KVM: PPC: Remove page table walk helpers
[linux-block.git] / arch / powerpc / kvm / book3s_64_mmu_hv.c
CommitLineData
de56a948
PM
1/*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
16 */
17
18#include <linux/types.h>
19#include <linux/string.h>
20#include <linux/kvm.h>
21#include <linux/kvm_host.h>
22#include <linux/highmem.h>
23#include <linux/gfp.h>
24#include <linux/slab.h>
25#include <linux/hugetlb.h>
8936dda4 26#include <linux/vmalloc.h>
2c9097e4 27#include <linux/srcu.h>
a2932923
PM
28#include <linux/anon_inodes.h>
29#include <linux/file.h>
de56a948
PM
30
31#include <asm/tlbflush.h>
32#include <asm/kvm_ppc.h>
33#include <asm/kvm_book3s.h>
34#include <asm/mmu-hash64.h>
35#include <asm/hvcall.h>
36#include <asm/synch.h>
37#include <asm/ppc-opcode.h>
38#include <asm/cputable.h>
39
3c78f78a
SW
40#include "trace_hv.h"
41
32fad281
PM
42/* Power architecture requires HPT is at least 256kB */
43#define PPC_MIN_HPT_ORDER 18
44
7ed661bf
PM
45static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
46 long pte_index, unsigned long pteh,
47 unsigned long ptel, unsigned long *pte_idx_ret);
a64fd707 48static void kvmppc_rmap_reset(struct kvm *kvm);
7ed661bf 49
32fad281 50long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
de56a948 51{
792fc497 52 unsigned long hpt = 0;
8936dda4 53 struct revmap_entry *rev;
fa61a4e3
AK
54 struct page *page = NULL;
55 long order = KVM_DEFAULT_HPT_ORDER;
de56a948 56
32fad281
PM
57 if (htab_orderp) {
58 order = *htab_orderp;
59 if (order < PPC_MIN_HPT_ORDER)
60 order = PPC_MIN_HPT_ORDER;
61 }
62
fa61a4e3 63 kvm->arch.hpt_cma_alloc = 0;
02a68d05 64 page = kvm_alloc_hpt(1ul << (order - PAGE_SHIFT));
792fc497
AK
65 if (page) {
66 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
02a68d05 67 memset((void *)hpt, 0, (1ul << order));
792fc497 68 kvm->arch.hpt_cma_alloc = 1;
de56a948 69 }
32fad281
PM
70
71 /* Lastly try successively smaller sizes from the page allocator */
72 while (!hpt && order > PPC_MIN_HPT_ORDER) {
73 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
74 __GFP_NOWARN, order - PAGE_SHIFT);
75 if (!hpt)
76 --order;
77 }
78
79 if (!hpt)
80 return -ENOMEM;
81
de56a948 82 kvm->arch.hpt_virt = hpt;
32fad281
PM
83 kvm->arch.hpt_order = order;
84 /* HPTEs are 2**4 bytes long */
85 kvm->arch.hpt_npte = 1ul << (order - 4);
86 /* 128 (2**7) bytes in each HPTEG */
87 kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
de56a948 88
8936dda4 89 /* Allocate reverse map array */
32fad281 90 rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
8936dda4
PM
91 if (!rev) {
92 pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
93 goto out_freehpt;
94 }
95 kvm->arch.revmap = rev;
32fad281 96 kvm->arch.sdr1 = __pa(hpt) | (order - 18);
8936dda4 97
32fad281
PM
98 pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
99 hpt, order, kvm->arch.lpid);
de56a948 100
32fad281
PM
101 if (htab_orderp)
102 *htab_orderp = order;
de56a948 103 return 0;
8936dda4 104
8936dda4 105 out_freehpt:
fa61a4e3
AK
106 if (kvm->arch.hpt_cma_alloc)
107 kvm_release_hpt(page, 1 << (order - PAGE_SHIFT));
32fad281
PM
108 else
109 free_pages(hpt, order - PAGE_SHIFT);
8936dda4 110 return -ENOMEM;
de56a948
PM
111}
112
32fad281
PM
113long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
114{
115 long err = -EBUSY;
116 long order;
117
118 mutex_lock(&kvm->lock);
119 if (kvm->arch.rma_setup_done) {
120 kvm->arch.rma_setup_done = 0;
121 /* order rma_setup_done vs. vcpus_running */
122 smp_mb();
123 if (atomic_read(&kvm->arch.vcpus_running)) {
124 kvm->arch.rma_setup_done = 1;
125 goto out;
126 }
127 }
128 if (kvm->arch.hpt_virt) {
129 order = kvm->arch.hpt_order;
130 /* Set the entire HPT to 0, i.e. invalid HPTEs */
131 memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
a64fd707
PM
132 /*
133 * Reset all the reverse-mapping chains for all memslots
134 */
135 kvmppc_rmap_reset(kvm);
1b400ba0
PM
136 /* Ensure that each vcpu will flush its TLB on next entry. */
137 cpumask_setall(&kvm->arch.need_tlb_flush);
32fad281
PM
138 *htab_orderp = order;
139 err = 0;
140 } else {
141 err = kvmppc_alloc_hpt(kvm, htab_orderp);
142 order = *htab_orderp;
143 }
144 out:
145 mutex_unlock(&kvm->lock);
146 return err;
147}
148
de56a948
PM
149void kvmppc_free_hpt(struct kvm *kvm)
150{
043cc4d7 151 kvmppc_free_lpid(kvm->arch.lpid);
8936dda4 152 vfree(kvm->arch.revmap);
fa61a4e3
AK
153 if (kvm->arch.hpt_cma_alloc)
154 kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt),
155 1 << (kvm->arch.hpt_order - PAGE_SHIFT));
d2a1b483 156 else
32fad281
PM
157 free_pages(kvm->arch.hpt_virt,
158 kvm->arch.hpt_order - PAGE_SHIFT);
de56a948
PM
159}
160
da9d1d7f
PM
161/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
162static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
163{
164 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
165}
166
167/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
168static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
169{
170 return (pgsize == 0x10000) ? 0x1000 : 0;
171}
172
173void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
174 unsigned long porder)
de56a948
PM
175{
176 unsigned long i;
b2b2f165 177 unsigned long npages;
c77162de
PM
178 unsigned long hp_v, hp_r;
179 unsigned long addr, hash;
da9d1d7f
PM
180 unsigned long psize;
181 unsigned long hp0, hp1;
7ed661bf 182 unsigned long idx_ret;
c77162de 183 long ret;
32fad281 184 struct kvm *kvm = vcpu->kvm;
de56a948 185
da9d1d7f
PM
186 psize = 1ul << porder;
187 npages = memslot->npages >> (porder - PAGE_SHIFT);
de56a948
PM
188
189 /* VRMA can't be > 1TB */
8936dda4
PM
190 if (npages > 1ul << (40 - porder))
191 npages = 1ul << (40 - porder);
de56a948 192 /* Can't use more than 1 HPTE per HPTEG */
32fad281
PM
193 if (npages > kvm->arch.hpt_mask + 1)
194 npages = kvm->arch.hpt_mask + 1;
de56a948 195
da9d1d7f
PM
196 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
197 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
198 hp1 = hpte1_pgsize_encoding(psize) |
199 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
200
de56a948 201 for (i = 0; i < npages; ++i) {
c77162de 202 addr = i << porder;
de56a948 203 /* can't use hpt_hash since va > 64 bits */
32fad281 204 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
de56a948
PM
205 /*
206 * We assume that the hash table is empty and no
207 * vcpus are using it at this stage. Since we create
208 * at most one HPTE per HPTEG, we just assume entry 7
209 * is available and use it.
210 */
8936dda4 211 hash = (hash << 3) + 7;
da9d1d7f
PM
212 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
213 hp_r = hp1 | addr;
7ed661bf
PM
214 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
215 &idx_ret);
c77162de
PM
216 if (ret != H_SUCCESS) {
217 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
218 addr, ret);
219 break;
220 }
de56a948
PM
221 }
222}
223
224int kvmppc_mmu_hv_init(void)
225{
9e368f29
PM
226 unsigned long host_lpid, rsvd_lpid;
227
228 if (!cpu_has_feature(CPU_FTR_HVMODE))
de56a948 229 return -EINVAL;
9e368f29 230
c17b98cf
PM
231 /* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
232 host_lpid = mfspr(SPRN_LPID);
233 rsvd_lpid = LPID_RSVD;
9e368f29 234
043cc4d7
SW
235 kvmppc_init_lpid(rsvd_lpid + 1);
236
237 kvmppc_claim_lpid(host_lpid);
9e368f29 238 /* rsvd_lpid is reserved for use in partition switching */
043cc4d7 239 kvmppc_claim_lpid(rsvd_lpid);
de56a948
PM
240
241 return 0;
242}
243
de56a948
PM
244static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
245{
e4e38121
MN
246 unsigned long msr = vcpu->arch.intr_msr;
247
248 /* If transactional, change to suspend mode on IRQ delivery */
249 if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
250 msr |= MSR_TS_S;
251 else
252 msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
253 kvmppc_set_msr(vcpu, msr);
de56a948
PM
254}
255
7ed661bf
PM
256long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
257 long pte_index, unsigned long pteh,
258 unsigned long ptel, unsigned long *pte_idx_ret)
c77162de 259{
c77162de
PM
260 long ret;
261
342d3db7
PM
262 /* Protect linux PTE lookup from page table destruction */
263 rcu_read_lock_sched(); /* this disables preemption too */
7ed661bf
PM
264 ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
265 current->mm->pgd, false, pte_idx_ret);
342d3db7 266 rcu_read_unlock_sched();
c77162de
PM
267 if (ret == H_TOO_HARD) {
268 /* this can't happen */
269 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
270 ret = H_RESOURCE; /* or something */
271 }
272 return ret;
273
274}
275
697d3899
PM
276static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
277 gva_t eaddr)
278{
279 u64 mask;
280 int i;
281
282 for (i = 0; i < vcpu->arch.slb_nr; i++) {
283 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
284 continue;
285
286 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
287 mask = ESID_MASK_1T;
288 else
289 mask = ESID_MASK;
290
291 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
292 return &vcpu->arch.slb[i];
293 }
294 return NULL;
295}
296
297static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
298 unsigned long ea)
299{
300 unsigned long ra_mask;
301
302 ra_mask = hpte_page_size(v, r) - 1;
303 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
304}
305
de56a948 306static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
93b159b4 307 struct kvmppc_pte *gpte, bool data, bool iswrite)
de56a948 308{
697d3899
PM
309 struct kvm *kvm = vcpu->kvm;
310 struct kvmppc_slb *slbe;
311 unsigned long slb_v;
312 unsigned long pp, key;
313 unsigned long v, gr;
6f22bd32 314 __be64 *hptep;
697d3899
PM
315 int index;
316 int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
317
318 /* Get SLB entry */
319 if (virtmode) {
320 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
321 if (!slbe)
322 return -EINVAL;
323 slb_v = slbe->origv;
324 } else {
325 /* real mode access */
326 slb_v = vcpu->kvm->arch.vrma_slb_v;
327 }
328
91648ec0 329 preempt_disable();
697d3899
PM
330 /* Find the HPTE in the hash table */
331 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
332 HPTE_V_VALID | HPTE_V_ABSENT);
91648ec0 333 if (index < 0) {
334 preempt_enable();
697d3899 335 return -ENOENT;
91648ec0 336 }
6f22bd32
AG
337 hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
338 v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
697d3899
PM
339 gr = kvm->arch.revmap[index].guest_rpte;
340
341 /* Unlock the HPTE */
342 asm volatile("lwsync" : : : "memory");
6f22bd32 343 hptep[0] = cpu_to_be64(v);
91648ec0 344 preempt_enable();
697d3899
PM
345
346 gpte->eaddr = eaddr;
347 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
348
349 /* Get PP bits and key for permission check */
350 pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
351 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
352 key &= slb_v;
353
354 /* Calculate permissions */
355 gpte->may_read = hpte_read_permission(pp, key);
356 gpte->may_write = hpte_write_permission(pp, key);
357 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
358
359 /* Storage key permission check for POWER7 */
c17b98cf 360 if (data && virtmode) {
697d3899
PM
361 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
362 if (amrfield & 1)
363 gpte->may_read = 0;
364 if (amrfield & 2)
365 gpte->may_write = 0;
366 }
367
368 /* Get the guest physical address */
369 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
370 return 0;
371}
372
373/*
374 * Quick test for whether an instruction is a load or a store.
375 * If the instruction is a load or a store, then this will indicate
376 * which it is, at least on server processors. (Embedded processors
377 * have some external PID instructions that don't follow the rule
378 * embodied here.) If the instruction isn't a load or store, then
379 * this doesn't return anything useful.
380 */
381static int instruction_is_store(unsigned int instr)
382{
383 unsigned int mask;
384
385 mask = 0x10000000;
386 if ((instr & 0xfc000000) == 0x7c000000)
387 mask = 0x100; /* major opcode 31 */
388 return (instr & mask) != 0;
389}
390
391static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
6020c0f6 392 unsigned long gpa, gva_t ea, int is_store)
697d3899 393{
697d3899 394 u32 last_inst;
697d3899 395
51f04726 396 /*
697d3899
PM
397 * If we fail, we just return to the guest and try executing it again.
398 */
51f04726
MC
399 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
400 EMULATE_DONE)
401 return RESUME_GUEST;
697d3899
PM
402
403 /*
404 * WARNING: We do not know for sure whether the instruction we just
405 * read from memory is the same that caused the fault in the first
406 * place. If the instruction we read is neither an load or a store,
407 * then it can't access memory, so we don't need to worry about
408 * enforcing access permissions. So, assuming it is a load or
409 * store, we just check that its direction (load or store) is
410 * consistent with the original fault, since that's what we
411 * checked the access permissions against. If there is a mismatch
412 * we just return and retry the instruction.
413 */
414
51f04726 415 if (instruction_is_store(last_inst) != !!is_store)
697d3899
PM
416 return RESUME_GUEST;
417
418 /*
419 * Emulated accesses are emulated by looking at the hash for
420 * translation once, then performing the access later. The
421 * translation could be invalidated in the meantime in which
422 * point performing the subsequent memory access on the old
423 * physical address could possibly be a security hole for the
424 * guest (but not the host).
425 *
426 * This is less of an issue for MMIO stores since they aren't
427 * globally visible. It could be an issue for MMIO loads to
428 * a certain extent but we'll ignore it for now.
429 */
430
431 vcpu->arch.paddr_accessed = gpa;
6020c0f6 432 vcpu->arch.vaddr_accessed = ea;
697d3899
PM
433 return kvmppc_emulate_mmio(run, vcpu);
434}
435
436int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
437 unsigned long ea, unsigned long dsisr)
438{
439 struct kvm *kvm = vcpu->kvm;
6f22bd32
AG
440 unsigned long hpte[3], r;
441 __be64 *hptep;
342d3db7 442 unsigned long mmu_seq, psize, pte_size;
1066f772 443 unsigned long gpa_base, gfn_base;
70bddfef 444 unsigned long gpa, gfn, hva, pfn;
697d3899 445 struct kvm_memory_slot *memslot;
342d3db7 446 unsigned long *rmap;
697d3899 447 struct revmap_entry *rev;
342d3db7
PM
448 struct page *page, *pages[1];
449 long index, ret, npages;
450 unsigned long is_io;
4cf302bc 451 unsigned int writing, write_ok;
342d3db7 452 struct vm_area_struct *vma;
bad3b507 453 unsigned long rcbits;
697d3899
PM
454
455 /*
456 * Real-mode code has already searched the HPT and found the
457 * entry we're interested in. Lock the entry and check that
458 * it hasn't changed. If it has, just return and re-execute the
459 * instruction.
460 */
461 if (ea != vcpu->arch.pgfault_addr)
462 return RESUME_GUEST;
463 index = vcpu->arch.pgfault_index;
6f22bd32 464 hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
697d3899
PM
465 rev = &kvm->arch.revmap[index];
466 preempt_disable();
467 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
468 cpu_relax();
6f22bd32
AG
469 hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
470 hpte[1] = be64_to_cpu(hptep[1]);
342d3db7 471 hpte[2] = r = rev->guest_rpte;
697d3899 472 asm volatile("lwsync" : : : "memory");
6f22bd32 473 hptep[0] = cpu_to_be64(hpte[0]);
697d3899
PM
474 preempt_enable();
475
476 if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
477 hpte[1] != vcpu->arch.pgfault_hpte[1])
478 return RESUME_GUEST;
479
480 /* Translate the logical address and get the page */
342d3db7 481 psize = hpte_page_size(hpte[0], r);
1066f772
PM
482 gpa_base = r & HPTE_R_RPN & ~(psize - 1);
483 gfn_base = gpa_base >> PAGE_SHIFT;
484 gpa = gpa_base | (ea & (psize - 1));
70bddfef 485 gfn = gpa >> PAGE_SHIFT;
697d3899
PM
486 memslot = gfn_to_memslot(kvm, gfn);
487
3c78f78a
SW
488 trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
489
697d3899 490 /* No memslot means it's an emulated MMIO region */
70bddfef 491 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
6020c0f6 492 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
697d3899 493 dsisr & DSISR_ISSTORE);
697d3899 494
1066f772
PM
495 /*
496 * This should never happen, because of the slot_is_aligned()
497 * check in kvmppc_do_h_enter().
498 */
499 if (gfn_base < memslot->base_gfn)
500 return -EFAULT;
501
342d3db7
PM
502 /* used to check for invalidations in progress */
503 mmu_seq = kvm->mmu_notifier_seq;
504 smp_rmb();
505
3c78f78a 506 ret = -EFAULT;
342d3db7
PM
507 is_io = 0;
508 pfn = 0;
509 page = NULL;
510 pte_size = PAGE_SIZE;
4cf302bc
PM
511 writing = (dsisr & DSISR_ISSTORE) != 0;
512 /* If writing != 0, then the HPTE must allow writing, if we get here */
513 write_ok = writing;
342d3db7 514 hva = gfn_to_hva_memslot(memslot, gfn);
4cf302bc 515 npages = get_user_pages_fast(hva, 1, writing, pages);
342d3db7
PM
516 if (npages < 1) {
517 /* Check if it's an I/O mapping */
518 down_read(&current->mm->mmap_sem);
519 vma = find_vma(current->mm, hva);
520 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
521 (vma->vm_flags & VM_PFNMAP)) {
522 pfn = vma->vm_pgoff +
523 ((hva - vma->vm_start) >> PAGE_SHIFT);
524 pte_size = psize;
525 is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
4cf302bc 526 write_ok = vma->vm_flags & VM_WRITE;
342d3db7
PM
527 }
528 up_read(&current->mm->mmap_sem);
529 if (!pfn)
3c78f78a 530 goto out_put;
342d3db7
PM
531 } else {
532 page = pages[0];
caaa4c80 533 pfn = page_to_pfn(page);
342d3db7
PM
534 if (PageHuge(page)) {
535 page = compound_head(page);
536 pte_size <<= compound_order(page);
537 }
4cf302bc
PM
538 /* if the guest wants write access, see if that is OK */
539 if (!writing && hpte_is_writable(r)) {
db7cb5b9 540 unsigned int hugepage_shift;
4cf302bc
PM
541 pte_t *ptep, pte;
542
543 /*
544 * We need to protect against page table destruction
545 * while looking up and updating the pte.
546 */
547 rcu_read_lock_sched();
548 ptep = find_linux_pte_or_hugepte(current->mm->pgd,
db7cb5b9
AK
549 hva, &hugepage_shift);
550 if (ptep) {
551 pte = kvmppc_read_update_linux_pte(ptep, 1,
552 hugepage_shift);
4cf302bc
PM
553 if (pte_write(pte))
554 write_ok = 1;
555 }
556 rcu_read_unlock_sched();
557 }
342d3db7
PM
558 }
559
342d3db7
PM
560 if (psize > pte_size)
561 goto out_put;
562
563 /* Check WIMG vs. the actual page we're accessing */
564 if (!hpte_cache_flags_ok(r, is_io)) {
565 if (is_io)
3c78f78a
SW
566 goto out_put;
567
342d3db7
PM
568 /*
569 * Allow guest to map emulated device memory as
570 * uncacheable, but actually make it cacheable.
571 */
572 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
573 }
574
caaa4c80
PM
575 /*
576 * Set the HPTE to point to pfn.
577 * Since the pfn is at PAGE_SIZE granularity, make sure we
578 * don't mask out lower-order bits if psize < PAGE_SIZE.
579 */
580 if (psize < PAGE_SIZE)
581 psize = PAGE_SIZE;
582 r = (r & ~(HPTE_R_PP0 - psize)) | ((pfn << PAGE_SHIFT) & ~(psize - 1));
4cf302bc
PM
583 if (hpte_is_writable(r) && !write_ok)
584 r = hpte_make_readonly(r);
342d3db7
PM
585 ret = RESUME_GUEST;
586 preempt_disable();
587 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
588 cpu_relax();
6f22bd32
AG
589 if ((be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK) != hpte[0] ||
590 be64_to_cpu(hptep[1]) != hpte[1] ||
591 rev->guest_rpte != hpte[2])
342d3db7
PM
592 /* HPTE has been changed under us; let the guest retry */
593 goto out_unlock;
594 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
595
1066f772
PM
596 /* Always put the HPTE in the rmap chain for the page base address */
597 rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
342d3db7
PM
598 lock_rmap(rmap);
599
600 /* Check if we might have been invalidated; let the guest retry if so */
601 ret = RESUME_GUEST;
8ca40a70 602 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
342d3db7
PM
603 unlock_rmap(rmap);
604 goto out_unlock;
605 }
4cf302bc 606
bad3b507
PM
607 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
608 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
609 r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
610
6f22bd32 611 if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
4cf302bc
PM
612 /* HPTE was previously valid, so we need to invalidate it */
613 unlock_rmap(rmap);
6f22bd32 614 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
4cf302bc 615 kvmppc_invalidate_hpte(kvm, hptep, index);
bad3b507 616 /* don't lose previous R and C bits */
6f22bd32 617 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
4cf302bc
PM
618 } else {
619 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
620 }
342d3db7 621
6f22bd32 622 hptep[1] = cpu_to_be64(r);
342d3db7 623 eieio();
6f22bd32 624 hptep[0] = cpu_to_be64(hpte[0]);
342d3db7
PM
625 asm volatile("ptesync" : : : "memory");
626 preempt_enable();
4cf302bc 627 if (page && hpte_is_writable(r))
342d3db7
PM
628 SetPageDirty(page);
629
630 out_put:
3c78f78a
SW
631 trace_kvm_page_fault_exit(vcpu, hpte, ret);
632
de6c0b02
DG
633 if (page) {
634 /*
635 * We drop pages[0] here, not page because page might
636 * have been set to the head page of a compound, but
637 * we have to drop the reference on the correct tail
638 * page to match the get inside gup()
639 */
640 put_page(pages[0]);
641 }
342d3db7
PM
642 return ret;
643
644 out_unlock:
6f22bd32 645 hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
342d3db7
PM
646 preempt_enable();
647 goto out_put;
648}
649
a64fd707
PM
650static void kvmppc_rmap_reset(struct kvm *kvm)
651{
652 struct kvm_memslots *slots;
653 struct kvm_memory_slot *memslot;
654 int srcu_idx;
655
656 srcu_idx = srcu_read_lock(&kvm->srcu);
657 slots = kvm->memslots;
658 kvm_for_each_memslot(memslot, slots) {
659 /*
660 * This assumes it is acceptable to lose reference and
661 * change bits across a reset.
662 */
663 memset(memslot->arch.rmap, 0,
664 memslot->npages * sizeof(*memslot->arch.rmap));
665 }
666 srcu_read_unlock(&kvm->srcu, srcu_idx);
667}
668
84504ef3
TY
669static int kvm_handle_hva_range(struct kvm *kvm,
670 unsigned long start,
671 unsigned long end,
672 int (*handler)(struct kvm *kvm,
673 unsigned long *rmapp,
674 unsigned long gfn))
342d3db7
PM
675{
676 int ret;
677 int retval = 0;
678 struct kvm_memslots *slots;
679 struct kvm_memory_slot *memslot;
680
681 slots = kvm_memslots(kvm);
682 kvm_for_each_memslot(memslot, slots) {
84504ef3
TY
683 unsigned long hva_start, hva_end;
684 gfn_t gfn, gfn_end;
685
686 hva_start = max(start, memslot->userspace_addr);
687 hva_end = min(end, memslot->userspace_addr +
688 (memslot->npages << PAGE_SHIFT));
689 if (hva_start >= hva_end)
690 continue;
691 /*
692 * {gfn(page) | page intersects with [hva_start, hva_end)} =
693 * {gfn, gfn+1, ..., gfn_end-1}.
694 */
695 gfn = hva_to_gfn_memslot(hva_start, memslot);
696 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
342d3db7 697
84504ef3 698 for (; gfn < gfn_end; ++gfn) {
d19a748b 699 gfn_t gfn_offset = gfn - memslot->base_gfn;
342d3db7 700
d89cc617 701 ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
342d3db7
PM
702 retval |= ret;
703 }
704 }
705
706 return retval;
707}
708
84504ef3
TY
709static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
710 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
711 unsigned long gfn))
712{
713 return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
714}
715
342d3db7
PM
716static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
717 unsigned long gfn)
718{
719 struct revmap_entry *rev = kvm->arch.revmap;
720 unsigned long h, i, j;
6f22bd32 721 __be64 *hptep;
bad3b507 722 unsigned long ptel, psize, rcbits;
342d3db7
PM
723
724 for (;;) {
bad3b507 725 lock_rmap(rmapp);
342d3db7 726 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
bad3b507 727 unlock_rmap(rmapp);
342d3db7
PM
728 break;
729 }
730
731 /*
732 * To avoid an ABBA deadlock with the HPTE lock bit,
bad3b507
PM
733 * we can't spin on the HPTE lock while holding the
734 * rmap chain lock.
342d3db7
PM
735 */
736 i = *rmapp & KVMPPC_RMAP_INDEX;
6f22bd32 737 hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
bad3b507
PM
738 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
739 /* unlock rmap before spinning on the HPTE lock */
740 unlock_rmap(rmapp);
6f22bd32 741 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
bad3b507
PM
742 cpu_relax();
743 continue;
744 }
342d3db7
PM
745 j = rev[i].forw;
746 if (j == i) {
747 /* chain is now empty */
bad3b507 748 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
342d3db7
PM
749 } else {
750 /* remove i from chain */
751 h = rev[i].back;
752 rev[h].forw = j;
753 rev[j].back = h;
754 rev[i].forw = rev[i].back = i;
bad3b507 755 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
342d3db7 756 }
342d3db7 757
bad3b507 758 /* Now check and modify the HPTE */
342d3db7 759 ptel = rev[i].guest_rpte;
6f22bd32
AG
760 psize = hpte_page_size(be64_to_cpu(hptep[0]), ptel);
761 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
342d3db7 762 hpte_rpn(ptel, psize) == gfn) {
c17b98cf 763 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
bad3b507
PM
764 kvmppc_invalidate_hpte(kvm, hptep, i);
765 /* Harvest R and C */
6f22bd32 766 rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
bad3b507 767 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
a1b4a0f6
PM
768 if (rcbits & ~rev[i].guest_rpte) {
769 rev[i].guest_rpte = ptel | rcbits;
770 note_hpte_modification(kvm, &rev[i]);
771 }
342d3db7 772 }
bad3b507 773 unlock_rmap(rmapp);
6f22bd32 774 hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
342d3db7
PM
775 }
776 return 0;
777}
778
3a167bea 779int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
342d3db7 780{
c17b98cf 781 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
342d3db7
PM
782 return 0;
783}
784
3a167bea 785int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
b3ae2096 786{
c17b98cf 787 kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
b3ae2096
TY
788 return 0;
789}
790
3a167bea
AK
791void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
792 struct kvm_memory_slot *memslot)
dfe49dbd
PM
793{
794 unsigned long *rmapp;
795 unsigned long gfn;
796 unsigned long n;
797
798 rmapp = memslot->arch.rmap;
799 gfn = memslot->base_gfn;
800 for (n = memslot->npages; n; --n) {
801 /*
802 * Testing the present bit without locking is OK because
803 * the memslot has been marked invalid already, and hence
804 * no new HPTEs referencing this page can be created,
805 * thus the present bit can't go from 0 to 1.
806 */
807 if (*rmapp & KVMPPC_RMAP_PRESENT)
808 kvm_unmap_rmapp(kvm, rmapp, gfn);
809 ++rmapp;
810 ++gfn;
811 }
812}
813
342d3db7
PM
814static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
815 unsigned long gfn)
816{
55514893
PM
817 struct revmap_entry *rev = kvm->arch.revmap;
818 unsigned long head, i, j;
6f22bd32 819 __be64 *hptep;
55514893
PM
820 int ret = 0;
821
822 retry:
823 lock_rmap(rmapp);
824 if (*rmapp & KVMPPC_RMAP_REFERENCED) {
825 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
826 ret = 1;
827 }
828 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
829 unlock_rmap(rmapp);
830 return ret;
831 }
832
833 i = head = *rmapp & KVMPPC_RMAP_INDEX;
834 do {
6f22bd32 835 hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
55514893
PM
836 j = rev[i].forw;
837
838 /* If this HPTE isn't referenced, ignore it */
6f22bd32 839 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
55514893
PM
840 continue;
841
842 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
843 /* unlock rmap before spinning on the HPTE lock */
844 unlock_rmap(rmapp);
6f22bd32 845 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
55514893
PM
846 cpu_relax();
847 goto retry;
848 }
849
850 /* Now check and modify the HPTE */
6f22bd32
AG
851 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
852 (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
55514893 853 kvmppc_clear_ref_hpte(kvm, hptep, i);
a1b4a0f6
PM
854 if (!(rev[i].guest_rpte & HPTE_R_R)) {
855 rev[i].guest_rpte |= HPTE_R_R;
856 note_hpte_modification(kvm, &rev[i]);
857 }
55514893
PM
858 ret = 1;
859 }
6f22bd32 860 hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
55514893
PM
861 } while ((i = j) != head);
862
863 unlock_rmap(rmapp);
864 return ret;
342d3db7
PM
865}
866
57128468 867int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
342d3db7 868{
57128468 869 return kvm_handle_hva_range(kvm, start, end, kvm_age_rmapp);
342d3db7
PM
870}
871
872static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
873 unsigned long gfn)
874{
55514893
PM
875 struct revmap_entry *rev = kvm->arch.revmap;
876 unsigned long head, i, j;
877 unsigned long *hp;
878 int ret = 1;
879
880 if (*rmapp & KVMPPC_RMAP_REFERENCED)
881 return 1;
882
883 lock_rmap(rmapp);
884 if (*rmapp & KVMPPC_RMAP_REFERENCED)
885 goto out;
886
887 if (*rmapp & KVMPPC_RMAP_PRESENT) {
888 i = head = *rmapp & KVMPPC_RMAP_INDEX;
889 do {
890 hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
891 j = rev[i].forw;
6f22bd32 892 if (be64_to_cpu(hp[1]) & HPTE_R_R)
55514893
PM
893 goto out;
894 } while ((i = j) != head);
895 }
896 ret = 0;
897
898 out:
899 unlock_rmap(rmapp);
900 return ret;
342d3db7
PM
901}
902
3a167bea 903int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
342d3db7 904{
342d3db7
PM
905 return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
906}
907
3a167bea 908void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
342d3db7 909{
342d3db7 910 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
de56a948
PM
911}
912
6c576e74
PM
913static int vcpus_running(struct kvm *kvm)
914{
915 return atomic_read(&kvm->arch.vcpus_running) != 0;
916}
917
687414be
AK
918/*
919 * Returns the number of system pages that are dirty.
920 * This can be more than 1 if we find a huge-page HPTE.
921 */
922static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
82ed3616
PM
923{
924 struct revmap_entry *rev = kvm->arch.revmap;
925 unsigned long head, i, j;
687414be 926 unsigned long n;
6c576e74 927 unsigned long v, r;
6f22bd32 928 __be64 *hptep;
687414be 929 int npages_dirty = 0;
82ed3616
PM
930
931 retry:
932 lock_rmap(rmapp);
933 if (*rmapp & KVMPPC_RMAP_CHANGED) {
934 *rmapp &= ~KVMPPC_RMAP_CHANGED;
687414be 935 npages_dirty = 1;
82ed3616
PM
936 }
937 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
938 unlock_rmap(rmapp);
687414be 939 return npages_dirty;
82ed3616
PM
940 }
941
942 i = head = *rmapp & KVMPPC_RMAP_INDEX;
943 do {
6f22bd32
AG
944 unsigned long hptep1;
945 hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
82ed3616
PM
946 j = rev[i].forw;
947
6c576e74
PM
948 /*
949 * Checking the C (changed) bit here is racy since there
950 * is no guarantee about when the hardware writes it back.
951 * If the HPTE is not writable then it is stable since the
952 * page can't be written to, and we would have done a tlbie
953 * (which forces the hardware to complete any writeback)
954 * when making the HPTE read-only.
955 * If vcpus are running then this call is racy anyway
956 * since the page could get dirtied subsequently, so we
957 * expect there to be a further call which would pick up
958 * any delayed C bit writeback.
959 * Otherwise we need to do the tlbie even if C==0 in
960 * order to pick up any delayed writeback of C.
961 */
6f22bd32
AG
962 hptep1 = be64_to_cpu(hptep[1]);
963 if (!(hptep1 & HPTE_R_C) &&
964 (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
82ed3616
PM
965 continue;
966
967 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
968 /* unlock rmap before spinning on the HPTE lock */
969 unlock_rmap(rmapp);
6f22bd32 970 while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
82ed3616
PM
971 cpu_relax();
972 goto retry;
973 }
974
975 /* Now check and modify the HPTE */
f6fb9e84
AK
976 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
977 /* unlock and continue */
978 hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
6c576e74 979 continue;
f6fb9e84 980 }
6c576e74
PM
981
982 /* need to make it temporarily absent so C is stable */
6f22bd32 983 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
6c576e74 984 kvmppc_invalidate_hpte(kvm, hptep, i);
6f22bd32
AG
985 v = be64_to_cpu(hptep[0]);
986 r = be64_to_cpu(hptep[1]);
6c576e74 987 if (r & HPTE_R_C) {
6f22bd32 988 hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
a1b4a0f6
PM
989 if (!(rev[i].guest_rpte & HPTE_R_C)) {
990 rev[i].guest_rpte |= HPTE_R_C;
991 note_hpte_modification(kvm, &rev[i]);
992 }
6c576e74 993 n = hpte_page_size(v, r);
687414be
AK
994 n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
995 if (n > npages_dirty)
996 npages_dirty = n;
6c576e74 997 eieio();
82ed3616 998 }
6c576e74
PM
999 v &= ~(HPTE_V_ABSENT | HPTE_V_HVLOCK);
1000 v |= HPTE_V_VALID;
6f22bd32 1001 hptep[0] = cpu_to_be64(v);
82ed3616
PM
1002 } while ((i = j) != head);
1003
1004 unlock_rmap(rmapp);
687414be 1005 return npages_dirty;
82ed3616
PM
1006}
1007
c35635ef
PM
1008static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1009 struct kvm_memory_slot *memslot,
1010 unsigned long *map)
1011{
1012 unsigned long gfn;
1013
1014 if (!vpa->dirty || !vpa->pinned_addr)
1015 return;
1016 gfn = vpa->gpa >> PAGE_SHIFT;
1017 if (gfn < memslot->base_gfn ||
1018 gfn >= memslot->base_gfn + memslot->npages)
1019 return;
1020
1021 vpa->dirty = false;
1022 if (map)
1023 __set_bit_le(gfn - memslot->base_gfn, map);
1024}
1025
dfe49dbd
PM
1026long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
1027 unsigned long *map)
82ed3616 1028{
687414be 1029 unsigned long i, j;
dfe49dbd 1030 unsigned long *rmapp;
c35635ef 1031 struct kvm_vcpu *vcpu;
82ed3616
PM
1032
1033 preempt_disable();
d89cc617 1034 rmapp = memslot->arch.rmap;
82ed3616 1035 for (i = 0; i < memslot->npages; ++i) {
687414be
AK
1036 int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1037 /*
1038 * Note that if npages > 0 then i must be a multiple of npages,
1039 * since we always put huge-page HPTEs in the rmap chain
1040 * corresponding to their page base address.
1041 */
1042 if (npages && map)
1043 for (j = i; npages; ++j, --npages)
1044 __set_bit_le(j, map);
82ed3616
PM
1045 ++rmapp;
1046 }
c35635ef
PM
1047
1048 /* Harvest dirty bits from VPA and DTL updates */
1049 /* Note: we never modify the SLB shadow buffer areas */
1050 kvm_for_each_vcpu(i, vcpu, kvm) {
1051 spin_lock(&vcpu->arch.vpa_update_lock);
1052 harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
1053 harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
1054 spin_unlock(&vcpu->arch.vpa_update_lock);
1055 }
82ed3616
PM
1056 preempt_enable();
1057 return 0;
1058}
1059
93e60249
PM
1060void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1061 unsigned long *nb_ret)
1062{
1063 struct kvm_memory_slot *memslot;
1064 unsigned long gfn = gpa >> PAGE_SHIFT;
342d3db7
PM
1065 struct page *page, *pages[1];
1066 int npages;
c35635ef 1067 unsigned long hva, offset;
2c9097e4 1068 int srcu_idx;
93e60249 1069
2c9097e4 1070 srcu_idx = srcu_read_lock(&kvm->srcu);
93e60249
PM
1071 memslot = gfn_to_memslot(kvm, gfn);
1072 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2c9097e4 1073 goto err;
c17b98cf
PM
1074 hva = gfn_to_hva_memslot(memslot, gfn);
1075 npages = get_user_pages_fast(hva, 1, 1, pages);
1076 if (npages < 1)
1077 goto err;
1078 page = pages[0];
2c9097e4
PM
1079 srcu_read_unlock(&kvm->srcu, srcu_idx);
1080
c35635ef 1081 offset = gpa & (PAGE_SIZE - 1);
93e60249 1082 if (nb_ret)
c35635ef 1083 *nb_ret = PAGE_SIZE - offset;
93e60249 1084 return page_address(page) + offset;
2c9097e4
PM
1085
1086 err:
1087 srcu_read_unlock(&kvm->srcu, srcu_idx);
1088 return NULL;
93e60249
PM
1089}
1090
c35635ef
PM
1091void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1092 bool dirty)
93e60249
PM
1093{
1094 struct page *page = virt_to_page(va);
c35635ef
PM
1095 struct kvm_memory_slot *memslot;
1096 unsigned long gfn;
1097 unsigned long *rmap;
1098 int srcu_idx;
93e60249 1099
93e60249 1100 put_page(page);
c35635ef 1101
c17b98cf 1102 if (!dirty)
c35635ef
PM
1103 return;
1104
1105 /* We need to mark this page dirty in the rmap chain */
1106 gfn = gpa >> PAGE_SHIFT;
1107 srcu_idx = srcu_read_lock(&kvm->srcu);
1108 memslot = gfn_to_memslot(kvm, gfn);
1109 if (memslot) {
1110 rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
1111 lock_rmap(rmap);
1112 *rmap |= KVMPPC_RMAP_CHANGED;
1113 unlock_rmap(rmap);
1114 }
1115 srcu_read_unlock(&kvm->srcu, srcu_idx);
93e60249
PM
1116}
1117
a2932923
PM
1118/*
1119 * Functions for reading and writing the hash table via reads and
1120 * writes on a file descriptor.
1121 *
1122 * Reads return the guest view of the hash table, which has to be
1123 * pieced together from the real hash table and the guest_rpte
1124 * values in the revmap array.
1125 *
1126 * On writes, each HPTE written is considered in turn, and if it
1127 * is valid, it is written to the HPT as if an H_ENTER with the
1128 * exact flag set was done. When the invalid count is non-zero
1129 * in the header written to the stream, the kernel will make
1130 * sure that that many HPTEs are invalid, and invalidate them
1131 * if not.
1132 */
1133
1134struct kvm_htab_ctx {
1135 unsigned long index;
1136 unsigned long flags;
1137 struct kvm *kvm;
1138 int first_pass;
1139};
1140
1141#define HPTE_SIZE (2 * sizeof(unsigned long))
1142
a1b4a0f6
PM
1143/*
1144 * Returns 1 if this HPT entry has been modified or has pending
1145 * R/C bit changes.
1146 */
6f22bd32 1147static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
a1b4a0f6
PM
1148{
1149 unsigned long rcbits_unset;
1150
1151 if (revp->guest_rpte & HPTE_GR_MODIFIED)
1152 return 1;
1153
1154 /* Also need to consider changes in reference and changed bits */
1155 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
6f22bd32
AG
1156 if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1157 (be64_to_cpu(hptp[1]) & rcbits_unset))
a1b4a0f6
PM
1158 return 1;
1159
1160 return 0;
1161}
1162
6f22bd32 1163static long record_hpte(unsigned long flags, __be64 *hptp,
a2932923
PM
1164 unsigned long *hpte, struct revmap_entry *revp,
1165 int want_valid, int first_pass)
1166{
1167 unsigned long v, r;
a1b4a0f6 1168 unsigned long rcbits_unset;
a2932923
PM
1169 int ok = 1;
1170 int valid, dirty;
1171
1172 /* Unmodified entries are uninteresting except on the first pass */
a1b4a0f6 1173 dirty = hpte_dirty(revp, hptp);
a2932923
PM
1174 if (!first_pass && !dirty)
1175 return 0;
1176
1177 valid = 0;
6f22bd32 1178 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
a2932923
PM
1179 valid = 1;
1180 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
6f22bd32 1181 !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
a2932923
PM
1182 valid = 0;
1183 }
1184 if (valid != want_valid)
1185 return 0;
1186
1187 v = r = 0;
1188 if (valid || dirty) {
1189 /* lock the HPTE so it's stable and read it */
1190 preempt_disable();
1191 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1192 cpu_relax();
6f22bd32 1193 v = be64_to_cpu(hptp[0]);
a1b4a0f6
PM
1194
1195 /* re-evaluate valid and dirty from synchronized HPTE value */
1196 valid = !!(v & HPTE_V_VALID);
1197 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1198
1199 /* Harvest R and C into guest view if necessary */
1200 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
6f22bd32
AG
1201 if (valid && (rcbits_unset & be64_to_cpu(hptp[1]))) {
1202 revp->guest_rpte |= (be64_to_cpu(hptp[1]) &
1203 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
a1b4a0f6
PM
1204 dirty = 1;
1205 }
1206
a2932923
PM
1207 if (v & HPTE_V_ABSENT) {
1208 v &= ~HPTE_V_ABSENT;
1209 v |= HPTE_V_VALID;
a1b4a0f6 1210 valid = 1;
a2932923 1211 }
a2932923
PM
1212 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1213 valid = 0;
a1b4a0f6
PM
1214
1215 r = revp->guest_rpte;
a2932923
PM
1216 /* only clear modified if this is the right sort of entry */
1217 if (valid == want_valid && dirty) {
1218 r &= ~HPTE_GR_MODIFIED;
1219 revp->guest_rpte = r;
1220 }
1221 asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
6f22bd32 1222 hptp[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
a2932923
PM
1223 preempt_enable();
1224 if (!(valid == want_valid && (first_pass || dirty)))
1225 ok = 0;
1226 }
6f22bd32
AG
1227 hpte[0] = cpu_to_be64(v);
1228 hpte[1] = cpu_to_be64(r);
a2932923
PM
1229 return ok;
1230}
1231
1232static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1233 size_t count, loff_t *ppos)
1234{
1235 struct kvm_htab_ctx *ctx = file->private_data;
1236 struct kvm *kvm = ctx->kvm;
1237 struct kvm_get_htab_header hdr;
6f22bd32 1238 __be64 *hptp;
a2932923
PM
1239 struct revmap_entry *revp;
1240 unsigned long i, nb, nw;
1241 unsigned long __user *lbuf;
1242 struct kvm_get_htab_header __user *hptr;
1243 unsigned long flags;
1244 int first_pass;
1245 unsigned long hpte[2];
1246
1247 if (!access_ok(VERIFY_WRITE, buf, count))
1248 return -EFAULT;
1249
1250 first_pass = ctx->first_pass;
1251 flags = ctx->flags;
1252
1253 i = ctx->index;
6f22bd32 1254 hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
a2932923
PM
1255 revp = kvm->arch.revmap + i;
1256 lbuf = (unsigned long __user *)buf;
1257
1258 nb = 0;
1259 while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1260 /* Initialize header */
1261 hptr = (struct kvm_get_htab_header __user *)buf;
a2932923
PM
1262 hdr.n_valid = 0;
1263 hdr.n_invalid = 0;
1264 nw = nb;
1265 nb += sizeof(hdr);
1266 lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1267
1268 /* Skip uninteresting entries, i.e. clean on not-first pass */
1269 if (!first_pass) {
1270 while (i < kvm->arch.hpt_npte &&
a1b4a0f6 1271 !hpte_dirty(revp, hptp)) {
a2932923
PM
1272 ++i;
1273 hptp += 2;
1274 ++revp;
1275 }
1276 }
05dd85f7 1277 hdr.index = i;
a2932923
PM
1278
1279 /* Grab a series of valid entries */
1280 while (i < kvm->arch.hpt_npte &&
1281 hdr.n_valid < 0xffff &&
1282 nb + HPTE_SIZE < count &&
1283 record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1284 /* valid entry, write it out */
1285 ++hdr.n_valid;
1286 if (__put_user(hpte[0], lbuf) ||
1287 __put_user(hpte[1], lbuf + 1))
1288 return -EFAULT;
1289 nb += HPTE_SIZE;
1290 lbuf += 2;
1291 ++i;
1292 hptp += 2;
1293 ++revp;
1294 }
1295 /* Now skip invalid entries while we can */
1296 while (i < kvm->arch.hpt_npte &&
1297 hdr.n_invalid < 0xffff &&
1298 record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1299 /* found an invalid entry */
1300 ++hdr.n_invalid;
1301 ++i;
1302 hptp += 2;
1303 ++revp;
1304 }
1305
1306 if (hdr.n_valid || hdr.n_invalid) {
1307 /* write back the header */
1308 if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1309 return -EFAULT;
1310 nw = nb;
1311 buf = (char __user *)lbuf;
1312 } else {
1313 nb = nw;
1314 }
1315
1316 /* Check if we've wrapped around the hash table */
1317 if (i >= kvm->arch.hpt_npte) {
1318 i = 0;
1319 ctx->first_pass = 0;
1320 break;
1321 }
1322 }
1323
1324 ctx->index = i;
1325
1326 return nb;
1327}
1328
1329static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1330 size_t count, loff_t *ppos)
1331{
1332 struct kvm_htab_ctx *ctx = file->private_data;
1333 struct kvm *kvm = ctx->kvm;
1334 struct kvm_get_htab_header hdr;
1335 unsigned long i, j;
1336 unsigned long v, r;
1337 unsigned long __user *lbuf;
6f22bd32 1338 __be64 *hptp;
a2932923
PM
1339 unsigned long tmp[2];
1340 ssize_t nb;
1341 long int err, ret;
1342 int rma_setup;
1343
1344 if (!access_ok(VERIFY_READ, buf, count))
1345 return -EFAULT;
1346
1347 /* lock out vcpus from running while we're doing this */
1348 mutex_lock(&kvm->lock);
1349 rma_setup = kvm->arch.rma_setup_done;
1350 if (rma_setup) {
1351 kvm->arch.rma_setup_done = 0; /* temporarily */
1352 /* order rma_setup_done vs. vcpus_running */
1353 smp_mb();
1354 if (atomic_read(&kvm->arch.vcpus_running)) {
1355 kvm->arch.rma_setup_done = 1;
1356 mutex_unlock(&kvm->lock);
1357 return -EBUSY;
1358 }
1359 }
1360
1361 err = 0;
1362 for (nb = 0; nb + sizeof(hdr) <= count; ) {
1363 err = -EFAULT;
1364 if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1365 break;
1366
1367 err = 0;
1368 if (nb + hdr.n_valid * HPTE_SIZE > count)
1369 break;
1370
1371 nb += sizeof(hdr);
1372 buf += sizeof(hdr);
1373
1374 err = -EINVAL;
1375 i = hdr.index;
1376 if (i >= kvm->arch.hpt_npte ||
1377 i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
1378 break;
1379
6f22bd32 1380 hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
a2932923
PM
1381 lbuf = (unsigned long __user *)buf;
1382 for (j = 0; j < hdr.n_valid; ++j) {
ffada016
CLG
1383 __be64 hpte_v;
1384 __be64 hpte_r;
1385
a2932923 1386 err = -EFAULT;
ffada016
CLG
1387 if (__get_user(hpte_v, lbuf) ||
1388 __get_user(hpte_r, lbuf + 1))
a2932923 1389 goto out;
ffada016
CLG
1390 v = be64_to_cpu(hpte_v);
1391 r = be64_to_cpu(hpte_r);
a2932923
PM
1392 err = -EINVAL;
1393 if (!(v & HPTE_V_VALID))
1394 goto out;
1395 lbuf += 2;
1396 nb += HPTE_SIZE;
1397
6f22bd32 1398 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
a2932923
PM
1399 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1400 err = -EIO;
1401 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1402 tmp);
1403 if (ret != H_SUCCESS) {
1404 pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1405 "r=%lx\n", ret, i, v, r);
1406 goto out;
1407 }
1408 if (!rma_setup && is_vrma_hpte(v)) {
341acbb3 1409 unsigned long psize = hpte_base_page_size(v, r);
a2932923
PM
1410 unsigned long senc = slb_pgsize_encoding(psize);
1411 unsigned long lpcr;
1412
1413 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1414 (VRMA_VSID << SLB_VSID_SHIFT_1T);
a0144e2a
PM
1415 lpcr = senc << (LPCR_VRMASD_SH - 4);
1416 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
a2932923
PM
1417 rma_setup = 1;
1418 }
1419 ++i;
1420 hptp += 2;
1421 }
1422
1423 for (j = 0; j < hdr.n_invalid; ++j) {
6f22bd32 1424 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
a2932923
PM
1425 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1426 ++i;
1427 hptp += 2;
1428 }
1429 err = 0;
1430 }
1431
1432 out:
1433 /* Order HPTE updates vs. rma_setup_done */
1434 smp_wmb();
1435 kvm->arch.rma_setup_done = rma_setup;
1436 mutex_unlock(&kvm->lock);
1437
1438 if (err)
1439 return err;
1440 return nb;
1441}
1442
1443static int kvm_htab_release(struct inode *inode, struct file *filp)
1444{
1445 struct kvm_htab_ctx *ctx = filp->private_data;
1446
1447 filp->private_data = NULL;
1448 if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1449 atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1450 kvm_put_kvm(ctx->kvm);
1451 kfree(ctx);
1452 return 0;
1453}
1454
75ef9de1 1455static const struct file_operations kvm_htab_fops = {
a2932923
PM
1456 .read = kvm_htab_read,
1457 .write = kvm_htab_write,
1458 .llseek = default_llseek,
1459 .release = kvm_htab_release,
1460};
1461
1462int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1463{
1464 int ret;
1465 struct kvm_htab_ctx *ctx;
1466 int rwflag;
1467
1468 /* reject flags we don't recognize */
1469 if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1470 return -EINVAL;
1471 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1472 if (!ctx)
1473 return -ENOMEM;
1474 kvm_get_kvm(kvm);
1475 ctx->kvm = kvm;
1476 ctx->index = ghf->start_index;
1477 ctx->flags = ghf->flags;
1478 ctx->first_pass = 1;
1479
1480 rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
2f84d5ea 1481 ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
a2932923
PM
1482 if (ret < 0) {
1483 kvm_put_kvm(kvm);
1484 return ret;
1485 }
1486
1487 if (rwflag == O_RDONLY) {
1488 mutex_lock(&kvm->slots_lock);
1489 atomic_inc(&kvm->arch.hpte_mod_interest);
1490 /* make sure kvmppc_do_h_enter etc. see the increment */
1491 synchronize_srcu_expedited(&kvm->srcu);
1492 mutex_unlock(&kvm->slots_lock);
1493 }
1494
1495 return ret;
1496}
1497
de56a948
PM
1498void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
1499{
1500 struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
1501
c17b98cf 1502 vcpu->arch.slb_nr = 32; /* POWER7/POWER8 */
de56a948
PM
1503
1504 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1505 mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
1506
1507 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
1508}