KVM: PPC: Support eventfd
[linux-2.6-block.git] / arch / powerpc / kvm / book3s_64_mmu_hv.c
CommitLineData
de56a948
PM
1/*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
16 */
17
18#include <linux/types.h>
19#include <linux/string.h>
20#include <linux/kvm.h>
21#include <linux/kvm_host.h>
22#include <linux/highmem.h>
23#include <linux/gfp.h>
24#include <linux/slab.h>
25#include <linux/hugetlb.h>
8936dda4 26#include <linux/vmalloc.h>
2c9097e4 27#include <linux/srcu.h>
de56a948
PM
28
29#include <asm/tlbflush.h>
30#include <asm/kvm_ppc.h>
31#include <asm/kvm_book3s.h>
32#include <asm/mmu-hash64.h>
33#include <asm/hvcall.h>
34#include <asm/synch.h>
35#include <asm/ppc-opcode.h>
36#include <asm/cputable.h>
37
9e368f29
PM
38/* POWER7 has 10-bit LPIDs, PPC970 has 6-bit LPIDs */
39#define MAX_LPID_970 63
de56a948 40
32fad281
PM
41/* Power architecture requires HPT is at least 256kB */
42#define PPC_MIN_HPT_ORDER 18
43
44long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
de56a948
PM
45{
46 unsigned long hpt;
8936dda4 47 struct revmap_entry *rev;
d2a1b483 48 struct kvmppc_linear_info *li;
32fad281 49 long order = kvm_hpt_order;
de56a948 50
32fad281
PM
51 if (htab_orderp) {
52 order = *htab_orderp;
53 if (order < PPC_MIN_HPT_ORDER)
54 order = PPC_MIN_HPT_ORDER;
55 }
56
57 /*
58 * If the user wants a different size from default,
59 * try first to allocate it from the kernel page allocator.
60 */
61 hpt = 0;
62 if (order != kvm_hpt_order) {
d2a1b483 63 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
32fad281
PM
64 __GFP_NOWARN, order - PAGE_SHIFT);
65 if (!hpt)
66 --order;
d2a1b483
AG
67 }
68
32fad281 69 /* Next try to allocate from the preallocated pool */
de56a948 70 if (!hpt) {
32fad281
PM
71 li = kvm_alloc_hpt();
72 if (li) {
73 hpt = (ulong)li->base_virt;
74 kvm->arch.hpt_li = li;
75 order = kvm_hpt_order;
76 }
de56a948 77 }
32fad281
PM
78
79 /* Lastly try successively smaller sizes from the page allocator */
80 while (!hpt && order > PPC_MIN_HPT_ORDER) {
81 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
82 __GFP_NOWARN, order - PAGE_SHIFT);
83 if (!hpt)
84 --order;
85 }
86
87 if (!hpt)
88 return -ENOMEM;
89
de56a948 90 kvm->arch.hpt_virt = hpt;
32fad281
PM
91 kvm->arch.hpt_order = order;
92 /* HPTEs are 2**4 bytes long */
93 kvm->arch.hpt_npte = 1ul << (order - 4);
94 /* 128 (2**7) bytes in each HPTEG */
95 kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
de56a948 96
8936dda4 97 /* Allocate reverse map array */
32fad281 98 rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
8936dda4
PM
99 if (!rev) {
100 pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
101 goto out_freehpt;
102 }
103 kvm->arch.revmap = rev;
32fad281 104 kvm->arch.sdr1 = __pa(hpt) | (order - 18);
8936dda4 105
32fad281
PM
106 pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
107 hpt, order, kvm->arch.lpid);
de56a948 108
32fad281
PM
109 if (htab_orderp)
110 *htab_orderp = order;
de56a948 111 return 0;
8936dda4 112
8936dda4 113 out_freehpt:
32fad281
PM
114 if (kvm->arch.hpt_li)
115 kvm_release_hpt(kvm->arch.hpt_li);
116 else
117 free_pages(hpt, order - PAGE_SHIFT);
8936dda4 118 return -ENOMEM;
de56a948
PM
119}
120
32fad281
PM
121long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
122{
123 long err = -EBUSY;
124 long order;
125
126 mutex_lock(&kvm->lock);
127 if (kvm->arch.rma_setup_done) {
128 kvm->arch.rma_setup_done = 0;
129 /* order rma_setup_done vs. vcpus_running */
130 smp_mb();
131 if (atomic_read(&kvm->arch.vcpus_running)) {
132 kvm->arch.rma_setup_done = 1;
133 goto out;
134 }
135 }
136 if (kvm->arch.hpt_virt) {
137 order = kvm->arch.hpt_order;
138 /* Set the entire HPT to 0, i.e. invalid HPTEs */
139 memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
140 /*
141 * Set the whole last_vcpu array to an invalid vcpu number.
142 * This ensures that each vcpu will flush its TLB on next entry.
143 */
144 memset(kvm->arch.last_vcpu, 0xff, sizeof(kvm->arch.last_vcpu));
145 *htab_orderp = order;
146 err = 0;
147 } else {
148 err = kvmppc_alloc_hpt(kvm, htab_orderp);
149 order = *htab_orderp;
150 }
151 out:
152 mutex_unlock(&kvm->lock);
153 return err;
154}
155
de56a948
PM
156void kvmppc_free_hpt(struct kvm *kvm)
157{
043cc4d7 158 kvmppc_free_lpid(kvm->arch.lpid);
8936dda4 159 vfree(kvm->arch.revmap);
d2a1b483
AG
160 if (kvm->arch.hpt_li)
161 kvm_release_hpt(kvm->arch.hpt_li);
162 else
32fad281
PM
163 free_pages(kvm->arch.hpt_virt,
164 kvm->arch.hpt_order - PAGE_SHIFT);
de56a948
PM
165}
166
da9d1d7f
PM
167/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
168static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
169{
170 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
171}
172
173/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
174static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
175{
176 return (pgsize == 0x10000) ? 0x1000 : 0;
177}
178
179void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
180 unsigned long porder)
de56a948
PM
181{
182 unsigned long i;
b2b2f165 183 unsigned long npages;
c77162de
PM
184 unsigned long hp_v, hp_r;
185 unsigned long addr, hash;
da9d1d7f
PM
186 unsigned long psize;
187 unsigned long hp0, hp1;
c77162de 188 long ret;
32fad281 189 struct kvm *kvm = vcpu->kvm;
de56a948 190
da9d1d7f
PM
191 psize = 1ul << porder;
192 npages = memslot->npages >> (porder - PAGE_SHIFT);
de56a948
PM
193
194 /* VRMA can't be > 1TB */
8936dda4
PM
195 if (npages > 1ul << (40 - porder))
196 npages = 1ul << (40 - porder);
de56a948 197 /* Can't use more than 1 HPTE per HPTEG */
32fad281
PM
198 if (npages > kvm->arch.hpt_mask + 1)
199 npages = kvm->arch.hpt_mask + 1;
de56a948 200
da9d1d7f
PM
201 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
202 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
203 hp1 = hpte1_pgsize_encoding(psize) |
204 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
205
de56a948 206 for (i = 0; i < npages; ++i) {
c77162de 207 addr = i << porder;
de56a948 208 /* can't use hpt_hash since va > 64 bits */
32fad281 209 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
de56a948
PM
210 /*
211 * We assume that the hash table is empty and no
212 * vcpus are using it at this stage. Since we create
213 * at most one HPTE per HPTEG, we just assume entry 7
214 * is available and use it.
215 */
8936dda4 216 hash = (hash << 3) + 7;
da9d1d7f
PM
217 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
218 hp_r = hp1 | addr;
c77162de
PM
219 ret = kvmppc_virtmode_h_enter(vcpu, H_EXACT, hash, hp_v, hp_r);
220 if (ret != H_SUCCESS) {
221 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
222 addr, ret);
223 break;
224 }
de56a948
PM
225 }
226}
227
228int kvmppc_mmu_hv_init(void)
229{
9e368f29
PM
230 unsigned long host_lpid, rsvd_lpid;
231
232 if (!cpu_has_feature(CPU_FTR_HVMODE))
de56a948 233 return -EINVAL;
9e368f29 234
043cc4d7 235 /* POWER7 has 10-bit LPIDs, PPC970 and e500mc have 6-bit LPIDs */
9e368f29
PM
236 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
237 host_lpid = mfspr(SPRN_LPID); /* POWER7 */
238 rsvd_lpid = LPID_RSVD;
239 } else {
240 host_lpid = 0; /* PPC970 */
241 rsvd_lpid = MAX_LPID_970;
242 }
243
043cc4d7
SW
244 kvmppc_init_lpid(rsvd_lpid + 1);
245
246 kvmppc_claim_lpid(host_lpid);
9e368f29 247 /* rsvd_lpid is reserved for use in partition switching */
043cc4d7 248 kvmppc_claim_lpid(rsvd_lpid);
de56a948
PM
249
250 return 0;
251}
252
253void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
254{
255}
256
257static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
258{
259 kvmppc_set_msr(vcpu, MSR_SF | MSR_ME);
260}
261
c77162de
PM
262/*
263 * This is called to get a reference to a guest page if there isn't
a66b48c3 264 * one already in the memslot->arch.slot_phys[] array.
c77162de
PM
265 */
266static long kvmppc_get_guest_page(struct kvm *kvm, unsigned long gfn,
da9d1d7f
PM
267 struct kvm_memory_slot *memslot,
268 unsigned long psize)
c77162de
PM
269{
270 unsigned long start;
da9d1d7f
PM
271 long np, err;
272 struct page *page, *hpage, *pages[1];
273 unsigned long s, pgsize;
c77162de 274 unsigned long *physp;
9d0ef5ea
PM
275 unsigned int is_io, got, pgorder;
276 struct vm_area_struct *vma;
da9d1d7f 277 unsigned long pfn, i, npages;
c77162de 278
a66b48c3 279 physp = memslot->arch.slot_phys;
c77162de
PM
280 if (!physp)
281 return -EINVAL;
da9d1d7f 282 if (physp[gfn - memslot->base_gfn])
c77162de
PM
283 return 0;
284
9d0ef5ea
PM
285 is_io = 0;
286 got = 0;
c77162de 287 page = NULL;
da9d1d7f 288 pgsize = psize;
9d0ef5ea 289 err = -EINVAL;
c77162de
PM
290 start = gfn_to_hva_memslot(memslot, gfn);
291
292 /* Instantiate and get the page we want access to */
293 np = get_user_pages_fast(start, 1, 1, pages);
9d0ef5ea
PM
294 if (np != 1) {
295 /* Look up the vma for the page */
296 down_read(&current->mm->mmap_sem);
297 vma = find_vma(current->mm, start);
298 if (!vma || vma->vm_start > start ||
299 start + psize > vma->vm_end ||
300 !(vma->vm_flags & VM_PFNMAP))
301 goto up_err;
302 is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
303 pfn = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
304 /* check alignment of pfn vs. requested page size */
305 if (psize > PAGE_SIZE && (pfn & ((psize >> PAGE_SHIFT) - 1)))
306 goto up_err;
307 up_read(&current->mm->mmap_sem);
308
309 } else {
310 page = pages[0];
311 got = KVMPPC_GOT_PAGE;
312
313 /* See if this is a large page */
314 s = PAGE_SIZE;
315 if (PageHuge(page)) {
316 hpage = compound_head(page);
317 s <<= compound_order(hpage);
318 /* Get the whole large page if slot alignment is ok */
319 if (s > psize && slot_is_aligned(memslot, s) &&
320 !(memslot->userspace_addr & (s - 1))) {
321 start &= ~(s - 1);
322 pgsize = s;
de6c0b02
DG
323 get_page(hpage);
324 put_page(page);
9d0ef5ea
PM
325 page = hpage;
326 }
da9d1d7f 327 }
9d0ef5ea
PM
328 if (s < psize)
329 goto out;
330 pfn = page_to_pfn(page);
c77162de 331 }
c77162de 332
da9d1d7f
PM
333 npages = pgsize >> PAGE_SHIFT;
334 pgorder = __ilog2(npages);
335 physp += (gfn - memslot->base_gfn) & ~(npages - 1);
c77162de 336 spin_lock(&kvm->arch.slot_phys_lock);
da9d1d7f
PM
337 for (i = 0; i < npages; ++i) {
338 if (!physp[i]) {
9d0ef5ea
PM
339 physp[i] = ((pfn + i) << PAGE_SHIFT) +
340 got + is_io + pgorder;
da9d1d7f
PM
341 got = 0;
342 }
343 }
c77162de 344 spin_unlock(&kvm->arch.slot_phys_lock);
da9d1d7f 345 err = 0;
c77162de 346
da9d1d7f 347 out:
de6c0b02 348 if (got)
da9d1d7f 349 put_page(page);
da9d1d7f 350 return err;
9d0ef5ea
PM
351
352 up_err:
353 up_read(&current->mm->mmap_sem);
354 return err;
c77162de
PM
355}
356
357/*
342d3db7
PM
358 * We come here on a H_ENTER call from the guest when we are not
359 * using mmu notifiers and we don't have the requested page pinned
360 * already.
c77162de
PM
361 */
362long kvmppc_virtmode_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
363 long pte_index, unsigned long pteh, unsigned long ptel)
364{
365 struct kvm *kvm = vcpu->kvm;
366 unsigned long psize, gpa, gfn;
367 struct kvm_memory_slot *memslot;
368 long ret;
369
342d3db7
PM
370 if (kvm->arch.using_mmu_notifiers)
371 goto do_insert;
372
c77162de
PM
373 psize = hpte_page_size(pteh, ptel);
374 if (!psize)
375 return H_PARAMETER;
376
697d3899
PM
377 pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
378
c77162de
PM
379 /* Find the memslot (if any) for this address */
380 gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
381 gfn = gpa >> PAGE_SHIFT;
382 memslot = gfn_to_memslot(kvm, gfn);
697d3899
PM
383 if (memslot && !(memslot->flags & KVM_MEMSLOT_INVALID)) {
384 if (!slot_is_aligned(memslot, psize))
385 return H_PARAMETER;
386 if (kvmppc_get_guest_page(kvm, gfn, memslot, psize) < 0)
387 return H_PARAMETER;
388 }
c77162de 389
342d3db7
PM
390 do_insert:
391 /* Protect linux PTE lookup from page table destruction */
392 rcu_read_lock_sched(); /* this disables preemption too */
393 vcpu->arch.pgdir = current->mm->pgd;
c77162de 394 ret = kvmppc_h_enter(vcpu, flags, pte_index, pteh, ptel);
342d3db7 395 rcu_read_unlock_sched();
c77162de
PM
396 if (ret == H_TOO_HARD) {
397 /* this can't happen */
398 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
399 ret = H_RESOURCE; /* or something */
400 }
401 return ret;
402
403}
404
697d3899
PM
405static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
406 gva_t eaddr)
407{
408 u64 mask;
409 int i;
410
411 for (i = 0; i < vcpu->arch.slb_nr; i++) {
412 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
413 continue;
414
415 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
416 mask = ESID_MASK_1T;
417 else
418 mask = ESID_MASK;
419
420 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
421 return &vcpu->arch.slb[i];
422 }
423 return NULL;
424}
425
426static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
427 unsigned long ea)
428{
429 unsigned long ra_mask;
430
431 ra_mask = hpte_page_size(v, r) - 1;
432 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
433}
434
de56a948 435static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
697d3899 436 struct kvmppc_pte *gpte, bool data)
de56a948 437{
697d3899
PM
438 struct kvm *kvm = vcpu->kvm;
439 struct kvmppc_slb *slbe;
440 unsigned long slb_v;
441 unsigned long pp, key;
442 unsigned long v, gr;
443 unsigned long *hptep;
444 int index;
445 int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
446
447 /* Get SLB entry */
448 if (virtmode) {
449 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
450 if (!slbe)
451 return -EINVAL;
452 slb_v = slbe->origv;
453 } else {
454 /* real mode access */
455 slb_v = vcpu->kvm->arch.vrma_slb_v;
456 }
457
458 /* Find the HPTE in the hash table */
459 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
460 HPTE_V_VALID | HPTE_V_ABSENT);
461 if (index < 0)
462 return -ENOENT;
463 hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
464 v = hptep[0] & ~HPTE_V_HVLOCK;
465 gr = kvm->arch.revmap[index].guest_rpte;
466
467 /* Unlock the HPTE */
468 asm volatile("lwsync" : : : "memory");
469 hptep[0] = v;
470
471 gpte->eaddr = eaddr;
472 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
473
474 /* Get PP bits and key for permission check */
475 pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
476 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
477 key &= slb_v;
478
479 /* Calculate permissions */
480 gpte->may_read = hpte_read_permission(pp, key);
481 gpte->may_write = hpte_write_permission(pp, key);
482 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
483
484 /* Storage key permission check for POWER7 */
485 if (data && virtmode && cpu_has_feature(CPU_FTR_ARCH_206)) {
486 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
487 if (amrfield & 1)
488 gpte->may_read = 0;
489 if (amrfield & 2)
490 gpte->may_write = 0;
491 }
492
493 /* Get the guest physical address */
494 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
495 return 0;
496}
497
498/*
499 * Quick test for whether an instruction is a load or a store.
500 * If the instruction is a load or a store, then this will indicate
501 * which it is, at least on server processors. (Embedded processors
502 * have some external PID instructions that don't follow the rule
503 * embodied here.) If the instruction isn't a load or store, then
504 * this doesn't return anything useful.
505 */
506static int instruction_is_store(unsigned int instr)
507{
508 unsigned int mask;
509
510 mask = 0x10000000;
511 if ((instr & 0xfc000000) == 0x7c000000)
512 mask = 0x100; /* major opcode 31 */
513 return (instr & mask) != 0;
514}
515
516static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
6020c0f6 517 unsigned long gpa, gva_t ea, int is_store)
697d3899
PM
518{
519 int ret;
520 u32 last_inst;
521 unsigned long srr0 = kvmppc_get_pc(vcpu);
522
523 /* We try to load the last instruction. We don't let
524 * emulate_instruction do it as it doesn't check what
525 * kvmppc_ld returns.
526 * If we fail, we just return to the guest and try executing it again.
527 */
528 if (vcpu->arch.last_inst == KVM_INST_FETCH_FAILED) {
529 ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
530 if (ret != EMULATE_DONE || last_inst == KVM_INST_FETCH_FAILED)
531 return RESUME_GUEST;
532 vcpu->arch.last_inst = last_inst;
533 }
534
535 /*
536 * WARNING: We do not know for sure whether the instruction we just
537 * read from memory is the same that caused the fault in the first
538 * place. If the instruction we read is neither an load or a store,
539 * then it can't access memory, so we don't need to worry about
540 * enforcing access permissions. So, assuming it is a load or
541 * store, we just check that its direction (load or store) is
542 * consistent with the original fault, since that's what we
543 * checked the access permissions against. If there is a mismatch
544 * we just return and retry the instruction.
545 */
546
547 if (instruction_is_store(vcpu->arch.last_inst) != !!is_store)
548 return RESUME_GUEST;
549
550 /*
551 * Emulated accesses are emulated by looking at the hash for
552 * translation once, then performing the access later. The
553 * translation could be invalidated in the meantime in which
554 * point performing the subsequent memory access on the old
555 * physical address could possibly be a security hole for the
556 * guest (but not the host).
557 *
558 * This is less of an issue for MMIO stores since they aren't
559 * globally visible. It could be an issue for MMIO loads to
560 * a certain extent but we'll ignore it for now.
561 */
562
563 vcpu->arch.paddr_accessed = gpa;
6020c0f6 564 vcpu->arch.vaddr_accessed = ea;
697d3899
PM
565 return kvmppc_emulate_mmio(run, vcpu);
566}
567
568int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
569 unsigned long ea, unsigned long dsisr)
570{
571 struct kvm *kvm = vcpu->kvm;
342d3db7
PM
572 unsigned long *hptep, hpte[3], r;
573 unsigned long mmu_seq, psize, pte_size;
70bddfef 574 unsigned long gpa, gfn, hva, pfn;
697d3899 575 struct kvm_memory_slot *memslot;
342d3db7 576 unsigned long *rmap;
697d3899 577 struct revmap_entry *rev;
342d3db7
PM
578 struct page *page, *pages[1];
579 long index, ret, npages;
580 unsigned long is_io;
4cf302bc 581 unsigned int writing, write_ok;
342d3db7 582 struct vm_area_struct *vma;
bad3b507 583 unsigned long rcbits;
697d3899
PM
584
585 /*
586 * Real-mode code has already searched the HPT and found the
587 * entry we're interested in. Lock the entry and check that
588 * it hasn't changed. If it has, just return and re-execute the
589 * instruction.
590 */
591 if (ea != vcpu->arch.pgfault_addr)
592 return RESUME_GUEST;
593 index = vcpu->arch.pgfault_index;
594 hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
595 rev = &kvm->arch.revmap[index];
596 preempt_disable();
597 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
598 cpu_relax();
599 hpte[0] = hptep[0] & ~HPTE_V_HVLOCK;
600 hpte[1] = hptep[1];
342d3db7 601 hpte[2] = r = rev->guest_rpte;
697d3899
PM
602 asm volatile("lwsync" : : : "memory");
603 hptep[0] = hpte[0];
604 preempt_enable();
605
606 if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
607 hpte[1] != vcpu->arch.pgfault_hpte[1])
608 return RESUME_GUEST;
609
610 /* Translate the logical address and get the page */
342d3db7 611 psize = hpte_page_size(hpte[0], r);
70bddfef
PM
612 gpa = (r & HPTE_R_RPN & ~(psize - 1)) | (ea & (psize - 1));
613 gfn = gpa >> PAGE_SHIFT;
697d3899
PM
614 memslot = gfn_to_memslot(kvm, gfn);
615
616 /* No memslot means it's an emulated MMIO region */
70bddfef 617 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
6020c0f6 618 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
697d3899 619 dsisr & DSISR_ISSTORE);
697d3899 620
342d3db7
PM
621 if (!kvm->arch.using_mmu_notifiers)
622 return -EFAULT; /* should never get here */
623
624 /* used to check for invalidations in progress */
625 mmu_seq = kvm->mmu_notifier_seq;
626 smp_rmb();
627
628 is_io = 0;
629 pfn = 0;
630 page = NULL;
631 pte_size = PAGE_SIZE;
4cf302bc
PM
632 writing = (dsisr & DSISR_ISSTORE) != 0;
633 /* If writing != 0, then the HPTE must allow writing, if we get here */
634 write_ok = writing;
342d3db7 635 hva = gfn_to_hva_memslot(memslot, gfn);
4cf302bc 636 npages = get_user_pages_fast(hva, 1, writing, pages);
342d3db7
PM
637 if (npages < 1) {
638 /* Check if it's an I/O mapping */
639 down_read(&current->mm->mmap_sem);
640 vma = find_vma(current->mm, hva);
641 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
642 (vma->vm_flags & VM_PFNMAP)) {
643 pfn = vma->vm_pgoff +
644 ((hva - vma->vm_start) >> PAGE_SHIFT);
645 pte_size = psize;
646 is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
4cf302bc 647 write_ok = vma->vm_flags & VM_WRITE;
342d3db7
PM
648 }
649 up_read(&current->mm->mmap_sem);
650 if (!pfn)
651 return -EFAULT;
652 } else {
653 page = pages[0];
654 if (PageHuge(page)) {
655 page = compound_head(page);
656 pte_size <<= compound_order(page);
657 }
4cf302bc
PM
658 /* if the guest wants write access, see if that is OK */
659 if (!writing && hpte_is_writable(r)) {
660 pte_t *ptep, pte;
661
662 /*
663 * We need to protect against page table destruction
664 * while looking up and updating the pte.
665 */
666 rcu_read_lock_sched();
667 ptep = find_linux_pte_or_hugepte(current->mm->pgd,
668 hva, NULL);
669 if (ptep && pte_present(*ptep)) {
670 pte = kvmppc_read_update_linux_pte(ptep, 1);
671 if (pte_write(pte))
672 write_ok = 1;
673 }
674 rcu_read_unlock_sched();
675 }
342d3db7
PM
676 pfn = page_to_pfn(page);
677 }
678
679 ret = -EFAULT;
680 if (psize > pte_size)
681 goto out_put;
682
683 /* Check WIMG vs. the actual page we're accessing */
684 if (!hpte_cache_flags_ok(r, is_io)) {
685 if (is_io)
686 return -EFAULT;
687 /*
688 * Allow guest to map emulated device memory as
689 * uncacheable, but actually make it cacheable.
690 */
691 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
692 }
693
694 /* Set the HPTE to point to pfn */
695 r = (r & ~(HPTE_R_PP0 - pte_size)) | (pfn << PAGE_SHIFT);
4cf302bc
PM
696 if (hpte_is_writable(r) && !write_ok)
697 r = hpte_make_readonly(r);
342d3db7
PM
698 ret = RESUME_GUEST;
699 preempt_disable();
700 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
701 cpu_relax();
702 if ((hptep[0] & ~HPTE_V_HVLOCK) != hpte[0] || hptep[1] != hpte[1] ||
703 rev->guest_rpte != hpte[2])
704 /* HPTE has been changed under us; let the guest retry */
705 goto out_unlock;
706 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
707
d89cc617 708 rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
342d3db7
PM
709 lock_rmap(rmap);
710
711 /* Check if we might have been invalidated; let the guest retry if so */
712 ret = RESUME_GUEST;
8ca40a70 713 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
342d3db7
PM
714 unlock_rmap(rmap);
715 goto out_unlock;
716 }
4cf302bc 717
bad3b507
PM
718 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
719 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
720 r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
721
4cf302bc
PM
722 if (hptep[0] & HPTE_V_VALID) {
723 /* HPTE was previously valid, so we need to invalidate it */
724 unlock_rmap(rmap);
725 hptep[0] |= HPTE_V_ABSENT;
726 kvmppc_invalidate_hpte(kvm, hptep, index);
bad3b507
PM
727 /* don't lose previous R and C bits */
728 r |= hptep[1] & (HPTE_R_R | HPTE_R_C);
4cf302bc
PM
729 } else {
730 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
731 }
342d3db7
PM
732
733 hptep[1] = r;
734 eieio();
735 hptep[0] = hpte[0];
736 asm volatile("ptesync" : : : "memory");
737 preempt_enable();
4cf302bc 738 if (page && hpte_is_writable(r))
342d3db7
PM
739 SetPageDirty(page);
740
741 out_put:
de6c0b02
DG
742 if (page) {
743 /*
744 * We drop pages[0] here, not page because page might
745 * have been set to the head page of a compound, but
746 * we have to drop the reference on the correct tail
747 * page to match the get inside gup()
748 */
749 put_page(pages[0]);
750 }
342d3db7
PM
751 return ret;
752
753 out_unlock:
754 hptep[0] &= ~HPTE_V_HVLOCK;
755 preempt_enable();
756 goto out_put;
757}
758
84504ef3
TY
759static int kvm_handle_hva_range(struct kvm *kvm,
760 unsigned long start,
761 unsigned long end,
762 int (*handler)(struct kvm *kvm,
763 unsigned long *rmapp,
764 unsigned long gfn))
342d3db7
PM
765{
766 int ret;
767 int retval = 0;
768 struct kvm_memslots *slots;
769 struct kvm_memory_slot *memslot;
770
771 slots = kvm_memslots(kvm);
772 kvm_for_each_memslot(memslot, slots) {
84504ef3
TY
773 unsigned long hva_start, hva_end;
774 gfn_t gfn, gfn_end;
775
776 hva_start = max(start, memslot->userspace_addr);
777 hva_end = min(end, memslot->userspace_addr +
778 (memslot->npages << PAGE_SHIFT));
779 if (hva_start >= hva_end)
780 continue;
781 /*
782 * {gfn(page) | page intersects with [hva_start, hva_end)} =
783 * {gfn, gfn+1, ..., gfn_end-1}.
784 */
785 gfn = hva_to_gfn_memslot(hva_start, memslot);
786 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
342d3db7 787
84504ef3 788 for (; gfn < gfn_end; ++gfn) {
d19a748b 789 gfn_t gfn_offset = gfn - memslot->base_gfn;
342d3db7 790
d89cc617 791 ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
342d3db7
PM
792 retval |= ret;
793 }
794 }
795
796 return retval;
797}
798
84504ef3
TY
799static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
800 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
801 unsigned long gfn))
802{
803 return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
804}
805
342d3db7
PM
806static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
807 unsigned long gfn)
808{
809 struct revmap_entry *rev = kvm->arch.revmap;
810 unsigned long h, i, j;
811 unsigned long *hptep;
bad3b507 812 unsigned long ptel, psize, rcbits;
342d3db7
PM
813
814 for (;;) {
bad3b507 815 lock_rmap(rmapp);
342d3db7 816 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
bad3b507 817 unlock_rmap(rmapp);
342d3db7
PM
818 break;
819 }
820
821 /*
822 * To avoid an ABBA deadlock with the HPTE lock bit,
bad3b507
PM
823 * we can't spin on the HPTE lock while holding the
824 * rmap chain lock.
342d3db7
PM
825 */
826 i = *rmapp & KVMPPC_RMAP_INDEX;
bad3b507
PM
827 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
828 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
829 /* unlock rmap before spinning on the HPTE lock */
830 unlock_rmap(rmapp);
831 while (hptep[0] & HPTE_V_HVLOCK)
832 cpu_relax();
833 continue;
834 }
342d3db7
PM
835 j = rev[i].forw;
836 if (j == i) {
837 /* chain is now empty */
bad3b507 838 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
342d3db7
PM
839 } else {
840 /* remove i from chain */
841 h = rev[i].back;
842 rev[h].forw = j;
843 rev[j].back = h;
844 rev[i].forw = rev[i].back = i;
bad3b507 845 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
342d3db7 846 }
342d3db7 847
bad3b507 848 /* Now check and modify the HPTE */
342d3db7
PM
849 ptel = rev[i].guest_rpte;
850 psize = hpte_page_size(hptep[0], ptel);
851 if ((hptep[0] & HPTE_V_VALID) &&
852 hpte_rpn(ptel, psize) == gfn) {
dfe49dbd
PM
853 if (kvm->arch.using_mmu_notifiers)
854 hptep[0] |= HPTE_V_ABSENT;
bad3b507
PM
855 kvmppc_invalidate_hpte(kvm, hptep, i);
856 /* Harvest R and C */
857 rcbits = hptep[1] & (HPTE_R_R | HPTE_R_C);
858 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
859 rev[i].guest_rpte = ptel | rcbits;
342d3db7 860 }
bad3b507 861 unlock_rmap(rmapp);
342d3db7
PM
862 hptep[0] &= ~HPTE_V_HVLOCK;
863 }
864 return 0;
865}
866
867int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
868{
869 if (kvm->arch.using_mmu_notifiers)
870 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
871 return 0;
872}
873
b3ae2096
TY
874int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
875{
876 if (kvm->arch.using_mmu_notifiers)
877 kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
878 return 0;
879}
880
dfe49dbd
PM
881void kvmppc_core_flush_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot)
882{
883 unsigned long *rmapp;
884 unsigned long gfn;
885 unsigned long n;
886
887 rmapp = memslot->arch.rmap;
888 gfn = memslot->base_gfn;
889 for (n = memslot->npages; n; --n) {
890 /*
891 * Testing the present bit without locking is OK because
892 * the memslot has been marked invalid already, and hence
893 * no new HPTEs referencing this page can be created,
894 * thus the present bit can't go from 0 to 1.
895 */
896 if (*rmapp & KVMPPC_RMAP_PRESENT)
897 kvm_unmap_rmapp(kvm, rmapp, gfn);
898 ++rmapp;
899 ++gfn;
900 }
901}
902
342d3db7
PM
903static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
904 unsigned long gfn)
905{
55514893
PM
906 struct revmap_entry *rev = kvm->arch.revmap;
907 unsigned long head, i, j;
908 unsigned long *hptep;
909 int ret = 0;
910
911 retry:
912 lock_rmap(rmapp);
913 if (*rmapp & KVMPPC_RMAP_REFERENCED) {
914 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
915 ret = 1;
916 }
917 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
918 unlock_rmap(rmapp);
919 return ret;
920 }
921
922 i = head = *rmapp & KVMPPC_RMAP_INDEX;
923 do {
924 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
925 j = rev[i].forw;
926
927 /* If this HPTE isn't referenced, ignore it */
928 if (!(hptep[1] & HPTE_R_R))
929 continue;
930
931 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
932 /* unlock rmap before spinning on the HPTE lock */
933 unlock_rmap(rmapp);
934 while (hptep[0] & HPTE_V_HVLOCK)
935 cpu_relax();
936 goto retry;
937 }
938
939 /* Now check and modify the HPTE */
940 if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_R)) {
941 kvmppc_clear_ref_hpte(kvm, hptep, i);
942 rev[i].guest_rpte |= HPTE_R_R;
943 ret = 1;
944 }
945 hptep[0] &= ~HPTE_V_HVLOCK;
946 } while ((i = j) != head);
947
948 unlock_rmap(rmapp);
949 return ret;
342d3db7
PM
950}
951
952int kvm_age_hva(struct kvm *kvm, unsigned long hva)
953{
954 if (!kvm->arch.using_mmu_notifiers)
955 return 0;
956 return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
957}
958
959static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
960 unsigned long gfn)
961{
55514893
PM
962 struct revmap_entry *rev = kvm->arch.revmap;
963 unsigned long head, i, j;
964 unsigned long *hp;
965 int ret = 1;
966
967 if (*rmapp & KVMPPC_RMAP_REFERENCED)
968 return 1;
969
970 lock_rmap(rmapp);
971 if (*rmapp & KVMPPC_RMAP_REFERENCED)
972 goto out;
973
974 if (*rmapp & KVMPPC_RMAP_PRESENT) {
975 i = head = *rmapp & KVMPPC_RMAP_INDEX;
976 do {
977 hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
978 j = rev[i].forw;
979 if (hp[1] & HPTE_R_R)
980 goto out;
981 } while ((i = j) != head);
982 }
983 ret = 0;
984
985 out:
986 unlock_rmap(rmapp);
987 return ret;
342d3db7
PM
988}
989
990int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
991{
992 if (!kvm->arch.using_mmu_notifiers)
993 return 0;
994 return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
995}
996
997void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
998{
999 if (!kvm->arch.using_mmu_notifiers)
1000 return;
1001 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
de56a948
PM
1002}
1003
82ed3616
PM
1004static int kvm_test_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1005{
1006 struct revmap_entry *rev = kvm->arch.revmap;
1007 unsigned long head, i, j;
1008 unsigned long *hptep;
1009 int ret = 0;
1010
1011 retry:
1012 lock_rmap(rmapp);
1013 if (*rmapp & KVMPPC_RMAP_CHANGED) {
1014 *rmapp &= ~KVMPPC_RMAP_CHANGED;
1015 ret = 1;
1016 }
1017 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1018 unlock_rmap(rmapp);
1019 return ret;
1020 }
1021
1022 i = head = *rmapp & KVMPPC_RMAP_INDEX;
1023 do {
1024 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
1025 j = rev[i].forw;
1026
1027 if (!(hptep[1] & HPTE_R_C))
1028 continue;
1029
1030 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1031 /* unlock rmap before spinning on the HPTE lock */
1032 unlock_rmap(rmapp);
1033 while (hptep[0] & HPTE_V_HVLOCK)
1034 cpu_relax();
1035 goto retry;
1036 }
1037
1038 /* Now check and modify the HPTE */
1039 if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_C)) {
1040 /* need to make it temporarily absent to clear C */
1041 hptep[0] |= HPTE_V_ABSENT;
1042 kvmppc_invalidate_hpte(kvm, hptep, i);
1043 hptep[1] &= ~HPTE_R_C;
1044 eieio();
1045 hptep[0] = (hptep[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
1046 rev[i].guest_rpte |= HPTE_R_C;
1047 ret = 1;
1048 }
1049 hptep[0] &= ~HPTE_V_HVLOCK;
1050 } while ((i = j) != head);
1051
1052 unlock_rmap(rmapp);
1053 return ret;
1054}
1055
dfe49dbd
PM
1056long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
1057 unsigned long *map)
82ed3616
PM
1058{
1059 unsigned long i;
dfe49dbd 1060 unsigned long *rmapp;
82ed3616
PM
1061
1062 preempt_disable();
d89cc617 1063 rmapp = memslot->arch.rmap;
82ed3616 1064 for (i = 0; i < memslot->npages; ++i) {
dfe49dbd 1065 if (kvm_test_clear_dirty(kvm, rmapp) && map)
82ed3616
PM
1066 __set_bit_le(i, map);
1067 ++rmapp;
1068 }
1069 preempt_enable();
1070 return 0;
1071}
1072
93e60249
PM
1073void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1074 unsigned long *nb_ret)
1075{
1076 struct kvm_memory_slot *memslot;
1077 unsigned long gfn = gpa >> PAGE_SHIFT;
342d3db7
PM
1078 struct page *page, *pages[1];
1079 int npages;
1080 unsigned long hva, psize, offset;
da9d1d7f 1081 unsigned long pa;
93e60249 1082 unsigned long *physp;
2c9097e4 1083 int srcu_idx;
93e60249 1084
2c9097e4 1085 srcu_idx = srcu_read_lock(&kvm->srcu);
93e60249
PM
1086 memslot = gfn_to_memslot(kvm, gfn);
1087 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2c9097e4 1088 goto err;
342d3db7 1089 if (!kvm->arch.using_mmu_notifiers) {
a66b48c3 1090 physp = memslot->arch.slot_phys;
342d3db7 1091 if (!physp)
2c9097e4 1092 goto err;
342d3db7 1093 physp += gfn - memslot->base_gfn;
c77162de 1094 pa = *physp;
342d3db7
PM
1095 if (!pa) {
1096 if (kvmppc_get_guest_page(kvm, gfn, memslot,
1097 PAGE_SIZE) < 0)
2c9097e4 1098 goto err;
342d3db7
PM
1099 pa = *physp;
1100 }
1101 page = pfn_to_page(pa >> PAGE_SHIFT);
de6c0b02 1102 get_page(page);
342d3db7
PM
1103 } else {
1104 hva = gfn_to_hva_memslot(memslot, gfn);
1105 npages = get_user_pages_fast(hva, 1, 1, pages);
1106 if (npages < 1)
2c9097e4 1107 goto err;
342d3db7 1108 page = pages[0];
c77162de 1109 }
2c9097e4
PM
1110 srcu_read_unlock(&kvm->srcu, srcu_idx);
1111
da9d1d7f
PM
1112 psize = PAGE_SIZE;
1113 if (PageHuge(page)) {
1114 page = compound_head(page);
1115 psize <<= compound_order(page);
1116 }
da9d1d7f 1117 offset = gpa & (psize - 1);
93e60249 1118 if (nb_ret)
da9d1d7f 1119 *nb_ret = psize - offset;
93e60249 1120 return page_address(page) + offset;
2c9097e4
PM
1121
1122 err:
1123 srcu_read_unlock(&kvm->srcu, srcu_idx);
1124 return NULL;
93e60249
PM
1125}
1126
1127void kvmppc_unpin_guest_page(struct kvm *kvm, void *va)
1128{
1129 struct page *page = virt_to_page(va);
1130
93e60249
PM
1131 put_page(page);
1132}
1133
de56a948
PM
1134void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
1135{
1136 struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
1137
9e368f29
PM
1138 if (cpu_has_feature(CPU_FTR_ARCH_206))
1139 vcpu->arch.slb_nr = 32; /* POWER7 */
1140 else
1141 vcpu->arch.slb_nr = 64;
de56a948
PM
1142
1143 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1144 mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
1145
1146 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
1147}