KVM: PPC: Book3S HV: Update irq stats for IRQs handled in real mode
[linux-2.6-block.git] / arch / powerpc / kvm / book3s_hv.c
CommitLineData
de56a948
PM
1/*
2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4 *
5 * Authors:
6 * Paul Mackerras <paulus@au1.ibm.com>
7 * Alexander Graf <agraf@suse.de>
8 * Kevin Wolf <mail@kevin-wolf.de>
9 *
10 * Description: KVM functions specific to running on Book 3S
11 * processors in hypervisor mode (specifically POWER7 and later).
12 *
13 * This file is derived from arch/powerpc/kvm/book3s.c,
14 * by Alexander Graf <agraf@suse.de>.
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License, version 2, as
18 * published by the Free Software Foundation.
19 */
20
21#include <linux/kvm_host.h>
22#include <linux/err.h>
23#include <linux/slab.h>
24#include <linux/preempt.h>
25#include <linux/sched.h>
26#include <linux/delay.h>
66b15db6 27#include <linux/export.h>
de56a948
PM
28#include <linux/fs.h>
29#include <linux/anon_inodes.h>
07f8ab25 30#include <linux/cpu.h>
de56a948 31#include <linux/cpumask.h>
aa04b4cc
PM
32#include <linux/spinlock.h>
33#include <linux/page-flags.h>
2c9097e4 34#include <linux/srcu.h>
398a76c6 35#include <linux/miscdevice.h>
e23a808b 36#include <linux/debugfs.h>
de56a948
PM
37
38#include <asm/reg.h>
39#include <asm/cputable.h>
40#include <asm/cacheflush.h>
41#include <asm/tlbflush.h>
42#include <asm/uaccess.h>
43#include <asm/io.h>
44#include <asm/kvm_ppc.h>
45#include <asm/kvm_book3s.h>
46#include <asm/mmu_context.h>
47#include <asm/lppaca.h>
48#include <asm/processor.h>
371fefd6 49#include <asm/cputhreads.h>
aa04b4cc 50#include <asm/page.h>
de1d9248 51#include <asm/hvcall.h>
ae3a197e 52#include <asm/switch_to.h>
512691d4 53#include <asm/smp.h>
66feed61 54#include <asm/dbell.h>
fd7bacbc 55#include <asm/hmi.h>
c57875f5 56#include <asm/pnv-pci.h>
de56a948 57#include <linux/gfp.h>
de56a948
PM
58#include <linux/vmalloc.h>
59#include <linux/highmem.h>
c77162de 60#include <linux/hugetlb.h>
c57875f5
SW
61#include <linux/kvm_irqfd.h>
62#include <linux/irqbypass.h>
2ba9f0d8 63#include <linux/module.h>
7b5f8272 64#include <linux/compiler.h>
de56a948 65
3a167bea
AK
66#include "book3s.h"
67
3c78f78a
SW
68#define CREATE_TRACE_POINTS
69#include "trace_hv.h"
70
de56a948
PM
71/* #define EXIT_DEBUG */
72/* #define EXIT_DEBUG_SIMPLE */
73/* #define EXIT_DEBUG_INT */
74
913d3ff9
PM
75/* Used to indicate that a guest page fault needs to be handled */
76#define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
f7af5209
SW
77/* Used to indicate that a guest passthrough interrupt needs to be handled */
78#define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
913d3ff9 79
c7b67670
PM
80/* Used as a "null" value for timebase values */
81#define TB_NIL (~(u64)0)
82
699a0ea0
PM
83static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
84
b4deba5c
PM
85static int dynamic_mt_modes = 6;
86module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
87MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
ec257165
PM
88static int target_smt_mode;
89module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
90MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
9678cdaa 91
520fe9c6
SW
92#ifdef CONFIG_KVM_XICS
93static struct kernel_param_ops module_param_ops = {
94 .set = param_set_int,
95 .get = param_get_int,
96};
97
644abbb2
SW
98module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass,
99 S_IRUGO | S_IWUSR);
100MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
101
520fe9c6
SW
102module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
103 S_IRUGO | S_IWUSR);
104MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
105#endif
106
0cda69dd
SJS
107/* Maximum halt poll interval defaults to KVM_HALT_POLL_NS_DEFAULT */
108static unsigned int halt_poll_max_ns = KVM_HALT_POLL_NS_DEFAULT;
109module_param(halt_poll_max_ns, uint, S_IRUGO | S_IWUSR);
110MODULE_PARM_DESC(halt_poll_max_ns, "Maximum halt poll time in ns");
111
112/* Factor by which the vcore halt poll interval is grown, default is to double
113 */
114static unsigned int halt_poll_ns_grow = 2;
115module_param(halt_poll_ns_grow, int, S_IRUGO);
116MODULE_PARM_DESC(halt_poll_ns_grow, "Factor halt poll time is grown by");
117
118/* Factor by which the vcore halt poll interval is shrunk, default is to reset
119 */
120static unsigned int halt_poll_ns_shrink;
121module_param(halt_poll_ns_shrink, int, S_IRUGO);
122MODULE_PARM_DESC(halt_poll_ns_shrink, "Factor halt poll time is shrunk by");
123
19ccb76a 124static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
32fad281 125static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
19ccb76a 126
7b5f8272
SJS
127static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
128 int *ip)
129{
130 int i = *ip;
131 struct kvm_vcpu *vcpu;
132
133 while (++i < MAX_SMT_THREADS) {
134 vcpu = READ_ONCE(vc->runnable_threads[i]);
135 if (vcpu) {
136 *ip = i;
137 return vcpu;
138 }
139 }
140 return NULL;
141}
142
143/* Used to traverse the list of runnable threads for a given vcore */
144#define for_each_runnable_thread(i, vcpu, vc) \
145 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
146
66feed61
PM
147static bool kvmppc_ipi_thread(int cpu)
148{
149 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
150 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
151 preempt_disable();
152 if (cpu_first_thread_sibling(cpu) ==
153 cpu_first_thread_sibling(smp_processor_id())) {
154 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
155 msg |= cpu_thread_in_core(cpu);
156 smp_mb();
157 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
158 preempt_enable();
159 return true;
160 }
161 preempt_enable();
162 }
163
164#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
165 if (cpu >= 0 && cpu < nr_cpu_ids && paca[cpu].kvm_hstate.xics_phys) {
166 xics_wake_cpu(cpu);
167 return true;
168 }
169#endif
170
171 return false;
172}
173
3a167bea 174static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
54695c30 175{
ec257165 176 int cpu;
8577370f 177 struct swait_queue_head *wqp;
54695c30
BH
178
179 wqp = kvm_arch_vcpu_wq(vcpu);
8577370f
MT
180 if (swait_active(wqp)) {
181 swake_up(wqp);
54695c30
BH
182 ++vcpu->stat.halt_wakeup;
183 }
184
ec257165 185 if (kvmppc_ipi_thread(vcpu->arch.thread_cpu))
66feed61 186 return;
54695c30
BH
187
188 /* CPU points to the first thread of the core */
ec257165 189 cpu = vcpu->cpu;
66feed61
PM
190 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
191 smp_send_reschedule(cpu);
54695c30
BH
192}
193
c7b67670
PM
194/*
195 * We use the vcpu_load/put functions to measure stolen time.
196 * Stolen time is counted as time when either the vcpu is able to
197 * run as part of a virtual core, but the task running the vcore
198 * is preempted or sleeping, or when the vcpu needs something done
199 * in the kernel by the task running the vcpu, but that task is
200 * preempted or sleeping. Those two things have to be counted
201 * separately, since one of the vcpu tasks will take on the job
202 * of running the core, and the other vcpu tasks in the vcore will
203 * sleep waiting for it to do that, but that sleep shouldn't count
204 * as stolen time.
205 *
206 * Hence we accumulate stolen time when the vcpu can run as part of
207 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
208 * needs its task to do other things in the kernel (for example,
209 * service a page fault) in busy_stolen. We don't accumulate
210 * stolen time for a vcore when it is inactive, or for a vcpu
211 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
212 * a misnomer; it means that the vcpu task is not executing in
213 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
214 * the kernel. We don't have any way of dividing up that time
215 * between time that the vcpu is genuinely stopped, time that
216 * the task is actively working on behalf of the vcpu, and time
217 * that the task is preempted, so we don't count any of it as
218 * stolen.
219 *
220 * Updates to busy_stolen are protected by arch.tbacct_lock;
2711e248
PM
221 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
222 * lock. The stolen times are measured in units of timebase ticks.
223 * (Note that the != TB_NIL checks below are purely defensive;
224 * they should never fail.)
c7b67670
PM
225 */
226
ec257165
PM
227static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
228{
229 unsigned long flags;
230
231 spin_lock_irqsave(&vc->stoltb_lock, flags);
232 vc->preempt_tb = mftb();
233 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
234}
235
236static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
237{
238 unsigned long flags;
239
240 spin_lock_irqsave(&vc->stoltb_lock, flags);
241 if (vc->preempt_tb != TB_NIL) {
242 vc->stolen_tb += mftb() - vc->preempt_tb;
243 vc->preempt_tb = TB_NIL;
244 }
245 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
246}
247
3a167bea 248static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
de56a948 249{
0456ec4f 250 struct kvmppc_vcore *vc = vcpu->arch.vcore;
bf3d32e1 251 unsigned long flags;
0456ec4f 252
2711e248
PM
253 /*
254 * We can test vc->runner without taking the vcore lock,
255 * because only this task ever sets vc->runner to this
256 * vcpu, and once it is set to this vcpu, only this task
257 * ever sets it to NULL.
258 */
ec257165
PM
259 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
260 kvmppc_core_end_stolen(vc);
261
2711e248 262 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
c7b67670
PM
263 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
264 vcpu->arch.busy_preempt != TB_NIL) {
265 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
266 vcpu->arch.busy_preempt = TB_NIL;
267 }
bf3d32e1 268 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
de56a948
PM
269}
270
3a167bea 271static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
de56a948 272{
0456ec4f 273 struct kvmppc_vcore *vc = vcpu->arch.vcore;
bf3d32e1 274 unsigned long flags;
0456ec4f 275
ec257165
PM
276 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
277 kvmppc_core_start_stolen(vc);
278
2711e248 279 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
c7b67670
PM
280 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
281 vcpu->arch.busy_preempt = mftb();
bf3d32e1 282 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
de56a948
PM
283}
284
3a167bea 285static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
de56a948 286{
c20875a3
PM
287 /*
288 * Check for illegal transactional state bit combination
289 * and if we find it, force the TS field to a safe state.
290 */
291 if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
292 msr &= ~MSR_TS_MASK;
de56a948 293 vcpu->arch.shregs.msr = msr;
19ccb76a 294 kvmppc_end_cede(vcpu);
de56a948
PM
295}
296
5358a963 297static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
de56a948
PM
298{
299 vcpu->arch.pvr = pvr;
300}
301
5358a963 302static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
388cc6e1
PM
303{
304 unsigned long pcr = 0;
305 struct kvmppc_vcore *vc = vcpu->arch.vcore;
306
307 if (arch_compat) {
388cc6e1
PM
308 switch (arch_compat) {
309 case PVR_ARCH_205:
5557ae0e
PM
310 /*
311 * If an arch bit is set in PCR, all the defined
312 * higher-order arch bits also have to be set.
313 */
314 pcr = PCR_ARCH_206 | PCR_ARCH_205;
388cc6e1
PM
315 break;
316 case PVR_ARCH_206:
317 case PVR_ARCH_206p:
5557ae0e
PM
318 pcr = PCR_ARCH_206;
319 break;
320 case PVR_ARCH_207:
388cc6e1
PM
321 break;
322 default:
323 return -EINVAL;
324 }
5557ae0e
PM
325
326 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
327 /* POWER7 can't emulate POWER8 */
328 if (!(pcr & PCR_ARCH_206))
329 return -EINVAL;
330 pcr &= ~PCR_ARCH_206;
331 }
388cc6e1
PM
332 }
333
334 spin_lock(&vc->lock);
335 vc->arch_compat = arch_compat;
336 vc->pcr = pcr;
337 spin_unlock(&vc->lock);
338
339 return 0;
340}
341
5358a963 342static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
de56a948
PM
343{
344 int r;
345
346 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
347 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
348 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
349 for (r = 0; r < 16; ++r)
350 pr_err("r%2d = %.16lx r%d = %.16lx\n",
351 r, kvmppc_get_gpr(vcpu, r),
352 r+16, kvmppc_get_gpr(vcpu, r+16));
353 pr_err("ctr = %.16lx lr = %.16lx\n",
354 vcpu->arch.ctr, vcpu->arch.lr);
355 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
356 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
357 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
358 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
359 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
360 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
361 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
362 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
363 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
364 pr_err("fault dar = %.16lx dsisr = %.8x\n",
365 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
366 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
367 for (r = 0; r < vcpu->arch.slb_max; ++r)
368 pr_err(" ESID = %.16llx VSID = %.16llx\n",
369 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
370 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
a0144e2a 371 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
de56a948
PM
372 vcpu->arch.last_inst);
373}
374
5358a963 375static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
a8606e20 376{
e09fefde 377 struct kvm_vcpu *ret;
a8606e20
PM
378
379 mutex_lock(&kvm->lock);
e09fefde 380 ret = kvm_get_vcpu_by_id(kvm, id);
a8606e20
PM
381 mutex_unlock(&kvm->lock);
382 return ret;
383}
384
385static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
386{
f13c13a0 387 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
02407552 388 vpa->yield_count = cpu_to_be32(1);
a8606e20
PM
389}
390
55b665b0
PM
391static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
392 unsigned long addr, unsigned long len)
393{
394 /* check address is cacheline aligned */
395 if (addr & (L1_CACHE_BYTES - 1))
396 return -EINVAL;
397 spin_lock(&vcpu->arch.vpa_update_lock);
398 if (v->next_gpa != addr || v->len != len) {
399 v->next_gpa = addr;
400 v->len = addr ? len : 0;
401 v->update_pending = 1;
402 }
403 spin_unlock(&vcpu->arch.vpa_update_lock);
404 return 0;
405}
406
2e25aa5f
PM
407/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
408struct reg_vpa {
409 u32 dummy;
410 union {
02407552
AG
411 __be16 hword;
412 __be32 word;
2e25aa5f
PM
413 } length;
414};
415
416static int vpa_is_registered(struct kvmppc_vpa *vpap)
417{
418 if (vpap->update_pending)
419 return vpap->next_gpa != 0;
420 return vpap->pinned_addr != NULL;
421}
422
a8606e20
PM
423static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
424 unsigned long flags,
425 unsigned long vcpuid, unsigned long vpa)
426{
427 struct kvm *kvm = vcpu->kvm;
93e60249 428 unsigned long len, nb;
a8606e20
PM
429 void *va;
430 struct kvm_vcpu *tvcpu;
2e25aa5f
PM
431 int err;
432 int subfunc;
433 struct kvmppc_vpa *vpap;
a8606e20
PM
434
435 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
436 if (!tvcpu)
437 return H_PARAMETER;
438
2e25aa5f
PM
439 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
440 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
441 subfunc == H_VPA_REG_SLB) {
442 /* Registering new area - address must be cache-line aligned */
443 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
a8606e20 444 return H_PARAMETER;
2e25aa5f
PM
445
446 /* convert logical addr to kernel addr and read length */
93e60249
PM
447 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
448 if (va == NULL)
b2b2f165 449 return H_PARAMETER;
2e25aa5f 450 if (subfunc == H_VPA_REG_VPA)
02407552 451 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
a8606e20 452 else
02407552 453 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
c35635ef 454 kvmppc_unpin_guest_page(kvm, va, vpa, false);
2e25aa5f
PM
455
456 /* Check length */
457 if (len > nb || len < sizeof(struct reg_vpa))
458 return H_PARAMETER;
459 } else {
460 vpa = 0;
461 len = 0;
462 }
463
464 err = H_PARAMETER;
465 vpap = NULL;
466 spin_lock(&tvcpu->arch.vpa_update_lock);
467
468 switch (subfunc) {
469 case H_VPA_REG_VPA: /* register VPA */
470 if (len < sizeof(struct lppaca))
a8606e20 471 break;
2e25aa5f
PM
472 vpap = &tvcpu->arch.vpa;
473 err = 0;
474 break;
475
476 case H_VPA_REG_DTL: /* register DTL */
477 if (len < sizeof(struct dtl_entry))
a8606e20 478 break;
2e25aa5f
PM
479 len -= len % sizeof(struct dtl_entry);
480
481 /* Check that they have previously registered a VPA */
482 err = H_RESOURCE;
483 if (!vpa_is_registered(&tvcpu->arch.vpa))
a8606e20 484 break;
2e25aa5f
PM
485
486 vpap = &tvcpu->arch.dtl;
487 err = 0;
488 break;
489
490 case H_VPA_REG_SLB: /* register SLB shadow buffer */
491 /* Check that they have previously registered a VPA */
492 err = H_RESOURCE;
493 if (!vpa_is_registered(&tvcpu->arch.vpa))
a8606e20 494 break;
2e25aa5f
PM
495
496 vpap = &tvcpu->arch.slb_shadow;
497 err = 0;
498 break;
499
500 case H_VPA_DEREG_VPA: /* deregister VPA */
501 /* Check they don't still have a DTL or SLB buf registered */
502 err = H_RESOURCE;
503 if (vpa_is_registered(&tvcpu->arch.dtl) ||
504 vpa_is_registered(&tvcpu->arch.slb_shadow))
a8606e20 505 break;
2e25aa5f
PM
506
507 vpap = &tvcpu->arch.vpa;
508 err = 0;
509 break;
510
511 case H_VPA_DEREG_DTL: /* deregister DTL */
512 vpap = &tvcpu->arch.dtl;
513 err = 0;
514 break;
515
516 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
517 vpap = &tvcpu->arch.slb_shadow;
518 err = 0;
519 break;
520 }
521
522 if (vpap) {
523 vpap->next_gpa = vpa;
524 vpap->len = len;
525 vpap->update_pending = 1;
a8606e20 526 }
93e60249 527
2e25aa5f
PM
528 spin_unlock(&tvcpu->arch.vpa_update_lock);
529
93e60249 530 return err;
a8606e20
PM
531}
532
081f323b 533static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
2e25aa5f 534{
081f323b 535 struct kvm *kvm = vcpu->kvm;
2e25aa5f
PM
536 void *va;
537 unsigned long nb;
081f323b 538 unsigned long gpa;
2e25aa5f 539
081f323b
PM
540 /*
541 * We need to pin the page pointed to by vpap->next_gpa,
542 * but we can't call kvmppc_pin_guest_page under the lock
543 * as it does get_user_pages() and down_read(). So we
544 * have to drop the lock, pin the page, then get the lock
545 * again and check that a new area didn't get registered
546 * in the meantime.
547 */
548 for (;;) {
549 gpa = vpap->next_gpa;
550 spin_unlock(&vcpu->arch.vpa_update_lock);
551 va = NULL;
552 nb = 0;
553 if (gpa)
c35635ef 554 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
081f323b
PM
555 spin_lock(&vcpu->arch.vpa_update_lock);
556 if (gpa == vpap->next_gpa)
557 break;
558 /* sigh... unpin that one and try again */
559 if (va)
c35635ef 560 kvmppc_unpin_guest_page(kvm, va, gpa, false);
081f323b
PM
561 }
562
563 vpap->update_pending = 0;
564 if (va && nb < vpap->len) {
565 /*
566 * If it's now too short, it must be that userspace
567 * has changed the mappings underlying guest memory,
568 * so unregister the region.
569 */
c35635ef 570 kvmppc_unpin_guest_page(kvm, va, gpa, false);
081f323b 571 va = NULL;
2e25aa5f
PM
572 }
573 if (vpap->pinned_addr)
c35635ef
PM
574 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
575 vpap->dirty);
576 vpap->gpa = gpa;
2e25aa5f 577 vpap->pinned_addr = va;
c35635ef 578 vpap->dirty = false;
2e25aa5f
PM
579 if (va)
580 vpap->pinned_end = va + vpap->len;
581}
582
583static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
584{
2f12f034
PM
585 if (!(vcpu->arch.vpa.update_pending ||
586 vcpu->arch.slb_shadow.update_pending ||
587 vcpu->arch.dtl.update_pending))
588 return;
589
2e25aa5f
PM
590 spin_lock(&vcpu->arch.vpa_update_lock);
591 if (vcpu->arch.vpa.update_pending) {
081f323b 592 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
55b665b0
PM
593 if (vcpu->arch.vpa.pinned_addr)
594 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
2e25aa5f
PM
595 }
596 if (vcpu->arch.dtl.update_pending) {
081f323b 597 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
2e25aa5f
PM
598 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
599 vcpu->arch.dtl_index = 0;
600 }
601 if (vcpu->arch.slb_shadow.update_pending)
081f323b 602 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
2e25aa5f
PM
603 spin_unlock(&vcpu->arch.vpa_update_lock);
604}
605
c7b67670
PM
606/*
607 * Return the accumulated stolen time for the vcore up until `now'.
608 * The caller should hold the vcore lock.
609 */
610static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
611{
612 u64 p;
2711e248 613 unsigned long flags;
c7b67670 614
2711e248
PM
615 spin_lock_irqsave(&vc->stoltb_lock, flags);
616 p = vc->stolen_tb;
c7b67670 617 if (vc->vcore_state != VCORE_INACTIVE &&
2711e248
PM
618 vc->preempt_tb != TB_NIL)
619 p += now - vc->preempt_tb;
620 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
c7b67670
PM
621 return p;
622}
623
0456ec4f
PM
624static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
625 struct kvmppc_vcore *vc)
626{
627 struct dtl_entry *dt;
628 struct lppaca *vpa;
c7b67670
PM
629 unsigned long stolen;
630 unsigned long core_stolen;
631 u64 now;
0456ec4f
PM
632
633 dt = vcpu->arch.dtl_ptr;
634 vpa = vcpu->arch.vpa.pinned_addr;
c7b67670
PM
635 now = mftb();
636 core_stolen = vcore_stolen_time(vc, now);
637 stolen = core_stolen - vcpu->arch.stolen_logged;
638 vcpu->arch.stolen_logged = core_stolen;
bf3d32e1 639 spin_lock_irq(&vcpu->arch.tbacct_lock);
c7b67670
PM
640 stolen += vcpu->arch.busy_stolen;
641 vcpu->arch.busy_stolen = 0;
bf3d32e1 642 spin_unlock_irq(&vcpu->arch.tbacct_lock);
0456ec4f
PM
643 if (!dt || !vpa)
644 return;
645 memset(dt, 0, sizeof(struct dtl_entry));
646 dt->dispatch_reason = 7;
02407552
AG
647 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
648 dt->timebase = cpu_to_be64(now + vc->tb_offset);
649 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
650 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
651 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
0456ec4f
PM
652 ++dt;
653 if (dt == vcpu->arch.dtl.pinned_end)
654 dt = vcpu->arch.dtl.pinned_addr;
655 vcpu->arch.dtl_ptr = dt;
656 /* order writing *dt vs. writing vpa->dtl_idx */
657 smp_wmb();
02407552 658 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
c35635ef 659 vcpu->arch.dtl.dirty = true;
0456ec4f
PM
660}
661
9642382e
MN
662static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
663{
664 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
665 return true;
666 if ((!vcpu->arch.vcore->arch_compat) &&
667 cpu_has_feature(CPU_FTR_ARCH_207S))
668 return true;
669 return false;
670}
671
672static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
673 unsigned long resource, unsigned long value1,
674 unsigned long value2)
675{
676 switch (resource) {
677 case H_SET_MODE_RESOURCE_SET_CIABR:
678 if (!kvmppc_power8_compatible(vcpu))
679 return H_P2;
680 if (value2)
681 return H_P4;
682 if (mflags)
683 return H_UNSUPPORTED_FLAG_START;
684 /* Guests can't breakpoint the hypervisor */
685 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
686 return H_P3;
687 vcpu->arch.ciabr = value1;
688 return H_SUCCESS;
689 case H_SET_MODE_RESOURCE_SET_DAWR:
690 if (!kvmppc_power8_compatible(vcpu))
691 return H_P2;
692 if (mflags)
693 return H_UNSUPPORTED_FLAG_START;
694 if (value2 & DABRX_HYP)
695 return H_P4;
696 vcpu->arch.dawr = value1;
697 vcpu->arch.dawrx = value2;
698 return H_SUCCESS;
699 default:
700 return H_TOO_HARD;
701 }
702}
703
90fd09f8
SB
704static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
705{
706 struct kvmppc_vcore *vcore = target->arch.vcore;
707
708 /*
709 * We expect to have been called by the real mode handler
710 * (kvmppc_rm_h_confer()) which would have directly returned
711 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
712 * have useful work to do and should not confer) so we don't
713 * recheck that here.
714 */
715
716 spin_lock(&vcore->lock);
717 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
ec257165
PM
718 vcore->vcore_state != VCORE_INACTIVE &&
719 vcore->runner)
90fd09f8
SB
720 target = vcore->runner;
721 spin_unlock(&vcore->lock);
722
723 return kvm_vcpu_yield_to(target);
724}
725
726static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
727{
728 int yield_count = 0;
729 struct lppaca *lppaca;
730
731 spin_lock(&vcpu->arch.vpa_update_lock);
732 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
733 if (lppaca)
ecb6d618 734 yield_count = be32_to_cpu(lppaca->yield_count);
90fd09f8
SB
735 spin_unlock(&vcpu->arch.vpa_update_lock);
736 return yield_count;
737}
738
a8606e20
PM
739int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
740{
741 unsigned long req = kvmppc_get_gpr(vcpu, 3);
742 unsigned long target, ret = H_SUCCESS;
90fd09f8 743 int yield_count;
a8606e20 744 struct kvm_vcpu *tvcpu;
8e591cb7 745 int idx, rc;
a8606e20 746
699a0ea0
PM
747 if (req <= MAX_HCALL_OPCODE &&
748 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
749 return RESUME_HOST;
750
a8606e20
PM
751 switch (req) {
752 case H_CEDE:
a8606e20
PM
753 break;
754 case H_PROD:
755 target = kvmppc_get_gpr(vcpu, 4);
756 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
757 if (!tvcpu) {
758 ret = H_PARAMETER;
759 break;
760 }
761 tvcpu->arch.prodded = 1;
762 smp_mb();
763 if (vcpu->arch.ceded) {
8577370f
MT
764 if (swait_active(&vcpu->wq)) {
765 swake_up(&vcpu->wq);
a8606e20
PM
766 vcpu->stat.halt_wakeup++;
767 }
768 }
769 break;
770 case H_CONFER:
42d7604d
PM
771 target = kvmppc_get_gpr(vcpu, 4);
772 if (target == -1)
773 break;
774 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
775 if (!tvcpu) {
776 ret = H_PARAMETER;
777 break;
778 }
90fd09f8
SB
779 yield_count = kvmppc_get_gpr(vcpu, 5);
780 if (kvmppc_get_yield_count(tvcpu) != yield_count)
781 break;
782 kvm_arch_vcpu_yield_to(tvcpu);
a8606e20
PM
783 break;
784 case H_REGISTER_VPA:
785 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
786 kvmppc_get_gpr(vcpu, 5),
787 kvmppc_get_gpr(vcpu, 6));
788 break;
8e591cb7
ME
789 case H_RTAS:
790 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
791 return RESUME_HOST;
792
c9438092 793 idx = srcu_read_lock(&vcpu->kvm->srcu);
8e591cb7 794 rc = kvmppc_rtas_hcall(vcpu);
c9438092 795 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8e591cb7
ME
796
797 if (rc == -ENOENT)
798 return RESUME_HOST;
799 else if (rc == 0)
800 break;
801
802 /* Send the error out to userspace via KVM_RUN */
803 return rc;
99342cf8
DG
804 case H_LOGICAL_CI_LOAD:
805 ret = kvmppc_h_logical_ci_load(vcpu);
806 if (ret == H_TOO_HARD)
807 return RESUME_HOST;
808 break;
809 case H_LOGICAL_CI_STORE:
810 ret = kvmppc_h_logical_ci_store(vcpu);
811 if (ret == H_TOO_HARD)
812 return RESUME_HOST;
813 break;
9642382e
MN
814 case H_SET_MODE:
815 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
816 kvmppc_get_gpr(vcpu, 5),
817 kvmppc_get_gpr(vcpu, 6),
818 kvmppc_get_gpr(vcpu, 7));
819 if (ret == H_TOO_HARD)
820 return RESUME_HOST;
821 break;
bc5ad3f3
BH
822 case H_XIRR:
823 case H_CPPR:
824 case H_EOI:
825 case H_IPI:
8e44ddc3
PM
826 case H_IPOLL:
827 case H_XIRR_X:
bc5ad3f3
BH
828 if (kvmppc_xics_enabled(vcpu)) {
829 ret = kvmppc_xics_hcall(vcpu, req);
830 break;
d3695aa4
AK
831 }
832 return RESUME_HOST;
833 case H_PUT_TCE:
834 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
835 kvmppc_get_gpr(vcpu, 5),
836 kvmppc_get_gpr(vcpu, 6));
837 if (ret == H_TOO_HARD)
838 return RESUME_HOST;
839 break;
840 case H_PUT_TCE_INDIRECT:
841 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
842 kvmppc_get_gpr(vcpu, 5),
843 kvmppc_get_gpr(vcpu, 6),
844 kvmppc_get_gpr(vcpu, 7));
845 if (ret == H_TOO_HARD)
846 return RESUME_HOST;
847 break;
848 case H_STUFF_TCE:
849 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
850 kvmppc_get_gpr(vcpu, 5),
851 kvmppc_get_gpr(vcpu, 6),
852 kvmppc_get_gpr(vcpu, 7));
853 if (ret == H_TOO_HARD)
854 return RESUME_HOST;
855 break;
a8606e20
PM
856 default:
857 return RESUME_HOST;
858 }
859 kvmppc_set_gpr(vcpu, 3, ret);
860 vcpu->arch.hcall_needed = 0;
861 return RESUME_GUEST;
862}
863
ae2113a4
PM
864static int kvmppc_hcall_impl_hv(unsigned long cmd)
865{
866 switch (cmd) {
867 case H_CEDE:
868 case H_PROD:
869 case H_CONFER:
870 case H_REGISTER_VPA:
9642382e 871 case H_SET_MODE:
99342cf8
DG
872 case H_LOGICAL_CI_LOAD:
873 case H_LOGICAL_CI_STORE:
ae2113a4
PM
874#ifdef CONFIG_KVM_XICS
875 case H_XIRR:
876 case H_CPPR:
877 case H_EOI:
878 case H_IPI:
879 case H_IPOLL:
880 case H_XIRR_X:
881#endif
882 return 1;
883 }
884
885 /* See if it's in the real-mode table */
886 return kvmppc_hcall_impl_hv_realmode(cmd);
887}
888
a59c1d9e
MS
889static int kvmppc_emulate_debug_inst(struct kvm_run *run,
890 struct kvm_vcpu *vcpu)
891{
892 u32 last_inst;
893
894 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
895 EMULATE_DONE) {
896 /*
897 * Fetch failed, so return to guest and
898 * try executing it again.
899 */
900 return RESUME_GUEST;
901 }
902
903 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
904 run->exit_reason = KVM_EXIT_DEBUG;
905 run->debug.arch.address = kvmppc_get_pc(vcpu);
906 return RESUME_HOST;
907 } else {
908 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
909 return RESUME_GUEST;
910 }
911}
912
3a167bea
AK
913static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
914 struct task_struct *tsk)
de56a948
PM
915{
916 int r = RESUME_HOST;
917
918 vcpu->stat.sum_exits++;
919
1c9e3d51
PM
920 /*
921 * This can happen if an interrupt occurs in the last stages
922 * of guest entry or the first stages of guest exit (i.e. after
923 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
924 * and before setting it to KVM_GUEST_MODE_HOST_HV).
925 * That can happen due to a bug, or due to a machine check
926 * occurring at just the wrong time.
927 */
928 if (vcpu->arch.shregs.msr & MSR_HV) {
929 printk(KERN_EMERG "KVM trap in HV mode!\n");
930 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
931 vcpu->arch.trap, kvmppc_get_pc(vcpu),
932 vcpu->arch.shregs.msr);
933 kvmppc_dump_regs(vcpu);
934 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
935 run->hw.hardware_exit_reason = vcpu->arch.trap;
936 return RESUME_HOST;
937 }
de56a948
PM
938 run->exit_reason = KVM_EXIT_UNKNOWN;
939 run->ready_for_interrupt_injection = 1;
940 switch (vcpu->arch.trap) {
941 /* We're good on these - the host merely wanted to get our attention */
942 case BOOK3S_INTERRUPT_HV_DECREMENTER:
943 vcpu->stat.dec_exits++;
944 r = RESUME_GUEST;
945 break;
946 case BOOK3S_INTERRUPT_EXTERNAL:
5d00f66b 947 case BOOK3S_INTERRUPT_H_DOORBELL:
de56a948
PM
948 vcpu->stat.ext_intr_exits++;
949 r = RESUME_GUEST;
950 break;
dee6f24c
MS
951 /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
952 case BOOK3S_INTERRUPT_HMI:
de56a948
PM
953 case BOOK3S_INTERRUPT_PERFMON:
954 r = RESUME_GUEST;
955 break;
b4072df4
PM
956 case BOOK3S_INTERRUPT_MACHINE_CHECK:
957 /*
958 * Deliver a machine check interrupt to the guest.
959 * We have to do this, even if the host has handled the
960 * machine check, because machine checks use SRR0/1 and
961 * the interrupt might have trashed guest state in them.
962 */
963 kvmppc_book3s_queue_irqprio(vcpu,
964 BOOK3S_INTERRUPT_MACHINE_CHECK);
965 r = RESUME_GUEST;
966 break;
de56a948
PM
967 case BOOK3S_INTERRUPT_PROGRAM:
968 {
969 ulong flags;
970 /*
971 * Normally program interrupts are delivered directly
972 * to the guest by the hardware, but we can get here
973 * as a result of a hypervisor emulation interrupt
974 * (e40) getting turned into a 700 by BML RTAS.
975 */
976 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
977 kvmppc_core_queue_program(vcpu, flags);
978 r = RESUME_GUEST;
979 break;
980 }
981 case BOOK3S_INTERRUPT_SYSCALL:
982 {
983 /* hcall - punt to userspace */
984 int i;
985
27025a60
LPF
986 /* hypercall with MSR_PR has already been handled in rmode,
987 * and never reaches here.
988 */
989
de56a948
PM
990 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
991 for (i = 0; i < 9; ++i)
992 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
993 run->exit_reason = KVM_EXIT_PAPR_HCALL;
994 vcpu->arch.hcall_needed = 1;
995 r = RESUME_HOST;
996 break;
997 }
998 /*
342d3db7
PM
999 * We get these next two if the guest accesses a page which it thinks
1000 * it has mapped but which is not actually present, either because
1001 * it is for an emulated I/O device or because the corresonding
1002 * host page has been paged out. Any other HDSI/HISI interrupts
1003 * have been handled already.
de56a948
PM
1004 */
1005 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
913d3ff9 1006 r = RESUME_PAGE_FAULT;
de56a948
PM
1007 break;
1008 case BOOK3S_INTERRUPT_H_INST_STORAGE:
913d3ff9
PM
1009 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1010 vcpu->arch.fault_dsisr = 0;
1011 r = RESUME_PAGE_FAULT;
de56a948
PM
1012 break;
1013 /*
1014 * This occurs if the guest executes an illegal instruction.
a59c1d9e
MS
1015 * If the guest debug is disabled, generate a program interrupt
1016 * to the guest. If guest debug is enabled, we need to check
1017 * whether the instruction is a software breakpoint instruction.
1018 * Accordingly return to Guest or Host.
de56a948
PM
1019 */
1020 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
4a157d61
PM
1021 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1022 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1023 swab32(vcpu->arch.emul_inst) :
1024 vcpu->arch.emul_inst;
a59c1d9e
MS
1025 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1026 r = kvmppc_emulate_debug_inst(run, vcpu);
1027 } else {
1028 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1029 r = RESUME_GUEST;
1030 }
bd3048b8
ME
1031 break;
1032 /*
1033 * This occurs if the guest (kernel or userspace), does something that
1034 * is prohibited by HFSCR. We just generate a program interrupt to
1035 * the guest.
1036 */
1037 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1038 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
de56a948
PM
1039 r = RESUME_GUEST;
1040 break;
f7af5209
SW
1041 case BOOK3S_INTERRUPT_HV_RM_HARD:
1042 r = RESUME_PASSTHROUGH;
1043 break;
de56a948
PM
1044 default:
1045 kvmppc_dump_regs(vcpu);
1046 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1047 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1048 vcpu->arch.shregs.msr);
f3271d4c 1049 run->hw.hardware_exit_reason = vcpu->arch.trap;
de56a948 1050 r = RESUME_HOST;
de56a948
PM
1051 break;
1052 }
1053
de56a948
PM
1054 return r;
1055}
1056
3a167bea
AK
1057static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1058 struct kvm_sregs *sregs)
de56a948
PM
1059{
1060 int i;
1061
de56a948 1062 memset(sregs, 0, sizeof(struct kvm_sregs));
87916442 1063 sregs->pvr = vcpu->arch.pvr;
de56a948
PM
1064 for (i = 0; i < vcpu->arch.slb_max; i++) {
1065 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1066 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1067 }
1068
1069 return 0;
1070}
1071
3a167bea
AK
1072static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1073 struct kvm_sregs *sregs)
de56a948
PM
1074{
1075 int i, j;
1076
9333e6c4
PM
1077 /* Only accept the same PVR as the host's, since we can't spoof it */
1078 if (sregs->pvr != vcpu->arch.pvr)
1079 return -EINVAL;
de56a948
PM
1080
1081 j = 0;
1082 for (i = 0; i < vcpu->arch.slb_nr; i++) {
1083 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1084 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1085 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1086 ++j;
1087 }
1088 }
1089 vcpu->arch.slb_max = j;
1090
1091 return 0;
1092}
1093
a0840240
AK
1094static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1095 bool preserve_top32)
a0144e2a 1096{
8f902b00 1097 struct kvm *kvm = vcpu->kvm;
a0144e2a
PM
1098 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1099 u64 mask;
1100
8f902b00 1101 mutex_lock(&kvm->lock);
a0144e2a 1102 spin_lock(&vc->lock);
d682916a
AB
1103 /*
1104 * If ILE (interrupt little-endian) has changed, update the
1105 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1106 */
1107 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
d682916a
AB
1108 struct kvm_vcpu *vcpu;
1109 int i;
1110
d682916a
AB
1111 kvm_for_each_vcpu(i, vcpu, kvm) {
1112 if (vcpu->arch.vcore != vc)
1113 continue;
1114 if (new_lpcr & LPCR_ILE)
1115 vcpu->arch.intr_msr |= MSR_LE;
1116 else
1117 vcpu->arch.intr_msr &= ~MSR_LE;
1118 }
d682916a
AB
1119 }
1120
a0144e2a
PM
1121 /*
1122 * Userspace can only modify DPFD (default prefetch depth),
1123 * ILE (interrupt little-endian) and TC (translation control).
e0622bd9 1124 * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
a0144e2a
PM
1125 */
1126 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
e0622bd9
PM
1127 if (cpu_has_feature(CPU_FTR_ARCH_207S))
1128 mask |= LPCR_AIL;
a0840240
AK
1129
1130 /* Broken 32-bit version of LPCR must not clear top bits */
1131 if (preserve_top32)
1132 mask &= 0xFFFFFFFF;
a0144e2a
PM
1133 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1134 spin_unlock(&vc->lock);
8f902b00 1135 mutex_unlock(&kvm->lock);
a0144e2a
PM
1136}
1137
3a167bea
AK
1138static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1139 union kvmppc_one_reg *val)
31f3438e 1140{
a136a8bd
PM
1141 int r = 0;
1142 long int i;
31f3438e 1143
a136a8bd 1144 switch (id) {
a59c1d9e
MS
1145 case KVM_REG_PPC_DEBUG_INST:
1146 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1147 break;
31f3438e 1148 case KVM_REG_PPC_HIOR:
a136a8bd
PM
1149 *val = get_reg_val(id, 0);
1150 break;
1151 case KVM_REG_PPC_DABR:
1152 *val = get_reg_val(id, vcpu->arch.dabr);
1153 break;
8563bf52
PM
1154 case KVM_REG_PPC_DABRX:
1155 *val = get_reg_val(id, vcpu->arch.dabrx);
1156 break;
a136a8bd
PM
1157 case KVM_REG_PPC_DSCR:
1158 *val = get_reg_val(id, vcpu->arch.dscr);
1159 break;
1160 case KVM_REG_PPC_PURR:
1161 *val = get_reg_val(id, vcpu->arch.purr);
1162 break;
1163 case KVM_REG_PPC_SPURR:
1164 *val = get_reg_val(id, vcpu->arch.spurr);
1165 break;
1166 case KVM_REG_PPC_AMR:
1167 *val = get_reg_val(id, vcpu->arch.amr);
1168 break;
1169 case KVM_REG_PPC_UAMOR:
1170 *val = get_reg_val(id, vcpu->arch.uamor);
1171 break;
b005255e 1172 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
a136a8bd
PM
1173 i = id - KVM_REG_PPC_MMCR0;
1174 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1175 break;
1176 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1177 i = id - KVM_REG_PPC_PMC1;
1178 *val = get_reg_val(id, vcpu->arch.pmc[i]);
31f3438e 1179 break;
b005255e
MN
1180 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1181 i = id - KVM_REG_PPC_SPMC1;
1182 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1183 break;
14941789
PM
1184 case KVM_REG_PPC_SIAR:
1185 *val = get_reg_val(id, vcpu->arch.siar);
1186 break;
1187 case KVM_REG_PPC_SDAR:
1188 *val = get_reg_val(id, vcpu->arch.sdar);
1189 break;
b005255e
MN
1190 case KVM_REG_PPC_SIER:
1191 *val = get_reg_val(id, vcpu->arch.sier);
a8bd19ef 1192 break;
b005255e
MN
1193 case KVM_REG_PPC_IAMR:
1194 *val = get_reg_val(id, vcpu->arch.iamr);
1195 break;
b005255e
MN
1196 case KVM_REG_PPC_PSPB:
1197 *val = get_reg_val(id, vcpu->arch.pspb);
1198 break;
b005255e
MN
1199 case KVM_REG_PPC_DPDES:
1200 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1201 break;
1202 case KVM_REG_PPC_DAWR:
1203 *val = get_reg_val(id, vcpu->arch.dawr);
1204 break;
1205 case KVM_REG_PPC_DAWRX:
1206 *val = get_reg_val(id, vcpu->arch.dawrx);
1207 break;
1208 case KVM_REG_PPC_CIABR:
1209 *val = get_reg_val(id, vcpu->arch.ciabr);
1210 break;
b005255e
MN
1211 case KVM_REG_PPC_CSIGR:
1212 *val = get_reg_val(id, vcpu->arch.csigr);
1213 break;
1214 case KVM_REG_PPC_TACR:
1215 *val = get_reg_val(id, vcpu->arch.tacr);
1216 break;
1217 case KVM_REG_PPC_TCSCR:
1218 *val = get_reg_val(id, vcpu->arch.tcscr);
1219 break;
1220 case KVM_REG_PPC_PID:
1221 *val = get_reg_val(id, vcpu->arch.pid);
1222 break;
1223 case KVM_REG_PPC_ACOP:
1224 *val = get_reg_val(id, vcpu->arch.acop);
1225 break;
1226 case KVM_REG_PPC_WORT:
1227 *val = get_reg_val(id, vcpu->arch.wort);
a8bd19ef 1228 break;
55b665b0
PM
1229 case KVM_REG_PPC_VPA_ADDR:
1230 spin_lock(&vcpu->arch.vpa_update_lock);
1231 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1232 spin_unlock(&vcpu->arch.vpa_update_lock);
1233 break;
1234 case KVM_REG_PPC_VPA_SLB:
1235 spin_lock(&vcpu->arch.vpa_update_lock);
1236 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1237 val->vpaval.length = vcpu->arch.slb_shadow.len;
1238 spin_unlock(&vcpu->arch.vpa_update_lock);
1239 break;
1240 case KVM_REG_PPC_VPA_DTL:
1241 spin_lock(&vcpu->arch.vpa_update_lock);
1242 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1243 val->vpaval.length = vcpu->arch.dtl.len;
1244 spin_unlock(&vcpu->arch.vpa_update_lock);
1245 break;
93b0f4dc
PM
1246 case KVM_REG_PPC_TB_OFFSET:
1247 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1248 break;
a0144e2a 1249 case KVM_REG_PPC_LPCR:
a0840240 1250 case KVM_REG_PPC_LPCR_64:
a0144e2a
PM
1251 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1252 break;
4b8473c9
PM
1253 case KVM_REG_PPC_PPR:
1254 *val = get_reg_val(id, vcpu->arch.ppr);
1255 break;
a7d80d01
MN
1256#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1257 case KVM_REG_PPC_TFHAR:
1258 *val = get_reg_val(id, vcpu->arch.tfhar);
1259 break;
1260 case KVM_REG_PPC_TFIAR:
1261 *val = get_reg_val(id, vcpu->arch.tfiar);
1262 break;
1263 case KVM_REG_PPC_TEXASR:
1264 *val = get_reg_val(id, vcpu->arch.texasr);
1265 break;
1266 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1267 i = id - KVM_REG_PPC_TM_GPR0;
1268 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1269 break;
1270 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1271 {
1272 int j;
1273 i = id - KVM_REG_PPC_TM_VSR0;
1274 if (i < 32)
1275 for (j = 0; j < TS_FPRWIDTH; j++)
1276 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1277 else {
1278 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1279 val->vval = vcpu->arch.vr_tm.vr[i-32];
1280 else
1281 r = -ENXIO;
1282 }
1283 break;
1284 }
1285 case KVM_REG_PPC_TM_CR:
1286 *val = get_reg_val(id, vcpu->arch.cr_tm);
1287 break;
1288 case KVM_REG_PPC_TM_LR:
1289 *val = get_reg_val(id, vcpu->arch.lr_tm);
1290 break;
1291 case KVM_REG_PPC_TM_CTR:
1292 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1293 break;
1294 case KVM_REG_PPC_TM_FPSCR:
1295 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1296 break;
1297 case KVM_REG_PPC_TM_AMR:
1298 *val = get_reg_val(id, vcpu->arch.amr_tm);
1299 break;
1300 case KVM_REG_PPC_TM_PPR:
1301 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1302 break;
1303 case KVM_REG_PPC_TM_VRSAVE:
1304 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1305 break;
1306 case KVM_REG_PPC_TM_VSCR:
1307 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1308 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1309 else
1310 r = -ENXIO;
1311 break;
1312 case KVM_REG_PPC_TM_DSCR:
1313 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1314 break;
1315 case KVM_REG_PPC_TM_TAR:
1316 *val = get_reg_val(id, vcpu->arch.tar_tm);
1317 break;
1318#endif
388cc6e1
PM
1319 case KVM_REG_PPC_ARCH_COMPAT:
1320 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1321 break;
31f3438e 1322 default:
a136a8bd 1323 r = -EINVAL;
31f3438e
PM
1324 break;
1325 }
1326
1327 return r;
1328}
1329
3a167bea
AK
1330static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1331 union kvmppc_one_reg *val)
31f3438e 1332{
a136a8bd
PM
1333 int r = 0;
1334 long int i;
55b665b0 1335 unsigned long addr, len;
31f3438e 1336
a136a8bd 1337 switch (id) {
31f3438e 1338 case KVM_REG_PPC_HIOR:
31f3438e 1339 /* Only allow this to be set to zero */
a136a8bd 1340 if (set_reg_val(id, *val))
31f3438e
PM
1341 r = -EINVAL;
1342 break;
a136a8bd
PM
1343 case KVM_REG_PPC_DABR:
1344 vcpu->arch.dabr = set_reg_val(id, *val);
1345 break;
8563bf52
PM
1346 case KVM_REG_PPC_DABRX:
1347 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1348 break;
a136a8bd
PM
1349 case KVM_REG_PPC_DSCR:
1350 vcpu->arch.dscr = set_reg_val(id, *val);
1351 break;
1352 case KVM_REG_PPC_PURR:
1353 vcpu->arch.purr = set_reg_val(id, *val);
1354 break;
1355 case KVM_REG_PPC_SPURR:
1356 vcpu->arch.spurr = set_reg_val(id, *val);
1357 break;
1358 case KVM_REG_PPC_AMR:
1359 vcpu->arch.amr = set_reg_val(id, *val);
1360 break;
1361 case KVM_REG_PPC_UAMOR:
1362 vcpu->arch.uamor = set_reg_val(id, *val);
1363 break;
b005255e 1364 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
a136a8bd
PM
1365 i = id - KVM_REG_PPC_MMCR0;
1366 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1367 break;
1368 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1369 i = id - KVM_REG_PPC_PMC1;
1370 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1371 break;
b005255e
MN
1372 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1373 i = id - KVM_REG_PPC_SPMC1;
1374 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1375 break;
14941789
PM
1376 case KVM_REG_PPC_SIAR:
1377 vcpu->arch.siar = set_reg_val(id, *val);
1378 break;
1379 case KVM_REG_PPC_SDAR:
1380 vcpu->arch.sdar = set_reg_val(id, *val);
1381 break;
b005255e
MN
1382 case KVM_REG_PPC_SIER:
1383 vcpu->arch.sier = set_reg_val(id, *val);
a8bd19ef 1384 break;
b005255e
MN
1385 case KVM_REG_PPC_IAMR:
1386 vcpu->arch.iamr = set_reg_val(id, *val);
1387 break;
b005255e
MN
1388 case KVM_REG_PPC_PSPB:
1389 vcpu->arch.pspb = set_reg_val(id, *val);
1390 break;
b005255e
MN
1391 case KVM_REG_PPC_DPDES:
1392 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1393 break;
1394 case KVM_REG_PPC_DAWR:
1395 vcpu->arch.dawr = set_reg_val(id, *val);
1396 break;
1397 case KVM_REG_PPC_DAWRX:
1398 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1399 break;
1400 case KVM_REG_PPC_CIABR:
1401 vcpu->arch.ciabr = set_reg_val(id, *val);
1402 /* Don't allow setting breakpoints in hypervisor code */
1403 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1404 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
1405 break;
b005255e
MN
1406 case KVM_REG_PPC_CSIGR:
1407 vcpu->arch.csigr = set_reg_val(id, *val);
1408 break;
1409 case KVM_REG_PPC_TACR:
1410 vcpu->arch.tacr = set_reg_val(id, *val);
1411 break;
1412 case KVM_REG_PPC_TCSCR:
1413 vcpu->arch.tcscr = set_reg_val(id, *val);
1414 break;
1415 case KVM_REG_PPC_PID:
1416 vcpu->arch.pid = set_reg_val(id, *val);
1417 break;
1418 case KVM_REG_PPC_ACOP:
1419 vcpu->arch.acop = set_reg_val(id, *val);
1420 break;
1421 case KVM_REG_PPC_WORT:
1422 vcpu->arch.wort = set_reg_val(id, *val);
a8bd19ef 1423 break;
55b665b0
PM
1424 case KVM_REG_PPC_VPA_ADDR:
1425 addr = set_reg_val(id, *val);
1426 r = -EINVAL;
1427 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1428 vcpu->arch.dtl.next_gpa))
1429 break;
1430 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1431 break;
1432 case KVM_REG_PPC_VPA_SLB:
1433 addr = val->vpaval.addr;
1434 len = val->vpaval.length;
1435 r = -EINVAL;
1436 if (addr && !vcpu->arch.vpa.next_gpa)
1437 break;
1438 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1439 break;
1440 case KVM_REG_PPC_VPA_DTL:
1441 addr = val->vpaval.addr;
1442 len = val->vpaval.length;
1443 r = -EINVAL;
9f8c8c78
PM
1444 if (addr && (len < sizeof(struct dtl_entry) ||
1445 !vcpu->arch.vpa.next_gpa))
55b665b0
PM
1446 break;
1447 len -= len % sizeof(struct dtl_entry);
1448 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1449 break;
93b0f4dc
PM
1450 case KVM_REG_PPC_TB_OFFSET:
1451 /* round up to multiple of 2^24 */
1452 vcpu->arch.vcore->tb_offset =
1453 ALIGN(set_reg_val(id, *val), 1UL << 24);
1454 break;
a0144e2a 1455 case KVM_REG_PPC_LPCR:
a0840240
AK
1456 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1457 break;
1458 case KVM_REG_PPC_LPCR_64:
1459 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
a0144e2a 1460 break;
4b8473c9
PM
1461 case KVM_REG_PPC_PPR:
1462 vcpu->arch.ppr = set_reg_val(id, *val);
1463 break;
a7d80d01
MN
1464#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1465 case KVM_REG_PPC_TFHAR:
1466 vcpu->arch.tfhar = set_reg_val(id, *val);
1467 break;
1468 case KVM_REG_PPC_TFIAR:
1469 vcpu->arch.tfiar = set_reg_val(id, *val);
1470 break;
1471 case KVM_REG_PPC_TEXASR:
1472 vcpu->arch.texasr = set_reg_val(id, *val);
1473 break;
1474 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1475 i = id - KVM_REG_PPC_TM_GPR0;
1476 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1477 break;
1478 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1479 {
1480 int j;
1481 i = id - KVM_REG_PPC_TM_VSR0;
1482 if (i < 32)
1483 for (j = 0; j < TS_FPRWIDTH; j++)
1484 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1485 else
1486 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1487 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1488 else
1489 r = -ENXIO;
1490 break;
1491 }
1492 case KVM_REG_PPC_TM_CR:
1493 vcpu->arch.cr_tm = set_reg_val(id, *val);
1494 break;
1495 case KVM_REG_PPC_TM_LR:
1496 vcpu->arch.lr_tm = set_reg_val(id, *val);
1497 break;
1498 case KVM_REG_PPC_TM_CTR:
1499 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1500 break;
1501 case KVM_REG_PPC_TM_FPSCR:
1502 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1503 break;
1504 case KVM_REG_PPC_TM_AMR:
1505 vcpu->arch.amr_tm = set_reg_val(id, *val);
1506 break;
1507 case KVM_REG_PPC_TM_PPR:
1508 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1509 break;
1510 case KVM_REG_PPC_TM_VRSAVE:
1511 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1512 break;
1513 case KVM_REG_PPC_TM_VSCR:
1514 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1515 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1516 else
1517 r = - ENXIO;
1518 break;
1519 case KVM_REG_PPC_TM_DSCR:
1520 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1521 break;
1522 case KVM_REG_PPC_TM_TAR:
1523 vcpu->arch.tar_tm = set_reg_val(id, *val);
1524 break;
1525#endif
388cc6e1
PM
1526 case KVM_REG_PPC_ARCH_COMPAT:
1527 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1528 break;
31f3438e 1529 default:
a136a8bd 1530 r = -EINVAL;
31f3438e
PM
1531 break;
1532 }
1533
1534 return r;
1535}
1536
de9bdd1a
SS
1537static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1538{
1539 struct kvmppc_vcore *vcore;
1540
1541 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1542
1543 if (vcore == NULL)
1544 return NULL;
1545
de9bdd1a 1546 spin_lock_init(&vcore->lock);
2711e248 1547 spin_lock_init(&vcore->stoltb_lock);
8577370f 1548 init_swait_queue_head(&vcore->wq);
de9bdd1a
SS
1549 vcore->preempt_tb = TB_NIL;
1550 vcore->lpcr = kvm->arch.lpcr;
1551 vcore->first_vcpuid = core * threads_per_subcore;
1552 vcore->kvm = kvm;
ec257165 1553 INIT_LIST_HEAD(&vcore->preempt_list);
de9bdd1a
SS
1554
1555 return vcore;
1556}
1557
b6c295df
PM
1558#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1559static struct debugfs_timings_element {
1560 const char *name;
1561 size_t offset;
1562} timings[] = {
1563 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
1564 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
1565 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
1566 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
1567 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
1568};
1569
1570#define N_TIMINGS (sizeof(timings) / sizeof(timings[0]))
1571
1572struct debugfs_timings_state {
1573 struct kvm_vcpu *vcpu;
1574 unsigned int buflen;
1575 char buf[N_TIMINGS * 100];
1576};
1577
1578static int debugfs_timings_open(struct inode *inode, struct file *file)
1579{
1580 struct kvm_vcpu *vcpu = inode->i_private;
1581 struct debugfs_timings_state *p;
1582
1583 p = kzalloc(sizeof(*p), GFP_KERNEL);
1584 if (!p)
1585 return -ENOMEM;
1586
1587 kvm_get_kvm(vcpu->kvm);
1588 p->vcpu = vcpu;
1589 file->private_data = p;
1590
1591 return nonseekable_open(inode, file);
1592}
1593
1594static int debugfs_timings_release(struct inode *inode, struct file *file)
1595{
1596 struct debugfs_timings_state *p = file->private_data;
1597
1598 kvm_put_kvm(p->vcpu->kvm);
1599 kfree(p);
1600 return 0;
1601}
1602
1603static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1604 size_t len, loff_t *ppos)
1605{
1606 struct debugfs_timings_state *p = file->private_data;
1607 struct kvm_vcpu *vcpu = p->vcpu;
1608 char *s, *buf_end;
1609 struct kvmhv_tb_accumulator tb;
1610 u64 count;
1611 loff_t pos;
1612 ssize_t n;
1613 int i, loops;
1614 bool ok;
1615
1616 if (!p->buflen) {
1617 s = p->buf;
1618 buf_end = s + sizeof(p->buf);
1619 for (i = 0; i < N_TIMINGS; ++i) {
1620 struct kvmhv_tb_accumulator *acc;
1621
1622 acc = (struct kvmhv_tb_accumulator *)
1623 ((unsigned long)vcpu + timings[i].offset);
1624 ok = false;
1625 for (loops = 0; loops < 1000; ++loops) {
1626 count = acc->seqcount;
1627 if (!(count & 1)) {
1628 smp_rmb();
1629 tb = *acc;
1630 smp_rmb();
1631 if (count == acc->seqcount) {
1632 ok = true;
1633 break;
1634 }
1635 }
1636 udelay(1);
1637 }
1638 if (!ok)
1639 snprintf(s, buf_end - s, "%s: stuck\n",
1640 timings[i].name);
1641 else
1642 snprintf(s, buf_end - s,
1643 "%s: %llu %llu %llu %llu\n",
1644 timings[i].name, count / 2,
1645 tb_to_ns(tb.tb_total),
1646 tb_to_ns(tb.tb_min),
1647 tb_to_ns(tb.tb_max));
1648 s += strlen(s);
1649 }
1650 p->buflen = s - p->buf;
1651 }
1652
1653 pos = *ppos;
1654 if (pos >= p->buflen)
1655 return 0;
1656 if (len > p->buflen - pos)
1657 len = p->buflen - pos;
1658 n = copy_to_user(buf, p->buf + pos, len);
1659 if (n) {
1660 if (n == len)
1661 return -EFAULT;
1662 len -= n;
1663 }
1664 *ppos = pos + len;
1665 return len;
1666}
1667
1668static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1669 size_t len, loff_t *ppos)
1670{
1671 return -EACCES;
1672}
1673
1674static const struct file_operations debugfs_timings_ops = {
1675 .owner = THIS_MODULE,
1676 .open = debugfs_timings_open,
1677 .release = debugfs_timings_release,
1678 .read = debugfs_timings_read,
1679 .write = debugfs_timings_write,
1680 .llseek = generic_file_llseek,
1681};
1682
1683/* Create a debugfs directory for the vcpu */
1684static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1685{
1686 char buf[16];
1687 struct kvm *kvm = vcpu->kvm;
1688
1689 snprintf(buf, sizeof(buf), "vcpu%u", id);
1690 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1691 return;
1692 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1693 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1694 return;
1695 vcpu->arch.debugfs_timings =
1696 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1697 vcpu, &debugfs_timings_ops);
1698}
1699
1700#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1701static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1702{
1703}
1704#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1705
3a167bea
AK
1706static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1707 unsigned int id)
de56a948
PM
1708{
1709 struct kvm_vcpu *vcpu;
371fefd6
PM
1710 int err = -EINVAL;
1711 int core;
1712 struct kvmppc_vcore *vcore;
de56a948 1713
3102f784 1714 core = id / threads_per_subcore;
371fefd6
PM
1715 if (core >= KVM_MAX_VCORES)
1716 goto out;
1717
1718 err = -ENOMEM;
6b75e6bf 1719 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
de56a948
PM
1720 if (!vcpu)
1721 goto out;
1722
1723 err = kvm_vcpu_init(vcpu, kvm, id);
1724 if (err)
1725 goto free_vcpu;
1726
1727 vcpu->arch.shared = &vcpu->arch.shregs;
5deb8e7a
AG
1728#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1729 /*
1730 * The shared struct is never shared on HV,
1731 * so we can always use host endianness
1732 */
1733#ifdef __BIG_ENDIAN__
1734 vcpu->arch.shared_big_endian = true;
1735#else
1736 vcpu->arch.shared_big_endian = false;
1737#endif
1738#endif
de56a948
PM
1739 vcpu->arch.mmcr[0] = MMCR0_FC;
1740 vcpu->arch.ctrl = CTRL_RUNLATCH;
1741 /* default to host PVR, since we can't spoof it */
3a167bea 1742 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2e25aa5f 1743 spin_lock_init(&vcpu->arch.vpa_update_lock);
c7b67670
PM
1744 spin_lock_init(&vcpu->arch.tbacct_lock);
1745 vcpu->arch.busy_preempt = TB_NIL;
d682916a 1746 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
de56a948 1747
de56a948
PM
1748 kvmppc_mmu_book3s_hv_init(vcpu);
1749
8455d79e 1750 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
371fefd6
PM
1751
1752 init_waitqueue_head(&vcpu->arch.cpu_run);
1753
1754 mutex_lock(&kvm->lock);
1755 vcore = kvm->arch.vcores[core];
1756 if (!vcore) {
de9bdd1a 1757 vcore = kvmppc_vcore_create(kvm, core);
371fefd6 1758 kvm->arch.vcores[core] = vcore;
1b400ba0 1759 kvm->arch.online_vcores++;
371fefd6
PM
1760 }
1761 mutex_unlock(&kvm->lock);
1762
1763 if (!vcore)
1764 goto free_vcpu;
1765
1766 spin_lock(&vcore->lock);
1767 ++vcore->num_threads;
371fefd6
PM
1768 spin_unlock(&vcore->lock);
1769 vcpu->arch.vcore = vcore;
e0b7ec05 1770 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
ec257165 1771 vcpu->arch.thread_cpu = -1;
371fefd6 1772
af8f38b3
AG
1773 vcpu->arch.cpu_type = KVM_CPU_3S_64;
1774 kvmppc_sanity_check(vcpu);
1775
b6c295df
PM
1776 debugfs_vcpu_init(vcpu, id);
1777
de56a948
PM
1778 return vcpu;
1779
1780free_vcpu:
6b75e6bf 1781 kmem_cache_free(kvm_vcpu_cache, vcpu);
de56a948
PM
1782out:
1783 return ERR_PTR(err);
1784}
1785
c35635ef
PM
1786static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1787{
1788 if (vpa->pinned_addr)
1789 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1790 vpa->dirty);
1791}
1792
3a167bea 1793static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
de56a948 1794{
2e25aa5f 1795 spin_lock(&vcpu->arch.vpa_update_lock);
c35635ef
PM
1796 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1797 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1798 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2e25aa5f 1799 spin_unlock(&vcpu->arch.vpa_update_lock);
de56a948 1800 kvm_vcpu_uninit(vcpu);
6b75e6bf 1801 kmem_cache_free(kvm_vcpu_cache, vcpu);
de56a948
PM
1802}
1803
3a167bea
AK
1804static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1805{
1806 /* Indicate we want to get back into the guest */
1807 return 1;
1808}
1809
19ccb76a 1810static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
371fefd6 1811{
19ccb76a 1812 unsigned long dec_nsec, now;
371fefd6 1813
19ccb76a
PM
1814 now = get_tb();
1815 if (now > vcpu->arch.dec_expires) {
1816 /* decrementer has already gone negative */
1817 kvmppc_core_queue_dec(vcpu);
7e28e60e 1818 kvmppc_core_prepare_to_enter(vcpu);
19ccb76a 1819 return;
371fefd6 1820 }
19ccb76a
PM
1821 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1822 / tb_ticks_per_sec;
1823 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1824 HRTIMER_MODE_REL);
1825 vcpu->arch.timer_running = 1;
371fefd6
PM
1826}
1827
19ccb76a 1828static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
371fefd6 1829{
19ccb76a
PM
1830 vcpu->arch.ceded = 0;
1831 if (vcpu->arch.timer_running) {
1832 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1833 vcpu->arch.timer_running = 0;
1834 }
371fefd6
PM
1835}
1836
e0b7ec05 1837extern void __kvmppc_vcore_entry(void);
de56a948 1838
371fefd6
PM
1839static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1840 struct kvm_vcpu *vcpu)
de56a948 1841{
c7b67670
PM
1842 u64 now;
1843
371fefd6
PM
1844 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1845 return;
bf3d32e1 1846 spin_lock_irq(&vcpu->arch.tbacct_lock);
c7b67670
PM
1847 now = mftb();
1848 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1849 vcpu->arch.stolen_logged;
1850 vcpu->arch.busy_preempt = now;
1851 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
bf3d32e1 1852 spin_unlock_irq(&vcpu->arch.tbacct_lock);
371fefd6 1853 --vc->n_runnable;
7b5f8272 1854 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
371fefd6
PM
1855}
1856
f0888f70
PM
1857static int kvmppc_grab_hwthread(int cpu)
1858{
1859 struct paca_struct *tpaca;
b754c739 1860 long timeout = 10000;
f0888f70
PM
1861
1862 tpaca = &paca[cpu];
1863
1864 /* Ensure the thread won't go into the kernel if it wakes */
7b444c67 1865 tpaca->kvm_hstate.kvm_vcpu = NULL;
b4deba5c 1866 tpaca->kvm_hstate.kvm_vcore = NULL;
5d5b99cd
PM
1867 tpaca->kvm_hstate.napping = 0;
1868 smp_wmb();
1869 tpaca->kvm_hstate.hwthread_req = 1;
f0888f70
PM
1870
1871 /*
1872 * If the thread is already executing in the kernel (e.g. handling
1873 * a stray interrupt), wait for it to get back to nap mode.
1874 * The smp_mb() is to ensure that our setting of hwthread_req
1875 * is visible before we look at hwthread_state, so if this
1876 * races with the code at system_reset_pSeries and the thread
1877 * misses our setting of hwthread_req, we are sure to see its
1878 * setting of hwthread_state, and vice versa.
1879 */
1880 smp_mb();
1881 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1882 if (--timeout <= 0) {
1883 pr_err("KVM: couldn't grab cpu %d\n", cpu);
1884 return -EBUSY;
1885 }
1886 udelay(1);
1887 }
1888 return 0;
1889}
1890
1891static void kvmppc_release_hwthread(int cpu)
1892{
1893 struct paca_struct *tpaca;
1894
1895 tpaca = &paca[cpu];
1896 tpaca->kvm_hstate.hwthread_req = 0;
1897 tpaca->kvm_hstate.kvm_vcpu = NULL;
b4deba5c
PM
1898 tpaca->kvm_hstate.kvm_vcore = NULL;
1899 tpaca->kvm_hstate.kvm_split_mode = NULL;
f0888f70
PM
1900}
1901
b4deba5c 1902static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
371fefd6
PM
1903{
1904 int cpu;
1905 struct paca_struct *tpaca;
ec257165 1906 struct kvmppc_vcore *mvc = vc->master_vcore;
371fefd6 1907
b4deba5c
PM
1908 cpu = vc->pcpu;
1909 if (vcpu) {
1910 if (vcpu->arch.timer_running) {
1911 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1912 vcpu->arch.timer_running = 0;
1913 }
1914 cpu += vcpu->arch.ptid;
1915 vcpu->cpu = mvc->pcpu;
1916 vcpu->arch.thread_cpu = cpu;
19ccb76a 1917 }
371fefd6 1918 tpaca = &paca[cpu];
5d5b99cd 1919 tpaca->kvm_hstate.kvm_vcpu = vcpu;
ec257165 1920 tpaca->kvm_hstate.ptid = cpu - mvc->pcpu;
ec257165 1921 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
371fefd6 1922 smp_wmb();
b4deba5c 1923 tpaca->kvm_hstate.kvm_vcore = mvc;
5d5b99cd 1924 if (cpu != smp_processor_id())
66feed61 1925 kvmppc_ipi_thread(cpu);
371fefd6 1926}
de56a948 1927
5d5b99cd 1928static void kvmppc_wait_for_nap(void)
371fefd6 1929{
5d5b99cd
PM
1930 int cpu = smp_processor_id();
1931 int i, loops;
371fefd6 1932
5d5b99cd
PM
1933 for (loops = 0; loops < 1000000; ++loops) {
1934 /*
1935 * Check if all threads are finished.
b4deba5c 1936 * We set the vcore pointer when starting a thread
5d5b99cd 1937 * and the thread clears it when finished, so we look
b4deba5c 1938 * for any threads that still have a non-NULL vcore ptr.
5d5b99cd
PM
1939 */
1940 for (i = 1; i < threads_per_subcore; ++i)
b4deba5c 1941 if (paca[cpu + i].kvm_hstate.kvm_vcore)
5d5b99cd
PM
1942 break;
1943 if (i == threads_per_subcore) {
1944 HMT_medium();
1945 return;
371fefd6 1946 }
5d5b99cd 1947 HMT_low();
371fefd6
PM
1948 }
1949 HMT_medium();
5d5b99cd 1950 for (i = 1; i < threads_per_subcore; ++i)
b4deba5c 1951 if (paca[cpu + i].kvm_hstate.kvm_vcore)
5d5b99cd 1952 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
371fefd6
PM
1953}
1954
1955/*
1956 * Check that we are on thread 0 and that any other threads in
7b444c67
PM
1957 * this core are off-line. Then grab the threads so they can't
1958 * enter the kernel.
371fefd6
PM
1959 */
1960static int on_primary_thread(void)
1961{
1962 int cpu = smp_processor_id();
3102f784 1963 int thr;
371fefd6 1964
3102f784
ME
1965 /* Are we on a primary subcore? */
1966 if (cpu_thread_in_subcore(cpu))
371fefd6 1967 return 0;
3102f784
ME
1968
1969 thr = 0;
1970 while (++thr < threads_per_subcore)
371fefd6
PM
1971 if (cpu_online(cpu + thr))
1972 return 0;
7b444c67
PM
1973
1974 /* Grab all hw threads so they can't go into the kernel */
3102f784 1975 for (thr = 1; thr < threads_per_subcore; ++thr) {
7b444c67
PM
1976 if (kvmppc_grab_hwthread(cpu + thr)) {
1977 /* Couldn't grab one; let the others go */
1978 do {
1979 kvmppc_release_hwthread(cpu + thr);
1980 } while (--thr > 0);
1981 return 0;
1982 }
1983 }
371fefd6
PM
1984 return 1;
1985}
1986
ec257165
PM
1987/*
1988 * A list of virtual cores for each physical CPU.
1989 * These are vcores that could run but their runner VCPU tasks are
1990 * (or may be) preempted.
1991 */
1992struct preempted_vcore_list {
1993 struct list_head list;
1994 spinlock_t lock;
1995};
1996
1997static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
1998
1999static void init_vcore_lists(void)
2000{
2001 int cpu;
2002
2003 for_each_possible_cpu(cpu) {
2004 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2005 spin_lock_init(&lp->lock);
2006 INIT_LIST_HEAD(&lp->list);
2007 }
2008}
2009
2010static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2011{
2012 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2013
2014 vc->vcore_state = VCORE_PREEMPT;
2015 vc->pcpu = smp_processor_id();
2016 if (vc->num_threads < threads_per_subcore) {
2017 spin_lock(&lp->lock);
2018 list_add_tail(&vc->preempt_list, &lp->list);
2019 spin_unlock(&lp->lock);
2020 }
2021
2022 /* Start accumulating stolen time */
2023 kvmppc_core_start_stolen(vc);
2024}
2025
2026static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2027{
402813fe 2028 struct preempted_vcore_list *lp;
ec257165
PM
2029
2030 kvmppc_core_end_stolen(vc);
2031 if (!list_empty(&vc->preempt_list)) {
402813fe 2032 lp = &per_cpu(preempted_vcores, vc->pcpu);
ec257165
PM
2033 spin_lock(&lp->lock);
2034 list_del_init(&vc->preempt_list);
2035 spin_unlock(&lp->lock);
2036 }
2037 vc->vcore_state = VCORE_INACTIVE;
2038}
2039
b4deba5c
PM
2040/*
2041 * This stores information about the virtual cores currently
2042 * assigned to a physical core.
2043 */
ec257165 2044struct core_info {
b4deba5c
PM
2045 int n_subcores;
2046 int max_subcore_threads;
ec257165 2047 int total_threads;
b4deba5c
PM
2048 int subcore_threads[MAX_SUBCORES];
2049 struct kvm *subcore_vm[MAX_SUBCORES];
2050 struct list_head vcs[MAX_SUBCORES];
ec257165
PM
2051};
2052
b4deba5c
PM
2053/*
2054 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2055 * respectively in 2-way micro-threading (split-core) mode.
2056 */
2057static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2058
ec257165
PM
2059static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2060{
b4deba5c
PM
2061 int sub;
2062
ec257165 2063 memset(cip, 0, sizeof(*cip));
b4deba5c
PM
2064 cip->n_subcores = 1;
2065 cip->max_subcore_threads = vc->num_threads;
ec257165 2066 cip->total_threads = vc->num_threads;
b4deba5c
PM
2067 cip->subcore_threads[0] = vc->num_threads;
2068 cip->subcore_vm[0] = vc->kvm;
2069 for (sub = 0; sub < MAX_SUBCORES; ++sub)
2070 INIT_LIST_HEAD(&cip->vcs[sub]);
2071 list_add_tail(&vc->preempt_list, &cip->vcs[0]);
2072}
2073
2074static bool subcore_config_ok(int n_subcores, int n_threads)
2075{
2076 /* Can only dynamically split if unsplit to begin with */
2077 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2078 return false;
2079 if (n_subcores > MAX_SUBCORES)
2080 return false;
2081 if (n_subcores > 1) {
2082 if (!(dynamic_mt_modes & 2))
2083 n_subcores = 4;
2084 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2085 return false;
2086 }
2087
2088 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
ec257165
PM
2089}
2090
2091static void init_master_vcore(struct kvmppc_vcore *vc)
2092{
2093 vc->master_vcore = vc;
2094 vc->entry_exit_map = 0;
2095 vc->in_guest = 0;
2096 vc->napping_threads = 0;
2097 vc->conferring_threads = 0;
2098}
2099
2100/*
b4deba5c
PM
2101 * See if the existing subcores can be split into 3 (or fewer) subcores
2102 * of at most two threads each, so we can fit in another vcore. This
2103 * assumes there are at most two subcores and at most 6 threads in total.
ec257165 2104 */
b4deba5c
PM
2105static bool can_split_piggybacked_subcores(struct core_info *cip)
2106{
2107 int sub, new_sub;
2108 int large_sub = -1;
2109 int thr;
2110 int n_subcores = cip->n_subcores;
2111 struct kvmppc_vcore *vc, *vcnext;
2112 struct kvmppc_vcore *master_vc = NULL;
2113
2114 for (sub = 0; sub < cip->n_subcores; ++sub) {
2115 if (cip->subcore_threads[sub] <= 2)
2116 continue;
2117 if (large_sub >= 0)
2118 return false;
2119 large_sub = sub;
2120 vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
2121 preempt_list);
2122 if (vc->num_threads > 2)
2123 return false;
2124 n_subcores += (cip->subcore_threads[sub] - 1) >> 1;
2125 }
f74f2e2e 2126 if (large_sub < 0 || !subcore_config_ok(n_subcores + 1, 2))
b4deba5c
PM
2127 return false;
2128
2129 /*
2130 * Seems feasible, so go through and move vcores to new subcores.
2131 * Note that when we have two or more vcores in one subcore,
2132 * all those vcores must have only one thread each.
2133 */
2134 new_sub = cip->n_subcores;
2135 thr = 0;
2136 sub = large_sub;
2137 list_for_each_entry_safe(vc, vcnext, &cip->vcs[sub], preempt_list) {
2138 if (thr >= 2) {
2139 list_del(&vc->preempt_list);
2140 list_add_tail(&vc->preempt_list, &cip->vcs[new_sub]);
2141 /* vc->num_threads must be 1 */
2142 if (++cip->subcore_threads[new_sub] == 1) {
2143 cip->subcore_vm[new_sub] = vc->kvm;
2144 init_master_vcore(vc);
2145 master_vc = vc;
2146 ++cip->n_subcores;
2147 } else {
2148 vc->master_vcore = master_vc;
2149 ++new_sub;
2150 }
2151 }
2152 thr += vc->num_threads;
2153 }
2154 cip->subcore_threads[large_sub] = 2;
2155 cip->max_subcore_threads = 2;
2156
2157 return true;
2158}
2159
2160static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2161{
2162 int n_threads = vc->num_threads;
2163 int sub;
2164
2165 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2166 return false;
2167
2168 if (n_threads < cip->max_subcore_threads)
2169 n_threads = cip->max_subcore_threads;
2170 if (subcore_config_ok(cip->n_subcores + 1, n_threads)) {
2171 cip->max_subcore_threads = n_threads;
2172 } else if (cip->n_subcores <= 2 && cip->total_threads <= 6 &&
2173 vc->num_threads <= 2) {
2174 /*
2175 * We may be able to fit another subcore in by
2176 * splitting an existing subcore with 3 or 4
2177 * threads into two 2-thread subcores, or one
2178 * with 5 or 6 threads into three subcores.
2179 * We can only do this if those subcores have
2180 * piggybacked virtual cores.
2181 */
2182 if (!can_split_piggybacked_subcores(cip))
2183 return false;
2184 } else {
2185 return false;
2186 }
2187
2188 sub = cip->n_subcores;
2189 ++cip->n_subcores;
2190 cip->total_threads += vc->num_threads;
2191 cip->subcore_threads[sub] = vc->num_threads;
2192 cip->subcore_vm[sub] = vc->kvm;
2193 init_master_vcore(vc);
2194 list_del(&vc->preempt_list);
2195 list_add_tail(&vc->preempt_list, &cip->vcs[sub]);
2196
2197 return true;
2198}
2199
2200static bool can_piggyback_subcore(struct kvmppc_vcore *pvc,
2201 struct core_info *cip, int sub)
ec257165
PM
2202{
2203 struct kvmppc_vcore *vc;
b4deba5c 2204 int n_thr;
ec257165 2205
b4deba5c
PM
2206 vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
2207 preempt_list);
ec257165
PM
2208
2209 /* require same VM and same per-core reg values */
2210 if (pvc->kvm != vc->kvm ||
2211 pvc->tb_offset != vc->tb_offset ||
2212 pvc->pcr != vc->pcr ||
2213 pvc->lpcr != vc->lpcr)
2214 return false;
2215
2216 /* P8 guest with > 1 thread per core would see wrong TIR value */
2217 if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
2218 (vc->num_threads > 1 || pvc->num_threads > 1))
2219 return false;
2220
b4deba5c
PM
2221 n_thr = cip->subcore_threads[sub] + pvc->num_threads;
2222 if (n_thr > cip->max_subcore_threads) {
2223 if (!subcore_config_ok(cip->n_subcores, n_thr))
2224 return false;
2225 cip->max_subcore_threads = n_thr;
2226 }
ec257165
PM
2227
2228 cip->total_threads += pvc->num_threads;
b4deba5c 2229 cip->subcore_threads[sub] = n_thr;
ec257165
PM
2230 pvc->master_vcore = vc;
2231 list_del(&pvc->preempt_list);
b4deba5c 2232 list_add_tail(&pvc->preempt_list, &cip->vcs[sub]);
ec257165
PM
2233
2234 return true;
2235}
2236
b4deba5c
PM
2237/*
2238 * Work out whether it is possible to piggyback the execution of
2239 * vcore *pvc onto the execution of the other vcores described in *cip.
2240 */
2241static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2242 int target_threads)
2243{
2244 int sub;
2245
2246 if (cip->total_threads + pvc->num_threads > target_threads)
2247 return false;
2248 for (sub = 0; sub < cip->n_subcores; ++sub)
2249 if (cip->subcore_threads[sub] &&
2250 can_piggyback_subcore(pvc, cip, sub))
2251 return true;
2252
2253 if (can_dynamic_split(pvc, cip))
2254 return true;
2255
2256 return false;
2257}
2258
d911f0be
PM
2259static void prepare_threads(struct kvmppc_vcore *vc)
2260{
7b5f8272
SJS
2261 int i;
2262 struct kvm_vcpu *vcpu;
d911f0be 2263
7b5f8272 2264 for_each_runnable_thread(i, vcpu, vc) {
d911f0be
PM
2265 if (signal_pending(vcpu->arch.run_task))
2266 vcpu->arch.ret = -EINTR;
2267 else if (vcpu->arch.vpa.update_pending ||
2268 vcpu->arch.slb_shadow.update_pending ||
2269 vcpu->arch.dtl.update_pending)
2270 vcpu->arch.ret = RESUME_GUEST;
2271 else
2272 continue;
2273 kvmppc_remove_runnable(vc, vcpu);
2274 wake_up(&vcpu->arch.cpu_run);
2275 }
2276}
2277
ec257165
PM
2278static void collect_piggybacks(struct core_info *cip, int target_threads)
2279{
2280 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2281 struct kvmppc_vcore *pvc, *vcnext;
2282
2283 spin_lock(&lp->lock);
2284 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2285 if (!spin_trylock(&pvc->lock))
2286 continue;
2287 prepare_threads(pvc);
2288 if (!pvc->n_runnable) {
2289 list_del_init(&pvc->preempt_list);
2290 if (pvc->runner == NULL) {
2291 pvc->vcore_state = VCORE_INACTIVE;
2292 kvmppc_core_end_stolen(pvc);
2293 }
2294 spin_unlock(&pvc->lock);
2295 continue;
2296 }
2297 if (!can_piggyback(pvc, cip, target_threads)) {
2298 spin_unlock(&pvc->lock);
2299 continue;
2300 }
2301 kvmppc_core_end_stolen(pvc);
2302 pvc->vcore_state = VCORE_PIGGYBACK;
2303 if (cip->total_threads >= target_threads)
2304 break;
2305 }
2306 spin_unlock(&lp->lock);
2307}
2308
2309static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
25fedfca 2310{
7b5f8272 2311 int still_running = 0, i;
25fedfca
PM
2312 u64 now;
2313 long ret;
7b5f8272 2314 struct kvm_vcpu *vcpu;
25fedfca 2315
ec257165 2316 spin_lock(&vc->lock);
25fedfca 2317 now = get_tb();
7b5f8272 2318 for_each_runnable_thread(i, vcpu, vc) {
25fedfca
PM
2319 /* cancel pending dec exception if dec is positive */
2320 if (now < vcpu->arch.dec_expires &&
2321 kvmppc_core_pending_dec(vcpu))
2322 kvmppc_core_dequeue_dec(vcpu);
2323
2324 trace_kvm_guest_exit(vcpu);
2325
2326 ret = RESUME_GUEST;
2327 if (vcpu->arch.trap)
2328 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2329 vcpu->arch.run_task);
2330
2331 vcpu->arch.ret = ret;
2332 vcpu->arch.trap = 0;
2333
ec257165
PM
2334 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2335 if (vcpu->arch.pending_exceptions)
2336 kvmppc_core_prepare_to_enter(vcpu);
2337 if (vcpu->arch.ceded)
25fedfca 2338 kvmppc_set_timer(vcpu);
ec257165
PM
2339 else
2340 ++still_running;
2341 } else {
25fedfca
PM
2342 kvmppc_remove_runnable(vc, vcpu);
2343 wake_up(&vcpu->arch.cpu_run);
2344 }
2345 }
ec257165
PM
2346 list_del_init(&vc->preempt_list);
2347 if (!is_master) {
563a1e93 2348 if (still_running > 0) {
ec257165 2349 kvmppc_vcore_preempt(vc);
563a1e93
PM
2350 } else if (vc->runner) {
2351 vc->vcore_state = VCORE_PREEMPT;
2352 kvmppc_core_start_stolen(vc);
2353 } else {
2354 vc->vcore_state = VCORE_INACTIVE;
2355 }
ec257165
PM
2356 if (vc->n_runnable > 0 && vc->runner == NULL) {
2357 /* make sure there's a candidate runner awake */
7b5f8272
SJS
2358 i = -1;
2359 vcpu = next_runnable_thread(vc, &i);
ec257165
PM
2360 wake_up(&vcpu->arch.cpu_run);
2361 }
2362 }
2363 spin_unlock(&vc->lock);
25fedfca
PM
2364}
2365
b8e6a87c
SW
2366/*
2367 * Clear core from the list of active host cores as we are about to
2368 * enter the guest. Only do this if it is the primary thread of the
2369 * core (not if a subcore) that is entering the guest.
2370 */
2371static inline void kvmppc_clear_host_core(int cpu)
2372{
2373 int core;
2374
2375 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2376 return;
2377 /*
2378 * Memory barrier can be omitted here as we will do a smp_wmb()
2379 * later in kvmppc_start_thread and we need ensure that state is
2380 * visible to other CPUs only after we enter guest.
2381 */
2382 core = cpu >> threads_shift;
2383 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2384}
2385
2386/*
2387 * Advertise this core as an active host core since we exited the guest
2388 * Only need to do this if it is the primary thread of the core that is
2389 * exiting.
2390 */
2391static inline void kvmppc_set_host_core(int cpu)
2392{
2393 int core;
2394
2395 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2396 return;
2397
2398 /*
2399 * Memory barrier can be omitted here because we do a spin_unlock
2400 * immediately after this which provides the memory barrier.
2401 */
2402 core = cpu >> threads_shift;
2403 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2404}
2405
371fefd6
PM
2406/*
2407 * Run a set of guest threads on a physical core.
2408 * Called with vc->lock held.
2409 */
66feed61 2410static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
371fefd6 2411{
7b5f8272 2412 struct kvm_vcpu *vcpu;
d911f0be 2413 int i;
2c9097e4 2414 int srcu_idx;
ec257165
PM
2415 struct core_info core_info;
2416 struct kvmppc_vcore *pvc, *vcnext;
b4deba5c
PM
2417 struct kvm_split_mode split_info, *sip;
2418 int split, subcore_size, active;
2419 int sub;
2420 bool thr0_done;
2421 unsigned long cmd_bit, stat_bit;
ec257165
PM
2422 int pcpu, thr;
2423 int target_threads;
371fefd6 2424
d911f0be
PM
2425 /*
2426 * Remove from the list any threads that have a signal pending
2427 * or need a VPA update done
2428 */
2429 prepare_threads(vc);
2430
2431 /* if the runner is no longer runnable, let the caller pick a new one */
2432 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2433 return;
081f323b
PM
2434
2435 /*
d911f0be 2436 * Initialize *vc.
081f323b 2437 */
ec257165 2438 init_master_vcore(vc);
2711e248 2439 vc->preempt_tb = TB_NIL;
081f323b 2440
7b444c67 2441 /*
3102f784
ME
2442 * Make sure we are running on primary threads, and that secondary
2443 * threads are offline. Also check if the number of threads in this
2444 * guest are greater than the current system threads per guest.
7b444c67 2445 */
3102f784
ME
2446 if ((threads_per_core > 1) &&
2447 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
7b5f8272 2448 for_each_runnable_thread(i, vcpu, vc) {
7b444c67 2449 vcpu->arch.ret = -EBUSY;
25fedfca
PM
2450 kvmppc_remove_runnable(vc, vcpu);
2451 wake_up(&vcpu->arch.cpu_run);
2452 }
7b444c67
PM
2453 goto out;
2454 }
2455
ec257165
PM
2456 /*
2457 * See if we could run any other vcores on the physical core
2458 * along with this one.
2459 */
2460 init_core_info(&core_info, vc);
2461 pcpu = smp_processor_id();
2462 target_threads = threads_per_subcore;
2463 if (target_smt_mode && target_smt_mode < target_threads)
2464 target_threads = target_smt_mode;
2465 if (vc->num_threads < target_threads)
2466 collect_piggybacks(&core_info, target_threads);
3102f784 2467
b4deba5c
PM
2468 /* Decide on micro-threading (split-core) mode */
2469 subcore_size = threads_per_subcore;
2470 cmd_bit = stat_bit = 0;
2471 split = core_info.n_subcores;
2472 sip = NULL;
2473 if (split > 1) {
2474 /* threads_per_subcore must be MAX_SMT_THREADS (8) here */
2475 if (split == 2 && (dynamic_mt_modes & 2)) {
2476 cmd_bit = HID0_POWER8_1TO2LPAR;
2477 stat_bit = HID0_POWER8_2LPARMODE;
2478 } else {
2479 split = 4;
2480 cmd_bit = HID0_POWER8_1TO4LPAR;
2481 stat_bit = HID0_POWER8_4LPARMODE;
2482 }
2483 subcore_size = MAX_SMT_THREADS / split;
2484 sip = &split_info;
2485 memset(&split_info, 0, sizeof(split_info));
2486 split_info.rpr = mfspr(SPRN_RPR);
2487 split_info.pmmar = mfspr(SPRN_PMMAR);
2488 split_info.ldbar = mfspr(SPRN_LDBAR);
2489 split_info.subcore_size = subcore_size;
2490 for (sub = 0; sub < core_info.n_subcores; ++sub)
2491 split_info.master_vcs[sub] =
2492 list_first_entry(&core_info.vcs[sub],
2493 struct kvmppc_vcore, preempt_list);
2494 /* order writes to split_info before kvm_split_mode pointer */
2495 smp_wmb();
2496 }
2497 pcpu = smp_processor_id();
2498 for (thr = 0; thr < threads_per_subcore; ++thr)
2499 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2500
2501 /* Initiate micro-threading (split-core) if required */
2502 if (cmd_bit) {
2503 unsigned long hid0 = mfspr(SPRN_HID0);
2504
2505 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2506 mb();
2507 mtspr(SPRN_HID0, hid0);
2508 isync();
2509 for (;;) {
2510 hid0 = mfspr(SPRN_HID0);
2511 if (hid0 & stat_bit)
2512 break;
2513 cpu_relax();
ec257165 2514 }
2e25aa5f 2515 }
3102f784 2516
b8e6a87c
SW
2517 kvmppc_clear_host_core(pcpu);
2518
b4deba5c
PM
2519 /* Start all the threads */
2520 active = 0;
2521 for (sub = 0; sub < core_info.n_subcores; ++sub) {
2522 thr = subcore_thread_map[sub];
2523 thr0_done = false;
2524 active |= 1 << thr;
2525 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) {
2526 pvc->pcpu = pcpu + thr;
7b5f8272 2527 for_each_runnable_thread(i, vcpu, pvc) {
b4deba5c
PM
2528 kvmppc_start_thread(vcpu, pvc);
2529 kvmppc_create_dtl_entry(vcpu, pvc);
2530 trace_kvm_guest_enter(vcpu);
2531 if (!vcpu->arch.ptid)
2532 thr0_done = true;
2533 active |= 1 << (thr + vcpu->arch.ptid);
2534 }
2535 /*
2536 * We need to start the first thread of each subcore
2537 * even if it doesn't have a vcpu.
2538 */
2539 if (pvc->master_vcore == pvc && !thr0_done)
2540 kvmppc_start_thread(NULL, pvc);
2541 thr += pvc->num_threads;
2542 }
2e25aa5f 2543 }
371fefd6 2544
7f235328
GS
2545 /*
2546 * Ensure that split_info.do_nap is set after setting
2547 * the vcore pointer in the PACA of the secondaries.
2548 */
2549 smp_mb();
2550 if (cmd_bit)
2551 split_info.do_nap = 1; /* ask secondaries to nap when done */
2552
b4deba5c
PM
2553 /*
2554 * When doing micro-threading, poke the inactive threads as well.
2555 * This gets them to the nap instruction after kvm_do_nap,
2556 * which reduces the time taken to unsplit later.
2557 */
2558 if (split > 1)
2559 for (thr = 1; thr < threads_per_subcore; ++thr)
2560 if (!(active & (1 << thr)))
2561 kvmppc_ipi_thread(pcpu + thr);
e0b7ec05 2562
2f12f034 2563 vc->vcore_state = VCORE_RUNNING;
19ccb76a 2564 preempt_disable();
3c78f78a
SW
2565
2566 trace_kvmppc_run_core(vc, 0);
2567
b4deba5c
PM
2568 for (sub = 0; sub < core_info.n_subcores; ++sub)
2569 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list)
2570 spin_unlock(&pvc->lock);
de56a948 2571
6edaa530 2572 guest_enter();
2c9097e4 2573
e0b7ec05 2574 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2c9097e4 2575
e0b7ec05 2576 __kvmppc_vcore_entry();
de56a948 2577
ec257165
PM
2578 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2579
2580 spin_lock(&vc->lock);
371fefd6 2581 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
19ccb76a 2582 vc->vcore_state = VCORE_EXITING;
371fefd6 2583
19ccb76a 2584 /* wait for secondary threads to finish writing their state to memory */
5d5b99cd 2585 kvmppc_wait_for_nap();
b4deba5c
PM
2586
2587 /* Return to whole-core mode if we split the core earlier */
2588 if (split > 1) {
2589 unsigned long hid0 = mfspr(SPRN_HID0);
2590 unsigned long loops = 0;
2591
2592 hid0 &= ~HID0_POWER8_DYNLPARDIS;
2593 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2594 mb();
2595 mtspr(SPRN_HID0, hid0);
2596 isync();
2597 for (;;) {
2598 hid0 = mfspr(SPRN_HID0);
2599 if (!(hid0 & stat_bit))
2600 break;
2601 cpu_relax();
2602 ++loops;
2603 }
2604 split_info.do_nap = 0;
2605 }
2606
2607 /* Let secondaries go back to the offline loop */
2608 for (i = 0; i < threads_per_subcore; ++i) {
2609 kvmppc_release_hwthread(pcpu + i);
2610 if (sip && sip->napped[i])
2611 kvmppc_ipi_thread(pcpu + i);
2612 }
2613
b8e6a87c
SW
2614 kvmppc_set_host_core(pcpu);
2615
371fefd6 2616 spin_unlock(&vc->lock);
2c9097e4 2617
371fefd6
PM
2618 /* make sure updates to secondary vcpu structs are visible now */
2619 smp_mb();
6edaa530 2620 guest_exit();
de56a948 2621
b4deba5c
PM
2622 for (sub = 0; sub < core_info.n_subcores; ++sub)
2623 list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub],
2624 preempt_list)
2625 post_guest_process(pvc, pvc == vc);
de56a948 2626
913d3ff9 2627 spin_lock(&vc->lock);
ec257165 2628 preempt_enable();
de56a948
PM
2629
2630 out:
19ccb76a 2631 vc->vcore_state = VCORE_INACTIVE;
3c78f78a 2632 trace_kvmppc_run_core(vc, 1);
371fefd6
PM
2633}
2634
19ccb76a
PM
2635/*
2636 * Wait for some other vcpu thread to execute us, and
2637 * wake us up when we need to handle something in the host.
2638 */
ec257165
PM
2639static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2640 struct kvm_vcpu *vcpu, int wait_state)
371fefd6 2641{
371fefd6
PM
2642 DEFINE_WAIT(wait);
2643
19ccb76a 2644 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
ec257165
PM
2645 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2646 spin_unlock(&vc->lock);
19ccb76a 2647 schedule();
ec257165
PM
2648 spin_lock(&vc->lock);
2649 }
19ccb76a
PM
2650 finish_wait(&vcpu->arch.cpu_run, &wait);
2651}
2652
0cda69dd
SJS
2653static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
2654{
2655 /* 10us base */
2656 if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
2657 vc->halt_poll_ns = 10000;
2658 else
2659 vc->halt_poll_ns *= halt_poll_ns_grow;
2660
2661 if (vc->halt_poll_ns > halt_poll_max_ns)
2662 vc->halt_poll_ns = halt_poll_max_ns;
2663}
2664
2665static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
2666{
2667 if (halt_poll_ns_shrink == 0)
2668 vc->halt_poll_ns = 0;
2669 else
2670 vc->halt_poll_ns /= halt_poll_ns_shrink;
2671}
2672
2673/* Check to see if any of the runnable vcpus on the vcore have pending
2674 * exceptions or are no longer ceded
2675 */
2676static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
2677{
2678 struct kvm_vcpu *vcpu;
2679 int i;
2680
2681 for_each_runnable_thread(i, vcpu, vc) {
2682 if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded)
2683 return 1;
2684 }
2685
2686 return 0;
2687}
2688
19ccb76a
PM
2689/*
2690 * All the vcpus in this vcore are idle, so wait for a decrementer
2691 * or external interrupt to one of the vcpus. vc->lock is held.
2692 */
2693static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
2694{
2a27f514 2695 ktime_t cur, start_poll, start_wait;
0cda69dd 2696 int do_sleep = 1;
0cda69dd 2697 u64 block_ns;
8577370f 2698 DECLARE_SWAITQUEUE(wait);
1bc5d59c 2699
0cda69dd 2700 /* Poll for pending exceptions and ceded state */
2a27f514 2701 cur = start_poll = ktime_get();
0cda69dd 2702 if (vc->halt_poll_ns) {
2a27f514
SJS
2703 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
2704 ++vc->runner->stat.halt_attempted_poll;
1bc5d59c 2705
0cda69dd
SJS
2706 vc->vcore_state = VCORE_POLLING;
2707 spin_unlock(&vc->lock);
2708
2709 do {
2710 if (kvmppc_vcore_check_block(vc)) {
2711 do_sleep = 0;
2712 break;
2713 }
2714 cur = ktime_get();
2715 } while (single_task_running() && ktime_before(cur, stop));
2716
2717 spin_lock(&vc->lock);
2718 vc->vcore_state = VCORE_INACTIVE;
2719
2a27f514
SJS
2720 if (!do_sleep) {
2721 ++vc->runner->stat.halt_successful_poll;
0cda69dd 2722 goto out;
2a27f514 2723 }
1bc5d59c
SW
2724 }
2725
0cda69dd
SJS
2726 prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
2727
2728 if (kvmppc_vcore_check_block(vc)) {
8577370f 2729 finish_swait(&vc->wq, &wait);
0cda69dd 2730 do_sleep = 0;
2a27f514
SJS
2731 /* If we polled, count this as a successful poll */
2732 if (vc->halt_poll_ns)
2733 ++vc->runner->stat.halt_successful_poll;
0cda69dd 2734 goto out;
1bc5d59c
SW
2735 }
2736
2a27f514
SJS
2737 start_wait = ktime_get();
2738
19ccb76a 2739 vc->vcore_state = VCORE_SLEEPING;
3c78f78a 2740 trace_kvmppc_vcore_blocked(vc, 0);
19ccb76a 2741 spin_unlock(&vc->lock);
913d3ff9 2742 schedule();
8577370f 2743 finish_swait(&vc->wq, &wait);
19ccb76a
PM
2744 spin_lock(&vc->lock);
2745 vc->vcore_state = VCORE_INACTIVE;
3c78f78a 2746 trace_kvmppc_vcore_blocked(vc, 1);
2a27f514 2747 ++vc->runner->stat.halt_successful_wait;
0cda69dd
SJS
2748
2749 cur = ktime_get();
2750
2751out:
2a27f514
SJS
2752 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
2753
2754 /* Attribute wait time */
2755 if (do_sleep) {
2756 vc->runner->stat.halt_wait_ns +=
2757 ktime_to_ns(cur) - ktime_to_ns(start_wait);
2758 /* Attribute failed poll time */
2759 if (vc->halt_poll_ns)
2760 vc->runner->stat.halt_poll_fail_ns +=
2761 ktime_to_ns(start_wait) -
2762 ktime_to_ns(start_poll);
2763 } else {
2764 /* Attribute successful poll time */
2765 if (vc->halt_poll_ns)
2766 vc->runner->stat.halt_poll_success_ns +=
2767 ktime_to_ns(cur) -
2768 ktime_to_ns(start_poll);
2769 }
0cda69dd
SJS
2770
2771 /* Adjust poll time */
2772 if (halt_poll_max_ns) {
2773 if (block_ns <= vc->halt_poll_ns)
2774 ;
2775 /* We slept and blocked for longer than the max halt time */
2776 else if (vc->halt_poll_ns && block_ns > halt_poll_max_ns)
2777 shrink_halt_poll_ns(vc);
2778 /* We slept and our poll time is too small */
2779 else if (vc->halt_poll_ns < halt_poll_max_ns &&
2780 block_ns < halt_poll_max_ns)
2781 grow_halt_poll_ns(vc);
2782 } else
2783 vc->halt_poll_ns = 0;
2784
2785 trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
19ccb76a 2786}
371fefd6 2787
19ccb76a
PM
2788static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2789{
7b5f8272 2790 int n_ceded, i;
19ccb76a 2791 struct kvmppc_vcore *vc;
7b5f8272 2792 struct kvm_vcpu *v;
9e368f29 2793
3c78f78a
SW
2794 trace_kvmppc_run_vcpu_enter(vcpu);
2795
371fefd6
PM
2796 kvm_run->exit_reason = 0;
2797 vcpu->arch.ret = RESUME_GUEST;
2798 vcpu->arch.trap = 0;
2f12f034 2799 kvmppc_update_vpas(vcpu);
371fefd6 2800
371fefd6
PM
2801 /*
2802 * Synchronize with other threads in this virtual core
2803 */
2804 vc = vcpu->arch.vcore;
2805 spin_lock(&vc->lock);
19ccb76a 2806 vcpu->arch.ceded = 0;
371fefd6
PM
2807 vcpu->arch.run_task = current;
2808 vcpu->arch.kvm_run = kvm_run;
c7b67670 2809 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
19ccb76a 2810 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
c7b67670 2811 vcpu->arch.busy_preempt = TB_NIL;
7b5f8272 2812 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
371fefd6
PM
2813 ++vc->n_runnable;
2814
19ccb76a
PM
2815 /*
2816 * This happens the first time this is called for a vcpu.
2817 * If the vcore is already running, we may be able to start
2818 * this thread straight away and have it join in.
2819 */
8455d79e 2820 if (!signal_pending(current)) {
ec257165
PM
2821 if (vc->vcore_state == VCORE_PIGGYBACK) {
2822 struct kvmppc_vcore *mvc = vc->master_vcore;
2823 if (spin_trylock(&mvc->lock)) {
2824 if (mvc->vcore_state == VCORE_RUNNING &&
2825 !VCORE_IS_EXITING(mvc)) {
2826 kvmppc_create_dtl_entry(vcpu, vc);
b4deba5c 2827 kvmppc_start_thread(vcpu, vc);
ec257165
PM
2828 trace_kvm_guest_enter(vcpu);
2829 }
2830 spin_unlock(&mvc->lock);
2831 }
2832 } else if (vc->vcore_state == VCORE_RUNNING &&
2833 !VCORE_IS_EXITING(vc)) {
2f12f034 2834 kvmppc_create_dtl_entry(vcpu, vc);
b4deba5c 2835 kvmppc_start_thread(vcpu, vc);
3c78f78a 2836 trace_kvm_guest_enter(vcpu);
8455d79e 2837 } else if (vc->vcore_state == VCORE_SLEEPING) {
8577370f 2838 swake_up(&vc->wq);
371fefd6
PM
2839 }
2840
8455d79e 2841 }
371fefd6 2842
19ccb76a
PM
2843 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2844 !signal_pending(current)) {
ec257165
PM
2845 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2846 kvmppc_vcore_end_preempt(vc);
2847
8455d79e 2848 if (vc->vcore_state != VCORE_INACTIVE) {
ec257165 2849 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
19ccb76a
PM
2850 continue;
2851 }
7b5f8272 2852 for_each_runnable_thread(i, v, vc) {
7e28e60e 2853 kvmppc_core_prepare_to_enter(v);
19ccb76a
PM
2854 if (signal_pending(v->arch.run_task)) {
2855 kvmppc_remove_runnable(vc, v);
2856 v->stat.signal_exits++;
2857 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
2858 v->arch.ret = -EINTR;
2859 wake_up(&v->arch.cpu_run);
2860 }
2861 }
8455d79e
PM
2862 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2863 break;
8455d79e 2864 n_ceded = 0;
7b5f8272 2865 for_each_runnable_thread(i, v, vc) {
8455d79e
PM
2866 if (!v->arch.pending_exceptions)
2867 n_ceded += v->arch.ceded;
4619ac88
PM
2868 else
2869 v->arch.ceded = 0;
2870 }
25fedfca
PM
2871 vc->runner = vcpu;
2872 if (n_ceded == vc->n_runnable) {
8455d79e 2873 kvmppc_vcore_blocked(vc);
c56dadf3 2874 } else if (need_resched()) {
ec257165 2875 kvmppc_vcore_preempt(vc);
25fedfca
PM
2876 /* Let something else run */
2877 cond_resched_lock(&vc->lock);
ec257165
PM
2878 if (vc->vcore_state == VCORE_PREEMPT)
2879 kvmppc_vcore_end_preempt(vc);
25fedfca 2880 } else {
8455d79e 2881 kvmppc_run_core(vc);
25fedfca 2882 }
0456ec4f 2883 vc->runner = NULL;
19ccb76a 2884 }
371fefd6 2885
8455d79e
PM
2886 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2887 (vc->vcore_state == VCORE_RUNNING ||
5fc3e64f
PM
2888 vc->vcore_state == VCORE_EXITING ||
2889 vc->vcore_state == VCORE_PIGGYBACK))
ec257165 2890 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
8455d79e 2891
5fc3e64f
PM
2892 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2893 kvmppc_vcore_end_preempt(vc);
2894
8455d79e
PM
2895 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2896 kvmppc_remove_runnable(vc, vcpu);
2897 vcpu->stat.signal_exits++;
2898 kvm_run->exit_reason = KVM_EXIT_INTR;
2899 vcpu->arch.ret = -EINTR;
2900 }
2901
2902 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
2903 /* Wake up some vcpu to run the core */
7b5f8272
SJS
2904 i = -1;
2905 v = next_runnable_thread(vc, &i);
8455d79e 2906 wake_up(&v->arch.cpu_run);
371fefd6
PM
2907 }
2908
3c78f78a 2909 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
371fefd6 2910 spin_unlock(&vc->lock);
371fefd6 2911 return vcpu->arch.ret;
de56a948
PM
2912}
2913
3a167bea 2914static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
a8606e20
PM
2915{
2916 int r;
913d3ff9 2917 int srcu_idx;
a8606e20 2918
af8f38b3
AG
2919 if (!vcpu->arch.sane) {
2920 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2921 return -EINVAL;
2922 }
2923
25051b5a
SW
2924 kvmppc_core_prepare_to_enter(vcpu);
2925
19ccb76a
PM
2926 /* No need to go into the guest when all we'll do is come back out */
2927 if (signal_pending(current)) {
2928 run->exit_reason = KVM_EXIT_INTR;
2929 return -EINTR;
2930 }
2931
32fad281 2932 atomic_inc(&vcpu->kvm->arch.vcpus_running);
31037eca 2933 /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
32fad281
PM
2934 smp_mb();
2935
c17b98cf 2936 /* On the first time here, set up HTAB and VRMA */
31037eca 2937 if (!vcpu->kvm->arch.hpte_setup_done) {
32fad281 2938 r = kvmppc_hv_setup_htab_rma(vcpu);
c77162de 2939 if (r)
32fad281 2940 goto out;
c77162de 2941 }
19ccb76a 2942
579e633e
AB
2943 flush_all_to_thread(current);
2944
19ccb76a 2945 vcpu->arch.wqp = &vcpu->arch.vcore->wq;
342d3db7 2946 vcpu->arch.pgdir = current->mm->pgd;
c7b67670 2947 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
19ccb76a 2948
a8606e20
PM
2949 do {
2950 r = kvmppc_run_vcpu(run, vcpu);
2951
2952 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
2953 !(vcpu->arch.shregs.msr & MSR_PR)) {
3c78f78a 2954 trace_kvm_hcall_enter(vcpu);
a8606e20 2955 r = kvmppc_pseries_do_hcall(vcpu);
3c78f78a 2956 trace_kvm_hcall_exit(vcpu, r);
7e28e60e 2957 kvmppc_core_prepare_to_enter(vcpu);
913d3ff9
PM
2958 } else if (r == RESUME_PAGE_FAULT) {
2959 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2960 r = kvmppc_book3s_hv_page_fault(run, vcpu,
2961 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
2962 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
f7af5209
SW
2963 } else if (r == RESUME_PASSTHROUGH)
2964 r = kvmppc_xics_rm_complete(vcpu, 0);
e59d24e6 2965 } while (is_kvmppc_resume_guest(r));
32fad281
PM
2966
2967 out:
c7b67670 2968 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
32fad281 2969 atomic_dec(&vcpu->kvm->arch.vcpus_running);
a8606e20
PM
2970 return r;
2971}
2972
5b74716e
BH
2973static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
2974 int linux_psize)
2975{
2976 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
2977
2978 if (!def->shift)
2979 return;
2980 (*sps)->page_shift = def->shift;
2981 (*sps)->slb_enc = def->sllp;
2982 (*sps)->enc[0].page_shift = def->shift;
b1022fbd 2983 (*sps)->enc[0].pte_enc = def->penc[linux_psize];
1f365bb0
AK
2984 /*
2985 * Add 16MB MPSS support if host supports it
2986 */
2987 if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
2988 (*sps)->enc[1].page_shift = 24;
2989 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
2990 }
5b74716e
BH
2991 (*sps)++;
2992}
2993
3a167bea
AK
2994static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
2995 struct kvm_ppc_smmu_info *info)
5b74716e
BH
2996{
2997 struct kvm_ppc_one_seg_page_size *sps;
2998
2999 info->flags = KVM_PPC_PAGE_SIZES_REAL;
3000 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
3001 info->flags |= KVM_PPC_1T_SEGMENTS;
3002 info->slb_size = mmu_slb_size;
3003
3004 /* We only support these sizes for now, and no muti-size segments */
3005 sps = &info->sps[0];
3006 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
3007 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
3008 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
3009
3010 return 0;
3011}
3012
82ed3616
PM
3013/*
3014 * Get (and clear) the dirty memory log for a memory slot.
3015 */
3a167bea
AK
3016static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3017 struct kvm_dirty_log *log)
82ed3616 3018{
9f6b8029 3019 struct kvm_memslots *slots;
82ed3616
PM
3020 struct kvm_memory_slot *memslot;
3021 int r;
3022 unsigned long n;
3023
3024 mutex_lock(&kvm->slots_lock);
3025
3026 r = -EINVAL;
bbacc0c1 3027 if (log->slot >= KVM_USER_MEM_SLOTS)
82ed3616
PM
3028 goto out;
3029
9f6b8029
PB
3030 slots = kvm_memslots(kvm);
3031 memslot = id_to_memslot(slots, log->slot);
82ed3616
PM
3032 r = -ENOENT;
3033 if (!memslot->dirty_bitmap)
3034 goto out;
3035
3036 n = kvm_dirty_bitmap_bytes(memslot);
3037 memset(memslot->dirty_bitmap, 0, n);
3038
dfe49dbd 3039 r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
82ed3616
PM
3040 if (r)
3041 goto out;
3042
3043 r = -EFAULT;
3044 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
3045 goto out;
3046
3047 r = 0;
3048out:
3049 mutex_unlock(&kvm->slots_lock);
3050 return r;
3051}
3052
3a167bea
AK
3053static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3054 struct kvm_memory_slot *dont)
a66b48c3
PM
3055{
3056 if (!dont || free->arch.rmap != dont->arch.rmap) {
3057 vfree(free->arch.rmap);
3058 free->arch.rmap = NULL;
b2b2f165 3059 }
a66b48c3
PM
3060}
3061
3a167bea
AK
3062static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3063 unsigned long npages)
a66b48c3
PM
3064{
3065 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
3066 if (!slot->arch.rmap)
3067 return -ENOMEM;
aa04b4cc 3068
c77162de
PM
3069 return 0;
3070}
aa04b4cc 3071
3a167bea
AK
3072static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3073 struct kvm_memory_slot *memslot,
09170a49 3074 const struct kvm_userspace_memory_region *mem)
c77162de 3075{
a66b48c3 3076 return 0;
c77162de
PM
3077}
3078
3a167bea 3079static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
09170a49 3080 const struct kvm_userspace_memory_region *mem,
f36f3f28
PB
3081 const struct kvm_memory_slot *old,
3082 const struct kvm_memory_slot *new)
c77162de 3083{
dfe49dbd 3084 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
9f6b8029 3085 struct kvm_memslots *slots;
dfe49dbd
PM
3086 struct kvm_memory_slot *memslot;
3087
8482644a 3088 if (npages && old->npages) {
dfe49dbd
PM
3089 /*
3090 * If modifying a memslot, reset all the rmap dirty bits.
3091 * If this is a new memslot, we don't need to do anything
3092 * since the rmap array starts out as all zeroes,
3093 * i.e. no pages are dirty.
3094 */
9f6b8029
PB
3095 slots = kvm_memslots(kvm);
3096 memslot = id_to_memslot(slots, mem->slot);
dfe49dbd
PM
3097 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
3098 }
c77162de
PM
3099}
3100
a0144e2a
PM
3101/*
3102 * Update LPCR values in kvm->arch and in vcores.
3103 * Caller must hold kvm->lock.
3104 */
3105void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3106{
3107 long int i;
3108 u32 cores_done = 0;
3109
3110 if ((kvm->arch.lpcr & mask) == lpcr)
3111 return;
3112
3113 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3114
3115 for (i = 0; i < KVM_MAX_VCORES; ++i) {
3116 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3117 if (!vc)
3118 continue;
3119 spin_lock(&vc->lock);
3120 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3121 spin_unlock(&vc->lock);
3122 if (++cores_done >= kvm->arch.online_vcores)
3123 break;
3124 }
3125}
3126
3a167bea
AK
3127static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3128{
3129 return;
3130}
3131
32fad281 3132static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
c77162de
PM
3133{
3134 int err = 0;
3135 struct kvm *kvm = vcpu->kvm;
c77162de
PM
3136 unsigned long hva;
3137 struct kvm_memory_slot *memslot;
3138 struct vm_area_struct *vma;
a0144e2a 3139 unsigned long lpcr = 0, senc;
c77162de 3140 unsigned long psize, porder;
2c9097e4 3141 int srcu_idx;
c77162de
PM
3142
3143 mutex_lock(&kvm->lock);
31037eca 3144 if (kvm->arch.hpte_setup_done)
c77162de 3145 goto out; /* another vcpu beat us to it */
aa04b4cc 3146
32fad281
PM
3147 /* Allocate hashed page table (if not done already) and reset it */
3148 if (!kvm->arch.hpt_virt) {
3149 err = kvmppc_alloc_hpt(kvm, NULL);
3150 if (err) {
3151 pr_err("KVM: Couldn't alloc HPT\n");
3152 goto out;
3153 }
3154 }
3155
c77162de 3156 /* Look up the memslot for guest physical address 0 */
2c9097e4 3157 srcu_idx = srcu_read_lock(&kvm->srcu);
c77162de 3158 memslot = gfn_to_memslot(kvm, 0);
aa04b4cc 3159
c77162de
PM
3160 /* We must have some memory at 0 by now */
3161 err = -EINVAL;
3162 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2c9097e4 3163 goto out_srcu;
c77162de
PM
3164
3165 /* Look up the VMA for the start of this memory slot */
3166 hva = memslot->userspace_addr;
3167 down_read(&current->mm->mmap_sem);
3168 vma = find_vma(current->mm, hva);
3169 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3170 goto up_out;
3171
3172 psize = vma_kernel_pagesize(vma);
da9d1d7f 3173 porder = __ilog2(psize);
c77162de 3174
c77162de
PM
3175 up_read(&current->mm->mmap_sem);
3176
c17b98cf
PM
3177 /* We can handle 4k, 64k or 16M pages in the VRMA */
3178 err = -EINVAL;
3179 if (!(psize == 0x1000 || psize == 0x10000 ||
3180 psize == 0x1000000))
3181 goto out_srcu;
c77162de 3182
c17b98cf
PM
3183 /* Update VRMASD field in the LPCR */
3184 senc = slb_pgsize_encoding(psize);
3185 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3186 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3187 /* the -4 is to account for senc values starting at 0x10 */
3188 lpcr = senc << (LPCR_VRMASD_SH - 4);
c77162de 3189
c17b98cf
PM
3190 /* Create HPTEs in the hash page table for the VRMA */
3191 kvmppc_map_vrma(vcpu, memslot, porder);
aa04b4cc 3192
c17b98cf 3193 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
a0144e2a 3194
31037eca 3195 /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
c77162de 3196 smp_wmb();
31037eca 3197 kvm->arch.hpte_setup_done = 1;
c77162de 3198 err = 0;
2c9097e4
PM
3199 out_srcu:
3200 srcu_read_unlock(&kvm->srcu, srcu_idx);
c77162de
PM
3201 out:
3202 mutex_unlock(&kvm->lock);
3203 return err;
b2b2f165 3204
c77162de
PM
3205 up_out:
3206 up_read(&current->mm->mmap_sem);
505d6421 3207 goto out_srcu;
de56a948
PM
3208}
3209
79b6c247 3210#ifdef CONFIG_KVM_XICS
6f3bb809
SW
3211static int kvmppc_cpu_notify(struct notifier_block *self, unsigned long action,
3212 void *hcpu)
3213{
3214 unsigned long cpu = (long)hcpu;
3215
3216 switch (action) {
3217 case CPU_UP_PREPARE:
3218 case CPU_UP_PREPARE_FROZEN:
3219 kvmppc_set_host_core(cpu);
3220 break;
3221
3222#ifdef CONFIG_HOTPLUG_CPU
3223 case CPU_DEAD:
3224 case CPU_DEAD_FROZEN:
3225 case CPU_UP_CANCELED:
3226 case CPU_UP_CANCELED_FROZEN:
3227 kvmppc_clear_host_core(cpu);
3228 break;
3229#endif
3230 default:
3231 break;
3232 }
3233
3234 return NOTIFY_OK;
3235}
3236
3237static struct notifier_block kvmppc_cpu_notifier = {
3238 .notifier_call = kvmppc_cpu_notify,
3239};
3240
79b6c247
SW
3241/*
3242 * Allocate a per-core structure for managing state about which cores are
3243 * running in the host versus the guest and for exchanging data between
3244 * real mode KVM and CPU running in the host.
3245 * This is only done for the first VM.
3246 * The allocated structure stays even if all VMs have stopped.
3247 * It is only freed when the kvm-hv module is unloaded.
3248 * It's OK for this routine to fail, we just don't support host
3249 * core operations like redirecting H_IPI wakeups.
3250 */
3251void kvmppc_alloc_host_rm_ops(void)
3252{
3253 struct kvmppc_host_rm_ops *ops;
3254 unsigned long l_ops;
3255 int cpu, core;
3256 int size;
3257
3258 /* Not the first time here ? */
3259 if (kvmppc_host_rm_ops_hv != NULL)
3260 return;
3261
3262 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3263 if (!ops)
3264 return;
3265
3266 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3267 ops->rm_core = kzalloc(size, GFP_KERNEL);
3268
3269 if (!ops->rm_core) {
3270 kfree(ops);
3271 return;
3272 }
3273
6f3bb809
SW
3274 get_online_cpus();
3275
79b6c247
SW
3276 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3277 if (!cpu_online(cpu))
3278 continue;
3279
3280 core = cpu >> threads_shift;
3281 ops->rm_core[core].rm_state.in_host = 1;
3282 }
3283
0c2a6606
SW
3284 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3285
79b6c247
SW
3286 /*
3287 * Make the contents of the kvmppc_host_rm_ops structure visible
3288 * to other CPUs before we assign it to the global variable.
3289 * Do an atomic assignment (no locks used here), but if someone
3290 * beats us to it, just free our copy and return.
3291 */
3292 smp_wmb();
3293 l_ops = (unsigned long) ops;
3294
3295 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
6f3bb809 3296 put_online_cpus();
79b6c247
SW
3297 kfree(ops->rm_core);
3298 kfree(ops);
6f3bb809 3299 return;
79b6c247 3300 }
6f3bb809
SW
3301
3302 register_cpu_notifier(&kvmppc_cpu_notifier);
3303
3304 put_online_cpus();
79b6c247
SW
3305}
3306
3307void kvmppc_free_host_rm_ops(void)
3308{
3309 if (kvmppc_host_rm_ops_hv) {
6f3bb809 3310 unregister_cpu_notifier(&kvmppc_cpu_notifier);
79b6c247
SW
3311 kfree(kvmppc_host_rm_ops_hv->rm_core);
3312 kfree(kvmppc_host_rm_ops_hv);
3313 kvmppc_host_rm_ops_hv = NULL;
3314 }
3315}
3316#endif
3317
3a167bea 3318static int kvmppc_core_init_vm_hv(struct kvm *kvm)
de56a948 3319{
32fad281 3320 unsigned long lpcr, lpid;
e23a808b 3321 char buf[32];
de56a948 3322
32fad281
PM
3323 /* Allocate the guest's logical partition ID */
3324
3325 lpid = kvmppc_alloc_lpid();
5d226ae5 3326 if ((long)lpid < 0)
32fad281
PM
3327 return -ENOMEM;
3328 kvm->arch.lpid = lpid;
de56a948 3329
79b6c247
SW
3330 kvmppc_alloc_host_rm_ops();
3331
1b400ba0
PM
3332 /*
3333 * Since we don't flush the TLB when tearing down a VM,
3334 * and this lpid might have previously been used,
3335 * make sure we flush on each core before running the new VM.
3336 */
3337 cpumask_setall(&kvm->arch.need_tlb_flush);
3338
699a0ea0
PM
3339 /* Start out with the default set of hcalls enabled */
3340 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3341 sizeof(kvm->arch.enabled_hcalls));
3342
9e368f29 3343 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
aa04b4cc 3344
c17b98cf
PM
3345 /* Init LPCR for virtual RMA mode */
3346 kvm->arch.host_lpid = mfspr(SPRN_LPID);
3347 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3348 lpcr &= LPCR_PECE | LPCR_LPES;
3349 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3350 LPCR_VPM0 | LPCR_VPM1;
3351 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3352 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3353 /* On POWER8 turn on online bit to enable PURR/SPURR */
3354 if (cpu_has_feature(CPU_FTR_ARCH_207S))
3355 lpcr |= LPCR_ONL;
9e368f29 3356 kvm->arch.lpcr = lpcr;
aa04b4cc 3357
512691d4 3358 /*
441c19c8
ME
3359 * Track that we now have a HV mode VM active. This blocks secondary
3360 * CPU threads from coming online.
512691d4 3361 */
441c19c8 3362 kvm_hv_vm_activated();
512691d4 3363
e23a808b
PM
3364 /*
3365 * Create a debugfs directory for the VM
3366 */
3367 snprintf(buf, sizeof(buf), "vm%d", current->pid);
3368 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3369 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3370 kvmppc_mmu_debugfs_init(kvm);
3371
54738c09 3372 return 0;
de56a948
PM
3373}
3374
f1378b1c
PM
3375static void kvmppc_free_vcores(struct kvm *kvm)
3376{
3377 long int i;
3378
23316316 3379 for (i = 0; i < KVM_MAX_VCORES; ++i)
f1378b1c
PM
3380 kfree(kvm->arch.vcores[i]);
3381 kvm->arch.online_vcores = 0;
3382}
3383
3a167bea 3384static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
de56a948 3385{
e23a808b
PM
3386 debugfs_remove_recursive(kvm->arch.debugfs_dir);
3387
441c19c8 3388 kvm_hv_vm_deactivated();
512691d4 3389
f1378b1c 3390 kvmppc_free_vcores(kvm);
aa04b4cc 3391
de56a948 3392 kvmppc_free_hpt(kvm);
c57875f5
SW
3393
3394 kvmppc_free_pimap(kvm);
de56a948
PM
3395}
3396
3a167bea
AK
3397/* We don't need to emulate any privileged instructions or dcbz */
3398static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3399 unsigned int inst, int *advance)
de56a948 3400{
3a167bea 3401 return EMULATE_FAIL;
de56a948
PM
3402}
3403
3a167bea
AK
3404static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3405 ulong spr_val)
de56a948
PM
3406{
3407 return EMULATE_FAIL;
3408}
3409
3a167bea
AK
3410static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3411 ulong *spr_val)
de56a948
PM
3412{
3413 return EMULATE_FAIL;
3414}
3415
3a167bea 3416static int kvmppc_core_check_processor_compat_hv(void)
de56a948 3417{
c17b98cf
PM
3418 if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3419 !cpu_has_feature(CPU_FTR_ARCH_206))
3a167bea 3420 return -EIO;
50de596d
AK
3421 /*
3422 * Disable KVM for Power9, untill the required bits merged.
3423 */
3424 if (cpu_has_feature(CPU_FTR_ARCH_300))
3425 return -EIO;
3426
3a167bea 3427 return 0;
de56a948
PM
3428}
3429
8daaafc8
SW
3430#ifdef CONFIG_KVM_XICS
3431
3432void kvmppc_free_pimap(struct kvm *kvm)
3433{
3434 kfree(kvm->arch.pimap);
3435}
3436
c57875f5 3437static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
8daaafc8
SW
3438{
3439 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
3440}
c57875f5
SW
3441
3442static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3443{
3444 struct irq_desc *desc;
3445 struct kvmppc_irq_map *irq_map;
3446 struct kvmppc_passthru_irqmap *pimap;
3447 struct irq_chip *chip;
3448 int i;
3449
644abbb2
SW
3450 if (!kvm_irq_bypass)
3451 return 1;
3452
c57875f5
SW
3453 desc = irq_to_desc(host_irq);
3454 if (!desc)
3455 return -EIO;
3456
3457 mutex_lock(&kvm->lock);
3458
3459 pimap = kvm->arch.pimap;
3460 if (pimap == NULL) {
3461 /* First call, allocate structure to hold IRQ map */
3462 pimap = kvmppc_alloc_pimap();
3463 if (pimap == NULL) {
3464 mutex_unlock(&kvm->lock);
3465 return -ENOMEM;
3466 }
3467 kvm->arch.pimap = pimap;
3468 }
3469
3470 /*
3471 * For now, we only support interrupts for which the EOI operation
3472 * is an OPAL call followed by a write to XIRR, since that's
3473 * what our real-mode EOI code does.
3474 */
3475 chip = irq_data_get_irq_chip(&desc->irq_data);
3476 if (!chip || !is_pnv_opal_msi(chip)) {
3477 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
3478 host_irq, guest_gsi);
3479 mutex_unlock(&kvm->lock);
3480 return -ENOENT;
3481 }
3482
3483 /*
3484 * See if we already have an entry for this guest IRQ number.
3485 * If it's mapped to a hardware IRQ number, that's an error,
3486 * otherwise re-use this entry.
3487 */
3488 for (i = 0; i < pimap->n_mapped; i++) {
3489 if (guest_gsi == pimap->mapped[i].v_hwirq) {
3490 if (pimap->mapped[i].r_hwirq) {
3491 mutex_unlock(&kvm->lock);
3492 return -EINVAL;
3493 }
3494 break;
3495 }
3496 }
3497
3498 if (i == KVMPPC_PIRQ_MAPPED) {
3499 mutex_unlock(&kvm->lock);
3500 return -EAGAIN; /* table is full */
3501 }
3502
3503 irq_map = &pimap->mapped[i];
3504
3505 irq_map->v_hwirq = guest_gsi;
c57875f5
SW
3506 irq_map->desc = desc;
3507
e3c13e56
SW
3508 /*
3509 * Order the above two stores before the next to serialize with
3510 * the KVM real mode handler.
3511 */
3512 smp_wmb();
3513 irq_map->r_hwirq = desc->irq_data.hwirq;
3514
c57875f5
SW
3515 if (i == pimap->n_mapped)
3516 pimap->n_mapped++;
3517
3518 mutex_unlock(&kvm->lock);
3519
3520 return 0;
3521}
3522
3523static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3524{
3525 struct irq_desc *desc;
3526 struct kvmppc_passthru_irqmap *pimap;
3527 int i;
3528
644abbb2
SW
3529 if (!kvm_irq_bypass)
3530 return 0;
3531
c57875f5
SW
3532 desc = irq_to_desc(host_irq);
3533 if (!desc)
3534 return -EIO;
3535
3536 mutex_lock(&kvm->lock);
3537
3538 if (kvm->arch.pimap == NULL) {
3539 mutex_unlock(&kvm->lock);
3540 return 0;
3541 }
3542 pimap = kvm->arch.pimap;
3543
3544 for (i = 0; i < pimap->n_mapped; i++) {
3545 if (guest_gsi == pimap->mapped[i].v_hwirq)
3546 break;
3547 }
3548
3549 if (i == pimap->n_mapped) {
3550 mutex_unlock(&kvm->lock);
3551 return -ENODEV;
3552 }
3553
3554 /* invalidate the entry */
3555 pimap->mapped[i].r_hwirq = 0;
3556
3557 /*
3558 * We don't free this structure even when the count goes to
3559 * zero. The structure is freed when we destroy the VM.
3560 */
3561
3562 mutex_unlock(&kvm->lock);
3563 return 0;
3564}
3565
3566static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
3567 struct irq_bypass_producer *prod)
3568{
3569 int ret = 0;
3570 struct kvm_kernel_irqfd *irqfd =
3571 container_of(cons, struct kvm_kernel_irqfd, consumer);
3572
3573 irqfd->producer = prod;
3574
3575 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
3576 if (ret)
3577 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
3578 prod->irq, irqfd->gsi, ret);
3579
3580 return ret;
3581}
3582
3583static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
3584 struct irq_bypass_producer *prod)
3585{
3586 int ret;
3587 struct kvm_kernel_irqfd *irqfd =
3588 container_of(cons, struct kvm_kernel_irqfd, consumer);
3589
3590 irqfd->producer = NULL;
3591
3592 /*
3593 * When producer of consumer is unregistered, we change back to
3594 * default external interrupt handling mode - KVM real mode
3595 * will switch back to host.
3596 */
3597 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
3598 if (ret)
3599 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
3600 prod->irq, irqfd->gsi, ret);
3601}
8daaafc8
SW
3602#endif
3603
3a167bea
AK
3604static long kvm_arch_vm_ioctl_hv(struct file *filp,
3605 unsigned int ioctl, unsigned long arg)
3606{
3607 struct kvm *kvm __maybe_unused = filp->private_data;
3608 void __user *argp = (void __user *)arg;
3609 long r;
3610
3611 switch (ioctl) {
3612
3a167bea
AK
3613 case KVM_PPC_ALLOCATE_HTAB: {
3614 u32 htab_order;
3615
3616 r = -EFAULT;
3617 if (get_user(htab_order, (u32 __user *)argp))
3618 break;
3619 r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
3620 if (r)
3621 break;
3622 r = -EFAULT;
3623 if (put_user(htab_order, (u32 __user *)argp))
3624 break;
3625 r = 0;
3626 break;
3627 }
3628
3629 case KVM_PPC_GET_HTAB_FD: {
3630 struct kvm_get_htab_fd ghf;
3631
3632 r = -EFAULT;
3633 if (copy_from_user(&ghf, argp, sizeof(ghf)))
3634 break;
3635 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
3636 break;
3637 }
3638
3639 default:
3640 r = -ENOTTY;
3641 }
3642
3643 return r;
3644}
3645
699a0ea0
PM
3646/*
3647 * List of hcall numbers to enable by default.
3648 * For compatibility with old userspace, we enable by default
3649 * all hcalls that were implemented before the hcall-enabling
3650 * facility was added. Note this list should not include H_RTAS.
3651 */
3652static unsigned int default_hcall_list[] = {
3653 H_REMOVE,
3654 H_ENTER,
3655 H_READ,
3656 H_PROTECT,
3657 H_BULK_REMOVE,
3658 H_GET_TCE,
3659 H_PUT_TCE,
3660 H_SET_DABR,
3661 H_SET_XDABR,
3662 H_CEDE,
3663 H_PROD,
3664 H_CONFER,
3665 H_REGISTER_VPA,
3666#ifdef CONFIG_KVM_XICS
3667 H_EOI,
3668 H_CPPR,
3669 H_IPI,
3670 H_IPOLL,
3671 H_XIRR,
3672 H_XIRR_X,
3673#endif
3674 0
3675};
3676
3677static void init_default_hcalls(void)
3678{
3679 int i;
ae2113a4 3680 unsigned int hcall;
699a0ea0 3681
ae2113a4
PM
3682 for (i = 0; default_hcall_list[i]; ++i) {
3683 hcall = default_hcall_list[i];
3684 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
3685 __set_bit(hcall / 4, default_enabled_hcalls);
3686 }
699a0ea0
PM
3687}
3688
cbbc58d4 3689static struct kvmppc_ops kvm_ops_hv = {
3a167bea
AK
3690 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
3691 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
3692 .get_one_reg = kvmppc_get_one_reg_hv,
3693 .set_one_reg = kvmppc_set_one_reg_hv,
3694 .vcpu_load = kvmppc_core_vcpu_load_hv,
3695 .vcpu_put = kvmppc_core_vcpu_put_hv,
3696 .set_msr = kvmppc_set_msr_hv,
3697 .vcpu_run = kvmppc_vcpu_run_hv,
3698 .vcpu_create = kvmppc_core_vcpu_create_hv,
3699 .vcpu_free = kvmppc_core_vcpu_free_hv,
3700 .check_requests = kvmppc_core_check_requests_hv,
3701 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
3702 .flush_memslot = kvmppc_core_flush_memslot_hv,
3703 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
3704 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
3705 .unmap_hva = kvm_unmap_hva_hv,
3706 .unmap_hva_range = kvm_unmap_hva_range_hv,
3707 .age_hva = kvm_age_hva_hv,
3708 .test_age_hva = kvm_test_age_hva_hv,
3709 .set_spte_hva = kvm_set_spte_hva_hv,
3710 .mmu_destroy = kvmppc_mmu_destroy_hv,
3711 .free_memslot = kvmppc_core_free_memslot_hv,
3712 .create_memslot = kvmppc_core_create_memslot_hv,
3713 .init_vm = kvmppc_core_init_vm_hv,
3714 .destroy_vm = kvmppc_core_destroy_vm_hv,
3a167bea
AK
3715 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
3716 .emulate_op = kvmppc_core_emulate_op_hv,
3717 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
3718 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
3719 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
3720 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
ae2113a4 3721 .hcall_implemented = kvmppc_hcall_impl_hv,
c57875f5
SW
3722#ifdef CONFIG_KVM_XICS
3723 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
3724 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
3725#endif
3a167bea
AK
3726};
3727
fd7bacbc
MS
3728static int kvm_init_subcore_bitmap(void)
3729{
3730 int i, j;
3731 int nr_cores = cpu_nr_cores();
3732 struct sibling_subcore_state *sibling_subcore_state;
3733
3734 for (i = 0; i < nr_cores; i++) {
3735 int first_cpu = i * threads_per_core;
3736 int node = cpu_to_node(first_cpu);
3737
3738 /* Ignore if it is already allocated. */
3739 if (paca[first_cpu].sibling_subcore_state)
3740 continue;
3741
3742 sibling_subcore_state =
3743 kmalloc_node(sizeof(struct sibling_subcore_state),
3744 GFP_KERNEL, node);
3745 if (!sibling_subcore_state)
3746 return -ENOMEM;
3747
3748 memset(sibling_subcore_state, 0,
3749 sizeof(struct sibling_subcore_state));
3750
3751 for (j = 0; j < threads_per_core; j++) {
3752 int cpu = first_cpu + j;
3753
3754 paca[cpu].sibling_subcore_state = sibling_subcore_state;
3755 }
3756 }
3757 return 0;
3758}
3759
3a167bea 3760static int kvmppc_book3s_init_hv(void)
de56a948
PM
3761{
3762 int r;
cbbc58d4
AK
3763 /*
3764 * FIXME!! Do we need to check on all cpus ?
3765 */
3766 r = kvmppc_core_check_processor_compat_hv();
3767 if (r < 0)
739e2425 3768 return -ENODEV;
de56a948 3769
fd7bacbc
MS
3770 r = kvm_init_subcore_bitmap();
3771 if (r)
3772 return r;
3773
cbbc58d4
AK
3774 kvm_ops_hv.owner = THIS_MODULE;
3775 kvmppc_hv_ops = &kvm_ops_hv;
de56a948 3776
699a0ea0
PM
3777 init_default_hcalls();
3778
ec257165
PM
3779 init_vcore_lists();
3780
cbbc58d4 3781 r = kvmppc_mmu_hv_init();
de56a948
PM
3782 return r;
3783}
3784
3a167bea 3785static void kvmppc_book3s_exit_hv(void)
de56a948 3786{
79b6c247 3787 kvmppc_free_host_rm_ops();
cbbc58d4 3788 kvmppc_hv_ops = NULL;
de56a948
PM
3789}
3790
3a167bea
AK
3791module_init(kvmppc_book3s_init_hv);
3792module_exit(kvmppc_book3s_exit_hv);
2ba9f0d8 3793MODULE_LICENSE("GPL");
398a76c6
AG
3794MODULE_ALIAS_MISCDEV(KVM_MINOR);
3795MODULE_ALIAS("devname:kvm");