
PM
2043 case KVM_REG_PPC_TM_XER:
2044 vcpu->arch.xer_tm = set_reg_val(id, *val);
2045 break;
a7d80d01
MN
2046 case KVM_REG_PPC_TM_LR:
2047 vcpu->arch.lr_tm = set_reg_val(id, *val);
2048 break;
2049 case KVM_REG_PPC_TM_CTR:
2050 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2051 break;
2052 case KVM_REG_PPC_TM_FPSCR:
2053 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2054 break;
2055 case KVM_REG_PPC_TM_AMR:
2056 vcpu->arch.amr_tm = set_reg_val(id, *val);
2057 break;
2058 case KVM_REG_PPC_TM_PPR:
2059 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2060 break;
2061 case KVM_REG_PPC_TM_VRSAVE:
2062 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2063 break;
2064 case KVM_REG_PPC_TM_VSCR:
2065 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2066 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2067 else
2068 r = - ENXIO;
2069 break;
2070 case KVM_REG_PPC_TM_DSCR:
2071 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2072 break;
2073 case KVM_REG_PPC_TM_TAR:
2074 vcpu->arch.tar_tm = set_reg_val(id, *val);
2075 break;
2076#endif
388cc6e1
PM
2077 case KVM_REG_PPC_ARCH_COMPAT:
2078 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2079 break;
5855564c
PM
2080 case KVM_REG_PPC_DEC_EXPIRY:
2081 vcpu->arch.dec_expires = set_reg_val(id, *val) -
2082 vcpu->arch.vcore->tb_offset;
2083 break;
a1f15826 2084 case KVM_REG_PPC_ONLINE:
7aa15842
PM
2085 i = set_reg_val(id, *val);
2086 if (i && !vcpu->arch.online)
2087 atomic_inc(&vcpu->arch.vcore->online_count);
2088 else if (!i && vcpu->arch.online)
2089 atomic_dec(&vcpu->arch.vcore->online_count);
2090 vcpu->arch.online = i;
a1f15826 2091 break;
30323418
PM
2092 case KVM_REG_PPC_PTCR:
2093 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2094 break;
31f3438e 2095 default:
a136a8bd 2096 r = -EINVAL;
31f3438e
PM
2097 break;
2098 }
2099
2100 return r;
2101}
2102
45c940ba
PM
2103/*
2104 * On POWER9, threads are independent and can be in different partitions.
2105 * Therefore we consider each thread to be a subcore.
2106 * There is a restriction that all threads have to be in the same
2107 * MMU mode (radix or HPT), unfortunately, but since we only support
2108 * HPT guests on a HPT host so far, that isn't an impediment yet.
2109 */
516f7898 2110static int threads_per_vcore(struct kvm *kvm)
45c940ba 2111{
516f7898 2112 if (kvm->arch.threads_indep)
45c940ba
PM
2113 return 1;
2114 return threads_per_subcore;
2115}
2116
1e175d2e 2117static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
de9bdd1a
SS
2118{
2119 struct kvmppc_vcore *vcore;
2120
2121 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2122
2123 if (vcore == NULL)
2124 return NULL;
2125
de9bdd1a 2126 spin_lock_init(&vcore->lock);
2711e248 2127 spin_lock_init(&vcore->stoltb_lock);
da4ad88c 2128 rcuwait_init(&vcore->wait);
de9bdd1a
SS
2129 vcore->preempt_tb = TB_NIL;
2130 vcore->lpcr = kvm->arch.lpcr;
1e175d2e 2131 vcore->first_vcpuid = id;
de9bdd1a 2132 vcore->kvm = kvm;
ec257165 2133 INIT_LIST_HEAD(&vcore->preempt_list);
de9bdd1a
SS
2134
2135 return vcore;
2136}
2137
b6c295df
PM
2138#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2139static struct debugfs_timings_element {
2140 const char *name;
2141 size_t offset;
2142} timings[] = {
2143 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
2144 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
2145 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
2146 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
2147 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
2148};
2149
4bb817ed 2150#define N_TIMINGS (ARRAY_SIZE(timings))
b6c295df
PM
2151
2152struct debugfs_timings_state {
2153 struct kvm_vcpu *vcpu;
2154 unsigned int buflen;
2155 char buf[N_TIMINGS * 100];
2156};
2157
2158static int debugfs_timings_open(struct inode *inode, struct file *file)
2159{
2160 struct kvm_vcpu *vcpu = inode->i_private;
2161 struct debugfs_timings_state *p;
2162
2163 p = kzalloc(sizeof(*p), GFP_KERNEL);
2164 if (!p)
2165 return -ENOMEM;
2166
2167 kvm_get_kvm(vcpu->kvm);
2168 p->vcpu = vcpu;
2169 file->private_data = p;
2170
2171 return nonseekable_open(inode, file);
2172}
2173
2174static int debugfs_timings_release(struct inode *inode, struct file *file)
2175{
2176 struct debugfs_timings_state *p = file->private_data;
2177
2178 kvm_put_kvm(p->vcpu->kvm);
2179 kfree(p);
2180 return 0;
2181}
2182
2183static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2184 size_t len, loff_t *ppos)
2185{
2186 struct debugfs_timings_state *p = file->private_data;
2187 struct kvm_vcpu *vcpu = p->vcpu;
2188 char *s, *buf_end;
2189 struct kvmhv_tb_accumulator tb;
2190 u64 count;
2191 loff_t pos;
2192 ssize_t n;
2193 int i, loops;
2194 bool ok;
2195
2196 if (!p->buflen) {
2197 s = p->buf;
2198 buf_end = s + sizeof(p->buf);
2199 for (i = 0; i < N_TIMINGS; ++i) {
2200 struct kvmhv_tb_accumulator *acc;
2201
2202 acc = (struct kvmhv_tb_accumulator *)
2203 ((unsigned long)vcpu + timings[i].offset);
2204 ok = false;
2205 for (loops = 0; loops < 1000; ++loops) {
2206 count = acc->seqcount;
2207 if (!(count & 1)) {
2208 smp_rmb();
2209 tb = *acc;
2210 smp_rmb();
2211 if (count == acc->seqcount) {
2212 ok = true;
2213 break;
2214 }
2215 }
2216 udelay(1);
2217 }
2218 if (!ok)
2219 snprintf(s, buf_end - s, "%s: stuck\n",
2220 timings[i].name);
2221 else
2222 snprintf(s, buf_end - s,
2223 "%s: %llu %llu %llu %llu\n",
2224 timings[i].name, count / 2,
2225 tb_to_ns(tb.tb_total),
2226 tb_to_ns(tb.tb_min),
2227 tb_to_ns(tb.tb_max));
2228 s += strlen(s);
2229 }
2230 p->buflen = s - p->buf;
2231 }
2232
2233 pos = *ppos;
2234 if (pos >= p->buflen)
2235 return 0;
2236 if (len > p->buflen - pos)
2237 len = p->buflen - pos;
2238 n = copy_to_user(buf, p->buf + pos, len);
2239 if (n) {
2240 if (n == len)
2241 return -EFAULT;
2242 len -= n;
2243 }
2244 *ppos = pos + len;
2245 return len;
2246}
2247
2248static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2249 size_t len, loff_t *ppos)
2250{
2251 return -EACCES;
2252}
2253
2254static const struct file_operations debugfs_timings_ops = {
2255 .owner = THIS_MODULE,
2256 .open = debugfs_timings_open,
2257 .release = debugfs_timings_release,
2258 .read = debugfs_timings_read,
2259 .write = debugfs_timings_write,
2260 .llseek = generic_file_llseek,
2261};
2262
2263/* Create a debugfs directory for the vcpu */
2264static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2265{
2266 char buf[16];
2267 struct kvm *kvm = vcpu->kvm;
2268
2269 snprintf(buf, sizeof(buf), "vcpu%u", id);
b6c295df 2270 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
c4fd527f
GKH
2271 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu,
2272 &debugfs_timings_ops);
b6c295df
PM
2273}
2274
2275#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2276static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2277{
2278}
2279#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2280
ff030fdf 2281static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
de56a948 2282{
3c313524 2283 int err;
371fefd6
PM
2284 int core;
2285 struct kvmppc_vcore *vcore;
ff030fdf
SC
2286 struct kvm *kvm;
2287 unsigned int id;
de56a948 2288
ff030fdf
SC
2289 kvm = vcpu->kvm;
2290 id = vcpu->vcpu_id;
de56a948
PM
2291
2292 vcpu->arch.shared = &vcpu->arch.shregs;
5deb8e7a
AG
2293#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2294 /*
2295 * The shared struct is never shared on HV,
2296 * so we can always use host endianness
2297 */
2298#ifdef __BIG_ENDIAN__
2299 vcpu->arch.shared_big_endian = true;
2300#else
2301 vcpu->arch.shared_big_endian = false;
2302#endif
2303#endif
de56a948
PM
2304 vcpu->arch.mmcr[0] = MMCR0_FC;
2305 vcpu->arch.ctrl = CTRL_RUNLATCH;
2306 /* default to host PVR, since we can't spoof it */
3a167bea 2307 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2e25aa5f 2308 spin_lock_init(&vcpu->arch.vpa_update_lock);
c7b67670
PM
2309 spin_lock_init(&vcpu->arch.tbacct_lock);
2310 vcpu->arch.busy_preempt = TB_NIL;
d682916a 2311 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
de56a948 2312
769377f7
PM
2313 /*
2314 * Set the default HFSCR for the guest from the host value.
2315 * This value is only used on POWER9.
57900694 2316 * On POWER9, we want to virtualize the doorbell facility, so we
f3c99f97
PM
2317 * don't set the HFSCR_MSGP bit, and that causes those instructions
2318 * to trap and then we emulate them.
769377f7 2319 */
f3c99f97
PM
2320 vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2321 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
2322 if (cpu_has_feature(CPU_FTR_HVMODE)) {
2323 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2324 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2325 vcpu->arch.hfscr |= HFSCR_TM;
2326 }
2327 if (cpu_has_feature(CPU_FTR_TM_COMP))
4bb3c7a0 2328 vcpu->arch.hfscr |= HFSCR_TM;
769377f7 2329
de56a948
PM
2330 kvmppc_mmu_book3s_hv_init(vcpu);
2331
8455d79e 2332 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
371fefd6
PM
2333
2334 init_waitqueue_head(&vcpu->arch.cpu_run);
2335
2336 mutex_lock(&kvm->lock);
3c313524
PM
2337 vcore = NULL;
2338 err = -EINVAL;
1e175d2e 2339 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
b5c6f760
PM
2340 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2341 pr_devel("KVM: VCPU ID too high\n");
2342 core = KVM_MAX_VCORES;
2343 } else {
2344 BUG_ON(kvm->arch.smt_mode != 1);
2345 core = kvmppc_pack_vcpu_id(kvm, id);
2346 }
1e175d2e
SB
2347 } else {
2348 core = id / kvm->arch.smt_mode;
2349 }
3c313524
PM
2350 if (core < KVM_MAX_VCORES) {
2351 vcore = kvm->arch.vcores[core];
1e175d2e
SB
2352 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2353 pr_devel("KVM: collision on id %u", id);
2354 vcore = NULL;
2355 } else if (!vcore) {
0d4ee88d
PM
2356 /*
2357 * Take mmu_setup_lock for mutual exclusion
2358 * with kvmppc_update_lpcr().
2359 */
3c313524 2360 err = -ENOMEM;
1e175d2e
SB
2361 vcore = kvmppc_vcore_create(kvm,
2362 id & ~(kvm->arch.smt_mode - 1));
0d4ee88d 2363 mutex_lock(&kvm->arch.mmu_setup_lock);
3c313524
PM
2364 kvm->arch.vcores[core] = vcore;
2365 kvm->arch.online_vcores++;
0d4ee88d 2366 mutex_unlock(&kvm->arch.mmu_setup_lock);
3c313524 2367 }
371fefd6
PM
2368 }
2369 mutex_unlock(&kvm->lock);
2370
2371 if (!vcore)
ff030fdf 2372 return err;
371fefd6
PM
2373
2374 spin_lock(&vcore->lock);
2375 ++vcore->num_threads;
371fefd6
PM
2376 spin_unlock(&vcore->lock);
2377 vcpu->arch.vcore = vcore;
e0b7ec05 2378 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
ec257165 2379 vcpu->arch.thread_cpu = -1;
a29ebeaf 2380 vcpu->arch.prev_cpu = -1;
371fefd6 2381
af8f38b3
AG
2382 vcpu->arch.cpu_type = KVM_CPU_3S_64;
2383 kvmppc_sanity_check(vcpu);
2384
b6c295df
PM
2385 debugfs_vcpu_init(vcpu, id);
2386
c50bfbdc 2387 return 0;
de56a948
PM
2388}
2389
3c313524
PM
2390static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2391 unsigned long flags)
2392{
2393 int err;
57900694 2394 int esmt = 0;
3c313524
PM
2395
2396 if (flags)
2397 return -EINVAL;
2398 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2399 return -EINVAL;
2400 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2401 /*
2402 * On POWER8 (or POWER7), the threading mode is "strict",
2403 * so we pack smt_mode vcpus per vcore.
2404 */
2405 if (smt_mode > threads_per_subcore)
2406 return -EINVAL;
2407 } else {
2408 /*
2409 * On POWER9, the threading mode is "loose",
2410 * so each vcpu gets its own vcore.
2411 */
57900694 2412 esmt = smt_mode;
3c313524
PM
2413 smt_mode = 1;
2414 }
2415 mutex_lock(&kvm->lock);
2416 err = -EBUSY;
2417 if (!kvm->arch.online_vcores) {
2418 kvm->arch.smt_mode = smt_mode;
57900694 2419 kvm->arch.emul_smt_mode = esmt;
3c313524
PM
2420 err = 0;
2421 }
2422 mutex_unlock(&kvm->lock);
2423
2424 return err;
2425}
2426
c35635ef
PM
2427static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2428{
2429 if (vpa->pinned_addr)
2430 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2431 vpa->dirty);
2432}
2433
3a167bea 2434static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
de56a948 2435{
2e25aa5f 2436 spin_lock(&vcpu->arch.vpa_update_lock);
c35635ef
PM
2437 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2438 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2439 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2e25aa5f 2440 spin_unlock(&vcpu->arch.vpa_update_lock);
de56a948
PM
2441}
2442
3a167bea
AK
2443static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2444{
2445 /* Indicate we want to get back into the guest */
2446 return 1;
2447}
2448
19ccb76a 2449static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
371fefd6 2450{
19ccb76a 2451 unsigned long dec_nsec, now;
371fefd6 2452
19ccb76a
PM
2453 now = get_tb();
2454 if (now > vcpu->arch.dec_expires) {
2455 /* decrementer has already gone negative */
2456 kvmppc_core_queue_dec(vcpu);
7e28e60e 2457 kvmppc_core_prepare_to_enter(vcpu);
19ccb76a 2458 return;
371fefd6 2459 }
c43befca 2460 dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
8b0e1953 2461 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
19ccb76a 2462 vcpu->arch.timer_running = 1;
371fefd6
PM
2463}
2464
8b24e69f 2465extern int __kvmppc_vcore_entry(void);
de56a948 2466
371fefd6
PM
2467static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2468 struct kvm_vcpu *vcpu)
de56a948 2469{
c7b67670
PM
2470 u64 now;
2471
371fefd6
PM
2472 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2473 return;
bf3d32e1 2474 spin_lock_irq(&vcpu->arch.tbacct_lock);
c7b67670
PM
2475 now = mftb();
2476 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2477 vcpu->arch.stolen_logged;
2478 vcpu->arch.busy_preempt = now;
2479 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
bf3d32e1 2480 spin_unlock_irq(&vcpu->arch.tbacct_lock);
371fefd6 2481 --vc->n_runnable;
7b5f8272 2482 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
371fefd6
PM
2483}
2484
f0888f70
PM
2485static int kvmppc_grab_hwthread(int cpu)
2486{
2487 struct paca_struct *tpaca;
b754c739 2488 long timeout = 10000;
f0888f70 2489
d2e60075 2490 tpaca = paca_ptrs[cpu];
f0888f70
PM
2491
2492 /* Ensure the thread won't go into the kernel if it wakes */
7b444c67 2493 tpaca->kvm_hstate.kvm_vcpu = NULL;
b4deba5c 2494 tpaca->kvm_hstate.kvm_vcore = NULL;
5d5b99cd
PM
2495 tpaca->kvm_hstate.napping = 0;
2496 smp_wmb();
2497 tpaca->kvm_hstate.hwthread_req = 1;
f0888f70
PM
2498
2499 /*
2500 * If the thread is already executing in the kernel (e.g. handling
2501 * a stray interrupt), wait for it to get back to nap mode.
2502 * The smp_mb() is to ensure that our setting of hwthread_req
2503 * is visible before we look at hwthread_state, so if this
2504 * races with the code at system_reset_pSeries and the thread
2505 * misses our setting of hwthread_req, we are sure to see its
2506 * setting of hwthread_state, and vice versa.
2507 */
2508 smp_mb();
2509 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2510 if (--timeout <= 0) {
2511 pr_err("KVM: couldn't grab cpu %d\n", cpu);
2512 return -EBUSY;
2513 }
2514 udelay(1);
2515 }
2516 return 0;
2517}
2518
2519static void kvmppc_release_hwthread(int cpu)
2520{
2521 struct paca_struct *tpaca;
2522
d2e60075 2523 tpaca = paca_ptrs[cpu];
31a4d448 2524 tpaca->kvm_hstate.hwthread_req = 0;
f0888f70 2525 tpaca->kvm_hstate.kvm_vcpu = NULL;
b4deba5c
PM
2526 tpaca->kvm_hstate.kvm_vcore = NULL;
2527 tpaca->kvm_hstate.kvm_split_mode = NULL;
f0888f70
PM
2528}
2529
a29ebeaf
PM
2530static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2531{
9d0b048d
SJS
2532 struct kvm_nested_guest *nested = vcpu->arch.nested;
2533 cpumask_t *cpu_in_guest;
a29ebeaf
PM
2534 int i;
2535
2536 cpu = cpu_first_thread_sibling(cpu);
9d0b048d
SJS
2537 if (nested) {
2538 cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2539 cpu_in_guest = &nested->cpu_in_guest;
2540 } else {
2541 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2542 cpu_in_guest = &kvm->arch.cpu_in_guest;
2543 }
a29ebeaf
PM
2544 /*
2545 * Make sure setting of bit in need_tlb_flush precedes
2546 * testing of cpu_in_guest bits. The matching barrier on
2547 * the other side is the first smp_mb() in kvmppc_run_core().
2548 */
2549 smp_mb();
2550 for (i = 0; i < threads_per_core; ++i)
9d0b048d 2551 if (cpumask_test_cpu(cpu + i, cpu_in_guest))
a29ebeaf
PM
2552 smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2553}
2554
8b24e69f
PM
2555static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2556{
9d0b048d 2557 struct kvm_nested_guest *nested = vcpu->arch.nested;
8b24e69f 2558 struct kvm *kvm = vcpu->kvm;
9d0b048d
SJS
2559 int prev_cpu;
2560
2561 if (!cpu_has_feature(CPU_FTR_HVMODE))
2562 return;
2563
2564 if (nested)
2565 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2566 else
2567 prev_cpu = vcpu->arch.prev_cpu;
8b24e69f
PM
2568
2569 /*
2570 * With radix, the guest can do TLB invalidations itself,
2571 * and it could choose to use the local form (tlbiel) if
2572 * it is invalidating a translation that has only ever been
2573 * used on one vcpu. However, that doesn't mean it has
2574 * only ever been used on one physical cpu, since vcpus
2575 * can move around between pcpus. To cope with this, when
2576 * a vcpu moves from one pcpu to another, we need to tell
2577 * any vcpus running on the same core as this vcpu previously
2578 * ran to flush the TLB. The TLB is shared between threads,
2579 * so we use a single bit in .need_tlb_flush for all 4 threads.
2580 */
9d0b048d
SJS
2581 if (prev_cpu != pcpu) {
2582 if (prev_cpu >= 0 &&
2583 cpu_first_thread_sibling(prev_cpu) !=
8b24e69f 2584 cpu_first_thread_sibling(pcpu))
9d0b048d
SJS
2585 radix_flush_cpu(kvm, prev_cpu, vcpu);
2586 if (nested)
2587 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2588 else
2589 vcpu->arch.prev_cpu = pcpu;
2590 }
2591}
2592
b4deba5c 2593static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
371fefd6
PM
2594{
2595 int cpu;
2596 struct paca_struct *tpaca;
a29ebeaf 2597 struct kvm *kvm = vc->kvm;
371fefd6 2598
b4deba5c
PM
2599 cpu = vc->pcpu;
2600 if (vcpu) {
2601 if (vcpu->arch.timer_running) {
2602 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2603 vcpu->arch.timer_running = 0;
2604 }
2605 cpu += vcpu->arch.ptid;
898b25b2 2606 vcpu->cpu = vc->pcpu;
b4deba5c 2607 vcpu->arch.thread_cpu = cpu;
a29ebeaf 2608 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
19ccb76a 2609 }
d2e60075 2610 tpaca = paca_ptrs[cpu];
5d5b99cd 2611 tpaca->kvm_hstate.kvm_vcpu = vcpu;
898b25b2 2612 tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
4bb3c7a0 2613 tpaca->kvm_hstate.fake_suspend = 0;
ec257165 2614 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
371fefd6 2615 smp_wmb();
898b25b2 2616 tpaca->kvm_hstate.kvm_vcore = vc;
5d5b99cd 2617 if (cpu != smp_processor_id())
66feed61 2618 kvmppc_ipi_thread(cpu);
371fefd6 2619}
de56a948 2620
516f7898 2621static void kvmppc_wait_for_nap(int n_threads)
371fefd6 2622{
5d5b99cd
PM
2623 int cpu = smp_processor_id();
2624 int i, loops;
371fefd6 2625
45c940ba
PM
2626 if (n_threads <= 1)
2627 return;
5d5b99cd
PM
2628 for (loops = 0; loops < 1000000; ++loops) {
2629 /*
2630 * Check if all threads are finished.
b4deba5c 2631 * We set the vcore pointer when starting a thread
5d5b99cd 2632 * and the thread clears it when finished, so we look
b4deba5c 2633 * for any threads that still have a non-NULL vcore ptr.
5d5b99cd 2634 */
45c940ba 2635 for (i = 1; i < n_threads; ++i)
d2e60075 2636 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
5d5b99cd 2637 break;
45c940ba 2638 if (i == n_threads) {
5d5b99cd
PM
2639 HMT_medium();
2640 return;
371fefd6 2641 }
5d5b99cd 2642 HMT_low();
371fefd6
PM
2643 }
2644 HMT_medium();
45c940ba 2645 for (i = 1; i < n_threads; ++i)
d2e60075 2646 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
5d5b99cd 2647 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
371fefd6
PM
2648}
2649
2650/*
2651 * Check that we are on thread 0 and that any other threads in
7b444c67
PM
2652 * this core are off-line. Then grab the threads so they can't
2653 * enter the kernel.
371fefd6
PM
2654 */
2655static int on_primary_thread(void)
2656{
2657 int cpu = smp_processor_id();
3102f784 2658 int thr;
371fefd6 2659
3102f784
ME
2660 /* Are we on a primary subcore? */
2661 if (cpu_thread_in_subcore(cpu))
371fefd6 2662 return 0;
3102f784
ME
2663
2664 thr = 0;
2665 while (++thr < threads_per_subcore)
371fefd6
PM
2666 if (cpu_online(cpu + thr))
2667 return 0;
7b444c67
PM
2668
2669 /* Grab all hw threads so they can't go into the kernel */
3102f784 2670 for (thr = 1; thr < threads_per_subcore; ++thr) {
7b444c67
PM
2671 if (kvmppc_grab_hwthread(cpu + thr)) {
2672 /* Couldn't grab one; let the others go */
2673 do {
2674 kvmppc_release_hwthread(cpu + thr);
2675 } while (--thr > 0);
2676 return 0;
2677 }
2678 }
371fefd6
PM
2679 return 1;
2680}
2681
ec257165
PM
2682/*
2683 * A list of virtual cores for each physical CPU.
2684 * These are vcores that could run but their runner VCPU tasks are
2685 * (or may be) preempted.
2686 */
2687struct preempted_vcore_list {
2688 struct list_head list;
2689 spinlock_t lock;
2690};
2691
2692static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2693
2694static void init_vcore_lists(void)
2695{
2696 int cpu;
2697
2698 for_each_possible_cpu(cpu) {
2699 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2700 spin_lock_init(&lp->lock);
2701 INIT_LIST_HEAD(&lp->list);
2702 }
2703}
2704
2705static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2706{
2707 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2708
2709 vc->vcore_state = VCORE_PREEMPT;
2710 vc->pcpu = smp_processor_id();
516f7898 2711 if (vc->num_threads < threads_per_vcore(vc->kvm)) {
ec257165
PM
2712 spin_lock(&lp->lock);
2713 list_add_tail(&vc->preempt_list, &lp->list);
2714 spin_unlock(&lp->lock);
2715 }
2716
2717 /* Start accumulating stolen time */
2718 kvmppc_core_start_stolen(vc);
2719}
2720
2721static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2722{
402813fe 2723 struct preempted_vcore_list *lp;
ec257165
PM
2724
2725 kvmppc_core_end_stolen(vc);
2726 if (!list_empty(&vc->preempt_list)) {
402813fe 2727 lp = &per_cpu(preempted_vcores, vc->pcpu);
ec257165
PM
2728 spin_lock(&lp->lock);
2729 list_del_init(&vc->preempt_list);
2730 spin_unlock(&lp->lock);
2731 }
2732 vc->vcore_state = VCORE_INACTIVE;
2733}
2734
b4deba5c
PM
2735/*
2736 * This stores information about the virtual cores currently
2737 * assigned to a physical core.
2738 */
ec257165 2739struct core_info {
b4deba5c
PM
2740 int n_subcores;
2741 int max_subcore_threads;
ec257165 2742 int total_threads;
b4deba5c 2743 int subcore_threads[MAX_SUBCORES];
898b25b2 2744 struct kvmppc_vcore *vc[MAX_SUBCORES];
ec257165
PM
2745};
2746
b4deba5c
PM
2747/*
2748 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
516f7898 2749 * respectively in 2-way micro-threading (split-core) mode on POWER8.
b4deba5c
PM
2750 */
2751static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2752
ec257165
PM
2753static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2754{
2755 memset(cip, 0, sizeof(*cip));
b4deba5c
PM
2756 cip->n_subcores = 1;
2757 cip->max_subcore_threads = vc->num_threads;
ec257165 2758 cip->total_threads = vc->num_threads;
b4deba5c 2759 cip->subcore_threads[0] = vc->num_threads;
898b25b2 2760 cip->vc[0] = vc;
b4deba5c
PM
2761}
2762
2763static bool subcore_config_ok(int n_subcores, int n_threads)
2764{
516f7898 2765 /*
00608e1f
PM
2766 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2767 * split-core mode, with one thread per subcore.
516f7898
PM
2768 */
2769 if (cpu_has_feature(CPU_FTR_ARCH_300))
2770 return n_subcores <= 4 && n_threads == 1;
2771
2772 /* On POWER8, can only dynamically split if unsplit to begin with */
b4deba5c
PM
2773 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2774 return false;
2775 if (n_subcores > MAX_SUBCORES)
2776 return false;
2777 if (n_subcores > 1) {
2778 if (!(dynamic_mt_modes & 2))
2779 n_subcores = 4;
2780 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2781 return false;
2782 }
2783
2784 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
ec257165
PM
2785}
2786
898b25b2 2787static void init_vcore_to_run(struct kvmppc_vcore *vc)
ec257165 2788{
ec257165
PM
2789 vc->entry_exit_map = 0;
2790 vc->in_guest = 0;
2791 vc->napping_threads = 0;
2792 vc->conferring_threads = 0;
57b8daa7 2793 vc->tb_offset_applied = 0;
ec257165
PM
2794}
2795
b4deba5c
PM
2796static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2797{
2798 int n_threads = vc->num_threads;
2799 int sub;
2800
2801 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2802 return false;
2803
aa227864
PM
2804 /* In one_vm_per_core mode, require all vcores to be from the same vm */
2805 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
2806 return false;
2807
00608e1f
PM
2808 /* Some POWER9 chips require all threads to be in the same MMU mode */
2809 if (no_mixing_hpt_and_radix &&
c0101509
PM
2810 kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2811 return false;
2812
b4deba5c
PM
2813 if (n_threads < cip->max_subcore_threads)
2814 n_threads = cip->max_subcore_threads;
b009031f 2815 if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
b4deba5c 2816 return false;
b009031f 2817 cip->max_subcore_threads = n_threads;
b4deba5c
PM
2818
2819 sub = cip->n_subcores;
2820 ++cip->n_subcores;
2821 cip->total_threads += vc->num_threads;
2822 cip->subcore_threads[sub] = vc->num_threads;
898b25b2
PM
2823 cip->vc[sub] = vc;
2824 init_vcore_to_run(vc);
2825 list_del_init(&vc->preempt_list);
b4deba5c
PM
2826
2827 return true;
2828}
2829
b4deba5c
PM
2830/*
2831 * Work out whether it is possible to piggyback the execution of
2832 * vcore *pvc onto the execution of the other vcores described in *cip.
2833 */
2834static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2835 int target_threads)
2836{
b4deba5c
PM
2837 if (cip->total_threads + pvc->num_threads > target_threads)
2838 return false;
b4deba5c 2839
b009031f 2840 return can_dynamic_split(pvc, cip);
b4deba5c
PM
2841}
2842
d911f0be
PM
2843static void prepare_threads(struct kvmppc_vcore *vc)
2844{
7b5f8272
SJS
2845 int i;
2846 struct kvm_vcpu *vcpu;
d911f0be 2847
7b5f8272 2848 for_each_runnable_thread(i, vcpu, vc) {
d911f0be
PM
2849 if (signal_pending(vcpu->arch.run_task))
2850 vcpu->arch.ret = -EINTR;
2851 else if (vcpu->arch.vpa.update_pending ||
2852 vcpu->arch.slb_shadow.update_pending ||
2853 vcpu->arch.dtl.update_pending)
2854 vcpu->arch.ret = RESUME_GUEST;
2855 else
2856 continue;
2857 kvmppc_remove_runnable(vc, vcpu);
2858 wake_up(&vcpu->arch.cpu_run);
2859 }
2860}
2861
ec257165
PM
2862static void collect_piggybacks(struct core_info *cip, int target_threads)
2863{
2864 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2865 struct kvmppc_vcore *pvc, *vcnext;
2866
2867 spin_lock(&lp->lock);
2868 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2869 if (!spin_trylock(&pvc->lock))
2870 continue;
2871 prepare_threads(pvc);
d28eafc5 2872 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
ec257165
PM
2873 list_del_init(&pvc->preempt_list);
2874 if (pvc->runner == NULL) {
2875 pvc->vcore_state = VCORE_INACTIVE;
2876 kvmppc_core_end_stolen(pvc);
2877 }
2878 spin_unlock(&pvc->lock);
2879 continue;
2880 }
2881 if (!can_piggyback(pvc, cip, target_threads)) {
2882 spin_unlock(&pvc->lock);
2883 continue;
2884 }
2885 kvmppc_core_end_stolen(pvc);
2886 pvc->vcore_state = VCORE_PIGGYBACK;
2887 if (cip->total_threads >= target_threads)
2888 break;
2889 }
2890 spin_unlock(&lp->lock);
2891}
2892
d28eafc5 2893static bool recheck_signals_and_mmu(struct core_info *cip)
8b24e69f
PM
2894{
2895 int sub, i;
2896 struct kvm_vcpu *vcpu;
d28eafc5 2897 struct kvmppc_vcore *vc;
8b24e69f 2898
d28eafc5
PM
2899 for (sub = 0; sub < cip->n_subcores; ++sub) {
2900 vc = cip->vc[sub];
2901 if (!vc->kvm->arch.mmu_ready)
2902 return true;
2903 for_each_runnable_thread(i, vcpu, vc)
8b24e69f
PM
2904 if (signal_pending(vcpu->arch.run_task))
2905 return true;
d28eafc5 2906 }
8b24e69f
PM
2907 return false;
2908}
2909
ec257165 2910static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
25fedfca 2911{
7b5f8272 2912 int still_running = 0, i;
25fedfca
PM
2913 u64 now;
2914 long ret;
7b5f8272 2915 struct kvm_vcpu *vcpu;
25fedfca 2916
ec257165 2917 spin_lock(&vc->lock);
25fedfca 2918 now = get_tb();
7b5f8272 2919 for_each_runnable_thread(i, vcpu, vc) {
53655ddd
PM
2920 /*
2921 * It's safe to unlock the vcore in the loop here, because
2922 * for_each_runnable_thread() is safe against removal of
2923 * the vcpu, and the vcore state is VCORE_EXITING here,
2924 * so any vcpus becoming runnable will have their arch.trap
2925 * set to zero and can't actually run in the guest.
2926 */
2927 spin_unlock(&vc->lock);
25fedfca
PM
2928 /* cancel pending dec exception if dec is positive */
2929 if (now < vcpu->arch.dec_expires &&
2930 kvmppc_core_pending_dec(vcpu))
2931 kvmppc_core_dequeue_dec(vcpu);
2932
2933 trace_kvm_guest_exit(vcpu);
2934
2935 ret = RESUME_GUEST;
2936 if (vcpu->arch.trap)
8c99d345 2937 ret = kvmppc_handle_exit_hv(vcpu,
25fedfca
PM
2938 vcpu->arch.run_task);
2939
2940 vcpu->arch.ret = ret;
2941 vcpu->arch.trap = 0;
2942
53655ddd 2943 spin_lock(&vc->lock);
ec257165
PM
2944 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2945 if (vcpu->arch.pending_exceptions)
2946 kvmppc_core_prepare_to_enter(vcpu);
2947 if (vcpu->arch.ceded)
25fedfca 2948 kvmppc_set_timer(vcpu);
ec257165
PM
2949 else
2950 ++still_running;
2951 } else {
25fedfca
PM
2952 kvmppc_remove_runnable(vc, vcpu);
2953 wake_up(&vcpu->arch.cpu_run);
2954 }
2955 }
ec257165 2956 if (!is_master) {
563a1e93 2957 if (still_running > 0) {
ec257165 2958 kvmppc_vcore_preempt(vc);
563a1e93
PM
2959 } else if (vc->runner) {
2960 vc->vcore_state = VCORE_PREEMPT;
2961 kvmppc_core_start_stolen(vc);
2962 } else {
2963 vc->vcore_state = VCORE_INACTIVE;
2964 }
ec257165
PM
2965 if (vc->n_runnable > 0 && vc->runner == NULL) {
2966 /* make sure there's a candidate runner awake */
7b5f8272
SJS
2967 i = -1;
2968 vcpu = next_runnable_thread(vc, &i);
ec257165
PM
2969 wake_up(&vcpu->arch.cpu_run);
2970 }
2971 }
2972 spin_unlock(&vc->lock);
25fedfca
PM
2973}
2974
b8e6a87c
SW
2975/*
2976 * Clear core from the list of active host cores as we are about to
2977 * enter the guest. Only do this if it is the primary thread of the
2978 * core (not if a subcore) that is entering the guest.
2979 */
3f7cd919 2980static inline int kvmppc_clear_host_core(unsigned int cpu)
b8e6a87c
SW
2981{
2982 int core;
2983
2984 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3f7cd919 2985 return 0;
b8e6a87c
SW
2986 /*
2987 * Memory barrier can be omitted here as we will do a smp_wmb()
2988 * later in kvmppc_start_thread and we need ensure that state is
2989 * visible to other CPUs only after we enter guest.
2990 */
2991 core = cpu >> threads_shift;
2992 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3f7cd919 2993 return 0;
b8e6a87c
SW
2994}
2995
2996/*
2997 * Advertise this core as an active host core since we exited the guest
2998 * Only need to do this if it is the primary thread of the core that is
2999 * exiting.
3000 */
3f7cd919 3001static inline int kvmppc_set_host_core(unsigned int cpu)
b8e6a87c
SW
3002{
3003 int core;
3004
3005 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3f7cd919 3006 return 0;
b8e6a87c
SW
3007
3008 /*
3009 * Memory barrier can be omitted here because we do a spin_unlock
3010 * immediately after this which provides the memory barrier.
3011 */
3012 core = cpu >> threads_shift;
3013 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3f7cd919 3014 return 0;
b8e6a87c
SW
3015}
3016
8b24e69f
PM
3017static void set_irq_happened(int trap)
3018{
3019 switch (trap) {
3020 case BOOK3S_INTERRUPT_EXTERNAL:
3021 local_paca->irq_happened |= PACA_IRQ_EE;
3022 break;
3023 case BOOK3S_INTERRUPT_H_DOORBELL:
3024 local_paca->irq_happened |= PACA_IRQ_DBELL;
3025 break;
3026 case BOOK3S_INTERRUPT_HMI:
3027 local_paca->irq_happened |= PACA_IRQ_HMI;
3028 break;
6de6638b
NP
3029 case BOOK3S_INTERRUPT_SYSTEM_RESET:
3030 replay_system_reset();
3031 break;
8b24e69f
PM
3032 }
3033}
3034
371fefd6
PM
3035/*
3036 * Run a set of guest threads on a physical core.
3037 * Called with vc->lock held.
3038 */
66feed61 3039static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
371fefd6 3040{
7b5f8272 3041 struct kvm_vcpu *vcpu;
d911f0be 3042 int i;
2c9097e4 3043 int srcu_idx;
ec257165 3044 struct core_info core_info;
898b25b2 3045 struct kvmppc_vcore *pvc;
b4deba5c
PM
3046 struct kvm_split_mode split_info, *sip;
3047 int split, subcore_size, active;
3048 int sub;
3049 bool thr0_done;
3050 unsigned long cmd_bit, stat_bit;
ec257165
PM
3051 int pcpu, thr;
3052 int target_threads;
45c940ba 3053 int controlled_threads;
8b24e69f 3054 int trap;
516f7898 3055 bool is_power8;
c0101509 3056 bool hpt_on_radix;
371fefd6 3057
d911f0be
PM
3058 /*
3059 * Remove from the list any threads that have a signal pending
3060 * or need a VPA update done
3061 */
3062 prepare_threads(vc);
3063
3064 /* if the runner is no longer runnable, let the caller pick a new one */
3065 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3066 return;
081f323b
PM
3067
3068 /*
d911f0be 3069 * Initialize *vc.
081f323b 3070 */
898b25b2 3071 init_vcore_to_run(vc);
2711e248 3072 vc->preempt_tb = TB_NIL;
081f323b 3073
45c940ba
PM
3074 /*
3075 * Number of threads that we will be controlling: the same as
3076 * the number of threads per subcore, except on POWER9,
3077 * where it's 1 because the threads are (mostly) independent.
3078 */
516f7898 3079 controlled_threads = threads_per_vcore(vc->kvm);
45c940ba 3080
7b444c67 3081 /*
3102f784
ME
3082 * Make sure we are running on primary threads, and that secondary
3083 * threads are offline. Also check if the number of threads in this
3084 * guest are greater than the current system threads per guest.
c0101509 3085 * On POWER9, we need to be not in independent-threads mode if
00608e1f
PM
3086 * this is a HPT guest on a radix host machine where the
3087 * CPU threads may not be in different MMU modes.
7b444c67 3088 */
00608e1f
PM
3089 hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
3090 !kvm_is_radix(vc->kvm);
c0101509
PM
3091 if (((controlled_threads > 1) &&
3092 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
3093 (hpt_on_radix && vc->kvm->arch.threads_indep)) {
7b5f8272 3094 for_each_runnable_thread(i, vcpu, vc) {
7b444c67 3095 vcpu->arch.ret = -EBUSY;
25fedfca
PM
3096 kvmppc_remove_runnable(vc, vcpu);
3097 wake_up(&vcpu->arch.cpu_run);
3098 }
7b444c67
PM
3099 goto out;
3100 }
3101
ec257165
PM
3102 /*
3103 * See if we could run any other vcores on the physical core
3104 * along with this one.
3105 */
3106 init_core_info(&core_info, vc);
3107 pcpu = smp_processor_id();
45c940ba 3108 target_threads = controlled_threads;
ec257165
PM
3109 if (target_smt_mode && target_smt_mode < target_threads)
3110 target_threads = target_smt_mode;
3111 if (vc->num_threads < target_threads)
3112 collect_piggybacks(&core_info, target_threads);
3102f784 3113
8b24e69f
PM
3114 /*
3115 * On radix, arrange for TLB flushing if necessary.
3116 * This has to be done before disabling interrupts since
3117 * it uses smp_call_function().
3118 */
3119 pcpu = smp_processor_id();
3120 if (kvm_is_radix(vc->kvm)) {
3121 for (sub = 0; sub < core_info.n_subcores; ++sub)
3122 for_each_runnable_thread(i, vcpu, core_info.vc[sub])
3123 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3124 }
3125
3126 /*
3127 * Hard-disable interrupts, and check resched flag and signals.
3128 * If we need to reschedule or deliver a signal, clean up
3129 * and return without going into the guest(s).
072df813 3130 * If the mmu_ready flag has been cleared, don't go into the
38c53af8 3131 * guest because that means a HPT resize operation is in progress.
8b24e69f
PM
3132 */
3133 local_irq_disable();
3134 hard_irq_disable();
3135 if (lazy_irq_pending() || need_resched() ||
d28eafc5 3136 recheck_signals_and_mmu(&core_info)) {
8b24e69f
PM
3137 local_irq_enable();
3138 vc->vcore_state = VCORE_INACTIVE;
3139 /* Unlock all except the primary vcore */
3140 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3141 pvc = core_info.vc[sub];
3142 /* Put back on to the preempted vcores list */
3143 kvmppc_vcore_preempt(pvc);
3144 spin_unlock(&pvc->lock);
3145 }
3146 for (i = 0; i < controlled_threads; ++i)
3147 kvmppc_release_hwthread(pcpu + i);
3148 return;
3149 }
3150
3151 kvmppc_clear_host_core(pcpu);
3152
b4deba5c
PM
3153 /* Decide on micro-threading (split-core) mode */
3154 subcore_size = threads_per_subcore;
3155 cmd_bit = stat_bit = 0;
3156 split = core_info.n_subcores;
3157 sip = NULL;
516f7898
PM
3158 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
3159 && !cpu_has_feature(CPU_FTR_ARCH_300);
3160
c0101509 3161 if (split > 1 || hpt_on_radix) {
b4deba5c
PM
3162 sip = &split_info;
3163 memset(&split_info, 0, sizeof(split_info));
b4deba5c 3164 for (sub = 0; sub < core_info.n_subcores; ++sub)
898b25b2 3165 split_info.vc[sub] = core_info.vc[sub];
516f7898
PM
3166
3167 if (is_power8) {
3168 if (split == 2 && (dynamic_mt_modes & 2)) {
3169 cmd_bit = HID0_POWER8_1TO2LPAR;
3170 stat_bit = HID0_POWER8_2LPARMODE;
3171 } else {
3172 split = 4;
3173 cmd_bit = HID0_POWER8_1TO4LPAR;
3174 stat_bit = HID0_POWER8_4LPARMODE;
3175 }
3176 subcore_size = MAX_SMT_THREADS / split;
3177 split_info.rpr = mfspr(SPRN_RPR);
3178 split_info.pmmar = mfspr(SPRN_PMMAR);
3179 split_info.ldbar = mfspr(SPRN_LDBAR);
3180 split_info.subcore_size = subcore_size;
3181 } else {
3182 split_info.subcore_size = 1;
c0101509
PM
3183 if (hpt_on_radix) {
3184 /* Use the split_info for LPCR/LPIDR changes */
3185 split_info.lpcr_req = vc->lpcr;
3186 split_info.lpidr_req = vc->kvm->arch.lpid;
3187 split_info.host_lpcr = vc->kvm->arch.host_lpcr;
3188 split_info.do_set = 1;
3189 }
516f7898
PM
3190 }
3191
b4deba5c
PM
3192 /* order writes to split_info before kvm_split_mode pointer */
3193 smp_wmb();
3194 }
c0101509
PM
3195
3196 for (thr = 0; thr < controlled_threads; ++thr) {
d2e60075
NP
3197 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3198
3199 paca->kvm_hstate.tid = thr;
3200 paca->kvm_hstate.napping = 0;
3201 paca->kvm_hstate.kvm_split_mode = sip;
c0101509 3202 }
b4deba5c 3203
516f7898 3204 /* Initiate micro-threading (split-core) on POWER8 if required */
b4deba5c
PM
3205 if (cmd_bit) {
3206 unsigned long hid0 = mfspr(SPRN_HID0);
3207
3208 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3209 mb();
3210 mtspr(SPRN_HID0, hid0);
3211 isync();
3212 for (;;) {
3213 hid0 = mfspr(SPRN_HID0);
3214 if (hid0 & stat_bit)
3215 break;
3216 cpu_relax();
ec257165 3217 }
2e25aa5f 3218 }
3102f784 3219
7aa15842
PM
3220 /*
3221 * On POWER8, set RWMR register.
3222 * Since it only affects PURR and SPURR, it doesn't affect
3223 * the host, so we don't save/restore the host value.
3224 */
3225 if (is_power8) {
3226 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3227 int n_online = atomic_read(&vc->online_count);
3228
3229 /*
3230 * Use the 8-thread value if we're doing split-core
3231 * or if the vcore's online count looks bogus.
3232 */
3233 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3234 n_online >= 1 && n_online <= MAX_SMT_THREADS)
3235 rwmr_val = p8_rwmr_values[n_online];
3236 mtspr(SPRN_RWMR, rwmr_val);
3237 }
3238
b4deba5c
PM
3239 /* Start all the threads */
3240 active = 0;
3241 for (sub = 0; sub < core_info.n_subcores; ++sub) {
516f7898 3242 thr = is_power8 ? subcore_thread_map[sub] : sub;
b4deba5c
PM
3243 thr0_done = false;
3244 active |= 1 << thr;
898b25b2
PM
3245 pvc = core_info.vc[sub];
3246 pvc->pcpu = pcpu + thr;
3247 for_each_runnable_thread(i, vcpu, pvc) {
3248 kvmppc_start_thread(vcpu, pvc);
3249 kvmppc_create_dtl_entry(vcpu, pvc);
3250 trace_kvm_guest_enter(vcpu);
3251 if (!vcpu->arch.ptid)
3252 thr0_done = true;
3253 active |= 1 << (thr + vcpu->arch.ptid);
b4deba5c 3254 }
898b25b2
PM
3255 /*
3256 * We need to start the first thread of each subcore
3257 * even if it doesn't have a vcpu.
3258 */
3259 if (!thr0_done)
3260 kvmppc_start_thread(NULL, pvc);
2e25aa5f 3261 }
371fefd6 3262
7f235328
GS
3263 /*
3264 * Ensure that split_info.do_nap is set after setting
3265 * the vcore pointer in the PACA of the secondaries.
3266 */
3267 smp_mb();
7f235328 3268
b4deba5c
PM
3269 /*
3270 * When doing micro-threading, poke the inactive threads as well.
3271 * This gets them to the nap instruction after kvm_do_nap,
3272 * which reduces the time taken to unsplit later.
c0101509
PM
3273 * For POWER9 HPT guest on radix host, we need all the secondary
3274 * threads woken up so they can do the LPCR/LPIDR change.
b4deba5c 3275 */
c0101509 3276 if (cmd_bit || hpt_on_radix) {
516f7898 3277 split_info.do_nap = 1; /* ask secondaries to nap when done */
b4deba5c
PM
3278 for (thr = 1; thr < threads_per_subcore; ++thr)
3279 if (!(active & (1 << thr)))
3280 kvmppc_ipi_thread(pcpu + thr);
516f7898 3281 }
e0b7ec05 3282
2f12f034 3283 vc->vcore_state = VCORE_RUNNING;
19ccb76a 3284 preempt_disable();
3c78f78a
SW
3285
3286 trace_kvmppc_run_core(vc, 0);
3287
b4deba5c 3288 for (sub = 0; sub < core_info.n_subcores; ++sub)
898b25b2 3289 spin_unlock(&core_info.vc[sub]->lock);
de56a948 3290
61bd0f66 3291 guest_enter_irqoff();
2c9097e4 3292
e0b7ec05 3293 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2c9097e4 3294
a4bc64d3
NR
3295 this_cpu_disable_ftrace();
3296
3309bec8
AK
3297 /*
3298 * Interrupts will be enabled once we get into the guest,
3299 * so tell lockdep that we're about to enable interrupts.
3300 */
3301 trace_hardirqs_on();
3302
8b24e69f 3303 trap = __kvmppc_vcore_entry();
de56a948 3304
3309bec8
AK
3305 trace_hardirqs_off();
3306
a4bc64d3
NR
3307 this_cpu_enable_ftrace();
3308
ec257165
PM
3309 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3310
8b24e69f
PM
3311 set_irq_happened(trap);
3312
ec257165 3313 spin_lock(&vc->lock);
371fefd6 3314 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
19ccb76a 3315 vc->vcore_state = VCORE_EXITING;
371fefd6 3316
19ccb76a 3317 /* wait for secondary threads to finish writing their state to memory */
516f7898 3318 kvmppc_wait_for_nap(controlled_threads);
b4deba5c
PM
3319
3320 /* Return to whole-core mode if we split the core earlier */
516f7898 3321 if (cmd_bit) {
b4deba5c
PM
3322 unsigned long hid0 = mfspr(SPRN_HID0);
3323 unsigned long loops = 0;
3324
3325 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3326 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3327 mb();
3328 mtspr(SPRN_HID0, hid0);
3329 isync();
3330 for (;;) {
3331 hid0 = mfspr(SPRN_HID0);
3332 if (!(hid0 & stat_bit))
3333 break;
3334 cpu_relax();
3335 ++loops;
3336 }
c0101509
PM
3337 } else if (hpt_on_radix) {
3338 /* Wait for all threads to have seen final sync */
3339 for (thr = 1; thr < controlled_threads; ++thr) {
d2e60075
NP
3340 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3341
3342 while (paca->kvm_hstate.kvm_split_mode) {
c0101509
PM
3343 HMT_low();
3344 barrier();
3345 }
3346 HMT_medium();
3347 }
b4deba5c 3348 }
c0101509 3349 split_info.do_nap = 0;
b4deba5c 3350
8b24e69f
PM
3351 kvmppc_set_host_core(pcpu);
3352
3353 local_irq_enable();
61bd0f66 3354 guest_exit();
8b24e69f 3355
b4deba5c 3356 /* Let secondaries go back to the offline loop */
45c940ba 3357 for (i = 0; i < controlled_threads; ++i) {
b4deba5c
PM
3358 kvmppc_release_hwthread(pcpu + i);
3359 if (sip && sip->napped[i])
3360 kvmppc_ipi_thread(pcpu + i);
a29ebeaf 3361 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
b4deba5c
PM
3362 }
3363
371fefd6 3364 spin_unlock(&vc->lock);
2c9097e4 3365
371fefd6
PM
3366 /* make sure updates to secondary vcpu structs are visible now */
3367 smp_mb();
de56a948 3368
36ee41d1
PM
3369 preempt_enable();
3370
898b25b2
PM
3371 for (sub = 0; sub < core_info.n_subcores; ++sub) {
3372 pvc = core_info.vc[sub];
3373 post_guest_process(pvc, pvc == vc);
3374 }
de56a948 3375
913d3ff9 3376 spin_lock(&vc->lock);
de56a948
PM
3377
3378 out:
19ccb76a 3379 vc->vcore_state = VCORE_INACTIVE;
3c78f78a 3380 trace_kvmppc_run_core(vc, 1);
371fefd6
PM
3381}
3382
95a6432c
PM
3383/*
3384 * Load up hypervisor-mode registers on P9.
3385 */
360cae31
PM
3386static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
3387 unsigned long lpcr)
95a6432c
PM
3388{
3389 struct kvmppc_vcore *vc = vcpu->arch.vcore;
3390 s64 hdec;
3391 u64 tb, purr, spurr;
3392 int trap;
3393 unsigned long host_hfscr = mfspr(SPRN_HFSCR);
3394 unsigned long host_ciabr = mfspr(SPRN_CIABR);
09f82b06
RB
3395 unsigned long host_dawr = mfspr(SPRN_DAWR0);
3396 unsigned long host_dawrx = mfspr(SPRN_DAWRX0);
95a6432c
PM
3397 unsigned long host_psscr = mfspr(SPRN_PSSCR);
3398 unsigned long host_pidr = mfspr(SPRN_PID);
3399
3400 hdec = time_limit - mftb();
3401 if (hdec < 0)
3402 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3403 mtspr(SPRN_HDEC, hdec);
3404
3405 if (vc->tb_offset) {
3406 u64 new_tb = mftb() + vc->tb_offset;
3407 mtspr(SPRN_TBU40, new_tb);
3408 tb = mftb();
3409 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3410 mtspr(SPRN_TBU40, new_tb + 0x1000000);
3411 vc->tb_offset_applied = vc->tb_offset;
3412 }
3413
3414 if (vc->pcr)
13c7bb3c 3415 mtspr(SPRN_PCR, vc->pcr | PCR_MASK);
95a6432c
PM
3416 mtspr(SPRN_DPDES, vc->dpdes);
3417 mtspr(SPRN_VTB, vc->vtb);
3418
3419 local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
3420 local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
3421 mtspr(SPRN_PURR, vcpu->arch.purr);
3422 mtspr(SPRN_SPURR, vcpu->arch.spurr);
3423
c1fe190c 3424 if (dawr_enabled()) {
09f82b06
RB
3425 mtspr(SPRN_DAWR0, vcpu->arch.dawr);
3426 mtspr(SPRN_DAWRX0, vcpu->arch.dawrx);
95a6432c
PM
3427 }
3428 mtspr(SPRN_CIABR, vcpu->arch.ciabr);
3429 mtspr(SPRN_IC, vcpu->arch.ic);
3430 mtspr(SPRN_PID, vcpu->arch.pid);
3431
3432 mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
3433 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3434
3435 mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
3436
3437 mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
3438 mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
3439 mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
3440 mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
3441
3442 mtspr(SPRN_AMOR, ~0UL);
3443
360cae31 3444 mtspr(SPRN_LPCR, lpcr);
95a6432c
PM
3445 isync();
3446
3447 kvmppc_xive_push_vcpu(vcpu);
3448
3449 mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
3450 mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
3451
3452 trap = __kvmhv_vcpu_entry_p9(vcpu);
3453
3454 /* Advance host PURR/SPURR by the amount used by guest */
3455 purr = mfspr(SPRN_PURR);
3456 spurr = mfspr(SPRN_SPURR);
3457 mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
3458 purr - vcpu->arch.purr);
3459 mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
3460 spurr - vcpu->arch.spurr);
3461 vcpu->arch.purr = purr;
3462 vcpu->arch.spurr = spurr;
3463
3464 vcpu->arch.ic = mfspr(SPRN_IC);
3465 vcpu->arch.pid = mfspr(SPRN_PID);
3466 vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
3467
3468 vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
3469 vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
3470 vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
3471 vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
3472
7cb9eb10
SJS
3473 /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
3474 mtspr(SPRN_PSSCR, host_psscr |
3475 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
95a6432c
PM
3476 mtspr(SPRN_HFSCR, host_hfscr);
3477 mtspr(SPRN_CIABR, host_ciabr);
09f82b06
RB
3478 mtspr(SPRN_DAWR0, host_dawr);
3479 mtspr(SPRN_DAWRX0, host_dawrx);
95a6432c
PM
3480 mtspr(SPRN_PID, host_pidr);
3481
3482 /*
3483 * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3484 * case we interrupted the guest between a tlbie and a ptesync.
3485 */
3486 asm volatile("eieio; tlbsync; ptesync");
3487
3488 mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid); /* restore host LPID */
3489 isync();
3490
3491 vc->dpdes = mfspr(SPRN_DPDES);
3492 vc->vtb = mfspr(SPRN_VTB);
3493 mtspr(SPRN_DPDES, 0);
3494 if (vc->pcr)
13c7bb3c 3495 mtspr(SPRN_PCR, PCR_MASK);
95a6432c
PM
3496
3497 if (vc->tb_offset_applied) {
3498 u64 new_tb = mftb() - vc->tb_offset_applied;
3499 mtspr(SPRN_TBU40, new_tb);
3500 tb = mftb();
3501 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3502 mtspr(SPRN_TBU40, new_tb + 0x1000000);
3503 vc->tb_offset_applied = 0;
3504 }
3505
3506 mtspr(SPRN_HDEC, 0x7fffffff);
3507 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3508
3509 return trap;
3510}
3511
3512/*
3513 * Virtual-mode guest entry for POWER9 and later when the host and
3514 * guest are both using the radix MMU. The LPIDR has already been set.
3515 */
360cae31
PM
3516int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3517 unsigned long lpcr)
95a6432c
PM
3518{
3519 struct kvmppc_vcore *vc = vcpu->arch.vcore;
3520 unsigned long host_dscr = mfspr(SPRN_DSCR);
3521 unsigned long host_tidr = mfspr(SPRN_TIDR);
3522 unsigned long host_iamr = mfspr(SPRN_IAMR);
d976f680 3523 unsigned long host_amr = mfspr(SPRN_AMR);
95a6432c
PM
3524 s64 dec;
3525 u64 tb;
3526 int trap, save_pmu;
3527
3528 dec = mfspr(SPRN_DEC);
3529 tb = mftb();
3530 if (dec < 512)
3531 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3532 local_paca->kvm_hstate.dec_expires = dec + tb;
3533 if (local_paca->kvm_hstate.dec_expires < time_limit)
3534 time_limit = local_paca->kvm_hstate.dec_expires;
3535
3536 vcpu->arch.ceded = 0;
3537
3538 kvmhv_save_host_pmu(); /* saves it to PACA kvm_hstate */
3539
3540 kvmppc_subcore_enter_guest();
3541
3542 vc->entry_exit_map = 1;
3543 vc->in_guest = 1;
3544
3545 if (vcpu->arch.vpa.pinned_addr) {
3546 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3547 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3548 lp->yield_count = cpu_to_be32(yield_count);
3549 vcpu->arch.vpa.dirty = 1;
3550 }
3551
3552 if (cpu_has_feature(CPU_FTR_TM) ||
3553 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3554 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3555
3556 kvmhv_load_guest_pmu(vcpu);
3557
3558 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3559 load_fp_state(&vcpu->arch.fp);
3560#ifdef CONFIG_ALTIVEC
3561 load_vr_state(&vcpu->arch.vr);
3562#endif
44b198ae 3563 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
95a6432c
PM
3564
3565 mtspr(SPRN_DSCR, vcpu->arch.dscr);
3566 mtspr(SPRN_IAMR, vcpu->arch.iamr);
3567 mtspr(SPRN_PSPB, vcpu->arch.pspb);
3568 mtspr(SPRN_FSCR, vcpu->arch.fscr);
3569 mtspr(SPRN_TAR, vcpu->arch.tar);
3570 mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3571 mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3572 mtspr(SPRN_BESCR, vcpu->arch.bescr);
3573 mtspr(SPRN_WORT, vcpu->arch.wort);
3574 mtspr(SPRN_TIDR, vcpu->arch.tid);
3575 mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3576 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3577 mtspr(SPRN_AMR, vcpu->arch.amr);
3578 mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3579
3580 if (!(vcpu->arch.ctrl & 1))
3581 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3582
3583 mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3584
360cae31 3585 if (kvmhv_on_pseries()) {
c8b4083d
SJS
3586 /*
3587 * We need to save and restore the guest visible part of the
3588 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3589 * doesn't do this for us. Note only required if pseries since
3590 * this is done in kvmhv_load_hv_regs_and_go() below otherwise.
3591 */
3592 unsigned long host_psscr;
360cae31
PM
3593 /* call our hypervisor to load up HV regs and go */
3594 struct hv_guest_state hvregs;
3595
c8b4083d
SJS
3596 host_psscr = mfspr(SPRN_PSSCR_PR);
3597 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
360cae31
PM
3598 kvmhv_save_hv_regs(vcpu, &hvregs);
3599 hvregs.lpcr = lpcr;
3600 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3601 hvregs.version = HV_GUEST_STATE_VERSION;
3602 if (vcpu->arch.nested) {
3603 hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3604 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3605 } else {
3606 hvregs.lpid = vcpu->kvm->arch.lpid;
3607 hvregs.vcpu_token = vcpu->vcpu_id;
3608 }
3609 hvregs.hdec_expiry = time_limit;
3610 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3611 __pa(&vcpu->arch.regs));
3612 kvmhv_restore_hv_return_state(vcpu, &hvregs);
3613 vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3614 vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3615 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
c8b4083d
SJS
3616 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3617 mtspr(SPRN_PSSCR_PR, host_psscr);
4bad7779
PM
3618
3619 /* H_CEDE has to be handled now, not later */
3620 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3621 kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3622 kvmppc_nested_cede(vcpu);
1f50cc17 3623 kvmppc_set_gpr(vcpu, 3, 0);
4bad7779
PM
3624 trap = 0;
3625 }
360cae31
PM
3626 } else {
3627 trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
95a6432c
PM
3628 }
3629
95a6432c
PM
3630 vcpu->arch.slb_max = 0;
3631 dec = mfspr(SPRN_DEC);
86953770
SJS
3632 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
3633 dec = (s32) dec;
95a6432c
PM
3634 tb = mftb();
3635 vcpu->arch.dec_expires = dec + tb;
3636 vcpu->cpu = -1;
3637 vcpu->arch.thread_cpu = -1;
3638 vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3639
3640 vcpu->arch.iamr = mfspr(SPRN_IAMR);
3641 vcpu->arch.pspb = mfspr(SPRN_PSPB);
3642 vcpu->arch.fscr = mfspr(SPRN_FSCR);
3643 vcpu->arch.tar = mfspr(SPRN_TAR);
3644 vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3645 vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3646 vcpu->arch.bescr = mfspr(SPRN_BESCR);
3647 vcpu->arch.wort = mfspr(SPRN_WORT);
3648 vcpu->arch.tid = mfspr(SPRN_TIDR);
3649 vcpu->arch.amr = mfspr(SPRN_AMR);
3650 vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3651 vcpu->arch.dscr = mfspr(SPRN_DSCR);
3652
3653 mtspr(SPRN_PSPB, 0);
3654 mtspr(SPRN_WORT, 0);
95a6432c
PM
3655 mtspr(SPRN_UAMOR, 0);
3656 mtspr(SPRN_DSCR, host_dscr);
3657 mtspr(SPRN_TIDR, host_tidr);
3658 mtspr(SPRN_IAMR, host_iamr);
3659 mtspr(SPRN_PSPB, 0);
3660
d976f680
ME
3661 if (host_amr != vcpu->arch.amr)
3662 mtspr(SPRN_AMR, host_amr);
3663
95a6432c
PM
3664 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3665 store_fp_state(&vcpu->arch.fp);
3666#ifdef CONFIG_ALTIVEC
3667 store_vr_state(&vcpu->arch.vr);
3668#endif
44b198ae 3669 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
95a6432c
PM
3670
3671 if (cpu_has_feature(CPU_FTR_TM) ||
3672 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3673 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3674
3675 save_pmu = 1;
3676 if (vcpu->arch.vpa.pinned_addr) {
3677 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3678 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3679 lp->yield_count = cpu_to_be32(yield_count);
3680 vcpu->arch.vpa.dirty = 1;
3681 save_pmu = lp->pmcregs_in_use;
3682 }
63279eeb
SJS
3683 /* Must save pmu if this guest is capable of running nested guests */
3684 save_pmu |= nesting_enabled(vcpu->kvm);
95a6432c
PM
3685
3686 kvmhv_save_guest_pmu(vcpu, save_pmu);
3687
3688 vc->entry_exit_map = 0x101;
3689 vc->in_guest = 0;
3690
3691 mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
d724c9e5 3692 mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
95a6432c
PM
3693
3694 kvmhv_load_host_pmu();
3695
3696 kvmppc_subcore_exit_guest();
3697
3698 return trap;
3699}
3700
19ccb76a
PM
3701/*
3702 * Wait for some other vcpu thread to execute us, and
3703 * wake us up when we need to handle something in the host.
3704 */
ec257165
PM
3705static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3706 struct kvm_vcpu *vcpu, int wait_state)
371fefd6 3707{
371fefd6
PM
3708 DEFINE_WAIT(wait);
3709
19ccb76a 3710 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
ec257165
PM
3711 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3712 spin_unlock(&vc->lock);
19ccb76a 3713 schedule();
ec257165
PM
3714 spin_lock(&vc->lock);
3715 }
19ccb76a
PM
3716 finish_wait(&vcpu->arch.cpu_run, &wait);
3717}
3718
0cda69dd
SJS
3719static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3720{
7fa08e71
NW
3721 if (!halt_poll_ns_grow)
3722 return;
3723
dee339b5
NW
3724 vc->halt_poll_ns *= halt_poll_ns_grow;
3725 if (vc->halt_poll_ns < halt_poll_ns_grow_start)
49113d36 3726 vc->halt_poll_ns = halt_poll_ns_grow_start;
0cda69dd
SJS
3727}
3728
3729static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3730{
3731 if (halt_poll_ns_shrink == 0)
3732 vc->halt_poll_ns = 0;
3733 else
3734 vc->halt_poll_ns /= halt_poll_ns_shrink;
3735}
3736
ee3308a2
PM
3737#ifdef CONFIG_KVM_XICS
3738static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3739{
03f95332 3740 if (!xics_on_xive())
ee3308a2 3741 return false;
2267ea76 3742 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
ee3308a2
PM
3743 vcpu->arch.xive_saved_state.cppr;
3744}
3745#else
3746static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3747{
3748 return false;
3749}
3750#endif /* CONFIG_KVM_XICS */
3751
1da4e2f4
PM
3752static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3753{
3754 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
ee3308a2 3755 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
1da4e2f4
PM
3756 return true;
3757
3758 return false;
3759}
3760
908a0935
SJS
3761/*
3762 * Check to see if any of the runnable vcpus on the vcore have pending
0cda69dd
SJS
3763 * exceptions or are no longer ceded
3764 */
3765static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3766{
3767 struct kvm_vcpu *vcpu;
3768 int i;
3769
3770 for_each_runnable_thread(i, vcpu, vc) {
1da4e2f4 3771 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
0cda69dd
SJS
3772 return 1;
3773 }
3774
3775 return 0;
3776}
3777
19ccb76a
PM
3778/*
3779 * All the vcpus in this vcore are idle, so wait for a decrementer
3780 * or external interrupt to one of the vcpus. vc->lock is held.
3781 */
3782static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3783{
2a27f514 3784 ktime_t cur, start_poll, start_wait;
0cda69dd 3785 int do_sleep = 1;
0cda69dd 3786 u64 block_ns;
1bc5d59c 3787
0cda69dd 3788 /* Poll for pending exceptions and ceded state */
2a27f514 3789 cur = start_poll = ktime_get();
0cda69dd 3790 if (vc->halt_poll_ns) {
2a27f514
SJS
3791 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3792 ++vc->runner->stat.halt_attempted_poll;
1bc5d59c 3793
0cda69dd
SJS
3794 vc->vcore_state = VCORE_POLLING;
3795 spin_unlock(&vc->lock);
3796
3797 do {
3798 if (kvmppc_vcore_check_block(vc)) {
3799 do_sleep = 0;
3800 break;
3801 }
3802 cur = ktime_get();
3803 } while (single_task_running() && ktime_before(cur, stop));
3804
3805 spin_lock(&vc->lock);
3806 vc->vcore_state = VCORE_INACTIVE;
3807
2a27f514
SJS
3808 if (!do_sleep) {
3809 ++vc->runner->stat.halt_successful_poll;
0cda69dd 3810 goto out;
2a27f514 3811 }
1bc5d59c
SW
3812 }
3813
da4ad88c
DB
3814 prepare_to_rcuwait(&vc->wait);
3815 set_current_state(TASK_INTERRUPTIBLE);
0cda69dd 3816 if (kvmppc_vcore_check_block(vc)) {
da4ad88c 3817 finish_rcuwait(&vc->wait);
0cda69dd 3818 do_sleep = 0;
2a27f514
SJS
3819 /* If we polled, count this as a successful poll */
3820 if (vc->halt_poll_ns)
3821 ++vc->runner->stat.halt_successful_poll;
0cda69dd 3822 goto out;
1bc5d59c
SW
3823 }
3824
2a27f514
SJS
3825 start_wait = ktime_get();
3826
19ccb76a 3827 vc->vcore_state = VCORE_SLEEPING;
3c78f78a 3828 trace_kvmppc_vcore_blocked(vc, 0);
19ccb76a 3829 spin_unlock(&vc->lock);
913d3ff9 3830 schedule();
da4ad88c 3831 finish_rcuwait(&vc->wait);
19ccb76a
PM
3832 spin_lock(&vc->lock);
3833 vc->vcore_state = VCORE_INACTIVE;
3c78f78a 3834 trace_kvmppc_vcore_blocked(vc, 1);
2a27f514 3835 ++vc->runner->stat.halt_successful_wait;
0cda69dd
SJS
3836
3837 cur = ktime_get();
3838
3839out:
2a27f514
SJS
3840 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3841
3842 /* Attribute wait time */
3843 if (do_sleep) {
3844 vc->runner->stat.halt_wait_ns +=
3845 ktime_to_ns(cur) - ktime_to_ns(start_wait);
3846 /* Attribute failed poll time */
3847 if (vc->halt_poll_ns)
3848 vc->runner->stat.halt_poll_fail_ns +=
3849 ktime_to_ns(start_wait) -
3850 ktime_to_ns(start_poll);
3851 } else {
3852 /* Attribute successful poll time */
3853 if (vc->halt_poll_ns)
3854 vc->runner->stat.halt_poll_success_ns +=
3855 ktime_to_ns(cur) -
3856 ktime_to_ns(start_poll);
3857 }
0cda69dd
SJS
3858
3859 /* Adjust poll time */
307d93e4 3860 if (halt_poll_ns) {
0cda69dd
SJS
3861 if (block_ns <= vc->halt_poll_ns)
3862 ;
3863 /* We slept and blocked for longer than the max halt time */
307d93e4 3864 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
0cda69dd
SJS
3865 shrink_halt_poll_ns(vc);
3866 /* We slept and our poll time is too small */
307d93e4
SJS
3867 else if (vc->halt_poll_ns < halt_poll_ns &&
3868 block_ns < halt_poll_ns)
0cda69dd 3869 grow_halt_poll_ns(vc);
e03f3921
SJS
3870 if (vc->halt_poll_ns > halt_poll_ns)
3871 vc->halt_poll_ns = halt_poll_ns;
0cda69dd
SJS
3872 } else
3873 vc->halt_poll_ns = 0;
3874
3875 trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
19ccb76a 3876}
371fefd6 3877
360cae31
PM
3878/*
3879 * This never fails for a radix guest, as none of the operations it does
3880 * for a radix guest can fail or have a way to report failure.
3881 * kvmhv_run_single_vcpu() relies on this fact.
3882 */
432953b4
PM
3883static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3884{
3885 int r = 0;
3886 struct kvm *kvm = vcpu->kvm;
3887
0d4ee88d 3888 mutex_lock(&kvm->arch.mmu_setup_lock);
432953b4
PM
3889 if (!kvm->arch.mmu_ready) {
3890 if (!kvm_is_radix(kvm))
3891 r = kvmppc_hv_setup_htab_rma(vcpu);
3892 if (!r) {
3893 if (cpu_has_feature(CPU_FTR_ARCH_300))
3894 kvmppc_setup_partition_table(kvm);
3895 kvm->arch.mmu_ready = 1;
3896 }
3897 }
0d4ee88d 3898 mutex_unlock(&kvm->arch.mmu_setup_lock);
432953b4
PM
3899 return r;
3900}
3901
8c99d345 3902static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
19ccb76a 3903{
8c99d345 3904 struct kvm_run *run = vcpu->run;
38c53af8 3905 int n_ceded, i, r;
19ccb76a 3906 struct kvmppc_vcore *vc;
7b5f8272 3907 struct kvm_vcpu *v;
9e368f29 3908
3c78f78a
SW
3909 trace_kvmppc_run_vcpu_enter(vcpu);
3910
8c99d345 3911 run->exit_reason = 0;
371fefd6
PM
3912 vcpu->arch.ret = RESUME_GUEST;
3913 vcpu->arch.trap = 0;
2f12f034 3914 kvmppc_update_vpas(vcpu);
371fefd6 3915
371fefd6
PM
3916 /*
3917 * Synchronize with other threads in this virtual core
3918 */
3919 vc = vcpu->arch.vcore;
3920 spin_lock(&vc->lock);
19ccb76a 3921 vcpu->arch.ceded = 0;
371fefd6 3922 vcpu->arch.run_task = current;
c7b67670 3923 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
19ccb76a 3924 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
c7b67670 3925 vcpu->arch.busy_preempt = TB_NIL;
7b5f8272 3926 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
371fefd6
PM
3927 ++vc->n_runnable;
3928
19ccb76a
PM
3929 /*
3930 * This happens the first time this is called for a vcpu.
3931 * If the vcore is already running, we may be able to start
3932 * this thread straight away and have it join in.
3933 */
8455d79e 3934 if (!signal_pending(current)) {
c0093f1a
PM
3935 if ((vc->vcore_state == VCORE_PIGGYBACK ||
3936 vc->vcore_state == VCORE_RUNNING) &&
ec257165 3937 !VCORE_IS_EXITING(vc)) {
2f12f034 3938 kvmppc_create_dtl_entry(vcpu, vc);
b4deba5c 3939 kvmppc_start_thread(vcpu, vc);
3c78f78a 3940 trace_kvm_guest_enter(vcpu);
8455d79e 3941 } else if (vc->vcore_state == VCORE_SLEEPING) {
da4ad88c 3942 rcuwait_wake_up(&vc->wait);
371fefd6
PM
3943 }
3944
8455d79e 3945 }
371fefd6 3946
19ccb76a
PM
3947 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3948 !signal_pending(current)) {
072df813
PM
3949 /* See if the MMU is ready to go */
3950 if (!vcpu->kvm->arch.mmu_ready) {
38c53af8 3951 spin_unlock(&vc->lock);
432953b4 3952 r = kvmhv_setup_mmu(vcpu);
38c53af8
PM
3953 spin_lock(&vc->lock);
3954 if (r) {
8c99d345
TZ
3955 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3956 run->fail_entry.
432953b4 3957 hardware_entry_failure_reason = 0;
38c53af8
PM
3958 vcpu->arch.ret = r;
3959 break;
3960 }
3961 }
3962
ec257165
PM
3963 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3964 kvmppc_vcore_end_preempt(vc);
3965
8455d79e 3966 if (vc->vcore_state != VCORE_INACTIVE) {
ec257165 3967 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
19ccb76a
PM
3968 continue;
3969 }
7b5f8272 3970 for_each_runnable_thread(i, v, vc) {
7e28e60e 3971 kvmppc_core_prepare_to_enter(v);
19ccb76a
PM
3972 if (signal_pending(v->arch.run_task)) {
3973 kvmppc_remove_runnable(vc, v);
3974 v->stat.signal_exits++;
2610a57f 3975 v->run->exit_reason = KVM_EXIT_INTR;
19ccb76a
PM
3976 v->arch.ret = -EINTR;
3977 wake_up(&v->arch.cpu_run);
3978 }
3979 }
8455d79e
PM
3980 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3981 break;
8455d79e 3982 n_ceded = 0;
7b5f8272 3983 for_each_runnable_thread(i, v, vc) {
1da4e2f4 3984 if (!kvmppc_vcpu_woken(v))
8455d79e 3985 n_ceded += v->arch.ceded;
4619ac88
PM
3986 else
3987 v->arch.ceded = 0;
3988 }
25fedfca
PM
3989 vc->runner = vcpu;
3990 if (n_ceded == vc->n_runnable) {
8455d79e 3991 kvmppc_vcore_blocked(vc);
c56dadf3 3992 } else if (need_resched()) {
ec257165 3993 kvmppc_vcore_preempt(vc);
25fedfca
PM
3994 /* Let something else run */
3995 cond_resched_lock(&vc->lock);
ec257165
PM
3996 if (vc->vcore_state == VCORE_PREEMPT)
3997 kvmppc_vcore_end_preempt(vc);
25fedfca 3998 } else {
8455d79e 3999 kvmppc_run_core(vc);
25fedfca 4000 }
0456ec4f 4001 vc->runner = NULL;
19ccb76a 4002 }
371fefd6 4003
8455d79e
PM
4004 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4005 (vc->vcore_state == VCORE_RUNNING ||
5fc3e64f
PM
4006 vc->vcore_state == VCORE_EXITING ||
4007 vc->vcore_state == VCORE_PIGGYBACK))
ec257165 4008 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
8455d79e 4009
5fc3e64f
PM
4010 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4011 kvmppc_vcore_end_preempt(vc);
4012
8455d79e
PM
4013 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4014 kvmppc_remove_runnable(vc, vcpu);
4015 vcpu->stat.signal_exits++;
8c99d345 4016 run->exit_reason = KVM_EXIT_INTR;
8455d79e
PM
4017 vcpu->arch.ret = -EINTR;
4018 }
4019
4020 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4021 /* Wake up some vcpu to run the core */
7b5f8272
SJS
4022 i = -1;
4023 v = next_runnable_thread(vc, &i);
8455d79e 4024 wake_up(&v->arch.cpu_run);
371fefd6
PM
4025 }
4026
8c99d345 4027 trace_kvmppc_run_vcpu_exit(vcpu);
371fefd6 4028 spin_unlock(&vc->lock);
371fefd6 4029 return vcpu->arch.ret;
de56a948
PM
4030}
4031
8c99d345 4032int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
360cae31 4033 unsigned long lpcr)
95a6432c 4034{
8c99d345 4035 struct kvm_run *run = vcpu->run;
9d0b048d 4036 int trap, r, pcpu;
70ea13f6 4037 int srcu_idx, lpid;
95a6432c
PM
4038 struct kvmppc_vcore *vc;
4039 struct kvm *kvm = vcpu->kvm;
360cae31 4040 struct kvm_nested_guest *nested = vcpu->arch.nested;
95a6432c
PM
4041
4042 trace_kvmppc_run_vcpu_enter(vcpu);
4043
8c99d345 4044 run->exit_reason = 0;
95a6432c
PM
4045 vcpu->arch.ret = RESUME_GUEST;
4046 vcpu->arch.trap = 0;
4047
4048 vc = vcpu->arch.vcore;
4049 vcpu->arch.ceded = 0;
4050 vcpu->arch.run_task = current;
95a6432c
PM
4051 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4052 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4053 vcpu->arch.busy_preempt = TB_NIL;
4054 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4055 vc->runnable_threads[0] = vcpu;
4056 vc->n_runnable = 1;
4057 vc->runner = vcpu;
4058
4059 /* See if the MMU is ready to go */
360cae31
PM
4060 if (!kvm->arch.mmu_ready)
4061 kvmhv_setup_mmu(vcpu);
95a6432c
PM
4062
4063 if (need_resched())
4064 cond_resched();
4065
4066 kvmppc_update_vpas(vcpu);
4067
4068 init_vcore_to_run(vc);
4069 vc->preempt_tb = TB_NIL;
4070
4071 preempt_disable();
4072 pcpu = smp_processor_id();
4073 vc->pcpu = pcpu;
4074 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4075
4076 local_irq_disable();
4077 hard_irq_disable();
4078 if (signal_pending(current))
4079 goto sigpend;
4080 if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4081 goto out;
4082
360cae31
PM
4083 if (!nested) {
4084 kvmppc_core_prepare_to_enter(vcpu);
4085 if (vcpu->arch.doorbell_request) {
4086 vc->dpdes = 1;
4087 smp_wmb();
4088 vcpu->arch.doorbell_request = 0;
4089 }
4090 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4091 &vcpu->arch.pending_exceptions))
4092 lpcr |= LPCR_MER;
4093 } else if (vcpu->arch.pending_exceptions ||
4094 vcpu->arch.doorbell_request ||
4095 xive_interrupt_pending(vcpu)) {
4096 vcpu->arch.ret = RESUME_HOST;
4097 goto out;
4098 }
95a6432c
PM
4099
4100 kvmppc_clear_host_core(pcpu);
4101
4102 local_paca->kvm_hstate.tid = 0;
4103 local_paca->kvm_hstate.napping = 0;
4104 local_paca->kvm_hstate.kvm_split_mode = NULL;
4105 kvmppc_start_thread(vcpu, vc);
4106 kvmppc_create_dtl_entry(vcpu, vc);
4107 trace_kvm_guest_enter(vcpu);
4108
4109 vc->vcore_state = VCORE_RUNNING;
4110 trace_kvmppc_run_core(vc, 0);
4111
70ea13f6
PM
4112 if (cpu_has_feature(CPU_FTR_HVMODE)) {
4113 lpid = nested ? nested->shadow_lpid : kvm->arch.lpid;
4114 mtspr(SPRN_LPID, lpid);
4115 isync();
4116 kvmppc_check_need_tlb_flush(kvm, pcpu, nested);
4117 }
95a6432c 4118
95a6432c
PM
4119 guest_enter_irqoff();
4120
4121 srcu_idx = srcu_read_lock(&kvm->srcu);
4122
4123 this_cpu_disable_ftrace();
4124
1b28d553
PM
4125 /* Tell lockdep that we're about to enable interrupts */
4126 trace_hardirqs_on();
4127
360cae31 4128 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
95a6432c
PM
4129 vcpu->arch.trap = trap;
4130
1b28d553
PM
4131 trace_hardirqs_off();
4132
95a6432c
PM
4133 this_cpu_enable_ftrace();
4134
4135 srcu_read_unlock(&kvm->srcu, srcu_idx);
4136
f3c99f97
PM
4137 if (cpu_has_feature(CPU_FTR_HVMODE)) {
4138 mtspr(SPRN_LPID, kvm->arch.host_lpid);
4139 isync();
4140 }
95a6432c 4141
95a6432c
PM
4142 set_irq_happened(trap);
4143
4144 kvmppc_set_host_core(pcpu);
4145
4146 local_irq_enable();
4147 guest_exit();
4148
4149 cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4150
4151 preempt_enable();
4152
3c25ab35
SJS
4153 /*
4154 * cancel pending decrementer exception if DEC is now positive, or if
4155 * entering a nested guest in which case the decrementer is now owned
4156 * by L2 and the L1 decrementer is provided in hdec_expires
4157 */
4158 if (kvmppc_core_pending_dec(vcpu) &&
4159 ((get_tb() < vcpu->arch.dec_expires) ||
4160 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4161 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
95a6432c
PM
4162 kvmppc_core_dequeue_dec(vcpu);
4163
4164 trace_kvm_guest_exit(vcpu);
4165 r = RESUME_GUEST;
360cae31
PM
4166 if (trap) {
4167 if (!nested)
8c99d345 4168 r = kvmppc_handle_exit_hv(vcpu, current);
360cae31 4169 else
8c99d345 4170 r = kvmppc_handle_nested_exit(vcpu);
360cae31 4171 }
95a6432c
PM
4172 vcpu->arch.ret = r;
4173
4174 if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4175 !kvmppc_vcpu_woken(vcpu)) {
4176 kvmppc_set_timer(vcpu);
4177 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4178 if (signal_pending(current)) {
4179 vcpu->stat.signal_exits++;
8c99d345 4180 run->exit_reason = KVM_EXIT_INTR;
95a6432c
PM
4181 vcpu->arch.ret = -EINTR;
4182 break;
4183 }
4184 spin_lock(&vc->lock);
4185 kvmppc_vcore_blocked(vc);
4186 spin_unlock(&vc->lock);
4187 }
4188 }
4189 vcpu->arch.ceded = 0;
4190
4191 vc->vcore_state = VCORE_INACTIVE;
4192 trace_kvmppc_run_core(vc, 1);
4193
4194 done:
4195 kvmppc_remove_runnable(vc, vcpu);
8c99d345 4196 trace_kvmppc_run_vcpu_exit(vcpu);
95a6432c
PM
4197
4198 return vcpu->arch.ret;
4199
4200 sigpend:
4201 vcpu->stat.signal_exits++;
8c99d345 4202 run->exit_reason = KVM_EXIT_INTR;
95a6432c
PM
4203 vcpu->arch.ret = -EINTR;
4204 out:
4205 local_irq_enable();
4206 preempt_enable();
4207 goto done;
4208}
4209
8c99d345 4210static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
a8606e20 4211{
8c99d345 4212 struct kvm_run *run = vcpu->run;
a8606e20 4213 int r;
913d3ff9 4214 int srcu_idx;
ca8efa1d 4215 unsigned long ebb_regs[3] = {}; /* shut up GCC */
4c3bb4cc
PM
4216 unsigned long user_tar = 0;
4217 unsigned int user_vrsave;
1b151ce4 4218 struct kvm *kvm;
a8606e20 4219
af8f38b3
AG
4220 if (!vcpu->arch.sane) {
4221 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4222 return -EINVAL;
4223 }
4224
46a704f8
PM
4225 /*
4226 * Don't allow entry with a suspended transaction, because
4227 * the guest entry/exit code will lose it.
4228 * If the guest has TM enabled, save away their TM-related SPRs
4229 * (they will get restored by the TM unavailable interrupt).
4230 */
4231#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4232 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4233 (current->thread.regs->msr & MSR_TM)) {
4234 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4235 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4236 run->fail_entry.hardware_entry_failure_reason = 0;
4237 return -EINVAL;
4238 }
e4705715
PM
4239 /* Enable TM so we can read the TM SPRs */
4240 mtmsr(mfmsr() | MSR_TM);
46a704f8
PM
4241 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4242 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4243 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4244 current->thread.regs->msr &= ~MSR_TM;
4245 }
4246#endif
4247
7aa15842
PM
4248 /*
4249 * Force online to 1 for the sake of old userspace which doesn't
4250 * set it.
4251 */
4252 if (!vcpu->arch.online) {
4253 atomic_inc(&vcpu->arch.vcore->online_count);
4254 vcpu->arch.online = 1;
4255 }
4256
25051b5a
SW
4257 kvmppc_core_prepare_to_enter(vcpu);
4258
19ccb76a
PM
4259 /* No need to go into the guest when all we'll do is come back out */
4260 if (signal_pending(current)) {
4261 run->exit_reason = KVM_EXIT_INTR;
4262 return -EINTR;
4263 }
4264
1b151ce4
PM
4265 kvm = vcpu->kvm;
4266 atomic_inc(&kvm->arch.vcpus_running);
4267 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
32fad281
PM
4268 smp_mb();
4269
579e633e
AB
4270 flush_all_to_thread(current);
4271
4c3bb4cc 4272 /* Save userspace EBB and other register values */
ca8efa1d
PM
4273 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4274 ebb_regs[0] = mfspr(SPRN_EBBHR);
4275 ebb_regs[1] = mfspr(SPRN_EBBRR);
4276 ebb_regs[2] = mfspr(SPRN_BESCR);
4c3bb4cc 4277 user_tar = mfspr(SPRN_TAR);
ca8efa1d 4278 }
4c3bb4cc 4279 user_vrsave = mfspr(SPRN_VRSAVE);
ca8efa1d 4280
da4ad88c 4281 vcpu->arch.waitp = &vcpu->arch.vcore->wait;
8a9c8925 4282 vcpu->arch.pgdir = kvm->mm->pgd;
c7b67670 4283 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
19ccb76a 4284
a8606e20 4285 do {
8d9fcacf
PM
4286 /*
4287 * The early POWER9 chips that can't mix radix and HPT threads
4288 * on the same core also need the workaround for the problem
4289 * where the TLB would prefetch entries in the guest exit path
4290 * for radix guests using the guest PIDR value and LPID 0.
4291 * The workaround is in the old path (kvmppc_run_vcpu())
4292 * but not the new path (kvmhv_run_single_vcpu()).
4293 */
4294 if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
4295 !no_mixing_hpt_and_radix)
8c99d345 4296 r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
360cae31 4297 vcpu->arch.vcore->lpcr);
95a6432c 4298 else
8c99d345 4299 r = kvmppc_run_vcpu(vcpu);
a8606e20
PM
4300
4301 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
4302 !(vcpu->arch.shregs.msr & MSR_PR)) {
3c78f78a 4303 trace_kvm_hcall_enter(vcpu);
a8606e20 4304 r = kvmppc_pseries_do_hcall(vcpu);
3c78f78a 4305 trace_kvm_hcall_exit(vcpu, r);
7e28e60e 4306 kvmppc_core_prepare_to_enter(vcpu);
913d3ff9 4307 } else if (r == RESUME_PAGE_FAULT) {
432953b4 4308 srcu_idx = srcu_read_lock(&kvm->srcu);
8c99d345 4309 r = kvmppc_book3s_hv_page_fault(vcpu,
913d3ff9 4310 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
432953b4 4311 srcu_read_unlock(&kvm->srcu, srcu_idx);
5af50993 4312 } else if (r == RESUME_PASSTHROUGH) {
03f95332 4313 if (WARN_ON(xics_on_xive()))
5af50993
BH
4314 r = H_SUCCESS;
4315 else
4316 r = kvmppc_xics_rm_complete(vcpu, 0);
4317 }
e59d24e6 4318 } while (is_kvmppc_resume_guest(r));
32fad281 4319
4c3bb4cc 4320 /* Restore userspace EBB and other register values */
ca8efa1d
PM
4321 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4322 mtspr(SPRN_EBBHR, ebb_regs[0]);
4323 mtspr(SPRN_EBBRR, ebb_regs[1]);
4324 mtspr(SPRN_BESCR, ebb_regs[2]);
4c3bb4cc
PM
4325 mtspr(SPRN_TAR, user_tar);
4326 mtspr(SPRN_FSCR, current->thread.fscr);
ca8efa1d 4327 }
4c3bb4cc 4328 mtspr(SPRN_VRSAVE, user_vrsave);
ca8efa1d 4329
c7b67670 4330 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
432953b4 4331 atomic_dec(&kvm->arch.vcpus_running);
a8606e20
PM
4332 return r;
4333}
4334
5b74716e 4335static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
8dc6cca5 4336 int shift, int sllp)
5b74716e 4337{
8dc6cca5
PM
4338 (*sps)->page_shift = shift;
4339 (*sps)->slb_enc = sllp;
4340 (*sps)->enc[0].page_shift = shift;
4341 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
1f365bb0 4342 /*
8dc6cca5 4343 * Add 16MB MPSS support (may get filtered out by userspace)
1f365bb0 4344 */
8dc6cca5
PM
4345 if (shift != 24) {
4346 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4347 if (penc != -1) {
4348 (*sps)->enc[1].page_shift = 24;
4349 (*sps)->enc[1].pte_enc = penc;
4350 }
1f365bb0 4351 }
5b74716e
BH
4352 (*sps)++;
4353}
4354
3a167bea
AK
4355static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4356 struct kvm_ppc_smmu_info *info)
5b74716e
BH
4357{
4358 struct kvm_ppc_one_seg_page_size *sps;
4359
e3bfed1d
PM
4360 /*
4361 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4362 * POWER7 doesn't support keys for instruction accesses,
4363 * POWER8 and POWER9 do.
4364 */
4365 info->data_keys = 32;
4366 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4367
8dc6cca5
PM
4368 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4369 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4370 info->slb_size = 32;
5b74716e
BH
4371
4372 /* We only support these sizes for now, and no muti-size segments */
4373 sps = &info->sps[0];
8dc6cca5
PM
4374 kvmppc_add_seg_page_size(&sps, 12, 0);
4375 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4376 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
5b74716e 4377
901f8c3f
PM
4378 /* If running as a nested hypervisor, we don't support HPT guests */
4379 if (kvmhv_on_pseries())
4380 info->flags |= KVM_PPC_NO_HASH;
4381
5b74716e
BH
4382 return 0;
4383}
4384
82ed3616
PM
4385/*
4386 * Get (and clear) the dirty memory log for a memory slot.
4387 */
3a167bea
AK
4388static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4389 struct kvm_dirty_log *log)
82ed3616 4390{
9f6b8029 4391 struct kvm_memslots *slots;
82ed3616 4392 struct kvm_memory_slot *memslot;
8f7b79b8 4393 int i, r;
82ed3616 4394 unsigned long n;
e641a317 4395 unsigned long *buf, *p;
8f7b79b8 4396 struct kvm_vcpu *vcpu;
82ed3616
PM
4397
4398 mutex_lock(&kvm->slots_lock);
4399
4400 r = -EINVAL;
bbacc0c1 4401 if (log->slot >= KVM_USER_MEM_SLOTS)
82ed3616
PM
4402 goto out;
4403
9f6b8029
PB
4404 slots = kvm_memslots(kvm);
4405 memslot = id_to_memslot(slots, log->slot);
82ed3616 4406 r = -ENOENT;
0577d1ab 4407 if (!memslot || !memslot->dirty_bitmap)
82ed3616
PM
4408 goto out;
4409
8f7b79b8 4410 /*
e641a317
PM
4411 * Use second half of bitmap area because both HPT and radix
4412 * accumulate bits in the first half.
8f7b79b8 4413 */
82ed3616 4414 n = kvm_dirty_bitmap_bytes(memslot);
8f7b79b8
PM
4415 buf = memslot->dirty_bitmap + n / sizeof(long);
4416 memset(buf, 0, n);
82ed3616 4417
8f7b79b8
PM
4418 if (kvm_is_radix(kvm))
4419 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4420 else
4421 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
82ed3616
PM
4422 if (r)
4423 goto out;
4424
e641a317
PM
4425 /*
4426 * We accumulate dirty bits in the first half of the
4427 * memslot's dirty_bitmap area, for when pages are paged
4428 * out or modified by the host directly. Pick up these
4429 * bits and add them to the map.
4430 */
4431 p = memslot->dirty_bitmap;
4432 for (i = 0; i < n / sizeof(long); ++i)
4433 buf[i] |= xchg(&p[i], 0);
4434
8f7b79b8
PM
4435 /* Harvest dirty bits from VPA and DTL updates */
4436 /* Note: we never modify the SLB shadow buffer areas */
4437 kvm_for_each_vcpu(i, vcpu, kvm) {
4438 spin_lock(&vcpu->arch.vpa_update_lock);
4439 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4440 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4441 spin_unlock(&vcpu->arch.vpa_update_lock);
4442 }
4443
82ed3616 4444 r = -EFAULT;
8f7b79b8 4445 if (copy_to_user(log->dirty_bitmap, buf, n))
82ed3616
PM
4446 goto out;
4447
4448 r = 0;
4449out:
4450 mutex_unlock(&kvm->slots_lock);
4451 return r;
4452}
4453
e96c81ee 4454static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
a66b48c3 4455{
e96c81ee
SC
4456 vfree(slot->arch.rmap);
4457 slot->arch.rmap = NULL;
a66b48c3
PM
4458}
4459
82307e67
SC
4460static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4461 struct kvm_memory_slot *slot,
4462 const struct kvm_userspace_memory_region *mem,
4463 enum kvm_mr_change change)
a66b48c3 4464{
82307e67 4465 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
aa04b4cc 4466
82307e67
SC
4467 if (change == KVM_MR_CREATE) {
4468 slot->arch.rmap = vzalloc(array_size(npages,
4469 sizeof(*slot->arch.rmap)));
4470 if (!slot->arch.rmap)
4471 return -ENOMEM;
4472 }
aa04b4cc 4473
a66b48c3 4474 return 0;
c77162de
PM
4475}
4476
3a167bea 4477static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
09170a49 4478 const struct kvm_userspace_memory_region *mem,
f36f3f28 4479 const struct kvm_memory_slot *old,
f032b734
BR
4480 const struct kvm_memory_slot *new,
4481 enum kvm_mr_change change)
c77162de 4482{
dfe49dbd 4483 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
dfe49dbd 4484
a56ee9f8
YX
4485 /*
4486 * If we are making a new memslot, it might make
4487 * some address that was previously cached as emulated
4488 * MMIO be no longer emulated MMIO, so invalidate
4489 * all the caches of emulated MMIO translations.
4490 */
4491 if (npages)
4492 atomic64_inc(&kvm->arch.mmio_update);
5af3e9d0
PM
4493
4494 /*
4495 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4496 * have already called kvm_arch_flush_shadow_memslot() to
4497 * flush shadow mappings. For KVM_MR_CREATE we have no
4498 * previous mappings. So the only case to handle is
4499 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4500 * has been changed.
4501 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4502 * to get rid of any THP PTEs in the partition-scoped page tables
4503 * so we can track dirtiness at the page level; we flush when
4504 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4505 * using THP PTEs.
4506 */
4507 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4508 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4509 kvmppc_radix_flush_memslot(kvm, old);
c3262257
BR
4510 /*
4511 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
4512 */
4513 if (!kvm->arch.secure_guest)
4514 return;
4515
4516 switch (change) {
4517 case KVM_MR_CREATE:
4518 if (kvmppc_uvmem_slot_init(kvm, new))
4519 return;
4520 uv_register_mem_slot(kvm->arch.lpid,
4521 new->base_gfn << PAGE_SHIFT,
4522 new->npages * PAGE_SIZE,
4523 0, new->id);
4524 break;
4525 case KVM_MR_DELETE:
4526 uv_unregister_mem_slot(kvm->arch.lpid, old->id);
4527 kvmppc_uvmem_slot_free(kvm, old);
4528 break;
4529 default:
4530 /* TODO: Handle KVM_MR_MOVE */
4531 break;
4532 }
c77162de
PM
4533}
4534
a0144e2a
PM
4535/*
4536 * Update LPCR values in kvm->arch and in vcores.
0d4ee88d
PM
4537 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4538 * of kvm->arch.lpcr update).
a0144e2a
PM
4539 */
4540void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4541{
4542 long int i;
4543 u32 cores_done = 0;
4544
4545 if ((kvm->arch.lpcr & mask) == lpcr)
4546 return;
4547
4548 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4549
4550 for (i = 0; i < KVM_MAX_VCORES; ++i) {
4551 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4552 if (!vc)
4553 continue;
4554 spin_lock(&vc->lock);
4555 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4556 spin_unlock(&vc->lock);
4557 if (++cores_done >= kvm->arch.online_vcores)
4558 break;
4559 }
4560}
4561
ded13fc1 4562void kvmppc_setup_partition_table(struct kvm *kvm)
7a84084c
PM
4563{
4564 unsigned long dw0, dw1;
4565
8cf4ecc0
PM
4566 if (!kvm_is_radix(kvm)) {
4567 /* PS field - page size for VRMA */
4568 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4569 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4570 /* HTABSIZE and HTABORG fields */
4571 dw0 |= kvm->arch.sdr1;
7a84084c 4572
8cf4ecc0
PM
4573 /* Second dword as set by userspace */
4574 dw1 = kvm->arch.process_table;
4575 } else {
4576 dw0 = PATB_HR | radix__get_tree_size() |
4577 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4578 dw1 = PATB_GR | kvm->arch.process_table;
4579 }
8e3f5fc1 4580 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
7a84084c
PM
4581}
4582
1b151ce4
PM
4583/*
4584 * Set up HPT (hashed page table) and RMA (real-mode area).
0d4ee88d 4585 * Must be called with kvm->arch.mmu_setup_lock held.
1b151ce4 4586 */
32fad281 4587static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
c77162de
PM
4588{
4589 int err = 0;
4590 struct kvm *kvm = vcpu->kvm;
c77162de
PM
4591 unsigned long hva;
4592 struct kvm_memory_slot *memslot;
4593 struct vm_area_struct *vma;
a0144e2a 4594 unsigned long lpcr = 0, senc;
c77162de 4595 unsigned long psize, porder;
2c9097e4 4596 int srcu_idx;
c77162de 4597
32fad281 4598 /* Allocate hashed page table (if not done already) and reset it */
3f9d4f5a 4599 if (!kvm->arch.hpt.virt) {
aae0777f
DG
4600 int order = KVM_DEFAULT_HPT_ORDER;
4601 struct kvm_hpt_info info;
4602
4603 err = kvmppc_allocate_hpt(&info, order);
4604 /* If we get here, it means userspace didn't specify a
4605 * size explicitly. So, try successively smaller
4606 * sizes if the default failed. */
4607 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4608 err = kvmppc_allocate_hpt(&info, order);
4609
4610 if (err < 0) {
32fad281
PM
4611 pr_err("KVM: Couldn't alloc HPT\n");
4612 goto out;
4613 }
aae0777f
DG
4614
4615 kvmppc_set_hpt(kvm, &info);
32fad281
PM
4616 }
4617
c77162de 4618 /* Look up the memslot for guest physical address 0 */
2c9097e4 4619 srcu_idx = srcu_read_lock(&kvm->srcu);
c77162de 4620 memslot = gfn_to_memslot(kvm, 0);
aa04b4cc 4621
c77162de
PM
4622 /* We must have some memory at 0 by now */
4623 err = -EINVAL;
4624 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2c9097e4 4625 goto out_srcu;
c77162de
PM
4626
4627 /* Look up the VMA for the start of this memory slot */
4628 hva = memslot->userspace_addr;
d8ed45c5 4629 mmap_read_lock(kvm->mm);
8a9c8925 4630 vma = find_vma(kvm->mm, hva);
c77162de
PM
4631 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4632 goto up_out;
4633
4634 psize = vma_kernel_pagesize(vma);
c77162de 4635
d8ed45c5 4636 mmap_read_unlock(kvm->mm);
c77162de 4637
c17b98cf 4638 /* We can handle 4k, 64k or 16M pages in the VRMA */
debd574f
PM
4639 if (psize >= 0x1000000)
4640 psize = 0x1000000;
4641 else if (psize >= 0x10000)
4642 psize = 0x10000;
4643 else
4644 psize = 0x1000;
4645 porder = __ilog2(psize);
c77162de 4646
c17b98cf
PM
4647 senc = slb_pgsize_encoding(psize);
4648 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4649 (VRMA_VSID << SLB_VSID_SHIFT_1T);
c17b98cf
PM
4650 /* Create HPTEs in the hash page table for the VRMA */
4651 kvmppc_map_vrma(vcpu, memslot, porder);
aa04b4cc 4652
7a84084c
PM
4653 /* Update VRMASD field in the LPCR */
4654 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4655 /* the -4 is to account for senc values starting at 0x10 */
4656 lpcr = senc << (LPCR_VRMASD_SH - 4);
4657 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
7a84084c 4658 }
a0144e2a 4659
1b151ce4 4660 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
c77162de 4661 smp_wmb();
c77162de 4662 err = 0;
2c9097e4
PM
4663 out_srcu:
4664 srcu_read_unlock(&kvm->srcu, srcu_idx);
c77162de 4665 out:
c77162de 4666 return err;
b2b2f165 4667
c77162de 4668 up_out:
d8ed45c5 4669 mmap_read_unlock(kvm->mm);
505d6421 4670 goto out_srcu;
de56a948
PM
4671}
4672
0d4ee88d
PM
4673/*
4674 * Must be called with kvm->arch.mmu_setup_lock held and
4675 * mmu_ready = 0 and no vcpus running.
4676 */
18c3640c
PM
4677int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4678{
aa069a99 4679 if (nesting_enabled(kvm))
8e3f5fc1 4680 kvmhv_release_all_nested(kvm);
234ff0b7
PM
4681 kvmppc_rmap_reset(kvm);
4682 kvm->arch.process_table = 0;
4683 /* Mutual exclusion with kvm_unmap_hva_range etc. */
4684 spin_lock(&kvm->mmu_lock);
4685 kvm->arch.radix = 0;
4686 spin_unlock(&kvm->mmu_lock);
18c3640c
PM
4687 kvmppc_free_radix(kvm);
4688 kvmppc_update_lpcr(kvm, LPCR_VPM1,
4689 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
18c3640c
PM
4690 return 0;
4691}
4692
0d4ee88d
PM
4693/*
4694 * Must be called with kvm->arch.mmu_setup_lock held and
4695 * mmu_ready = 0 and no vcpus running.
4696 */
18c3640c
PM
4697int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4698{
4699 int err;
4700
4701 err = kvmppc_init_vm_radix(kvm);
4702 if (err)
4703 return err;
234ff0b7
PM
4704 kvmppc_rmap_reset(kvm);
4705 /* Mutual exclusion with kvm_unmap_hva_range etc. */
4706 spin_lock(&kvm->mmu_lock);
4707 kvm->arch.radix = 1;
4708 spin_unlock(&kvm->mmu_lock);
18c3640c
PM
4709 kvmppc_free_hpt(&kvm->arch.hpt);
4710 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4711 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
18c3640c
PM
4712 return 0;
4713}
4714
79b6c247
SW
4715#ifdef CONFIG_KVM_XICS
4716/*
4717 * Allocate a per-core structure for managing state about which cores are
4718 * running in the host versus the guest and for exchanging data between
4719 * real mode KVM and CPU running in the host.
4720 * This is only done for the first VM.
4721 * The allocated structure stays even if all VMs have stopped.
4722 * It is only freed when the kvm-hv module is unloaded.
4723 * It's OK for this routine to fail, we just don't support host
4724 * core operations like redirecting H_IPI wakeups.
4725 */
4726void kvmppc_alloc_host_rm_ops(void)
4727{
4728 struct kvmppc_host_rm_ops *ops;
4729 unsigned long l_ops;
4730 int cpu, core;
4731 int size;
4732
4733 /* Not the first time here ? */
4734 if (kvmppc_host_rm_ops_hv != NULL)
4735 return;
4736
4737 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4738 if (!ops)
4739 return;
4740
4741 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4742 ops->rm_core = kzalloc(size, GFP_KERNEL);
4743
4744 if (!ops->rm_core) {
4745 kfree(ops);
4746 return;
4747 }
4748
419af25f 4749 cpus_read_lock();
6f3bb809 4750
79b6c247
SW
4751 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4752 if (!cpu_online(cpu))
4753 continue;
4754
4755 core = cpu >> threads_shift;
4756 ops->rm_core[core].rm_state.in_host = 1;
4757 }
4758
0c2a6606
SW
4759 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4760
79b6c247
SW
4761 /*
4762 * Make the contents of the kvmppc_host_rm_ops structure visible
4763 * to other CPUs before we assign it to the global variable.
4764 * Do an atomic assignment (no locks used here), but if someone
4765 * beats us to it, just free our copy and return.
4766 */
4767 smp_wmb();
4768 l_ops = (unsigned long) ops;
4769
4770 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
419af25f 4771 cpus_read_unlock();
79b6c247
SW
4772 kfree(ops->rm_core);
4773 kfree(ops);
6f3bb809 4774 return;
79b6c247 4775 }
6f3bb809 4776
419af25f
SAS
4777 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4778 "ppc/kvm_book3s:prepare",
4779 kvmppc_set_host_core,
4780 kvmppc_clear_host_core);
4781 cpus_read_unlock();
79b6c247
SW
4782}
4783
4784void kvmppc_free_host_rm_ops(void)
4785{
4786 if (kvmppc_host_rm_ops_hv) {
3f7cd919 4787 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
79b6c247
SW
4788 kfree(kvmppc_host_rm_ops_hv->rm_core);
4789 kfree(kvmppc_host_rm_ops_hv);
4790 kvmppc_host_rm_ops_hv = NULL;
4791 }
4792}
4793#endif
4794
3a167bea 4795static int kvmppc_core_init_vm_hv(struct kvm *kvm)
de56a948 4796{
32fad281 4797 unsigned long lpcr, lpid;
e23a808b 4798 char buf[32];
8cf4ecc0 4799 int ret;
de56a948 4800
ca9f4942
BR
4801 mutex_init(&kvm->arch.uvmem_lock);
4802 INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
0d4ee88d
PM
4803 mutex_init(&kvm->arch.mmu_setup_lock);
4804
32fad281
PM
4805 /* Allocate the guest's logical partition ID */
4806
4807 lpid = kvmppc_alloc_lpid();
5d226ae5 4808 if ((long)lpid < 0)
32fad281
PM
4809 return -ENOMEM;
4810 kvm->arch.lpid = lpid;
de56a948 4811
79b6c247
SW
4812 kvmppc_alloc_host_rm_ops();
4813
8e3f5fc1
PM
4814 kvmhv_vm_nested_init(kvm);
4815
1b400ba0
PM
4816 /*
4817 * Since we don't flush the TLB when tearing down a VM,
4818 * and this lpid might have previously been used,
4819 * make sure we flush on each core before running the new VM.
7c5b06ca
PM
4820 * On POWER9, the tlbie in mmu_partition_table_set_entry()
4821 * does this flush for us.
1b400ba0 4822 */
7c5b06ca
PM
4823 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4824 cpumask_setall(&kvm->arch.need_tlb_flush);
1b400ba0 4825
699a0ea0
PM
4826 /* Start out with the default set of hcalls enabled */
4827 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
4828 sizeof(kvm->arch.enabled_hcalls));
4829
7a84084c
PM
4830 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4831 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
aa04b4cc 4832
c17b98cf 4833 /* Init LPCR for virtual RMA mode */
f3c99f97
PM
4834 if (cpu_has_feature(CPU_FTR_HVMODE)) {
4835 kvm->arch.host_lpid = mfspr(SPRN_LPID);
4836 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
4837 lpcr &= LPCR_PECE | LPCR_LPES;
4838 } else {
4839 lpcr = 0;
4840 }
c17b98cf
PM
4841 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
4842 LPCR_VPM0 | LPCR_VPM1;
4843 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
4844 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4845 /* On POWER8 turn on online bit to enable PURR/SPURR */
4846 if (cpu_has_feature(CPU_FTR_ARCH_207S))
4847 lpcr |= LPCR_ONL;
84f7139c
PM
4848 /*
4849 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4850 * Set HVICE bit to enable hypervisor virtualization interrupts.
5af50993
BH
4851 * Set HEIC to prevent OS interrupts to go to hypervisor (should
4852 * be unnecessary but better safe than sorry in case we re-enable
4853 * EE in HV mode with this LPCR still set)
84f7139c
PM
4854 */
4855 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
7a84084c 4856 lpcr &= ~LPCR_VPM0;
5af50993
BH
4857 lpcr |= LPCR_HVICE | LPCR_HEIC;
4858
4859 /*
4860 * If xive is enabled, we route 0x500 interrupts directly
4861 * to the guest.
4862 */
03f95332 4863 if (xics_on_xive())
5af50993 4864 lpcr |= LPCR_LPES;
84f7139c
PM
4865 }
4866
8cf4ecc0 4867 /*
18c3640c 4868 * If the host uses radix, the guest starts out as radix.
8cf4ecc0
PM
4869 */
4870 if (radix_enabled()) {
4871 kvm->arch.radix = 1;
1b151ce4 4872 kvm->arch.mmu_ready = 1;
8cf4ecc0
PM
4873 lpcr &= ~LPCR_VPM1;
4874 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
4875 ret = kvmppc_init_vm_radix(kvm);
4876 if (ret) {
4877 kvmppc_free_lpid(kvm->arch.lpid);
4878 return ret;
4879 }
4880 kvmppc_setup_partition_table(kvm);
4881 }
4882
9e368f29 4883 kvm->arch.lpcr = lpcr;
aa04b4cc 4884
5e985969
DG
4885 /* Initialization for future HPT resizes */
4886 kvm->arch.resize_hpt = NULL;
4887
7c5b06ca
PM
4888 /*
4889 * Work out how many sets the TLB has, for the use of
4890 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4891 */
18c3640c 4892 if (radix_enabled())
8cf4ecc0
PM
4893 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */
4894 else if (cpu_has_feature(CPU_FTR_ARCH_300))
7c5b06ca
PM
4895 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */
4896 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4897 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */
4898 else
4899 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */
4900
512691d4 4901 /*
441c19c8
ME
4902 * Track that we now have a HV mode VM active. This blocks secondary
4903 * CPU threads from coming online.
516f7898
PM
4904 * On POWER9, we only need to do this if the "indep_threads_mode"
4905 * module parameter has been set to N.
512691d4 4906 */
360cae31
PM
4907 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4908 if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
4909 pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
4910 kvm->arch.threads_indep = true;
4911 } else {
4912 kvm->arch.threads_indep = indep_threads_mode;
4913 }
4914 }
516f7898 4915 if (!kvm->arch.threads_indep)
8cf4ecc0 4916 kvm_hv_vm_activated();
512691d4 4917
3c313524
PM
4918 /*
4919 * Initialize smt_mode depending on processor.
4920 * POWER8 and earlier have to use "strict" threading, where
4921 * all vCPUs in a vcore have to run on the same (sub)core,
4922 * whereas on POWER9 the threads can each run a different
4923 * guest.
4924 */
4925 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4926 kvm->arch.smt_mode = threads_per_subcore;
4927 else
4928 kvm->arch.smt_mode = 1;
57900694 4929 kvm->arch.emul_smt_mode = 1;
3c313524 4930
e23a808b
PM
4931 /*
4932 * Create a debugfs directory for the VM
4933 */
4934 snprintf(buf, sizeof(buf), "vm%d", current->pid);
4935 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
929f45e3 4936 kvmppc_mmu_debugfs_init(kvm);
9a94d3ee
PM
4937 if (radix_enabled())
4938 kvmhv_radix_debugfs_init(kvm);
e23a808b 4939
54738c09 4940 return 0;
de56a948
PM
4941}
4942
f1378b1c
PM
4943static void kvmppc_free_vcores(struct kvm *kvm)
4944{
4945 long int i;
4946
23316316 4947 for (i = 0; i < KVM_MAX_VCORES; ++i)
f1378b1c
PM
4948 kfree(kvm->arch.vcores[i]);
4949 kvm->arch.online_vcores = 0;
4950}
4951
3a167bea 4952static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
de56a948 4953{
e23a808b
PM
4954 debugfs_remove_recursive(kvm->arch.debugfs_dir);
4955
516f7898 4956 if (!kvm->arch.threads_indep)
8cf4ecc0 4957 kvm_hv_vm_deactivated();
512691d4 4958
f1378b1c 4959 kvmppc_free_vcores(kvm);
aa04b4cc 4960
8cf4ecc0 4961
5a319350
PM
4962 if (kvm_is_radix(kvm))
4963 kvmppc_free_radix(kvm);
4964 else
aae0777f 4965 kvmppc_free_hpt(&kvm->arch.hpt);
c57875f5 4966
89329c0b
SJS
4967 /* Perform global invalidation and return lpid to the pool */
4968 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
aa069a99 4969 if (nesting_enabled(kvm))
8e3f5fc1 4970 kvmhv_release_all_nested(kvm);
89329c0b 4971 kvm->arch.process_table = 0;
d89c69f4
PM
4972 if (kvm->arch.secure_guest)
4973 uv_svm_terminate(kvm->arch.lpid);
8e3f5fc1 4974 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
89329c0b 4975 }
ca9f4942 4976
89329c0b
SJS
4977 kvmppc_free_lpid(kvm->arch.lpid);
4978
c57875f5 4979 kvmppc_free_pimap(kvm);
de56a948
PM
4980}
4981
3a167bea 4982/* We don't need to emulate any privileged instructions or dcbz */
8c99d345 4983static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
3a167bea 4984 unsigned int inst, int *advance)
de56a948 4985{
3a167bea 4986 return EMULATE_FAIL;
de56a948
PM
4987}
4988
3a167bea
AK
4989static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
4990 ulong spr_val)
de56a948
PM
4991{
4992 return EMULATE_FAIL;
4993}
4994
3a167bea
AK
4995static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
4996 ulong *spr_val)
de56a948
PM
4997{
4998 return EMULATE_FAIL;
4999}
5000
3a167bea 5001static int kvmppc_core_check_processor_compat_hv(void)
de56a948 5002{
de760db4
PM
5003 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5004 cpu_has_feature(CPU_FTR_ARCH_206))
5005 return 0;
50de596d 5006
de760db4
PM
5007 /* POWER9 in radix mode is capable of being a nested hypervisor. */
5008 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5009 return 0;
5010
5011 return -EIO;
de56a948
PM
5012}
5013
8daaafc8
SW
5014#ifdef CONFIG_KVM_XICS
5015
5016void kvmppc_free_pimap(struct kvm *kvm)
5017{
5018 kfree(kvm->arch.pimap);
5019}
5020
c57875f5 5021static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
8daaafc8
SW
5022{
5023 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5024}
c57875f5
SW
5025
5026static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5027{
5028 struct irq_desc *desc;
5029 struct kvmppc_irq_map *irq_map;
5030 struct kvmppc_passthru_irqmap *pimap;
5031 struct irq_chip *chip;
5af50993 5032 int i, rc = 0;
c57875f5 5033
644abbb2
SW
5034 if (!kvm_irq_bypass)
5035 return 1;
5036
c57875f5
SW
5037 desc = irq_to_desc(host_irq);
5038 if (!desc)
5039 return -EIO;
5040
5041 mutex_lock(&kvm->lock);
5042
5043 pimap = kvm->arch.pimap;
5044 if (pimap == NULL) {
5045 /* First call, allocate structure to hold IRQ map */
5046 pimap = kvmppc_alloc_pimap();
5047 if (pimap == NULL) {
5048 mutex_unlock(&kvm->lock);
5049 return -ENOMEM;
5050 }
5051 kvm->arch.pimap = pimap;
5052 }
5053
5054 /*
5055 * For now, we only support interrupts for which the EOI operation
5056 * is an OPAL call followed by a write to XIRR, since that's
5af50993 5057 * what our real-mode EOI code does, or a XIVE interrupt
c57875f5
SW
5058 */
5059 chip = irq_data_get_irq_chip(&desc->irq_data);
5af50993 5060 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
c57875f5
SW
5061 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5062 host_irq, guest_gsi);
5063 mutex_unlock(&kvm->lock);
5064 return -ENOENT;
5065 }
5066
5067 /*
5068 * See if we already have an entry for this guest IRQ number.
5069 * If it's mapped to a hardware IRQ number, that's an error,
5070 * otherwise re-use this entry.
5071 */
5072 for (i = 0; i < pimap->n_mapped; i++) {
5073 if (guest_gsi == pimap->mapped[i].v_hwirq) {
5074 if (pimap->mapped[i].r_hwirq) {
5075 mutex_unlock(&kvm->lock);
5076 return -EINVAL;
5077 }
5078 break;
5079 }
5080 }
5081
5082 if (i == KVMPPC_PIRQ_MAPPED) {
5083 mutex_unlock(&kvm->lock);
5084 return -EAGAIN; /* table is full */
5085 }
5086
5087 irq_map = &pimap->mapped[i];
5088
5089 irq_map->v_hwirq = guest_gsi;
c57875f5
SW
5090 irq_map->desc = desc;
5091
e3c13e56
SW
5092 /*
5093 * Order the above two stores before the next to serialize with
5094 * the KVM real mode handler.
5095 */
5096 smp_wmb();
5097 irq_map->r_hwirq = desc->irq_data.hwirq;
5098
c57875f5
SW
5099 if (i == pimap->n_mapped)
5100 pimap->n_mapped++;
5101
03f95332 5102 if (xics_on_xive())
5af50993
BH
5103 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
5104 else
5105 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
5106 if (rc)
5107 irq_map->r_hwirq = 0;
5d375199 5108
c57875f5
SW
5109 mutex_unlock(&kvm->lock);
5110
5111 return 0;
5112}
5113
5114static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5115{
5116 struct irq_desc *desc;
5117 struct kvmppc_passthru_irqmap *pimap;
5af50993 5118 int i, rc = 0;
c57875f5 5119
644abbb2
SW
5120 if (!kvm_irq_bypass)
5121 return 0;
5122
c57875f5
SW
5123 desc = irq_to_desc(host_irq);
5124 if (!desc)
5125 return -EIO;
5126
5127 mutex_lock(&kvm->lock);
a1c52e1c
ME
5128 if (!kvm->arch.pimap)
5129 goto unlock;
c57875f5 5130
c57875f5
SW
5131 pimap = kvm->arch.pimap;
5132
5133 for (i = 0; i < pimap->n_mapped; i++) {
5134 if (guest_gsi == pimap->mapped[i].v_hwirq)
5135 break;
5136 }
5137
5138 if (i == pimap->n_mapped) {
5139 mutex_unlock(&kvm->lock);
5140 return -ENODEV;
5141 }
5142
03f95332 5143 if (xics_on_xive())
5af50993
BH
5144 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5145 else
5146 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5d375199 5147
5af50993 5148 /* invalidate the entry (what do do on error from the above ?) */
c57875f5
SW
5149 pimap->mapped[i].r_hwirq = 0;
5150
5151 /*
5152 * We don't free this structure even when the count goes to
5153 * zero. The structure is freed when we destroy the VM.
5154 */
a1c52e1c 5155 unlock:
c57875f5 5156 mutex_unlock(&kvm->lock);
5af50993 5157 return rc;
c57875f5
SW
5158}
5159
5160static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5161 struct irq_bypass_producer *prod)
5162{
5163 int ret = 0;
5164 struct kvm_kernel_irqfd *irqfd =
5165 container_of(cons, struct kvm_kernel_irqfd, consumer);
5166
5167 irqfd->producer = prod;
5168
5169 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5170 if (ret)
5171 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5172 prod->irq, irqfd->gsi, ret);
5173
5174 return ret;
5175}
5176
5177static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5178 struct irq_bypass_producer *prod)
5179{
5180 int ret;
5181 struct kvm_kernel_irqfd *irqfd =
5182 container_of(cons, struct kvm_kernel_irqfd, consumer);
5183
5184 irqfd->producer = NULL;
5185
5186 /*
5187 * When producer of consumer is unregistered, we change back to
5188 * default external interrupt handling mode - KVM real mode
5189 * will switch back to host.
5190 */
5191 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5192 if (ret)
5193 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5194 prod->irq, irqfd->gsi, ret);
5195}
8daaafc8
SW
5196#endif
5197
3a167bea
AK
5198static long kvm_arch_vm_ioctl_hv(struct file *filp,
5199 unsigned int ioctl, unsigned long arg)
5200{
5201 struct kvm *kvm __maybe_unused = filp->private_data;
5202 void __user *argp = (void __user *)arg;
5203 long r;
5204
5205 switch (ioctl) {
5206
3a167bea
AK
5207 case KVM_PPC_ALLOCATE_HTAB: {
5208 u32 htab_order;
5209
5210 r = -EFAULT;
5211 if (get_user(htab_order, (u32 __user *)argp))
5212 break;
f98a8bf9 5213 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
3a167bea
AK
5214 if (r)
5215 break;
3a167bea
AK
5216 r = 0;
5217 break;
5218 }
5219
5220 case KVM_PPC_GET_HTAB_FD: {
5221 struct kvm_get_htab_fd ghf;
5222
5223 r = -EFAULT;
5224 if (copy_from_user(&ghf, argp, sizeof(ghf)))
5225 break;
5226 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5227 break;
5228 }
5229
5e985969
DG
5230 case KVM_PPC_RESIZE_HPT_PREPARE: {
5231 struct kvm_ppc_resize_hpt rhpt;
5232
5233 r = -EFAULT;
5234 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5235 break;
5236
5237 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5238 break;
5239 }
5240
5241 case KVM_PPC_RESIZE_HPT_COMMIT: {
5242 struct kvm_ppc_resize_hpt rhpt;
5243
5244 r = -EFAULT;
5245 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5246 break;
5247
5248 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5249 break;
5250 }
5251
3a167bea
AK
5252 default:
5253 r = -ENOTTY;
5254 }
5255
5256 return r;
5257}
5258
699a0ea0
PM
5259/*
5260 * List of hcall numbers to enable by default.
5261 * For compatibility with old userspace, we enable by default
5262 * all hcalls that were implemented before the hcall-enabling
5263 * facility was added. Note this list should not include H_RTAS.
5264 */
5265static unsigned int default_hcall_list[] = {
5266 H_REMOVE,
5267 H_ENTER,
5268 H_READ,
5269 H_PROTECT,
5270 H_BULK_REMOVE,
5271 H_GET_TCE,
5272 H_PUT_TCE,
5273 H_SET_DABR,
5274 H_SET_XDABR,
5275 H_CEDE,
5276 H_PROD,
5277 H_CONFER,
5278 H_REGISTER_VPA,
5279#ifdef CONFIG_KVM_XICS
5280 H_EOI,
5281 H_CPPR,
5282 H_IPI,
5283 H_IPOLL,
5284 H_XIRR,
5285 H_XIRR_X,
5286#endif
5287 0
5288};
5289
5290static void init_default_hcalls(void)
5291{
5292 int i;
ae2113a4 5293 unsigned int hcall;
699a0ea0 5294
ae2113a4
PM
5295 for (i = 0; default_hcall_list[i]; ++i) {
5296 hcall = default_hcall_list[i];
5297 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5298 __set_bit(hcall / 4, default_enabled_hcalls);
5299 }
699a0ea0
PM
5300}
5301
c9270132
PM
5302static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5303{
468808bd 5304 unsigned long lpcr;
8cf4ecc0 5305 int radix;
18c3640c 5306 int err;
468808bd
PM
5307
5308 /* If not on a POWER9, reject it */
5309 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5310 return -ENODEV;
5311
5312 /* If any unknown flags set, reject it */
5313 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5314 return -EINVAL;
5315
468808bd 5316 /* GR (guest radix) bit in process_table field must match */
18c3640c 5317 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
8cf4ecc0 5318 if (!!(cfg->process_table & PATB_GR) != radix)
468808bd
PM
5319 return -EINVAL;
5320
5321 /* Process table size field must be reasonable, i.e. <= 24 */
5322 if ((cfg->process_table & PRTS_MASK) > 24)
5323 return -EINVAL;
5324
18c3640c
PM
5325 /* We can change a guest to/from radix now, if the host is radix */
5326 if (radix && !radix_enabled())
5327 return -EINVAL;
5328
de760db4
PM
5329 /* If we're a nested hypervisor, we currently only support radix */
5330 if (kvmhv_on_pseries() && !radix)
5331 return -EINVAL;
5332
0d4ee88d 5333 mutex_lock(&kvm->arch.mmu_setup_lock);
18c3640c
PM
5334 if (radix != kvm_is_radix(kvm)) {
5335 if (kvm->arch.mmu_ready) {
5336 kvm->arch.mmu_ready = 0;
5337 /* order mmu_ready vs. vcpus_running */
5338 smp_mb();
5339 if (atomic_read(&kvm->arch.vcpus_running)) {
5340 kvm->arch.mmu_ready = 1;
5341 err = -EBUSY;
5342 goto out_unlock;
5343 }
5344 }
5345 if (radix)
5346 err = kvmppc_switch_mmu_to_radix(kvm);
5347 else
5348 err = kvmppc_switch_mmu_to_hpt(kvm);
5349 if (err)
5350 goto out_unlock;
5351 }
5352
468808bd
PM
5353 kvm->arch.process_table = cfg->process_table;
5354 kvmppc_setup_partition_table(kvm);
5355
5356 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5357 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
18c3640c 5358 err = 0;
468808bd 5359
18c3640c 5360 out_unlock:
0d4ee88d 5361 mutex_unlock(&kvm->arch.mmu_setup_lock);
18c3640c 5362 return err;
c9270132
PM
5363}
5364
aa069a99
PM
5365static int kvmhv_enable_nested(struct kvm *kvm)
5366{
5367 if (!nested)
5368 return -EPERM;
8d9fcacf 5369 if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
aa069a99
PM
5370 return -ENODEV;
5371
5372 /* kvm == NULL means the caller is testing if the capability exists */
5373 if (kvm)
5374 kvm->arch.nested_enable = true;
5375 return 0;
5376}
5377
dceadcf9
SJS
5378static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5379 int size)
5380{
5381 int rc = -EINVAL;
5382
5383 if (kvmhv_vcpu_is_radix(vcpu)) {
5384 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5385
5386 if (rc > 0)
5387 rc = -EINVAL;
5388 }
5389
5390 /* For now quadrants are the only way to access nested guest memory */
5391 if (rc && vcpu->arch.nested)
5392 rc = -EAGAIN;
5393
5394 return rc;
5395}
5396
5397static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5398 int size)
5399{
5400 int rc = -EINVAL;
5401
5402 if (kvmhv_vcpu_is_radix(vcpu)) {
5403 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5404
5405 if (rc > 0)
5406 rc = -EINVAL;
5407 }
5408
5409 /* For now quadrants are the only way to access nested guest memory */
5410 if (rc && vcpu->arch.nested)
5411 rc = -EAGAIN;
5412
5413 return rc;
5414}
5415
22945688
BR
5416static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
5417{
5418 unpin_vpa(kvm, vpa);
5419 vpa->gpa = 0;
5420 vpa->pinned_addr = NULL;
5421 vpa->dirty = false;
5422 vpa->update_pending = 0;
5423}
5424
9a5788c6
PM
5425/*
5426 * Enable a guest to become a secure VM, or test whether
5427 * that could be enabled.
5428 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
5429 * tested (kvm == NULL) or enabled (kvm != NULL).
5430 */
5431static int kvmhv_enable_svm(struct kvm *kvm)
5432{
5433 if (!kvmppc_uvmem_available())
5434 return -EINVAL;
5435 if (kvm)
5436 kvm->arch.svm_enabled = 1;
5437 return 0;
5438}
5439
22945688
BR
5440/*
5441 * IOCTL handler to turn off secure mode of guest
5442 *
5443 * - Release all device pages
5444 * - Issue ucall to terminate the guest on the UV side
5445 * - Unpin the VPA pages.
5446 * - Reinit the partition scoped page tables
5447 */
5448static int kvmhv_svm_off(struct kvm *kvm)
5449{
5450 struct kvm_vcpu *vcpu;
5451 int mmu_was_ready;
5452 int srcu_idx;
5453 int ret = 0;
5454 int i;
5455
5456 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
5457 return ret;
5458
5459 mutex_lock(&kvm->arch.mmu_setup_lock);
5460 mmu_was_ready = kvm->arch.mmu_ready;
5461 if (kvm->arch.mmu_ready) {
5462 kvm->arch.mmu_ready = 0;
5463 /* order mmu_ready vs. vcpus_running */
5464 smp_mb();
5465 if (atomic_read(&kvm->arch.vcpus_running)) {
5466 kvm->arch.mmu_ready = 1;
5467 ret = -EBUSY;
5468 goto out;
5469 }
5470 }
5471
5472 srcu_idx = srcu_read_lock(&kvm->srcu);
5473 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5474 struct kvm_memory_slot *memslot;
5475 struct kvm_memslots *slots = __kvm_memslots(kvm, i);
5476
5477 if (!slots)
5478 continue;
5479
5480 kvm_for_each_memslot(memslot, slots) {
ce477a7a 5481 kvmppc_uvmem_drop_pages(memslot, kvm, true);
22945688
BR
5482 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
5483 }
5484 }
5485 srcu_read_unlock(&kvm->srcu, srcu_idx);
5486
5487 ret = uv_svm_terminate(kvm->arch.lpid);
5488 if (ret != U_SUCCESS) {
5489 ret = -EINVAL;
5490 goto out;
5491 }
5492
5493 /*
5494 * When secure guest is reset, all the guest pages are sent
5495 * to UV via UV_PAGE_IN before the non-boot vcpus get a
5496 * chance to run and unpin their VPA pages. Unpinning of all
5497 * VPA pages is done here explicitly so that VPA pages
5498 * can be migrated to the secure side.
5499 *
5500 * This is required to for the secure SMP guest to reboot
5501 * correctly.
5502 */
5503 kvm_for_each_vcpu(i, vcpu, kvm) {
5504 spin_lock(&vcpu->arch.vpa_update_lock);
5505 unpin_vpa_reset(kvm, &vcpu->arch.dtl);
5506 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
5507 unpin_vpa_reset(kvm, &vcpu->arch.vpa);
5508 spin_unlock(&vcpu->arch.vpa_update_lock);
5509 }
5510
5511 kvmppc_setup_partition_table(kvm);
5512 kvm->arch.secure_guest = 0;
5513 kvm->arch.mmu_ready = mmu_was_ready;
5514out:
5515 mutex_unlock(&kvm->arch.mmu_setup_lock);
5516 return ret;
5517}
5518
cbbc58d4 5519static struct kvmppc_ops kvm_ops_hv = {
3a167bea
AK
5520 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5521 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5522 .get_one_reg = kvmppc_get_one_reg_hv,
5523 .set_one_reg = kvmppc_set_one_reg_hv,
5524 .vcpu_load = kvmppc_core_vcpu_load_hv,
5525 .vcpu_put = kvmppc_core_vcpu_put_hv,
87a45e07 5526 .inject_interrupt = kvmppc_inject_interrupt_hv,
3a167bea
AK
5527 .set_msr = kvmppc_set_msr_hv,
5528 .vcpu_run = kvmppc_vcpu_run_hv,
5529 .vcpu_create = kvmppc_core_vcpu_create_hv,
5530 .vcpu_free = kvmppc_core_vcpu_free_hv,
5531 .check_requests = kvmppc_core_check_requests_hv,
5532 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
5533 .flush_memslot = kvmppc_core_flush_memslot_hv,
5534 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5535 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
3a167bea
AK
5536 .unmap_hva_range = kvm_unmap_hva_range_hv,
5537 .age_hva = kvm_age_hva_hv,
5538 .test_age_hva = kvm_test_age_hva_hv,
5539 .set_spte_hva = kvm_set_spte_hva_hv,
3a167bea 5540 .free_memslot = kvmppc_core_free_memslot_hv,
3a167bea
AK
5541 .init_vm = kvmppc_core_init_vm_hv,
5542 .destroy_vm = kvmppc_core_destroy_vm_hv,
3a167bea
AK
5543 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5544 .emulate_op = kvmppc_core_emulate_op_hv,
5545 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5546 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5547 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5548 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
ae2113a4 5549 .hcall_implemented = kvmppc_hcall_impl_hv,
c57875f5
SW
5550#ifdef CONFIG_KVM_XICS
5551 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5552 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5553#endif
c9270132
PM
5554 .configure_mmu = kvmhv_configure_mmu,
5555 .get_rmmu_info = kvmhv_get_rmmu_info,
3c313524 5556 .set_smt_mode = kvmhv_set_smt_mode,
aa069a99 5557 .enable_nested = kvmhv_enable_nested,
dceadcf9
SJS
5558 .load_from_eaddr = kvmhv_load_from_eaddr,
5559 .store_to_eaddr = kvmhv_store_to_eaddr,
9a5788c6 5560 .enable_svm = kvmhv_enable_svm,
22945688 5561 .svm_off = kvmhv_svm_off,
3a167bea
AK
5562};
5563
fd7bacbc
MS
5564static int kvm_init_subcore_bitmap(void)
5565{
5566 int i, j;
5567 int nr_cores = cpu_nr_cores();
5568 struct sibling_subcore_state *sibling_subcore_state;
5569
5570 for (i = 0; i < nr_cores; i++) {
5571 int first_cpu = i * threads_per_core;
5572 int node = cpu_to_node(first_cpu);
5573
5574 /* Ignore if it is already allocated. */
d2e60075 5575 if (paca_ptrs[first_cpu]->sibling_subcore_state)
fd7bacbc
MS
5576 continue;
5577
5578 sibling_subcore_state =
08434ab4 5579 kzalloc_node(sizeof(struct sibling_subcore_state),
fd7bacbc
MS
5580 GFP_KERNEL, node);
5581 if (!sibling_subcore_state)
5582 return -ENOMEM;
5583
fd7bacbc
MS
5584
5585 for (j = 0; j < threads_per_core; j++) {
5586 int cpu = first_cpu + j;
5587
d2e60075
NP
5588 paca_ptrs[cpu]->sibling_subcore_state =
5589 sibling_subcore_state;
fd7bacbc
MS
5590 }
5591 }
5592 return 0;
5593}
5594
5a319350
PM
5595static int kvmppc_radix_possible(void)
5596{
5597 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5598}
5599
3a167bea 5600static int kvmppc_book3s_init_hv(void)
de56a948
PM
5601{
5602 int r;
2275d7b5
NP
5603
5604 if (!tlbie_capable) {
5605 pr_err("KVM-HV: Host does not support TLBIE\n");
5606 return -ENODEV;
5607 }
5608
cbbc58d4
AK
5609 /*
5610 * FIXME!! Do we need to check on all cpus ?
5611 */
5612 r = kvmppc_core_check_processor_compat_hv();
5613 if (r < 0)
739e2425 5614 return -ENODEV;
de56a948 5615
8e3f5fc1
PM
5616 r = kvmhv_nested_init();
5617 if (r)
5618 return r;
5619
fd7bacbc
MS
5620 r = kvm_init_subcore_bitmap();
5621 if (r)
5622 return r;
5623
f725758b
PM
5624 /*
5625 * We need a way of accessing the XICS interrupt controller,
d2e60075 5626 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
f725758b
PM
5627 * indirectly, via OPAL.
5628 */
5629#ifdef CONFIG_SMP
03f95332 5630 if (!xics_on_xive() && !kvmhv_on_pseries() &&
f3c18e93 5631 !local_paca->kvm_hstate.xics_phys) {
f725758b
PM
5632 struct device_node *np;
5633
5634 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5635 if (!np) {
5636 pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5637 return -ENODEV;
5638 }
51eaa08f
NMG
5639 /* presence of intc confirmed - node can be dropped again */
5640 of_node_put(np);
f725758b
PM
5641 }
5642#endif
5643
cbbc58d4
AK
5644 kvm_ops_hv.owner = THIS_MODULE;
5645 kvmppc_hv_ops = &kvm_ops_hv;
de56a948 5646
699a0ea0
PM
5647 init_default_hcalls();
5648
ec257165
PM
5649 init_vcore_lists();
5650
cbbc58d4 5651 r = kvmppc_mmu_hv_init();
5a319350
PM
5652 if (r)
5653 return r;
5654
5655 if (kvmppc_radix_possible())
5656 r = kvmppc_radix_init();
00608e1f
PM
5657
5658 /*
5659 * POWER9 chips before version 2.02 can't have some threads in
5660 * HPT mode and some in radix mode on the same core.
5661 */
5662 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5663 unsigned int pvr = mfspr(SPRN_PVR);
5664 if ((pvr >> 16) == PVR_POWER9 &&
5665 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5666 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5667 no_mixing_hpt_and_radix = true;
5668 }
5669
ca9f4942
BR
5670 r = kvmppc_uvmem_init();
5671 if (r < 0)
5672 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
5673
de56a948
PM
5674 return r;
5675}
5676
3a167bea 5677static void kvmppc_book3s_exit_hv(void)
de56a948 5678{
ca9f4942 5679 kvmppc_uvmem_free();
79b6c247 5680 kvmppc_free_host_rm_ops();
5a319350
PM
5681 if (kvmppc_radix_possible())
5682 kvmppc_radix_exit();
cbbc58d4 5683 kvmppc_hv_ops = NULL;
8e3f5fc1 5684 kvmhv_nested_exit();
de56a948
PM
5685}
5686
3a167bea
AK
5687module_init(kvmppc_book3s_init_hv);
5688module_exit(kvmppc_book3s_exit_hv);
2ba9f0d8 5689MODULE_LICENSE("GPL");
398a76c6
AG
5690MODULE_ALIAS_MISCDEV(KVM_MINOR);
5691MODULE_ALIAS("devname:kvm");