powerpc/book3s/mm: Update Oops message to print the correct translation in use
[linux-2.6-block.git] / arch / powerpc / kernel / traps.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
14cf11af 2/*
14cf11af 3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
fe04b112 4 * Copyright 2007-2010 Freescale Semiconductor, Inc.
14cf11af 5 *
14cf11af
PM
6 * Modified by Cort Dougan (cort@cs.nmt.edu)
7 * and Paul Mackerras (paulus@samba.org)
8 */
9
10/*
11 * This file handles the architecture-dependent parts of hardware exceptions
12 */
13
14cf11af
PM
14#include <linux/errno.h>
15#include <linux/sched.h>
b17b0153 16#include <linux/sched/debug.h>
14cf11af
PM
17#include <linux/kernel.h>
18#include <linux/mm.h>
99cd1302 19#include <linux/pkeys.h>
14cf11af
PM
20#include <linux/stddef.h>
21#include <linux/unistd.h>
8dad3f92 22#include <linux/ptrace.h>
14cf11af 23#include <linux/user.h>
14cf11af 24#include <linux/interrupt.h>
14cf11af 25#include <linux/init.h>
8a39b05f
PG
26#include <linux/extable.h>
27#include <linux/module.h> /* print_modules */
8dad3f92 28#include <linux/prctl.h>
14cf11af
PM
29#include <linux/delay.h>
30#include <linux/kprobes.h>
cc532915 31#include <linux/kexec.h>
5474c120 32#include <linux/backlight.h>
73c9ceab 33#include <linux/bug.h>
1eeb66a1 34#include <linux/kdebug.h>
76462232 35#include <linux/ratelimit.h>
ba12eede 36#include <linux/context_tracking.h>
5080332c 37#include <linux/smp.h>
35adacd6
NP
38#include <linux/console.h>
39#include <linux/kmsg_dump.h>
14cf11af 40
80947e7c 41#include <asm/emulated_ops.h>
14cf11af 42#include <asm/pgtable.h>
7c0f6ba6 43#include <linux/uaccess.h>
7644d581 44#include <asm/debugfs.h>
14cf11af 45#include <asm/io.h>
86417780
PM
46#include <asm/machdep.h>
47#include <asm/rtas.h>
f7f6f4fe 48#include <asm/pmc.h>
14cf11af 49#include <asm/reg.h>
14cf11af
PM
50#ifdef CONFIG_PMAC_BACKLIGHT
51#include <asm/backlight.h>
52#endif
dc1c1ca3 53#ifdef CONFIG_PPC64
86417780 54#include <asm/firmware.h>
dc1c1ca3 55#include <asm/processor.h>
6ce6c629 56#include <asm/tm.h>
dc1c1ca3 57#endif
c0ce7d08 58#include <asm/kexec.h>
16c57b36 59#include <asm/ppc-opcode.h>
cce1f106 60#include <asm/rio.h>
ebaeb5ae 61#include <asm/fadump.h>
ae3a197e 62#include <asm/switch_to.h>
f54db641 63#include <asm/tm.h>
ae3a197e 64#include <asm/debug.h>
42f5b4ca 65#include <asm/asm-prototypes.h>
fd7bacbc 66#include <asm/hmi.h>
4e0e3435 67#include <sysdev/fsl_pci.h>
6cc89bad 68#include <asm/kprobes.h>
a99b9c5e 69#include <asm/stacktrace.h>
de3c83c2 70#include <asm/nmi.h>
dc1c1ca3 71
da665885 72#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
5be3492f
AB
73int (*__debugger)(struct pt_regs *regs) __read_mostly;
74int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
75int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
76int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
77int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
9422de3e 78int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
5be3492f 79int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
14cf11af
PM
80
81EXPORT_SYMBOL(__debugger);
82EXPORT_SYMBOL(__debugger_ipi);
83EXPORT_SYMBOL(__debugger_bpt);
84EXPORT_SYMBOL(__debugger_sstep);
85EXPORT_SYMBOL(__debugger_iabr_match);
9422de3e 86EXPORT_SYMBOL(__debugger_break_match);
14cf11af
PM
87EXPORT_SYMBOL(__debugger_fault_handler);
88#endif
89
8b3c34cf
MN
90/* Transactional Memory trap debug */
91#ifdef TM_DEBUG_SW
92#define TM_DEBUG(x...) printk(KERN_INFO x)
93#else
94#define TM_DEBUG(x...) do { } while(0)
95#endif
96
0f642d61
MOA
97static const char *signame(int signr)
98{
99 switch (signr) {
100 case SIGBUS: return "bus error";
101 case SIGFPE: return "floating point exception";
102 case SIGILL: return "illegal instruction";
103 case SIGSEGV: return "segfault";
104 case SIGTRAP: return "unhandled trap";
105 }
106
107 return "unknown signal";
108}
109
14cf11af
PM
110/*
111 * Trap & Exception support
112 */
113
6031d9d9 114#ifdef CONFIG_PMAC_BACKLIGHT
115static void pmac_backlight_unblank(void)
116{
117 mutex_lock(&pmac_backlight_mutex);
118 if (pmac_backlight) {
119 struct backlight_properties *props;
120
121 props = &pmac_backlight->props;
122 props->brightness = props->max_brightness;
123 props->power = FB_BLANK_UNBLANK;
124 backlight_update_status(pmac_backlight);
125 }
126 mutex_unlock(&pmac_backlight_mutex);
127}
128#else
129static inline void pmac_backlight_unblank(void) { }
130#endif
131
6fcd6baa
NP
132/*
133 * If oops/die is expected to crash the machine, return true here.
134 *
135 * This should not be expected to be 100% accurate, there may be
136 * notifiers registered or other unexpected conditions that may bring
137 * down the kernel. Or if the current process in the kernel is holding
138 * locks or has other critical state, the kernel may become effectively
139 * unusable anyway.
140 */
141bool die_will_crash(void)
142{
143 if (should_fadump_crash())
144 return true;
145 if (kexec_should_crash(current))
146 return true;
147 if (in_interrupt() || panic_on_oops ||
148 !current->pid || is_global_init(current))
149 return true;
150
151 return false;
152}
153
760ca4dc
AB
154static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
155static int die_owner = -1;
156static unsigned int die_nest_count;
157static int die_counter;
158
35adacd6
NP
159extern void panic_flush_kmsg_start(void)
160{
161 /*
162 * These are mostly taken from kernel/panic.c, but tries to do
163 * relatively minimal work. Don't use delay functions (TB may
164 * be broken), don't crash dump (need to set a firmware log),
165 * don't run notifiers. We do want to get some information to
166 * Linux console.
167 */
168 console_verbose();
169 bust_spinlocks(1);
170}
171
172extern void panic_flush_kmsg_end(void)
173{
174 printk_safe_flush_on_panic();
175 kmsg_dump(KMSG_DUMP_PANIC);
176 bust_spinlocks(0);
177 debug_locks_off();
de6da1e8 178 console_flush_on_panic(CONSOLE_FLUSH_PENDING);
35adacd6
NP
179}
180
03465f89 181static unsigned long oops_begin(struct pt_regs *regs)
14cf11af 182{
760ca4dc 183 int cpu;
34c2a14f 184 unsigned long flags;
14cf11af 185
293e4688 186 oops_enter();
187
760ca4dc
AB
188 /* racy, but better than risking deadlock. */
189 raw_local_irq_save(flags);
190 cpu = smp_processor_id();
191 if (!arch_spin_trylock(&die_lock)) {
192 if (cpu == die_owner)
193 /* nested oops. should stop eventually */;
194 else
195 arch_spin_lock(&die_lock);
34c2a14f 196 }
760ca4dc
AB
197 die_nest_count++;
198 die_owner = cpu;
199 console_verbose();
200 bust_spinlocks(1);
201 if (machine_is(powermac))
202 pmac_backlight_unblank();
203 return flags;
204}
03465f89 205NOKPROBE_SYMBOL(oops_begin);
e8222502 206
03465f89 207static void oops_end(unsigned long flags, struct pt_regs *regs,
760ca4dc
AB
208 int signr)
209{
14cf11af 210 bust_spinlocks(0);
373d4d09 211 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
760ca4dc 212 die_nest_count--;
58154c8c
AB
213 oops_exit();
214 printk("\n");
7458e8b2 215 if (!die_nest_count) {
760ca4dc 216 /* Nest count reaches zero, release the lock. */
7458e8b2 217 die_owner = -1;
760ca4dc 218 arch_spin_unlock(&die_lock);
7458e8b2 219 }
760ca4dc 220 raw_local_irq_restore(flags);
cc532915 221
d40b6768
NP
222 /*
223 * system_reset_excption handles debugger, crash dump, panic, for 0x100
224 */
225 if (TRAP(regs) == 0x100)
226 return;
227
ebaeb5ae
MS
228 crash_fadump(regs, "die oops");
229
4388c9b3 230 if (kexec_should_crash(current))
cc532915 231 crash_kexec(regs);
9b00ac06 232
760ca4dc
AB
233 if (!signr)
234 return;
235
58154c8c
AB
236 /*
237 * While our oops output is serialised by a spinlock, output
238 * from panic() called below can race and corrupt it. If we
239 * know we are going to panic, delay for 1 second so we have a
240 * chance to get clean backtraces from all CPUs that are oopsing.
241 */
242 if (in_interrupt() || panic_on_oops || !current->pid ||
243 is_global_init(current)) {
244 mdelay(MSEC_PER_SEC);
245 }
246
cea6a4ba 247 if (panic_on_oops)
012c437d 248 panic("Fatal exception");
760ca4dc
AB
249 do_exit(signr);
250}
03465f89 251NOKPROBE_SYMBOL(oops_end);
cea6a4ba 252
d7e02f7b
AK
253static char *get_mmu_str(void)
254{
255 if (early_radix_enabled())
256 return " MMU=Radix";
257 if (early_mmu_has_feature(MMU_FTR_HPTE_TABLE))
258 return " MMU=Hash";
259 return "";
260}
261
03465f89 262static int __die(const char *str, struct pt_regs *regs, long err)
760ca4dc
AB
263{
264 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
2e82ca3c 265
d7e02f7b 266 printk("%s PAGE_SIZE=%luK%s%s%s%s%s%s %s\n",
78227443 267 IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) ? "LE" : "BE",
d7e02f7b 268 PAGE_SIZE / 1024, get_mmu_str(),
78227443
ME
269 IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT" : "",
270 IS_ENABLED(CONFIG_SMP) ? " SMP" : "",
271 IS_ENABLED(CONFIG_SMP) ? (" NR_CPUS=" __stringify(NR_CPUS)) : "",
272 debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "",
273 IS_ENABLED(CONFIG_NUMA) ? " NUMA" : "",
274 ppc_md.name ? ppc_md.name : "");
760ca4dc
AB
275
276 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
277 return 1;
278
279 print_modules();
280 show_regs(regs);
14cf11af
PM
281
282 return 0;
283}
03465f89 284NOKPROBE_SYMBOL(__die);
14cf11af 285
760ca4dc
AB
286void die(const char *str, struct pt_regs *regs, long err)
287{
6f44b20e
NP
288 unsigned long flags;
289
d40b6768
NP
290 /*
291 * system_reset_excption handles debugger, crash dump, panic, for 0x100
292 */
293 if (TRAP(regs) != 0x100) {
294 if (debugger(regs))
295 return;
296 }
760ca4dc 297
6f44b20e 298 flags = oops_begin(regs);
760ca4dc
AB
299 if (__die(str, regs, err))
300 err = 0;
301 oops_end(flags, regs, err);
302}
15770a13 303NOKPROBE_SYMBOL(die);
760ca4dc 304
efc463ad 305void user_single_step_report(struct pt_regs *regs)
25baa35b 306{
2e1661d2 307 force_sig_fault(SIGTRAP, TRAP_TRACE, (void __user *)regs->nip);
25baa35b
ON
308}
309
997dd26c
ME
310static void show_signal_msg(int signr, struct pt_regs *regs, int code,
311 unsigned long addr)
35a52a10
MOA
312{
313 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
314 DEFAULT_RATELIMIT_BURST);
35a52a10 315
997dd26c 316 if (!show_unhandled_signals)
35a52a10
MOA
317 return;
318
319 if (!unhandled_signal(current, signr))
320 return;
321
997dd26c
ME
322 if (!__ratelimit(&rs))
323 return;
324
0f642d61
MOA
325 pr_info("%s[%d]: %s (%d) at %lx nip %lx lr %lx code %x",
326 current->comm, current->pid, signame(signr), signr,
49d8f201 327 addr, regs->nip, regs->link, code);
0f642d61
MOA
328
329 print_vma_addr(KERN_CONT " in ", regs->nip);
330
331 pr_cont("\n");
a99b9c5e
MOA
332
333 show_user_instructions(regs);
658b0f92 334}
99cd1302 335
2c44ce28
EB
336static bool exception_common(int signr, struct pt_regs *regs, int code,
337 unsigned long addr)
14cf11af 338{
14cf11af 339 if (!user_mode(regs)) {
760ca4dc 340 die("Exception in kernel mode", regs, signr);
2c44ce28 341 return false;
760ca4dc
AB
342 }
343
658b0f92 344 show_signal_msg(signr, regs, code, addr);
14cf11af 345
a3512b2d 346 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
9f2f79e3
BH
347 local_irq_enable();
348
41ab5266 349 current->thread.trap_nr = code;
c5cc1f4d
TJB
350
351 /*
352 * Save all the pkey registers AMR/IAMR/UAMOR. Eg: Core dumps need
353 * to capture the content, if the task gets killed.
354 */
355 thread_pkey_regs_save(&current->thread);
356
2c44ce28
EB
357 return true;
358}
359
5d8fb8a5 360void _exception_pkey(struct pt_regs *regs, unsigned long addr, int key)
2c44ce28 361{
5d8fb8a5 362 if (!exception_common(SIGSEGV, regs, SEGV_PKUERR, addr))
2c44ce28
EB
363 return;
364
77c70728 365 force_sig_pkuerr((void __user *) addr, key);
14cf11af
PM
366}
367
99cd1302
RP
368void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
369{
c1c7c85c
EB
370 if (!exception_common(signr, regs, code, addr))
371 return;
372
2e1661d2 373 force_sig_fault(signr, code, (void __user *)addr);
99cd1302
RP
374}
375
ccd47702
NP
376/*
377 * The interrupt architecture has a quirk in that the HV interrupts excluding
378 * the NMIs (0x100 and 0x200) do not clear MSR[RI] at entry. The first thing
379 * that an interrupt handler must do is save off a GPR into a scratch register,
380 * and all interrupts on POWERNV (HV=1) use the HSPRG1 register as scratch.
381 * Therefore an NMI can clobber an HV interrupt's live HSPRG1 without noticing
382 * that it is non-reentrant, which leads to random data corruption.
383 *
384 * The solution is for NMI interrupts in HV mode to check if they originated
385 * from these critical HV interrupt regions. If so, then mark them not
386 * recoverable.
387 *
388 * An alternative would be for HV NMIs to use SPRG for scratch to avoid the
389 * HSPRG1 clobber, however this would cause guest SPRG to be clobbered. Linux
390 * guests should always have MSR[RI]=0 when its scratch SPRG is in use, so
391 * that would work. However any other guest OS that may have the SPRG live
392 * and MSR[RI]=1 could encounter silent corruption.
393 *
394 * Builds that do not support KVM could take this second option to increase
395 * the recoverability of NMIs.
396 */
397void hv_nmi_check_nonrecoverable(struct pt_regs *regs)
398{
399#ifdef CONFIG_PPC_POWERNV
400 unsigned long kbase = (unsigned long)_stext;
401 unsigned long nip = regs->nip;
402
403 if (!(regs->msr & MSR_RI))
404 return;
405 if (!(regs->msr & MSR_HV))
406 return;
407 if (regs->msr & MSR_PR)
408 return;
409
410 /*
411 * Now test if the interrupt has hit a range that may be using
412 * HSPRG1 without having RI=0 (i.e., an HSRR interrupt). The
413 * problem ranges all run un-relocated. Test real and virt modes
414 * at the same time by droping the high bit of the nip (virt mode
415 * entry points still have the +0x4000 offset).
416 */
417 nip &= ~0xc000000000000000ULL;
418 if ((nip >= 0x500 && nip < 0x600) || (nip >= 0x4500 && nip < 0x4600))
419 goto nonrecoverable;
420 if ((nip >= 0x980 && nip < 0xa00) || (nip >= 0x4980 && nip < 0x4a00))
421 goto nonrecoverable;
422 if ((nip >= 0xe00 && nip < 0xec0) || (nip >= 0x4e00 && nip < 0x4ec0))
423 goto nonrecoverable;
424 if ((nip >= 0xf80 && nip < 0xfa0) || (nip >= 0x4f80 && nip < 0x4fa0))
425 goto nonrecoverable;
bd3524fe 426
ccd47702 427 /* Trampoline code runs un-relocated so subtract kbase. */
bd3524fe
NP
428 if (nip >= (unsigned long)(start_real_trampolines - kbase) &&
429 nip < (unsigned long)(end_real_trampolines - kbase))
ccd47702 430 goto nonrecoverable;
bd3524fe
NP
431 if (nip >= (unsigned long)(start_virt_trampolines - kbase) &&
432 nip < (unsigned long)(end_virt_trampolines - kbase))
ccd47702
NP
433 goto nonrecoverable;
434 return;
435
436nonrecoverable:
437 regs->msr &= ~MSR_RI;
438#endif
439}
440
14cf11af
PM
441void system_reset_exception(struct pt_regs *regs)
442{
cbf2ba95
NP
443 unsigned long hsrr0, hsrr1;
444 bool nested = in_nmi();
445 bool saved_hsrrs = false;
446
2b4f3ac5
NP
447 /*
448 * Avoid crashes in case of nested NMI exceptions. Recoverability
449 * is determined by RI and in_nmi
450 */
2b4f3ac5
NP
451 if (!nested)
452 nmi_enter();
453
cbf2ba95
NP
454 /*
455 * System reset can interrupt code where HSRRs are live and MSR[RI]=1.
456 * The system reset interrupt itself may clobber HSRRs (e.g., to call
457 * OPAL), so save them here and restore them before returning.
458 *
459 * Machine checks don't need to save HSRRs, as the real mode handler
460 * is careful to avoid them, and the regular handler is not delivered
461 * as an NMI.
462 */
463 if (cpu_has_feature(CPU_FTR_HVMODE)) {
464 hsrr0 = mfspr(SPRN_HSRR0);
465 hsrr1 = mfspr(SPRN_HSRR1);
466 saved_hsrrs = true;
467 }
468
ccd47702
NP
469 hv_nmi_check_nonrecoverable(regs);
470
ca41ad43
NP
471 __this_cpu_inc(irq_stat.sreset_irqs);
472
14cf11af 473 /* See if any machine dependent calls */
c902be71
AB
474 if (ppc_md.system_reset_exception) {
475 if (ppc_md.system_reset_exception(regs))
c4f3b52c 476 goto out;
c902be71 477 }
14cf11af 478
4388c9b3
NP
479 if (debugger(regs))
480 goto out;
481
e7ca44ed 482 kmsg_dump(KMSG_DUMP_OOPS);
4388c9b3
NP
483 /*
484 * A system reset is a request to dump, so we always send
485 * it through the crashdump code (if fadump or kdump are
486 * registered).
487 */
488 crash_fadump(regs, "System Reset");
489
490 crash_kexec(regs);
491
492 /*
493 * We aren't the primary crash CPU. We need to send it
494 * to a holding pattern to avoid it ending up in the panic
495 * code.
496 */
497 crash_kexec_secondary(regs);
498
499 /*
500 * No debugger or crash dump registered, print logs then
501 * panic.
502 */
4552d128 503 die("System Reset", regs, SIGABRT);
4388c9b3
NP
504
505 mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */
506 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
507 nmi_panic(regs, "System Reset");
14cf11af 508
c4f3b52c
NP
509out:
510#ifdef CONFIG_PPC_BOOK3S_64
511 BUG_ON(get_paca()->in_nmi == 0);
512 if (get_paca()->in_nmi > 1)
4388c9b3 513 nmi_panic(regs, "Unrecoverable nested System Reset");
c4f3b52c 514#endif
14cf11af
PM
515 /* Must die if the interrupt is not recoverable */
516 if (!(regs->msr & MSR_RI))
4388c9b3 517 nmi_panic(regs, "Unrecoverable System Reset");
14cf11af 518
cbf2ba95
NP
519 if (saved_hsrrs) {
520 mtspr(SPRN_HSRR0, hsrr0);
521 mtspr(SPRN_HSRR1, hsrr1);
522 }
523
2b4f3ac5
NP
524 if (!nested)
525 nmi_exit();
526
14cf11af
PM
527 /* What should we do here? We could issue a shutdown or hard reset. */
528}
1e9b4507 529
14cf11af
PM
530/*
531 * I/O accesses can cause machine checks on powermacs.
532 * Check if the NIP corresponds to the address of a sync
533 * instruction for which there is an entry in the exception
534 * table.
535 * Note that the 601 only takes a machine check on TEA
536 * (transfer error ack) signal assertion, and does not
537 * set any of the top 16 bits of SRR1.
538 * -- paulus.
539 */
540static inline int check_io_access(struct pt_regs *regs)
541{
68a64357 542#ifdef CONFIG_PPC32
14cf11af
PM
543 unsigned long msr = regs->msr;
544 const struct exception_table_entry *entry;
545 unsigned int *nip = (unsigned int *)regs->nip;
546
547 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
548 && (entry = search_exception_tables(regs->nip)) != NULL) {
549 /*
550 * Check that it's a sync instruction, or somewhere
551 * in the twi; isync; nop sequence that inb/inw/inl uses.
552 * As the address is in the exception table
553 * we should be able to read the instr there.
554 * For the debug message, we look at the preceding
555 * load or store.
556 */
ddc6cd0d 557 if (*nip == PPC_INST_NOP)
14cf11af 558 nip -= 2;
ddc6cd0d 559 else if (*nip == PPC_INST_ISYNC)
14cf11af 560 --nip;
ddc6cd0d 561 if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
14cf11af
PM
562 unsigned int rb;
563
564 --nip;
565 rb = (*nip >> 11) & 0x1f;
566 printk(KERN_DEBUG "%s bad port %lx at %p\n",
567 (*nip & 0x100)? "OUT to": "IN from",
568 regs->gpr[rb] - _IO_BASE, nip);
569 regs->msr |= MSR_RI;
61a92f70 570 regs->nip = extable_fixup(entry);
14cf11af
PM
571 return 1;
572 }
573 }
68a64357 574#endif /* CONFIG_PPC32 */
14cf11af
PM
575 return 0;
576}
577
172ae2e7 578#ifdef CONFIG_PPC_ADV_DEBUG_REGS
14cf11af
PM
579/* On 4xx, the reason for the machine check or program exception
580 is in the ESR. */
581#define get_reason(regs) ((regs)->dsisr)
14cf11af
PM
582#define REASON_FP ESR_FP
583#define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
584#define REASON_PRIVILEGED ESR_PPR
585#define REASON_TRAP ESR_PTR
586
587/* single-step stuff */
51ae8d4a
BB
588#define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC)
589#define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
0e524e76 590#define clear_br_trace(regs) do {} while(0)
14cf11af
PM
591#else
592/* On non-4xx, the reason for the machine check or program
593 exception is in the MSR. */
594#define get_reason(regs) ((regs)->msr)
d30a5a52
ME
595#define REASON_TM SRR1_PROGTM
596#define REASON_FP SRR1_PROGFPE
597#define REASON_ILLEGAL SRR1_PROGILL
598#define REASON_PRIVILEGED SRR1_PROGPRIV
599#define REASON_TRAP SRR1_PROGTRAP
14cf11af
PM
600
601#define single_stepping(regs) ((regs)->msr & MSR_SE)
602#define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
0e524e76 603#define clear_br_trace(regs) ((regs)->msr &= ~MSR_BE)
14cf11af
PM
604#endif
605
0d0935b3 606#if defined(CONFIG_E500)
fe04b112
SW
607int machine_check_e500mc(struct pt_regs *regs)
608{
609 unsigned long mcsr = mfspr(SPRN_MCSR);
a4e89ffb 610 unsigned long pvr = mfspr(SPRN_PVR);
fe04b112
SW
611 unsigned long reason = mcsr;
612 int recoverable = 1;
613
82a9a480 614 if (reason & MCSR_LD) {
cce1f106
SX
615 recoverable = fsl_rio_mcheck_exception(regs);
616 if (recoverable == 1)
617 goto silent_out;
618 }
619
fe04b112
SW
620 printk("Machine check in kernel mode.\n");
621 printk("Caused by (from MCSR=%lx): ", reason);
622
623 if (reason & MCSR_MCP)
422123cc 624 pr_cont("Machine Check Signal\n");
fe04b112
SW
625
626 if (reason & MCSR_ICPERR) {
422123cc 627 pr_cont("Instruction Cache Parity Error\n");
fe04b112
SW
628
629 /*
630 * This is recoverable by invalidating the i-cache.
631 */
632 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
633 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
634 ;
635
636 /*
637 * This will generally be accompanied by an instruction
638 * fetch error report -- only treat MCSR_IF as fatal
639 * if it wasn't due to an L1 parity error.
640 */
641 reason &= ~MCSR_IF;
642 }
643
644 if (reason & MCSR_DCPERR_MC) {
422123cc 645 pr_cont("Data Cache Parity Error\n");
37caf9f2
KG
646
647 /*
648 * In write shadow mode we auto-recover from the error, but it
649 * may still get logged and cause a machine check. We should
650 * only treat the non-write shadow case as non-recoverable.
651 */
a4e89ffb
MW
652 /* On e6500 core, L1 DCWS (Data cache write shadow mode) bit
653 * is not implemented but L1 data cache always runs in write
654 * shadow mode. Hence on data cache parity errors HW will
655 * automatically invalidate the L1 Data Cache.
656 */
657 if (PVR_VER(pvr) != PVR_VER_E6500) {
658 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
659 recoverable = 0;
660 }
fe04b112
SW
661 }
662
663 if (reason & MCSR_L2MMU_MHIT) {
422123cc 664 pr_cont("Hit on multiple TLB entries\n");
fe04b112
SW
665 recoverable = 0;
666 }
667
668 if (reason & MCSR_NMI)
422123cc 669 pr_cont("Non-maskable interrupt\n");
fe04b112
SW
670
671 if (reason & MCSR_IF) {
422123cc 672 pr_cont("Instruction Fetch Error Report\n");
fe04b112
SW
673 recoverable = 0;
674 }
675
676 if (reason & MCSR_LD) {
422123cc 677 pr_cont("Load Error Report\n");
fe04b112
SW
678 recoverable = 0;
679 }
680
681 if (reason & MCSR_ST) {
422123cc 682 pr_cont("Store Error Report\n");
fe04b112
SW
683 recoverable = 0;
684 }
685
686 if (reason & MCSR_LDG) {
422123cc 687 pr_cont("Guarded Load Error Report\n");
fe04b112
SW
688 recoverable = 0;
689 }
690
691 if (reason & MCSR_TLBSYNC)
422123cc 692 pr_cont("Simultaneous tlbsync operations\n");
fe04b112
SW
693
694 if (reason & MCSR_BSL2_ERR) {
422123cc 695 pr_cont("Level 2 Cache Error\n");
fe04b112
SW
696 recoverable = 0;
697 }
698
699 if (reason & MCSR_MAV) {
700 u64 addr;
701
702 addr = mfspr(SPRN_MCAR);
703 addr |= (u64)mfspr(SPRN_MCARU) << 32;
704
422123cc 705 pr_cont("Machine Check %s Address: %#llx\n",
fe04b112
SW
706 reason & MCSR_MEA ? "Effective" : "Physical", addr);
707 }
708
cce1f106 709silent_out:
fe04b112
SW
710 mtspr(SPRN_MCSR, mcsr);
711 return mfspr(SPRN_MCSR) == 0 && recoverable;
712}
713
47c0bd1a
BH
714int machine_check_e500(struct pt_regs *regs)
715{
42bff234 716 unsigned long reason = mfspr(SPRN_MCSR);
47c0bd1a 717
cce1f106
SX
718 if (reason & MCSR_BUS_RBERR) {
719 if (fsl_rio_mcheck_exception(regs))
720 return 1;
4e0e3435
HJ
721 if (fsl_pci_mcheck_exception(regs))
722 return 1;
cce1f106
SX
723 }
724
14cf11af
PM
725 printk("Machine check in kernel mode.\n");
726 printk("Caused by (from MCSR=%lx): ", reason);
727
728 if (reason & MCSR_MCP)
422123cc 729 pr_cont("Machine Check Signal\n");
14cf11af 730 if (reason & MCSR_ICPERR)
422123cc 731 pr_cont("Instruction Cache Parity Error\n");
14cf11af 732 if (reason & MCSR_DCP_PERR)
422123cc 733 pr_cont("Data Cache Push Parity Error\n");
14cf11af 734 if (reason & MCSR_DCPERR)
422123cc 735 pr_cont("Data Cache Parity Error\n");
14cf11af 736 if (reason & MCSR_BUS_IAERR)
422123cc 737 pr_cont("Bus - Instruction Address Error\n");
14cf11af 738 if (reason & MCSR_BUS_RAERR)
422123cc 739 pr_cont("Bus - Read Address Error\n");
14cf11af 740 if (reason & MCSR_BUS_WAERR)
422123cc 741 pr_cont("Bus - Write Address Error\n");
14cf11af 742 if (reason & MCSR_BUS_IBERR)
422123cc 743 pr_cont("Bus - Instruction Data Error\n");
14cf11af 744 if (reason & MCSR_BUS_RBERR)
422123cc 745 pr_cont("Bus - Read Data Bus Error\n");
14cf11af 746 if (reason & MCSR_BUS_WBERR)
422123cc 747 pr_cont("Bus - Write Data Bus Error\n");
14cf11af 748 if (reason & MCSR_BUS_IPERR)
422123cc 749 pr_cont("Bus - Instruction Parity Error\n");
14cf11af 750 if (reason & MCSR_BUS_RPERR)
422123cc 751 pr_cont("Bus - Read Parity Error\n");
47c0bd1a
BH
752
753 return 0;
754}
4490c06b
KG
755
756int machine_check_generic(struct pt_regs *regs)
757{
758 return 0;
759}
47c0bd1a
BH
760#elif defined(CONFIG_E200)
761int machine_check_e200(struct pt_regs *regs)
762{
42bff234 763 unsigned long reason = mfspr(SPRN_MCSR);
47c0bd1a 764
14cf11af
PM
765 printk("Machine check in kernel mode.\n");
766 printk("Caused by (from MCSR=%lx): ", reason);
767
768 if (reason & MCSR_MCP)
422123cc 769 pr_cont("Machine Check Signal\n");
14cf11af 770 if (reason & MCSR_CP_PERR)
422123cc 771 pr_cont("Cache Push Parity Error\n");
14cf11af 772 if (reason & MCSR_CPERR)
422123cc 773 pr_cont("Cache Parity Error\n");
14cf11af 774 if (reason & MCSR_EXCP_ERR)
422123cc 775 pr_cont("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
14cf11af 776 if (reason & MCSR_BUS_IRERR)
422123cc 777 pr_cont("Bus - Read Bus Error on instruction fetch\n");
14cf11af 778 if (reason & MCSR_BUS_DRERR)
422123cc 779 pr_cont("Bus - Read Bus Error on data load\n");
14cf11af 780 if (reason & MCSR_BUS_WRERR)
422123cc 781 pr_cont("Bus - Write Bus Error on buffered store or cache line push\n");
47c0bd1a
BH
782
783 return 0;
784}
7f3f819e 785#elif defined(CONFIG_PPC32)
47c0bd1a
BH
786int machine_check_generic(struct pt_regs *regs)
787{
42bff234 788 unsigned long reason = regs->msr;
47c0bd1a 789
14cf11af
PM
790 printk("Machine check in kernel mode.\n");
791 printk("Caused by (from SRR1=%lx): ", reason);
792 switch (reason & 0x601F0000) {
793 case 0x80000:
422123cc 794 pr_cont("Machine check signal\n");
14cf11af
PM
795 break;
796 case 0: /* for 601 */
797 case 0x40000:
798 case 0x140000: /* 7450 MSS error and TEA */
422123cc 799 pr_cont("Transfer error ack signal\n");
14cf11af
PM
800 break;
801 case 0x20000:
422123cc 802 pr_cont("Data parity error signal\n");
14cf11af
PM
803 break;
804 case 0x10000:
422123cc 805 pr_cont("Address parity error signal\n");
14cf11af
PM
806 break;
807 case 0x20000000:
422123cc 808 pr_cont("L1 Data Cache error\n");
14cf11af
PM
809 break;
810 case 0x40000000:
422123cc 811 pr_cont("L1 Instruction Cache error\n");
14cf11af
PM
812 break;
813 case 0x00100000:
422123cc 814 pr_cont("L2 data cache parity error\n");
14cf11af
PM
815 break;
816 default:
422123cc 817 pr_cont("Unknown values in msr\n");
14cf11af 818 }
75918a4b
OJ
819 return 0;
820}
47c0bd1a 821#endif /* everything else */
75918a4b
OJ
822
823void machine_check_exception(struct pt_regs *regs)
824{
825 int recover = 0;
b96672dd
NP
826 bool nested = in_nmi();
827 if (!nested)
828 nmi_enter();
75918a4b 829
8a03e81c 830 __this_cpu_inc(irq_stat.mce_exceptions);
89713ed1 831
d93b0ac0
MS
832 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
833
47c0bd1a
BH
834 /* See if any machine dependent calls. In theory, we would want
835 * to call the CPU first, and call the ppc_md. one if the CPU
836 * one returns a positive number. However there is existing code
837 * that assumes the board gets a first chance, so let's keep it
838 * that way for now and fix things later. --BenH.
839 */
75918a4b
OJ
840 if (ppc_md.machine_check_exception)
841 recover = ppc_md.machine_check_exception(regs);
47c0bd1a
BH
842 else if (cur_cpu_spec->machine_check)
843 recover = cur_cpu_spec->machine_check(regs);
75918a4b 844
47c0bd1a 845 if (recover > 0)
ba12eede 846 goto bail;
75918a4b 847
a443506b 848 if (debugger_fault_handler(regs))
ba12eede 849 goto bail;
75918a4b
OJ
850
851 if (check_io_access(regs))
ba12eede 852 goto bail;
75918a4b 853
daf00ae7
CL
854 if (!nested)
855 nmi_exit();
856
857 die("Machine check", regs, SIGBUS);
858
0bbea75c
CL
859 /* Must die if the interrupt is not recoverable */
860 if (!(regs->msr & MSR_RI))
861 nmi_panic(regs, "Unrecoverable Machine check");
862
daf00ae7
CL
863 return;
864
ba12eede 865bail:
b96672dd
NP
866 if (!nested)
867 nmi_exit();
14cf11af
PM
868}
869
870void SMIException(struct pt_regs *regs)
871{
872 die("System Management Interrupt", regs, SIGABRT);
873}
874
5080332c
MN
875#ifdef CONFIG_VSX
876static void p9_hmi_special_emu(struct pt_regs *regs)
877{
878 unsigned int ra, rb, t, i, sel, instr, rc;
879 const void __user *addr;
880 u8 vbuf[16], *vdst;
881 unsigned long ea, msr, msr_mask;
882 bool swap;
883
884 if (__get_user_inatomic(instr, (unsigned int __user *)regs->nip))
885 return;
886
887 /*
888 * lxvb16x opcode: 0x7c0006d8
889 * lxvd2x opcode: 0x7c000698
890 * lxvh8x opcode: 0x7c000658
891 * lxvw4x opcode: 0x7c000618
892 */
893 if ((instr & 0xfc00073e) != 0x7c000618) {
894 pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx"
895 " instr=%08x\n",
896 smp_processor_id(), current->comm, current->pid,
897 regs->nip, instr);
898 return;
899 }
900
901 /* Grab vector registers into the task struct */
902 msr = regs->msr; /* Grab msr before we flush the bits */
903 flush_vsx_to_thread(current);
904 enable_kernel_altivec();
905
906 /*
907 * Is userspace running with a different endian (this is rare but
908 * not impossible)
909 */
910 swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
911
912 /* Decode the instruction */
913 ra = (instr >> 16) & 0x1f;
914 rb = (instr >> 11) & 0x1f;
915 t = (instr >> 21) & 0x1f;
916 if (instr & 1)
917 vdst = (u8 *)&current->thread.vr_state.vr[t];
918 else
919 vdst = (u8 *)&current->thread.fp_state.fpr[t][0];
920
921 /* Grab the vector address */
922 ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0);
923 if (is_32bit_task())
924 ea &= 0xfffffffful;
925 addr = (__force const void __user *)ea;
926
927 /* Check it */
96d4f267 928 if (!access_ok(addr, 16)) {
5080332c
MN
929 pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx"
930 " instr=%08x addr=%016lx\n",
931 smp_processor_id(), current->comm, current->pid,
932 regs->nip, instr, (unsigned long)addr);
933 return;
934 }
935
936 /* Read the vector */
937 rc = 0;
938 if ((unsigned long)addr & 0xfUL)
939 /* unaligned case */
940 rc = __copy_from_user_inatomic(vbuf, addr, 16);
941 else
942 __get_user_atomic_128_aligned(vbuf, addr, rc);
943 if (rc) {
944 pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx"
945 " instr=%08x addr=%016lx\n",
946 smp_processor_id(), current->comm, current->pid,
947 regs->nip, instr, (unsigned long)addr);
948 return;
949 }
950
951 pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx"
952 " instr=%08x addr=%016lx\n",
953 smp_processor_id(), current->comm, current->pid, regs->nip,
954 instr, (unsigned long) addr);
955
956 /* Grab instruction "selector" */
957 sel = (instr >> 6) & 3;
958
959 /*
960 * Check to make sure the facility is actually enabled. This
961 * could happen if we get a false positive hit.
962 *
963 * lxvd2x/lxvw4x always check MSR VSX sel = 0,2
964 * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3
965 */
966 msr_mask = MSR_VSX;
967 if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */
968 msr_mask = MSR_VEC;
969 if (!(msr & msr_mask)) {
970 pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx"
971 " instr=%08x msr:%016lx\n",
972 smp_processor_id(), current->comm, current->pid,
973 regs->nip, instr, msr);
974 return;
975 }
976
977 /* Do logging here before we modify sel based on endian */
978 switch (sel) {
979 case 0: /* lxvw4x */
980 PPC_WARN_EMULATED(lxvw4x, regs);
981 break;
982 case 1: /* lxvh8x */
983 PPC_WARN_EMULATED(lxvh8x, regs);
984 break;
985 case 2: /* lxvd2x */
986 PPC_WARN_EMULATED(lxvd2x, regs);
987 break;
988 case 3: /* lxvb16x */
989 PPC_WARN_EMULATED(lxvb16x, regs);
990 break;
991 }
992
993#ifdef __LITTLE_ENDIAN__
994 /*
995 * An LE kernel stores the vector in the task struct as an LE
996 * byte array (effectively swapping both the components and
997 * the content of the components). Those instructions expect
998 * the components to remain in ascending address order, so we
999 * swap them back.
1000 *
1001 * If we are running a BE user space, the expectation is that
1002 * of a simple memcpy, so forcing the emulation to look like
1003 * a lxvb16x should do the trick.
1004 */
1005 if (swap)
1006 sel = 3;
1007
1008 switch (sel) {
1009 case 0: /* lxvw4x */
1010 for (i = 0; i < 4; i++)
1011 ((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i];
1012 break;
1013 case 1: /* lxvh8x */
1014 for (i = 0; i < 8; i++)
1015 ((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i];
1016 break;
1017 case 2: /* lxvd2x */
1018 for (i = 0; i < 2; i++)
1019 ((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i];
1020 break;
1021 case 3: /* lxvb16x */
1022 for (i = 0; i < 16; i++)
1023 vdst[i] = vbuf[15-i];
1024 break;
1025 }
1026#else /* __LITTLE_ENDIAN__ */
1027 /* On a big endian kernel, a BE userspace only needs a memcpy */
1028 if (!swap)
1029 sel = 3;
1030
1031 /* Otherwise, we need to swap the content of the components */
1032 switch (sel) {
1033 case 0: /* lxvw4x */
1034 for (i = 0; i < 4; i++)
1035 ((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]);
1036 break;
1037 case 1: /* lxvh8x */
1038 for (i = 0; i < 8; i++)
1039 ((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]);
1040 break;
1041 case 2: /* lxvd2x */
1042 for (i = 0; i < 2; i++)
1043 ((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]);
1044 break;
1045 case 3: /* lxvb16x */
1046 memcpy(vdst, vbuf, 16);
1047 break;
1048 }
1049#endif /* !__LITTLE_ENDIAN__ */
1050
1051 /* Go to next instruction */
1052 regs->nip += 4;
1053}
1054#endif /* CONFIG_VSX */
1055
0869b6fd
MS
1056void handle_hmi_exception(struct pt_regs *regs)
1057{
1058 struct pt_regs *old_regs;
1059
1060 old_regs = set_irq_regs(regs);
1061 irq_enter();
1062
5080332c
MN
1063#ifdef CONFIG_VSX
1064 /* Real mode flagged P9 special emu is needed */
1065 if (local_paca->hmi_p9_special_emu) {
1066 local_paca->hmi_p9_special_emu = 0;
1067
1068 /*
1069 * We don't want to take page faults while doing the
1070 * emulation, we just replay the instruction if necessary.
1071 */
1072 pagefault_disable();
1073 p9_hmi_special_emu(regs);
1074 pagefault_enable();
1075 }
1076#endif /* CONFIG_VSX */
1077
0869b6fd
MS
1078 if (ppc_md.handle_hmi_exception)
1079 ppc_md.handle_hmi_exception(regs);
1080
1081 irq_exit();
1082 set_irq_regs(old_regs);
1083}
1084
dc1c1ca3 1085void unknown_exception(struct pt_regs *regs)
14cf11af 1086{
ba12eede
LZ
1087 enum ctx_state prev_state = exception_enter();
1088
14cf11af
PM
1089 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1090 regs->nip, regs->msr, regs->trap);
1091
e821fa42 1092 _exception(SIGTRAP, regs, TRAP_UNK, 0);
ba12eede
LZ
1093
1094 exception_exit(prev_state);
14cf11af
PM
1095}
1096
dc1c1ca3 1097void instruction_breakpoint_exception(struct pt_regs *regs)
14cf11af 1098{
ba12eede
LZ
1099 enum ctx_state prev_state = exception_enter();
1100
14cf11af
PM
1101 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
1102 5, SIGTRAP) == NOTIFY_STOP)
ba12eede 1103 goto bail;
14cf11af 1104 if (debugger_iabr_match(regs))
ba12eede 1105 goto bail;
14cf11af 1106 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
ba12eede
LZ
1107
1108bail:
1109 exception_exit(prev_state);
14cf11af
PM
1110}
1111
1112void RunModeException(struct pt_regs *regs)
1113{
e821fa42 1114 _exception(SIGTRAP, regs, TRAP_UNK, 0);
14cf11af
PM
1115}
1116
03465f89 1117void single_step_exception(struct pt_regs *regs)
14cf11af 1118{
ba12eede
LZ
1119 enum ctx_state prev_state = exception_enter();
1120
2538c2d0 1121 clear_single_step(regs);
0e524e76 1122 clear_br_trace(regs);
14cf11af 1123
6cc89bad
NR
1124 if (kprobe_post_handler(regs))
1125 return;
1126
14cf11af
PM
1127 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1128 5, SIGTRAP) == NOTIFY_STOP)
ba12eede 1129 goto bail;
14cf11af 1130 if (debugger_sstep(regs))
ba12eede 1131 goto bail;
14cf11af
PM
1132
1133 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
ba12eede
LZ
1134
1135bail:
1136 exception_exit(prev_state);
14cf11af 1137}
03465f89 1138NOKPROBE_SYMBOL(single_step_exception);
14cf11af
PM
1139
1140/*
1141 * After we have successfully emulated an instruction, we have to
1142 * check if the instruction was being single-stepped, and if so,
1143 * pretend we got a single-step exception. This was pointed out
1144 * by Kumar Gala. -- paulus
1145 */
8dad3f92 1146static void emulate_single_step(struct pt_regs *regs)
14cf11af 1147{
2538c2d0
P
1148 if (single_stepping(regs))
1149 single_step_exception(regs);
14cf11af
PM
1150}
1151
5fad293b 1152static inline int __parse_fpscr(unsigned long fpscr)
dc1c1ca3 1153{
aeb1c0f6 1154 int ret = FPE_FLTUNK;
dc1c1ca3
SR
1155
1156 /* Invalid operation */
1157 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
5fad293b 1158 ret = FPE_FLTINV;
dc1c1ca3
SR
1159
1160 /* Overflow */
1161 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
5fad293b 1162 ret = FPE_FLTOVF;
dc1c1ca3
SR
1163
1164 /* Underflow */
1165 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
5fad293b 1166 ret = FPE_FLTUND;
dc1c1ca3
SR
1167
1168 /* Divide by zero */
1169 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
5fad293b 1170 ret = FPE_FLTDIV;
dc1c1ca3
SR
1171
1172 /* Inexact result */
1173 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
5fad293b
KG
1174 ret = FPE_FLTRES;
1175
1176 return ret;
1177}
1178
1179static void parse_fpe(struct pt_regs *regs)
1180{
1181 int code = 0;
1182
1183 flush_fp_to_thread(current);
1184
de79f7b9 1185 code = __parse_fpscr(current->thread.fp_state.fpscr);
dc1c1ca3
SR
1186
1187 _exception(SIGFPE, regs, code, regs->nip);
1188}
1189
1190/*
1191 * Illegal instruction emulation support. Originally written to
14cf11af
PM
1192 * provide the PVR to user applications using the mfspr rd, PVR.
1193 * Return non-zero if we can't emulate, or -EFAULT if the associated
1194 * memory access caused an access fault. Return zero on success.
1195 *
1196 * There are a couple of ways to do this, either "decode" the instruction
1197 * or directly match lots of bits. In this case, matching lots of
1198 * bits is faster and easier.
86417780 1199 *
14cf11af 1200 */
14cf11af
PM
1201static int emulate_string_inst(struct pt_regs *regs, u32 instword)
1202{
1203 u8 rT = (instword >> 21) & 0x1f;
1204 u8 rA = (instword >> 16) & 0x1f;
1205 u8 NB_RB = (instword >> 11) & 0x1f;
1206 u32 num_bytes;
1207 unsigned long EA;
1208 int pos = 0;
1209
1210 /* Early out if we are an invalid form of lswx */
16c57b36 1211 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
14cf11af
PM
1212 if ((rT == rA) || (rT == NB_RB))
1213 return -EINVAL;
1214
1215 EA = (rA == 0) ? 0 : regs->gpr[rA];
1216
16c57b36
KG
1217 switch (instword & PPC_INST_STRING_MASK) {
1218 case PPC_INST_LSWX:
1219 case PPC_INST_STSWX:
14cf11af
PM
1220 EA += NB_RB;
1221 num_bytes = regs->xer & 0x7f;
1222 break;
16c57b36
KG
1223 case PPC_INST_LSWI:
1224 case PPC_INST_STSWI:
14cf11af
PM
1225 num_bytes = (NB_RB == 0) ? 32 : NB_RB;
1226 break;
1227 default:
1228 return -EINVAL;
1229 }
1230
1231 while (num_bytes != 0)
1232 {
1233 u8 val;
1234 u32 shift = 8 * (3 - (pos & 0x3));
1235
80aa0fb4
JY
1236 /* if process is 32-bit, clear upper 32 bits of EA */
1237 if ((regs->msr & MSR_64BIT) == 0)
1238 EA &= 0xFFFFFFFF;
1239
16c57b36
KG
1240 switch ((instword & PPC_INST_STRING_MASK)) {
1241 case PPC_INST_LSWX:
1242 case PPC_INST_LSWI:
14cf11af
PM
1243 if (get_user(val, (u8 __user *)EA))
1244 return -EFAULT;
1245 /* first time updating this reg,
1246 * zero it out */
1247 if (pos == 0)
1248 regs->gpr[rT] = 0;
1249 regs->gpr[rT] |= val << shift;
1250 break;
16c57b36
KG
1251 case PPC_INST_STSWI:
1252 case PPC_INST_STSWX:
14cf11af
PM
1253 val = regs->gpr[rT] >> shift;
1254 if (put_user(val, (u8 __user *)EA))
1255 return -EFAULT;
1256 break;
1257 }
1258 /* move EA to next address */
1259 EA += 1;
1260 num_bytes--;
1261
1262 /* manage our position within the register */
1263 if (++pos == 4) {
1264 pos = 0;
1265 if (++rT == 32)
1266 rT = 0;
1267 }
1268 }
1269
1270 return 0;
1271}
1272
c3412dcb
WS
1273static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
1274{
1275 u32 ra,rs;
1276 unsigned long tmp;
1277
1278 ra = (instword >> 16) & 0x1f;
1279 rs = (instword >> 21) & 0x1f;
1280
1281 tmp = regs->gpr[rs];
1282 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
1283 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
1284 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1285 regs->gpr[ra] = tmp;
1286
1287 return 0;
1288}
1289
c1469f13
KG
1290static int emulate_isel(struct pt_regs *regs, u32 instword)
1291{
1292 u8 rT = (instword >> 21) & 0x1f;
1293 u8 rA = (instword >> 16) & 0x1f;
1294 u8 rB = (instword >> 11) & 0x1f;
1295 u8 BC = (instword >> 6) & 0x1f;
1296 u8 bit;
1297 unsigned long tmp;
1298
1299 tmp = (rA == 0) ? 0 : regs->gpr[rA];
1300 bit = (regs->ccr >> (31 - BC)) & 0x1;
1301
1302 regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1303
1304 return 0;
1305}
1306
6ce6c629
MN
1307#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1308static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1309{
1310 /* If we're emulating a load/store in an active transaction, we cannot
1311 * emulate it as the kernel operates in transaction suspended context.
1312 * We need to abort the transaction. This creates a persistent TM
1313 * abort so tell the user what caused it with a new code.
1314 */
1315 if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1316 tm_enable();
1317 tm_abort(cause);
1318 return true;
1319 }
1320 return false;
1321}
1322#else
1323static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1324{
1325 return false;
1326}
1327#endif
1328
14cf11af
PM
1329static int emulate_instruction(struct pt_regs *regs)
1330{
1331 u32 instword;
1332 u32 rd;
1333
4288e343 1334 if (!user_mode(regs))
14cf11af
PM
1335 return -EINVAL;
1336 CHECK_FULL_REGS(regs);
1337
1338 if (get_user(instword, (u32 __user *)(regs->nip)))
1339 return -EFAULT;
1340
1341 /* Emulate the mfspr rD, PVR. */
16c57b36 1342 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
eecff81d 1343 PPC_WARN_EMULATED(mfpvr, regs);
14cf11af
PM
1344 rd = (instword >> 21) & 0x1f;
1345 regs->gpr[rd] = mfspr(SPRN_PVR);
1346 return 0;
1347 }
1348
1349 /* Emulating the dcba insn is just a no-op. */
80947e7c 1350 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
eecff81d 1351 PPC_WARN_EMULATED(dcba, regs);
14cf11af 1352 return 0;
80947e7c 1353 }
14cf11af
PM
1354
1355 /* Emulate the mcrxr insn. */
16c57b36 1356 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
86417780 1357 int shift = (instword >> 21) & 0x1c;
14cf11af
PM
1358 unsigned long msk = 0xf0000000UL >> shift;
1359
eecff81d 1360 PPC_WARN_EMULATED(mcrxr, regs);
14cf11af
PM
1361 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1362 regs->xer &= ~0xf0000000UL;
1363 return 0;
1364 }
1365
1366 /* Emulate load/store string insn. */
80947e7c 1367 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
6ce6c629
MN
1368 if (tm_abort_check(regs,
1369 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1370 return -EINVAL;
eecff81d 1371 PPC_WARN_EMULATED(string, regs);
14cf11af 1372 return emulate_string_inst(regs, instword);
80947e7c 1373 }
14cf11af 1374
c3412dcb 1375 /* Emulate the popcntb (Population Count Bytes) instruction. */
16c57b36 1376 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
eecff81d 1377 PPC_WARN_EMULATED(popcntb, regs);
c3412dcb
WS
1378 return emulate_popcntb_inst(regs, instword);
1379 }
1380
c1469f13 1381 /* Emulate isel (Integer Select) instruction */
16c57b36 1382 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
eecff81d 1383 PPC_WARN_EMULATED(isel, regs);
c1469f13
KG
1384 return emulate_isel(regs, instword);
1385 }
1386
9863c28a
JY
1387 /* Emulate sync instruction variants */
1388 if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1389 PPC_WARN_EMULATED(sync, regs);
1390 asm volatile("sync");
1391 return 0;
1392 }
1393
efcac658
AK
1394#ifdef CONFIG_PPC64
1395 /* Emulate the mfspr rD, DSCR. */
73d2fb75
AB
1396 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1397 PPC_INST_MFSPR_DSCR_USER) ||
1398 ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1399 PPC_INST_MFSPR_DSCR)) &&
efcac658
AK
1400 cpu_has_feature(CPU_FTR_DSCR)) {
1401 PPC_WARN_EMULATED(mfdscr, regs);
1402 rd = (instword >> 21) & 0x1f;
1403 regs->gpr[rd] = mfspr(SPRN_DSCR);
1404 return 0;
1405 }
1406 /* Emulate the mtspr DSCR, rD. */
73d2fb75
AB
1407 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1408 PPC_INST_MTSPR_DSCR_USER) ||
1409 ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1410 PPC_INST_MTSPR_DSCR)) &&
efcac658
AK
1411 cpu_has_feature(CPU_FTR_DSCR)) {
1412 PPC_WARN_EMULATED(mtdscr, regs);
1413 rd = (instword >> 21) & 0x1f;
00ca0de0 1414 current->thread.dscr = regs->gpr[rd];
efcac658 1415 current->thread.dscr_inherit = 1;
00ca0de0 1416 mtspr(SPRN_DSCR, current->thread.dscr);
efcac658
AK
1417 return 0;
1418 }
1419#endif
1420
14cf11af
PM
1421 return -EINVAL;
1422}
1423
73c9ceab 1424int is_valid_bugaddr(unsigned long addr)
14cf11af 1425{
73c9ceab 1426 return is_kernel_addr(addr);
14cf11af
PM
1427}
1428
3a3b5aa6
KH
1429#ifdef CONFIG_MATH_EMULATION
1430static int emulate_math(struct pt_regs *regs)
1431{
1432 int ret;
1433 extern int do_mathemu(struct pt_regs *regs);
1434
1435 ret = do_mathemu(regs);
1436 if (ret >= 0)
1437 PPC_WARN_EMULATED(math, regs);
1438
1439 switch (ret) {
1440 case 0:
1441 emulate_single_step(regs);
1442 return 0;
1443 case 1: {
1444 int code = 0;
de79f7b9 1445 code = __parse_fpscr(current->thread.fp_state.fpscr);
3a3b5aa6
KH
1446 _exception(SIGFPE, regs, code, regs->nip);
1447 return 0;
1448 }
1449 case -EFAULT:
1450 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1451 return 0;
1452 }
1453
1454 return -1;
1455}
1456#else
1457static inline int emulate_math(struct pt_regs *regs) { return -1; }
1458#endif
1459
03465f89 1460void program_check_exception(struct pt_regs *regs)
14cf11af 1461{
ba12eede 1462 enum ctx_state prev_state = exception_enter();
14cf11af 1463 unsigned int reason = get_reason(regs);
14cf11af 1464
aa42c69c 1465 /* We can now get here via a FP Unavailable exception if the core
04903a30 1466 * has no FPU, in that case the reason flags will be 0 */
14cf11af 1467
dc1c1ca3
SR
1468 if (reason & REASON_FP) {
1469 /* IEEE FP exception */
1470 parse_fpe(regs);
ba12eede 1471 goto bail;
8dad3f92
PM
1472 }
1473 if (reason & REASON_TRAP) {
a4c3f909 1474 unsigned long bugaddr;
ba797b28
JW
1475 /* Debugger is first in line to stop recursive faults in
1476 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1477 if (debugger_bpt(regs))
ba12eede 1478 goto bail;
ba797b28 1479
6cc89bad
NR
1480 if (kprobe_handler(regs))
1481 goto bail;
1482
14cf11af 1483 /* trap exception */
dc1c1ca3
SR
1484 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1485 == NOTIFY_STOP)
ba12eede 1486 goto bail;
73c9ceab 1487
a4c3f909
BS
1488 bugaddr = regs->nip;
1489 /*
1490 * Fixup bugaddr for BUG_ON() in real mode
1491 */
1492 if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1493 bugaddr += PAGE_OFFSET;
1494
73c9ceab 1495 if (!(regs->msr & MSR_PR) && /* not user-mode */
a4c3f909 1496 report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
14cf11af 1497 regs->nip += 4;
ba12eede 1498 goto bail;
14cf11af 1499 }
8dad3f92 1500 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
ba12eede 1501 goto bail;
8dad3f92 1502 }
bc2a9408
MN
1503#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1504 if (reason & REASON_TM) {
1505 /* This is a TM "Bad Thing Exception" program check.
1506 * This occurs when:
1507 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1508 * transition in TM states.
1509 * - A trechkpt is attempted when transactional.
1510 * - A treclaim is attempted when non transactional.
1511 * - A tend is illegally attempted.
1512 * - writing a TM SPR when transactional.
632f0574
ME
1513 *
1514 * If usermode caused this, it's done something illegal and
bc2a9408
MN
1515 * gets a SIGILL slap on the wrist. We call it an illegal
1516 * operand to distinguish from the instruction just being bad
1517 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1518 * illegal /placement/ of a valid instruction.
1519 */
1520 if (user_mode(regs)) {
1521 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
ba12eede 1522 goto bail;
bc2a9408
MN
1523 } else {
1524 printk(KERN_EMERG "Unexpected TM Bad Thing exception "
11be3958
BL
1525 "at %lx (msr 0x%lx) tm_scratch=%llx\n",
1526 regs->nip, regs->msr, get_paca()->tm_scratch);
bc2a9408
MN
1527 die("Unrecoverable exception", regs, SIGABRT);
1528 }
1529 }
1530#endif
8dad3f92 1531
b3f6a459
ME
1532 /*
1533 * If we took the program check in the kernel skip down to sending a
1534 * SIGILL. The subsequent cases all relate to emulating instructions
1535 * which we should only do for userspace. We also do not want to enable
1536 * interrupts for kernel faults because that might lead to further
1537 * faults, and loose the context of the original exception.
1538 */
1539 if (!user_mode(regs))
1540 goto sigill;
1541
a3512b2d
BH
1542 /* We restore the interrupt state now */
1543 if (!arch_irq_disabled_regs(regs))
1544 local_irq_enable();
cd8a5673 1545
04903a30
KG
1546 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1547 * but there seems to be a hardware bug on the 405GP (RevD)
1548 * that means ESR is sometimes set incorrectly - either to
1549 * ESR_DST (!?) or 0. In the process of chasing this with the
1550 * hardware people - not sure if it can happen on any illegal
1551 * instruction or only on FP instructions, whether there is a
4e63f8ed
BH
1552 * pattern to occurrences etc. -dgibson 31/Mar/2003
1553 */
3a3b5aa6 1554 if (!emulate_math(regs))
ba12eede 1555 goto bail;
04903a30 1556
8dad3f92
PM
1557 /* Try to emulate it if we should. */
1558 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
14cf11af
PM
1559 switch (emulate_instruction(regs)) {
1560 case 0:
1561 regs->nip += 4;
1562 emulate_single_step(regs);
ba12eede 1563 goto bail;
14cf11af
PM
1564 case -EFAULT:
1565 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
ba12eede 1566 goto bail;
14cf11af
PM
1567 }
1568 }
8dad3f92 1569
b3f6a459 1570sigill:
8dad3f92
PM
1571 if (reason & REASON_PRIVILEGED)
1572 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1573 else
1574 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
ba12eede
LZ
1575
1576bail:
1577 exception_exit(prev_state);
14cf11af 1578}
03465f89 1579NOKPROBE_SYMBOL(program_check_exception);
14cf11af 1580
bf593907
PM
1581/*
1582 * This occurs when running in hypervisor mode on POWER6 or later
1583 * and an illegal instruction is encountered.
1584 */
03465f89 1585void emulation_assist_interrupt(struct pt_regs *regs)
bf593907
PM
1586{
1587 regs->msr |= REASON_ILLEGAL;
1588 program_check_exception(regs);
1589}
03465f89 1590NOKPROBE_SYMBOL(emulation_assist_interrupt);
bf593907 1591
dc1c1ca3 1592void alignment_exception(struct pt_regs *regs)
14cf11af 1593{
ba12eede 1594 enum ctx_state prev_state = exception_enter();
4393c4f6 1595 int sig, code, fixed = 0;
14cf11af 1596
a3512b2d
BH
1597 /* We restore the interrupt state now */
1598 if (!arch_irq_disabled_regs(regs))
1599 local_irq_enable();
1600
6ce6c629
MN
1601 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1602 goto bail;
1603
e9370ae1
PM
1604 /* we don't implement logging of alignment exceptions */
1605 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1606 fixed = fix_alignment(regs);
14cf11af
PM
1607
1608 if (fixed == 1) {
1609 regs->nip += 4; /* skip over emulated instruction */
1610 emulate_single_step(regs);
ba12eede 1611 goto bail;
14cf11af
PM
1612 }
1613
dc1c1ca3 1614 /* Operand address was bad */
14cf11af 1615 if (fixed == -EFAULT) {
4393c4f6
BH
1616 sig = SIGSEGV;
1617 code = SEGV_ACCERR;
1618 } else {
1619 sig = SIGBUS;
1620 code = BUS_ADRALN;
14cf11af 1621 }
4393c4f6
BH
1622 if (user_mode(regs))
1623 _exception(sig, regs, code, regs->dar);
1624 else
1625 bad_page_fault(regs, regs->dar, sig);
ba12eede
LZ
1626
1627bail:
1628 exception_exit(prev_state);
14cf11af
PM
1629}
1630
1631void StackOverflow(struct pt_regs *regs)
1632{
9bf3d3c4
CL
1633 pr_crit("Kernel stack overflow in process %s[%d], r1=%lx\n",
1634 current->comm, task_pid_nr(current), regs->gpr[1]);
14cf11af
PM
1635 debugger(regs);
1636 show_regs(regs);
1637 panic("kernel stack overflow");
1638}
1639
dc1c1ca3
SR
1640void kernel_fp_unavailable_exception(struct pt_regs *regs)
1641{
ba12eede
LZ
1642 enum ctx_state prev_state = exception_enter();
1643
dc1c1ca3
SR
1644 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1645 "%lx at %lx\n", regs->trap, regs->nip);
1646 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
ba12eede
LZ
1647
1648 exception_exit(prev_state);
dc1c1ca3 1649}
dc1c1ca3
SR
1650
1651void altivec_unavailable_exception(struct pt_regs *regs)
1652{
ba12eede
LZ
1653 enum ctx_state prev_state = exception_enter();
1654
dc1c1ca3
SR
1655 if (user_mode(regs)) {
1656 /* A user program has executed an altivec instruction,
1657 but this kernel doesn't support altivec. */
1658 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
ba12eede 1659 goto bail;
dc1c1ca3 1660 }
6c4841c2 1661
dc1c1ca3
SR
1662 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1663 "%lx at %lx\n", regs->trap, regs->nip);
1664 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
ba12eede
LZ
1665
1666bail:
1667 exception_exit(prev_state);
dc1c1ca3
SR
1668}
1669
ce48b210
MN
1670void vsx_unavailable_exception(struct pt_regs *regs)
1671{
1672 if (user_mode(regs)) {
1673 /* A user program has executed an vsx instruction,
1674 but this kernel doesn't support vsx. */
1675 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1676 return;
1677 }
1678
1679 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1680 "%lx at %lx\n", regs->trap, regs->nip);
1681 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1682}
1683
2517617e 1684#ifdef CONFIG_PPC64
172f7aaa
CB
1685static void tm_unavailable(struct pt_regs *regs)
1686{
5d176f75
CB
1687#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1688 if (user_mode(regs)) {
1689 current->thread.load_tm++;
1690 regs->msr |= MSR_TM;
1691 tm_enable();
1692 tm_restore_sprs(&current->thread);
1693 return;
1694 }
1695#endif
172f7aaa
CB
1696 pr_emerg("Unrecoverable TM Unavailable Exception "
1697 "%lx at %lx\n", regs->trap, regs->nip);
1698 die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1699}
1700
021424a1 1701void facility_unavailable_exception(struct pt_regs *regs)
d0c0c9a1 1702{
021424a1 1703 static char *facility_strings[] = {
2517617e
MN
1704 [FSCR_FP_LG] = "FPU",
1705 [FSCR_VECVSX_LG] = "VMX/VSX",
1706 [FSCR_DSCR_LG] = "DSCR",
1707 [FSCR_PM_LG] = "PMU SPRs",
1708 [FSCR_BHRB_LG] = "BHRB",
1709 [FSCR_TM_LG] = "TM",
1710 [FSCR_EBB_LG] = "EBB",
1711 [FSCR_TAR_LG] = "TAR",
794464f4 1712 [FSCR_MSGP_LG] = "MSGP",
9b7ff0c6 1713 [FSCR_SCV_LG] = "SCV",
021424a1 1714 };
2517617e 1715 char *facility = "unknown";
021424a1 1716 u64 value;
c952c1c4 1717 u32 instword, rd;
2517617e
MN
1718 u8 status;
1719 bool hv;
021424a1 1720
2271db20 1721 hv = (TRAP(regs) == 0xf80);
2517617e 1722 if (hv)
b14b6260 1723 value = mfspr(SPRN_HFSCR);
2517617e
MN
1724 else
1725 value = mfspr(SPRN_FSCR);
1726
1727 status = value >> 56;
709b973c
AK
1728 if ((hv || status >= 2) &&
1729 (status < ARRAY_SIZE(facility_strings)) &&
1730 facility_strings[status])
1731 facility = facility_strings[status];
1732
1733 /* We should not have taken this interrupt in kernel */
1734 if (!user_mode(regs)) {
1735 pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n",
1736 facility, status, regs->nip);
1737 die("Unexpected facility unavailable exception", regs, SIGABRT);
1738 }
1739
1740 /* We restore the interrupt state now */
1741 if (!arch_irq_disabled_regs(regs))
1742 local_irq_enable();
1743
2517617e 1744 if (status == FSCR_DSCR_LG) {
c952c1c4
AK
1745 /*
1746 * User is accessing the DSCR register using the problem
1747 * state only SPR number (0x03) either through a mfspr or
1748 * a mtspr instruction. If it is a write attempt through
1749 * a mtspr, then we set the inherit bit. This also allows
1750 * the user to write or read the register directly in the
1751 * future by setting via the FSCR DSCR bit. But in case it
1752 * is a read DSCR attempt through a mfspr instruction, we
1753 * just emulate the instruction instead. This code path will
1754 * always emulate all the mfspr instructions till the user
446957ba 1755 * has attempted at least one mtspr instruction. This way it
c952c1c4
AK
1756 * preserves the same behaviour when the user is accessing
1757 * the DSCR through privilege level only SPR number (0x11)
1758 * which is emulated through illegal instruction exception.
1759 * We always leave HFSCR DSCR set.
2517617e 1760 */
c952c1c4
AK
1761 if (get_user(instword, (u32 __user *)(regs->nip))) {
1762 pr_err("Failed to fetch the user instruction\n");
1763 return;
1764 }
1765
1766 /* Write into DSCR (mtspr 0x03, RS) */
1767 if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1768 == PPC_INST_MTSPR_DSCR_USER) {
1769 rd = (instword >> 21) & 0x1f;
1770 current->thread.dscr = regs->gpr[rd];
1771 current->thread.dscr_inherit = 1;
b57bd2de
MN
1772 current->thread.fscr |= FSCR_DSCR;
1773 mtspr(SPRN_FSCR, current->thread.fscr);
c952c1c4
AK
1774 }
1775
1776 /* Read from DSCR (mfspr RT, 0x03) */
1777 if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1778 == PPC_INST_MFSPR_DSCR_USER) {
1779 if (emulate_instruction(regs)) {
1780 pr_err("DSCR based mfspr emulation failed\n");
1781 return;
1782 }
1783 regs->nip += 4;
1784 emulate_single_step(regs);
1785 }
2517617e 1786 return;
b14b6260
ME
1787 }
1788
172f7aaa
CB
1789 if (status == FSCR_TM_LG) {
1790 /*
1791 * If we're here then the hardware is TM aware because it
1792 * generated an exception with FSRM_TM set.
1793 *
1794 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1795 * told us not to do TM, or the kernel is not built with TM
1796 * support.
1797 *
1798 * If both of those things are true, then userspace can spam the
1799 * console by triggering the printk() below just by continually
1800 * doing tbegin (or any TM instruction). So in that case just
1801 * send the process a SIGILL immediately.
1802 */
1803 if (!cpu_has_feature(CPU_FTR_TM))
1804 goto out;
1805
1806 tm_unavailable(regs);
1807 return;
1808 }
1809
93c2ec0f
BS
1810 pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1811 hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
d0c0c9a1 1812
172f7aaa 1813out:
709b973c 1814 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
d0c0c9a1 1815}
2517617e 1816#endif
d0c0c9a1 1817
f54db641
MN
1818#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1819
f54db641
MN
1820void fp_unavailable_tm(struct pt_regs *regs)
1821{
1822 /* Note: This does not handle any kind of FP laziness. */
1823
1824 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1825 regs->nip, regs->msr);
f54db641
MN
1826
1827 /* We can only have got here if the task started using FP after
1828 * beginning the transaction. So, the transactional regs are just a
1829 * copy of the checkpointed ones. But, we still need to recheckpoint
1830 * as we're enabling FP for the process; it will return, abort the
1831 * transaction, and probably retry but now with FP enabled. So the
1832 * checkpointed FP registers need to be loaded.
1833 */
d31626f7 1834 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
96695563
BL
1835
1836 /*
1837 * Reclaim initially saved out bogus (lazy) FPRs to ckfp_state, and
1838 * then it was overwrite by the thr->fp_state by tm_reclaim_thread().
1839 *
1840 * At this point, ck{fp,vr}_state contains the exact values we want to
1841 * recheckpoint.
1842 */
f54db641
MN
1843
1844 /* Enable FP for the task: */
a7771176 1845 current->thread.load_fp = 1;
f54db641 1846
96695563
BL
1847 /*
1848 * Recheckpoint all the checkpointed ckpt, ck{fp, vr}_state registers.
f54db641 1849 */
eb5c3f1c 1850 tm_recheckpoint(&current->thread);
f54db641
MN
1851}
1852
f54db641
MN
1853void altivec_unavailable_tm(struct pt_regs *regs)
1854{
1855 /* See the comments in fp_unavailable_tm(). This function operates
1856 * the same way.
1857 */
1858
1859 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1860 "MSR=%lx\n",
1861 regs->nip, regs->msr);
d31626f7 1862 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
a7771176 1863 current->thread.load_vec = 1;
eb5c3f1c 1864 tm_recheckpoint(&current->thread);
f54db641
MN
1865 current->thread.used_vr = 1;
1866}
f54db641 1867
f54db641
MN
1868void vsx_unavailable_tm(struct pt_regs *regs)
1869{
1870 /* See the comments in fp_unavailable_tm(). This works similarly,
1871 * though we're loading both FP and VEC registers in here.
1872 *
1873 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1874 * regs. Either way, set MSR_VSX.
1875 */
1876
1877 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1878 "MSR=%lx\n",
1879 regs->nip, regs->msr);
1880
3ac8ff1c
PM
1881 current->thread.used_vsr = 1;
1882
f54db641 1883 /* This reclaims FP and/or VR regs if they're already enabled */
d31626f7 1884 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
f54db641 1885
a7771176
CB
1886 current->thread.load_vec = 1;
1887 current->thread.load_fp = 1;
3ac8ff1c 1888
eb5c3f1c 1889 tm_recheckpoint(&current->thread);
f54db641 1890}
f54db641
MN
1891#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1892
dc1c1ca3
SR
1893void performance_monitor_exception(struct pt_regs *regs)
1894{
69111bac 1895 __this_cpu_inc(irq_stat.pmu_irqs);
89713ed1 1896
dc1c1ca3
SR
1897 perf_irq(regs);
1898}
dc1c1ca3 1899
172ae2e7 1900#ifdef CONFIG_PPC_ADV_DEBUG_REGS
3bffb652
DK
1901static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1902{
1903 int changed = 0;
1904 /*
1905 * Determine the cause of the debug event, clear the
1906 * event flags and send a trap to the handler. Torez
1907 */
1908 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1909 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1910#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
51ae8d4a 1911 current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
3bffb652 1912#endif
47355040 1913 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status,
3bffb652
DK
1914 5);
1915 changed |= 0x01;
1916 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1917 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
47355040 1918 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status,
3bffb652
DK
1919 6);
1920 changed |= 0x01;
1921 } else if (debug_status & DBSR_IAC1) {
51ae8d4a 1922 current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
3bffb652 1923 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
47355040 1924 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status,
3bffb652
DK
1925 1);
1926 changed |= 0x01;
1927 } else if (debug_status & DBSR_IAC2) {
51ae8d4a 1928 current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
47355040 1929 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status,
3bffb652
DK
1930 2);
1931 changed |= 0x01;
1932 } else if (debug_status & DBSR_IAC3) {
51ae8d4a 1933 current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
3bffb652 1934 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
47355040 1935 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status,
3bffb652
DK
1936 3);
1937 changed |= 0x01;
1938 } else if (debug_status & DBSR_IAC4) {
51ae8d4a 1939 current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
47355040 1940 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status,
3bffb652
DK
1941 4);
1942 changed |= 0x01;
1943 }
1944 /*
1945 * At the point this routine was called, the MSR(DE) was turned off.
1946 * Check all other debug flags and see if that bit needs to be turned
1947 * back on or not.
1948 */
51ae8d4a 1949 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
95791988 1950 current->thread.debug.dbcr1))
3bffb652
DK
1951 regs->msr |= MSR_DE;
1952 else
1953 /* Make sure the IDM flag is off */
51ae8d4a 1954 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
3bffb652
DK
1955
1956 if (changed & 0x01)
51ae8d4a 1957 mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
3bffb652 1958}
14cf11af 1959
03465f89 1960void DebugException(struct pt_regs *regs, unsigned long debug_status)
14cf11af 1961{
51ae8d4a 1962 current->thread.debug.dbsr = debug_status;
3bffb652 1963
ec097c84
RM
1964 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1965 * on server, it stops on the target of the branch. In order to simulate
1966 * the server behaviour, we thus restart right away with a single step
1967 * instead of stopping here when hitting a BT
1968 */
1969 if (debug_status & DBSR_BT) {
1970 regs->msr &= ~MSR_DE;
1971
1972 /* Disable BT */
1973 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1974 /* Clear the BT event */
1975 mtspr(SPRN_DBSR, DBSR_BT);
1976
1977 /* Do the single step trick only when coming from userspace */
1978 if (user_mode(regs)) {
51ae8d4a
BB
1979 current->thread.debug.dbcr0 &= ~DBCR0_BT;
1980 current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
ec097c84
RM
1981 regs->msr |= MSR_DE;
1982 return;
1983 }
1984
6cc89bad
NR
1985 if (kprobe_post_handler(regs))
1986 return;
1987
ec097c84
RM
1988 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1989 5, SIGTRAP) == NOTIFY_STOP) {
1990 return;
1991 }
1992 if (debugger_sstep(regs))
1993 return;
1994 } else if (debug_status & DBSR_IC) { /* Instruction complete */
14cf11af 1995 regs->msr &= ~MSR_DE;
f8279621
KG
1996
1997 /* Disable instruction completion */
1998 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1999 /* Clear the instruction completion event */
2000 mtspr(SPRN_DBSR, DBSR_IC);
2001
6cc89bad
NR
2002 if (kprobe_post_handler(regs))
2003 return;
2004
f8279621
KG
2005 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
2006 5, SIGTRAP) == NOTIFY_STOP) {
2007 return;
2008 }
2009
2010 if (debugger_sstep(regs))
2011 return;
2012
d6a61bfc 2013 if (user_mode(regs)) {
51ae8d4a
BB
2014 current->thread.debug.dbcr0 &= ~DBCR0_IC;
2015 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
2016 current->thread.debug.dbcr1))
3bffb652
DK
2017 regs->msr |= MSR_DE;
2018 else
2019 /* Make sure the IDM bit is off */
51ae8d4a 2020 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
d6a61bfc 2021 }
3bffb652
DK
2022
2023 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
2024 } else
2025 handle_debug(regs, debug_status);
14cf11af 2026}
03465f89 2027NOKPROBE_SYMBOL(DebugException);
172ae2e7 2028#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
14cf11af
PM
2029
2030#if !defined(CONFIG_TAU_INT)
2031void TAUException(struct pt_regs *regs)
2032{
2033 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
2034 regs->nip, regs->msr, regs->trap, print_tainted());
2035}
2036#endif /* CONFIG_INT_TAU */
14cf11af
PM
2037
2038#ifdef CONFIG_ALTIVEC
dc1c1ca3 2039void altivec_assist_exception(struct pt_regs *regs)
14cf11af
PM
2040{
2041 int err;
2042
14cf11af
PM
2043 if (!user_mode(regs)) {
2044 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
2045 " at %lx\n", regs->nip);
8dad3f92 2046 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
14cf11af
PM
2047 }
2048
dc1c1ca3 2049 flush_altivec_to_thread(current);
dc1c1ca3 2050
eecff81d 2051 PPC_WARN_EMULATED(altivec, regs);
14cf11af
PM
2052 err = emulate_altivec(regs);
2053 if (err == 0) {
2054 regs->nip += 4; /* skip emulated instruction */
2055 emulate_single_step(regs);
2056 return;
2057 }
2058
2059 if (err == -EFAULT) {
2060 /* got an error reading the instruction */
2061 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2062 } else {
2063 /* didn't recognize the instruction */
2064 /* XXX quick hack for now: set the non-Java bit in the VSCR */
76462232
CD
2065 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
2066 "in %s at %lx\n", current->comm, regs->nip);
de79f7b9 2067 current->thread.vr_state.vscr.u[3] |= 0x10000;
14cf11af
PM
2068 }
2069}
2070#endif /* CONFIG_ALTIVEC */
2071
14cf11af
PM
2072#ifdef CONFIG_FSL_BOOKE
2073void CacheLockingException(struct pt_regs *regs, unsigned long address,
2074 unsigned long error_code)
2075{
2076 /* We treat cache locking instructions from the user
2077 * as priv ops, in the future we could try to do
2078 * something smarter
2079 */
2080 if (error_code & (ESR_DLK|ESR_ILK))
2081 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
2082 return;
2083}
2084#endif /* CONFIG_FSL_BOOKE */
2085
2086#ifdef CONFIG_SPE
2087void SPEFloatingPointException(struct pt_regs *regs)
2088{
6a800f36 2089 extern int do_spe_mathemu(struct pt_regs *regs);
14cf11af
PM
2090 unsigned long spefscr;
2091 int fpexc_mode;
aeb1c0f6 2092 int code = FPE_FLTUNK;
6a800f36
LY
2093 int err;
2094
ef429124
CL
2095 /* We restore the interrupt state now */
2096 if (!arch_irq_disabled_regs(regs))
2097 local_irq_enable();
2098
685659ee 2099 flush_spe_to_thread(current);
14cf11af
PM
2100
2101 spefscr = current->thread.spefscr;
2102 fpexc_mode = current->thread.fpexc_mode;
2103
14cf11af
PM
2104 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
2105 code = FPE_FLTOVF;
14cf11af
PM
2106 }
2107 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
2108 code = FPE_FLTUND;
14cf11af
PM
2109 }
2110 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
2111 code = FPE_FLTDIV;
2112 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
2113 code = FPE_FLTINV;
14cf11af
PM
2114 }
2115 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
2116 code = FPE_FLTRES;
2117
6a800f36
LY
2118 err = do_spe_mathemu(regs);
2119 if (err == 0) {
2120 regs->nip += 4; /* skip emulated instruction */
2121 emulate_single_step(regs);
2122 return;
2123 }
2124
2125 if (err == -EFAULT) {
2126 /* got an error reading the instruction */
2127 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2128 } else if (err == -EINVAL) {
2129 /* didn't recognize the instruction */
2130 printk(KERN_ERR "unrecognized spe instruction "
2131 "in %s at %lx\n", current->comm, regs->nip);
2132 } else {
2133 _exception(SIGFPE, regs, code, regs->nip);
2134 }
14cf11af 2135
14cf11af
PM
2136 return;
2137}
6a800f36
LY
2138
2139void SPEFloatingPointRoundException(struct pt_regs *regs)
2140{
2141 extern int speround_handler(struct pt_regs *regs);
2142 int err;
2143
ef429124
CL
2144 /* We restore the interrupt state now */
2145 if (!arch_irq_disabled_regs(regs))
2146 local_irq_enable();
2147
6a800f36
LY
2148 preempt_disable();
2149 if (regs->msr & MSR_SPE)
2150 giveup_spe(current);
2151 preempt_enable();
2152
2153 regs->nip -= 4;
2154 err = speround_handler(regs);
2155 if (err == 0) {
2156 regs->nip += 4; /* skip emulated instruction */
2157 emulate_single_step(regs);
2158 return;
2159 }
2160
2161 if (err == -EFAULT) {
2162 /* got an error reading the instruction */
2163 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2164 } else if (err == -EINVAL) {
2165 /* didn't recognize the instruction */
2166 printk(KERN_ERR "unrecognized spe instruction "
2167 "in %s at %lx\n", current->comm, regs->nip);
2168 } else {
aeb1c0f6 2169 _exception(SIGFPE, regs, FPE_FLTUNK, regs->nip);
6a800f36
LY
2170 return;
2171 }
2172}
14cf11af
PM
2173#endif
2174
dc1c1ca3
SR
2175/*
2176 * We enter here if we get an unrecoverable exception, that is, one
2177 * that happened at a point where the RI (recoverable interrupt) bit
2178 * in the MSR is 0. This indicates that SRR0/1 are live, and that
2179 * we therefore lost state by taking this exception.
2180 */
2181void unrecoverable_exception(struct pt_regs *regs)
2182{
51423a9c
CL
2183 pr_emerg("Unrecoverable exception %lx at %lx (msr=%lx)\n",
2184 regs->trap, regs->nip, regs->msr);
dc1c1ca3
SR
2185 die("Unrecoverable exception", regs, SIGABRT);
2186}
15770a13 2187NOKPROBE_SYMBOL(unrecoverable_exception);
dc1c1ca3 2188
1e18c17a 2189#if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
14cf11af
PM
2190/*
2191 * Default handler for a Watchdog exception,
2192 * spins until a reboot occurs
2193 */
2194void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
2195{
2196 /* Generic WatchdogHandler, implement your own */
2197 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
2198 return;
2199}
2200
2201void WatchdogException(struct pt_regs *regs)
2202{
2203 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
2204 WatchdogHandler(regs);
2205}
2206#endif
dc1c1ca3 2207
dc1c1ca3
SR
2208/*
2209 * We enter here if we discover during exception entry that we are
2210 * running in supervisor mode with a userspace value in the stack pointer.
2211 */
2212void kernel_bad_stack(struct pt_regs *regs)
2213{
2214 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
2215 regs->gpr[1], regs->nip);
2216 die("Bad kernel stack pointer", regs, SIGABRT);
2217}
15770a13 2218NOKPROBE_SYMBOL(kernel_bad_stack);
14cf11af
PM
2219
2220void __init trap_init(void)
2221{
2222}
80947e7c
GU
2223
2224
2225#ifdef CONFIG_PPC_EMULATED_STATS
2226
2227#define WARN_EMULATED_SETUP(type) .type = { .name = #type }
2228
2229struct ppc_emulated ppc_emulated = {
2230#ifdef CONFIG_ALTIVEC
2231 WARN_EMULATED_SETUP(altivec),
2232#endif
2233 WARN_EMULATED_SETUP(dcba),
2234 WARN_EMULATED_SETUP(dcbz),
2235 WARN_EMULATED_SETUP(fp_pair),
2236 WARN_EMULATED_SETUP(isel),
2237 WARN_EMULATED_SETUP(mcrxr),
2238 WARN_EMULATED_SETUP(mfpvr),
2239 WARN_EMULATED_SETUP(multiple),
2240 WARN_EMULATED_SETUP(popcntb),
2241 WARN_EMULATED_SETUP(spe),
2242 WARN_EMULATED_SETUP(string),
a3821b2a 2243 WARN_EMULATED_SETUP(sync),
80947e7c
GU
2244 WARN_EMULATED_SETUP(unaligned),
2245#ifdef CONFIG_MATH_EMULATION
2246 WARN_EMULATED_SETUP(math),
80947e7c
GU
2247#endif
2248#ifdef CONFIG_VSX
2249 WARN_EMULATED_SETUP(vsx),
2250#endif
efcac658
AK
2251#ifdef CONFIG_PPC64
2252 WARN_EMULATED_SETUP(mfdscr),
2253 WARN_EMULATED_SETUP(mtdscr),
f83319d7 2254 WARN_EMULATED_SETUP(lq_stq),
5080332c
MN
2255 WARN_EMULATED_SETUP(lxvw4x),
2256 WARN_EMULATED_SETUP(lxvh8x),
2257 WARN_EMULATED_SETUP(lxvd2x),
2258 WARN_EMULATED_SETUP(lxvb16x),
efcac658 2259#endif
80947e7c
GU
2260};
2261
2262u32 ppc_warn_emulated;
2263
2264void ppc_warn_emulated_print(const char *type)
2265{
76462232
CD
2266 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2267 type);
80947e7c
GU
2268}
2269
2270static int __init ppc_warn_emulated_init(void)
2271{
2272 struct dentry *dir, *d;
2273 unsigned int i;
2274 struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2275
2276 if (!powerpc_debugfs_root)
2277 return -ENODEV;
2278
2279 dir = debugfs_create_dir("emulated_instructions",
2280 powerpc_debugfs_root);
2281 if (!dir)
2282 return -ENOMEM;
2283
57ad583f 2284 d = debugfs_create_u32("do_warn", 0644, dir,
80947e7c
GU
2285 &ppc_warn_emulated);
2286 if (!d)
2287 goto fail;
2288
2289 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
57ad583f 2290 d = debugfs_create_u32(entries[i].name, 0644, dir,
80947e7c
GU
2291 (u32 *)&entries[i].val.counter);
2292 if (!d)
2293 goto fail;
2294 }
2295
2296 return 0;
2297
2298fail:
2299 debugfs_remove_recursive(dir);
2300 return -ENOMEM;
2301}
2302
2303device_initcall(ppc_warn_emulated_init);
2304
2305#endif /* CONFIG_PPC_EMULATED_STATS */