KVM: PPC: Add host MMU Support
[linux-block.git] / arch / powerpc / kvm / book3s_32_mmu_host.c
CommitLineData
d32154f1
AG
1/*
2 * Copyright (C) 2010 SUSE Linux Products GmbH. All rights reserved.
3 *
4 * Authors:
5 * Alexander Graf <agraf@suse.de>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License, version 2, as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 */
20
21#include <linux/kvm_host.h>
22
23#include <asm/kvm_ppc.h>
24#include <asm/kvm_book3s.h>
25#include <asm/mmu-hash32.h>
26#include <asm/machdep.h>
27#include <asm/mmu_context.h>
28#include <asm/hw_irq.h>
29
30/* #define DEBUG_MMU */
31/* #define DEBUG_SR */
32
33#ifdef DEBUG_MMU
34#define dprintk_mmu(a, ...) printk(KERN_INFO a, __VA_ARGS__)
35#else
36#define dprintk_mmu(a, ...) do { } while(0)
37#endif
38
39#ifdef DEBUG_SR
40#define dprintk_sr(a, ...) printk(KERN_INFO a, __VA_ARGS__)
41#else
42#define dprintk_sr(a, ...) do { } while(0)
43#endif
44
45#if PAGE_SHIFT != 12
46#error Unknown page size
47#endif
48
49#ifdef CONFIG_SMP
50#error XXX need to grab mmu_hash_lock
51#endif
52
53#ifdef CONFIG_PTE_64BIT
54#error Only 32 bit pages are supported for now
55#endif
56
57static void invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte)
58{
59 volatile u32 *pteg;
60
61 dprintk_mmu("KVM: Flushing SPTE: 0x%llx (0x%llx) -> 0x%llx\n",
62 pte->pte.eaddr, pte->pte.vpage, pte->host_va);
63
64 pteg = (u32*)pte->slot;
65
66 pteg[0] = 0;
67 asm volatile ("sync");
68 asm volatile ("tlbie %0" : : "r" (pte->pte.eaddr) : "memory");
69 asm volatile ("sync");
70 asm volatile ("tlbsync");
71
72 pte->host_va = 0;
73
74 if (pte->pte.may_write)
75 kvm_release_pfn_dirty(pte->pfn);
76 else
77 kvm_release_pfn_clean(pte->pfn);
78}
79
80void kvmppc_mmu_pte_flush(struct kvm_vcpu *vcpu, u64 _guest_ea, u64 _ea_mask)
81{
82 int i;
83 u32 guest_ea = _guest_ea;
84 u32 ea_mask = _ea_mask;
85
86 dprintk_mmu("KVM: Flushing %d Shadow PTEs: 0x%x & 0x%x\n",
87 vcpu->arch.hpte_cache_offset, guest_ea, ea_mask);
88 BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM);
89
90 guest_ea &= ea_mask;
91 for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) {
92 struct hpte_cache *pte;
93
94 pte = &vcpu->arch.hpte_cache[i];
95 if (!pte->host_va)
96 continue;
97
98 if ((pte->pte.eaddr & ea_mask) == guest_ea) {
99 invalidate_pte(vcpu, pte);
100 }
101 }
102
103 /* Doing a complete flush -> start from scratch */
104 if (!ea_mask)
105 vcpu->arch.hpte_cache_offset = 0;
106}
107
108void kvmppc_mmu_pte_vflush(struct kvm_vcpu *vcpu, u64 guest_vp, u64 vp_mask)
109{
110 int i;
111
112 dprintk_mmu("KVM: Flushing %d Shadow vPTEs: 0x%llx & 0x%llx\n",
113 vcpu->arch.hpte_cache_offset, guest_vp, vp_mask);
114 BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM);
115
116 guest_vp &= vp_mask;
117 for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) {
118 struct hpte_cache *pte;
119
120 pte = &vcpu->arch.hpte_cache[i];
121 if (!pte->host_va)
122 continue;
123
124 if ((pte->pte.vpage & vp_mask) == guest_vp) {
125 invalidate_pte(vcpu, pte);
126 }
127 }
128}
129
130void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, u64 pa_start, u64 pa_end)
131{
132 int i;
133
134 dprintk_mmu("KVM: Flushing %d Shadow pPTEs: 0x%llx & 0x%llx\n",
135 vcpu->arch.hpte_cache_offset, pa_start, pa_end);
136 BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM);
137
138 for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) {
139 struct hpte_cache *pte;
140
141 pte = &vcpu->arch.hpte_cache[i];
142 if (!pte->host_va)
143 continue;
144
145 if ((pte->pte.raddr >= pa_start) &&
146 (pte->pte.raddr < pa_end)) {
147 invalidate_pte(vcpu, pte);
148 }
149 }
150}
151
152struct kvmppc_pte *kvmppc_mmu_find_pte(struct kvm_vcpu *vcpu, u64 ea, bool data)
153{
154 int i;
155 u64 guest_vp;
156
157 guest_vp = vcpu->arch.mmu.ea_to_vp(vcpu, ea, false);
158 for (i=0; i<vcpu->arch.hpte_cache_offset; i++) {
159 struct hpte_cache *pte;
160
161 pte = &vcpu->arch.hpte_cache[i];
162 if (!pte->host_va)
163 continue;
164
165 if (pte->pte.vpage == guest_vp)
166 return &pte->pte;
167 }
168
169 return NULL;
170}
171
172static int kvmppc_mmu_hpte_cache_next(struct kvm_vcpu *vcpu)
173{
174 if (vcpu->arch.hpte_cache_offset == HPTEG_CACHE_NUM)
175 kvmppc_mmu_pte_flush(vcpu, 0, 0);
176
177 return vcpu->arch.hpte_cache_offset++;
178}
179
180/* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using
181 * a hash, so we don't waste cycles on looping */
182static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid)
183{
184 return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^
185 ((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^
186 ((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^
187 ((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^
188 ((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^
189 ((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^
190 ((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^
191 ((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK));
192}
193
194
195static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid)
196{
197 struct kvmppc_sid_map *map;
198 u16 sid_map_mask;
199
200 if (vcpu->arch.msr & MSR_PR)
201 gvsid |= VSID_PR;
202
203 sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
204 map = &to_book3s(vcpu)->sid_map[sid_map_mask];
205 if (map->guest_vsid == gvsid) {
206 dprintk_sr("SR: Searching 0x%llx -> 0x%llx\n",
207 gvsid, map->host_vsid);
208 return map;
209 }
210
211 map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask];
212 if (map->guest_vsid == gvsid) {
213 dprintk_sr("SR: Searching 0x%llx -> 0x%llx\n",
214 gvsid, map->host_vsid);
215 return map;
216 }
217
218 dprintk_sr("SR: Searching 0x%llx -> not found\n", gvsid);
219 return NULL;
220}
221
222extern struct hash_pte *Hash;
223extern unsigned long _SDR1;
224
225static u32 *kvmppc_mmu_get_pteg(struct kvm_vcpu *vcpu, u32 vsid, u32 eaddr,
226 bool primary)
227{
228 u32 page, hash, htabmask;
229 ulong pteg = (ulong)Hash;
230
231 page = (eaddr & ~ESID_MASK) >> 12;
232
233 hash = ((vsid ^ page) << 6);
234 if (!primary)
235 hash = ~hash;
236
237 htabmask = ((_SDR1 & 0x1FF) << 16) | 0xFFC0;
238 hash &= htabmask;
239
240 pteg |= hash;
241
242 dprintk_mmu("htab: %p | hash: %x | htabmask: %x | pteg: %lx\n",
243 Hash, hash, htabmask, pteg);
244
245 return (u32*)pteg;
246}
247
248extern char etext[];
249
250int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte)
251{
252 pfn_t hpaddr;
253 u64 va;
254 u64 vsid;
255 struct kvmppc_sid_map *map;
256 volatile u32 *pteg;
257 u32 eaddr = orig_pte->eaddr;
258 u32 pteg0, pteg1;
259 register int rr = 0;
260 bool primary = false;
261 bool evict = false;
262 int hpte_id;
263 struct hpte_cache *pte;
264
265 /* Get host physical address for gpa */
266 hpaddr = gfn_to_pfn(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT);
267 if (kvm_is_error_hva(hpaddr)) {
268 printk(KERN_INFO "Couldn't get guest page for gfn %llx!\n",
269 orig_pte->eaddr);
270 return -EINVAL;
271 }
272 hpaddr <<= PAGE_SHIFT;
273
274 /* and write the mapping ea -> hpa into the pt */
275 vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid);
276 map = find_sid_vsid(vcpu, vsid);
277 if (!map) {
278 kvmppc_mmu_map_segment(vcpu, eaddr);
279 map = find_sid_vsid(vcpu, vsid);
280 }
281 BUG_ON(!map);
282
283 vsid = map->host_vsid;
284 va = (vsid << SID_SHIFT) | (eaddr & ~ESID_MASK);
285
286next_pteg:
287 if (rr == 16) {
288 primary = !primary;
289 evict = true;
290 rr = 0;
291 }
292
293 pteg = kvmppc_mmu_get_pteg(vcpu, vsid, eaddr, primary);
294
295 /* not evicting yet */
296 if (!evict && (pteg[rr] & PTE_V)) {
297 rr += 2;
298 goto next_pteg;
299 }
300
301 dprintk_mmu("KVM: old PTEG: %p (%d)\n", pteg, rr);
302 dprintk_mmu("KVM: %08x - %08x\n", pteg[0], pteg[1]);
303 dprintk_mmu("KVM: %08x - %08x\n", pteg[2], pteg[3]);
304 dprintk_mmu("KVM: %08x - %08x\n", pteg[4], pteg[5]);
305 dprintk_mmu("KVM: %08x - %08x\n", pteg[6], pteg[7]);
306 dprintk_mmu("KVM: %08x - %08x\n", pteg[8], pteg[9]);
307 dprintk_mmu("KVM: %08x - %08x\n", pteg[10], pteg[11]);
308 dprintk_mmu("KVM: %08x - %08x\n", pteg[12], pteg[13]);
309 dprintk_mmu("KVM: %08x - %08x\n", pteg[14], pteg[15]);
310
311 pteg0 = ((eaddr & 0x0fffffff) >> 22) | (vsid << 7) | PTE_V |
312 (primary ? 0 : PTE_SEC);
313 pteg1 = hpaddr | PTE_M | PTE_R | PTE_C;
314
315 if (orig_pte->may_write) {
316 pteg1 |= PP_RWRW;
317 mark_page_dirty(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT);
318 } else {
319 pteg1 |= PP_RWRX;
320 }
321
322 local_irq_disable();
323
324 if (pteg[rr]) {
325 pteg[rr] = 0;
326 asm volatile ("sync");
327 }
328 pteg[rr + 1] = pteg1;
329 pteg[rr] = pteg0;
330 asm volatile ("sync");
331
332 local_irq_enable();
333
334 dprintk_mmu("KVM: new PTEG: %p\n", pteg);
335 dprintk_mmu("KVM: %08x - %08x\n", pteg[0], pteg[1]);
336 dprintk_mmu("KVM: %08x - %08x\n", pteg[2], pteg[3]);
337 dprintk_mmu("KVM: %08x - %08x\n", pteg[4], pteg[5]);
338 dprintk_mmu("KVM: %08x - %08x\n", pteg[6], pteg[7]);
339 dprintk_mmu("KVM: %08x - %08x\n", pteg[8], pteg[9]);
340 dprintk_mmu("KVM: %08x - %08x\n", pteg[10], pteg[11]);
341 dprintk_mmu("KVM: %08x - %08x\n", pteg[12], pteg[13]);
342 dprintk_mmu("KVM: %08x - %08x\n", pteg[14], pteg[15]);
343
344
345 /* Now tell our Shadow PTE code about the new page */
346
347 hpte_id = kvmppc_mmu_hpte_cache_next(vcpu);
348 pte = &vcpu->arch.hpte_cache[hpte_id];
349
350 dprintk_mmu("KVM: %c%c Map 0x%llx: [%lx] 0x%llx (0x%llx) -> %lx\n",
351 orig_pte->may_write ? 'w' : '-',
352 orig_pte->may_execute ? 'x' : '-',
353 orig_pte->eaddr, (ulong)pteg, va,
354 orig_pte->vpage, hpaddr);
355
356 pte->slot = (ulong)&pteg[rr];
357 pte->host_va = va;
358 pte->pte = *orig_pte;
359 pte->pfn = hpaddr >> PAGE_SHIFT;
360
361 return 0;
362}
363
364static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid)
365{
366 struct kvmppc_sid_map *map;
367 struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
368 u16 sid_map_mask;
369 static int backwards_map = 0;
370
371 if (vcpu->arch.msr & MSR_PR)
372 gvsid |= VSID_PR;
373
374 /* We might get collisions that trap in preceding order, so let's
375 map them differently */
376
377 sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
378 if (backwards_map)
379 sid_map_mask = SID_MAP_MASK - sid_map_mask;
380
381 map = &to_book3s(vcpu)->sid_map[sid_map_mask];
382
383 /* Make sure we're taking the other map next time */
384 backwards_map = !backwards_map;
385
386 /* Uh-oh ... out of mappings. Let's flush! */
387 if (vcpu_book3s->vsid_next >= vcpu_book3s->vsid_max) {
388 vcpu_book3s->vsid_next = vcpu_book3s->vsid_first;
389 memset(vcpu_book3s->sid_map, 0,
390 sizeof(struct kvmppc_sid_map) * SID_MAP_NUM);
391 kvmppc_mmu_pte_flush(vcpu, 0, 0);
392 kvmppc_mmu_flush_segments(vcpu);
393 }
394 map->host_vsid = vcpu_book3s->vsid_next;
395
396 /* Would have to be 111 to be completely aligned with the rest of
397 Linux, but that is just way too little space! */
398 vcpu_book3s->vsid_next+=1;
399
400 map->guest_vsid = gvsid;
401 map->valid = true;
402
403 return map;
404}
405
406int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr)
407{
408 u32 esid = eaddr >> SID_SHIFT;
409 u64 gvsid;
410 u32 sr;
411 struct kvmppc_sid_map *map;
412 struct kvmppc_book3s_shadow_vcpu *svcpu = to_svcpu(vcpu);
413
414 if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) {
415 /* Invalidate an entry */
416 svcpu->sr[esid] = SR_INVALID;
417 return -ENOENT;
418 }
419
420 map = find_sid_vsid(vcpu, gvsid);
421 if (!map)
422 map = create_sid_map(vcpu, gvsid);
423
424 map->guest_esid = esid;
425 sr = map->host_vsid | SR_KP;
426 svcpu->sr[esid] = sr;
427
428 dprintk_sr("MMU: mtsr %d, 0x%x\n", esid, sr);
429
430 return 0;
431}
432
433void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu)
434{
435 int i;
436 struct kvmppc_book3s_shadow_vcpu *svcpu = to_svcpu(vcpu);
437
438 dprintk_sr("MMU: flushing all segments (%d)\n", ARRAY_SIZE(svcpu->sr));
439 for (i = 0; i < ARRAY_SIZE(svcpu->sr); i++)
440 svcpu->sr[i] = SR_INVALID;
441}
442
443void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
444{
445 kvmppc_mmu_pte_flush(vcpu, 0, 0);
446 preempt_disable();
447 __destroy_context(to_book3s(vcpu)->context_id);
448 preempt_enable();
449}
450
451/* From mm/mmu_context_hash32.c */
452#define CTX_TO_VSID(ctx) (((ctx) * (897 * 16)) & 0xffffff)
453
454int kvmppc_mmu_init(struct kvm_vcpu *vcpu)
455{
456 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
457 int err;
458
459 err = __init_new_context();
460 if (err < 0)
461 return -1;
462 vcpu3s->context_id = err;
463
464 vcpu3s->vsid_max = CTX_TO_VSID(vcpu3s->context_id + 1) - 1;
465 vcpu3s->vsid_first = CTX_TO_VSID(vcpu3s->context_id);
466
467#if 0 /* XXX still doesn't guarantee uniqueness */
468 /* We could collide with the Linux vsid space because the vsid
469 * wraps around at 24 bits. We're safe if we do our own space
470 * though, so let's always set the highest bit. */
471
472 vcpu3s->vsid_max |= 0x00800000;
473 vcpu3s->vsid_first |= 0x00800000;
474#endif
475 BUG_ON(vcpu3s->vsid_max < vcpu3s->vsid_first);
476
477 vcpu3s->vsid_next = vcpu3s->vsid_first;
478
479 return 0;
480}