ppc64: Fix delivery of RT signals to 32-bit processes.
[linux-block.git] / arch / powerpc / kernel / time.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35#include <linux/config.h>
36#include <linux/errno.h>
37#include <linux/module.h>
38#include <linux/sched.h>
39#include <linux/kernel.h>
40#include <linux/param.h>
41#include <linux/string.h>
42#include <linux/mm.h>
43#include <linux/interrupt.h>
44#include <linux/timex.h>
45#include <linux/kernel_stat.h>
1da177e4
LT
46#include <linux/time.h>
47#include <linux/init.h>
48#include <linux/profile.h>
49#include <linux/cpu.h>
50#include <linux/security.h>
f2783c15
PM
51#include <linux/percpu.h>
52#include <linux/rtc.h>
1da177e4 53
1da177e4
LT
54#include <asm/io.h>
55#include <asm/processor.h>
56#include <asm/nvram.h>
57#include <asm/cache.h>
58#include <asm/machdep.h>
1da177e4
LT
59#include <asm/uaccess.h>
60#include <asm/time.h>
1da177e4 61#include <asm/prom.h>
f2783c15
PM
62#include <asm/irq.h>
63#include <asm/div64.h>
64#ifdef CONFIG_PPC64
1da177e4 65#include <asm/systemcfg.h>
1ababe11 66#include <asm/firmware.h>
f2783c15
PM
67#endif
68#ifdef CONFIG_PPC_ISERIES
69#include <asm/iSeries/ItLpQueue.h>
70#include <asm/iSeries/HvCallXm.h>
71#endif
1da177e4
LT
72
73u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
74
75EXPORT_SYMBOL(jiffies_64);
76
77/* keep track of when we need to update the rtc */
78time_t last_rtc_update;
79extern int piranha_simulator;
80#ifdef CONFIG_PPC_ISERIES
81unsigned long iSeries_recal_titan = 0;
82unsigned long iSeries_recal_tb = 0;
83static unsigned long first_settimeofday = 1;
84#endif
85
f2783c15
PM
86/* The decrementer counts down by 128 every 128ns on a 601. */
87#define DECREMENTER_COUNT_601 (1000000000 / HZ)
88
1da177e4
LT
89#define XSEC_PER_SEC (1024*1024)
90
f2783c15
PM
91#ifdef CONFIG_PPC64
92#define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
93#else
94/* compute ((xsec << 12) * max) >> 32 */
95#define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
96#endif
97
1da177e4
LT
98unsigned long tb_ticks_per_jiffy;
99unsigned long tb_ticks_per_usec = 100; /* sane default */
100EXPORT_SYMBOL(tb_ticks_per_usec);
101unsigned long tb_ticks_per_sec;
f2783c15
PM
102u64 tb_to_xs;
103unsigned tb_to_us;
1da177e4
LT
104unsigned long processor_freq;
105DEFINE_SPINLOCK(rtc_lock);
6ae3db11 106EXPORT_SYMBOL_GPL(rtc_lock);
1da177e4 107
f2783c15
PM
108u64 tb_to_ns_scale;
109unsigned tb_to_ns_shift;
1da177e4
LT
110
111struct gettimeofday_struct do_gtod;
112
113extern unsigned long wall_jiffies;
1da177e4
LT
114
115extern struct timezone sys_tz;
f2783c15 116static long timezone_offset;
1da177e4
LT
117
118void ppc_adjtimex(void);
119
120static unsigned adjusting_time = 0;
121
10f7e7c1
AB
122unsigned long ppc_proc_freq;
123unsigned long ppc_tb_freq;
124
f2783c15
PM
125#ifdef CONFIG_PPC32 /* XXX for now */
126#define boot_cpuid 0
127#endif
128
1da177e4
LT
129static __inline__ void timer_check_rtc(void)
130{
131 /*
132 * update the rtc when needed, this should be performed on the
133 * right fraction of a second. Half or full second ?
134 * Full second works on mk48t59 clocks, others need testing.
135 * Note that this update is basically only used through
136 * the adjtimex system calls. Setting the HW clock in
137 * any other way is a /dev/rtc and userland business.
138 * This is still wrong by -0.5/+1.5 jiffies because of the
139 * timer interrupt resolution and possible delay, but here we
140 * hit a quantization limit which can only be solved by higher
141 * resolution timers and decoupling time management from timer
142 * interrupts. This is also wrong on the clocks
143 * which require being written at the half second boundary.
144 * We should have an rtc call that only sets the minutes and
145 * seconds like on Intel to avoid problems with non UTC clocks.
146 */
b149ee22 147 if (ntp_synced() &&
f2783c15
PM
148 xtime.tv_sec - last_rtc_update >= 659 &&
149 abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ &&
150 jiffies - wall_jiffies == 1) {
151 struct rtc_time tm;
152 to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
153 tm.tm_year -= 1900;
154 tm.tm_mon -= 1;
155 if (ppc_md.set_rtc_time(&tm) == 0)
156 last_rtc_update = xtime.tv_sec + 1;
157 else
158 /* Try again one minute later */
159 last_rtc_update += 60;
1da177e4
LT
160 }
161}
162
163/*
164 * This version of gettimeofday has microsecond resolution.
165 */
f2783c15 166static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val)
1da177e4 167{
f2783c15
PM
168 unsigned long sec, usec;
169 u64 tb_ticks, xsec;
170 struct gettimeofday_vars *temp_varp;
171 u64 temp_tb_to_xs, temp_stamp_xsec;
1da177e4
LT
172
173 /*
174 * These calculations are faster (gets rid of divides)
175 * if done in units of 1/2^20 rather than microseconds.
176 * The conversion to microseconds at the end is done
177 * without a divide (and in fact, without a multiply)
178 */
179 temp_varp = do_gtod.varp;
180 tb_ticks = tb_val - temp_varp->tb_orig_stamp;
181 temp_tb_to_xs = temp_varp->tb_to_xs;
182 temp_stamp_xsec = temp_varp->stamp_xsec;
f2783c15 183 xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
1da177e4 184 sec = xsec / XSEC_PER_SEC;
f2783c15
PM
185 usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
186 usec = SCALE_XSEC(usec, 1000000);
1da177e4
LT
187
188 tv->tv_sec = sec;
189 tv->tv_usec = usec;
190}
191
192void do_gettimeofday(struct timeval *tv)
193{
194 __do_gettimeofday(tv, get_tb());
195}
196
197EXPORT_SYMBOL(do_gettimeofday);
198
199/* Synchronize xtime with do_gettimeofday */
200
201static inline void timer_sync_xtime(unsigned long cur_tb)
202{
f2783c15
PM
203#ifdef CONFIG_PPC64
204 /* why do we do this? */
1da177e4
LT
205 struct timeval my_tv;
206
207 __do_gettimeofday(&my_tv, cur_tb);
208
209 if (xtime.tv_sec <= my_tv.tv_sec) {
210 xtime.tv_sec = my_tv.tv_sec;
211 xtime.tv_nsec = my_tv.tv_usec * 1000;
212 }
f2783c15 213#endif
1da177e4
LT
214}
215
216/*
f2783c15
PM
217 * There are two copies of tb_to_xs and stamp_xsec so that no
218 * lock is needed to access and use these values in
219 * do_gettimeofday. We alternate the copies and as long as a
220 * reasonable time elapses between changes, there will never
221 * be inconsistent values. ntpd has a minimum of one minute
222 * between updates.
1da177e4 223 */
f2783c15 224static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
5d14a18d 225 u64 new_tb_to_xs)
1da177e4 226{
1da177e4 227 unsigned temp_idx;
f2783c15 228 struct gettimeofday_vars *temp_varp;
1da177e4
LT
229
230 temp_idx = (do_gtod.var_idx == 0);
231 temp_varp = &do_gtod.vars[temp_idx];
232
f2783c15
PM
233 temp_varp->tb_to_xs = new_tb_to_xs;
234 temp_varp->tb_orig_stamp = new_tb_stamp;
1da177e4 235 temp_varp->stamp_xsec = new_stamp_xsec;
0d8d4d42 236 smp_mb();
1da177e4
LT
237 do_gtod.varp = temp_varp;
238 do_gtod.var_idx = temp_idx;
239
f2783c15
PM
240#ifdef CONFIG_PPC64
241 /*
242 * tb_update_count is used to allow the userspace gettimeofday code
243 * to assure itself that it sees a consistent view of the tb_to_xs and
244 * stamp_xsec variables. It reads the tb_update_count, then reads
245 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
246 * the two values of tb_update_count match and are even then the
247 * tb_to_xs and stamp_xsec values are consistent. If not, then it
248 * loops back and reads them again until this criteria is met.
249 */
1da177e4 250 ++(systemcfg->tb_update_count);
0d8d4d42 251 smp_wmb();
f2783c15 252 systemcfg->tb_orig_stamp = new_tb_stamp;
1da177e4 253 systemcfg->stamp_xsec = new_stamp_xsec;
f2783c15 254 systemcfg->tb_to_xs = new_tb_to_xs;
0d8d4d42 255 smp_wmb();
1da177e4 256 ++(systemcfg->tb_update_count);
f2783c15
PM
257#endif
258}
259
260/*
261 * When the timebase - tb_orig_stamp gets too big, we do a manipulation
262 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
263 * difference tb - tb_orig_stamp small enough to always fit inside a
264 * 32 bits number. This is a requirement of our fast 32 bits userland
265 * implementation in the vdso. If we "miss" a call to this function
266 * (interrupt latency, CPU locked in a spinlock, ...) and we end up
267 * with a too big difference, then the vdso will fallback to calling
268 * the syscall
269 */
270static __inline__ void timer_recalc_offset(u64 cur_tb)
271{
272 unsigned long offset;
273 u64 new_stamp_xsec;
274
275 offset = cur_tb - do_gtod.varp->tb_orig_stamp;
276 if ((offset & 0x80000000u) == 0)
277 return;
278 new_stamp_xsec = do_gtod.varp->stamp_xsec
279 + mulhdu(offset, do_gtod.varp->tb_to_xs);
280 update_gtod(cur_tb, new_stamp_xsec, do_gtod.varp->tb_to_xs);
1da177e4
LT
281}
282
283#ifdef CONFIG_SMP
284unsigned long profile_pc(struct pt_regs *regs)
285{
286 unsigned long pc = instruction_pointer(regs);
287
288 if (in_lock_functions(pc))
289 return regs->link;
290
291 return pc;
292}
293EXPORT_SYMBOL(profile_pc);
294#endif
295
296#ifdef CONFIG_PPC_ISERIES
297
298/*
299 * This function recalibrates the timebase based on the 49-bit time-of-day
300 * value in the Titan chip. The Titan is much more accurate than the value
301 * returned by the service processor for the timebase frequency.
302 */
303
304static void iSeries_tb_recal(void)
305{
306 struct div_result divres;
307 unsigned long titan, tb;
308 tb = get_tb();
309 titan = HvCallXm_loadTod();
310 if ( iSeries_recal_titan ) {
311 unsigned long tb_ticks = tb - iSeries_recal_tb;
312 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
313 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
314 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
315 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
316 char sign = '+';
317 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
318 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
319
320 if ( tick_diff < 0 ) {
321 tick_diff = -tick_diff;
322 sign = '-';
323 }
324 if ( tick_diff ) {
325 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
326 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
327 new_tb_ticks_per_jiffy, sign, tick_diff );
328 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
329 tb_ticks_per_sec = new_tb_ticks_per_sec;
330 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
331 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
332 tb_to_xs = divres.result_low;
333 do_gtod.varp->tb_to_xs = tb_to_xs;
334 systemcfg->tb_ticks_per_sec = tb_ticks_per_sec;
335 systemcfg->tb_to_xs = tb_to_xs;
336 }
337 else {
338 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
339 " new tb_ticks_per_jiffy = %lu\n"
340 " old tb_ticks_per_jiffy = %lu\n",
341 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
342 }
343 }
344 }
345 iSeries_recal_titan = titan;
346 iSeries_recal_tb = tb;
347}
348#endif
349
350/*
351 * For iSeries shared processors, we have to let the hypervisor
352 * set the hardware decrementer. We set a virtual decrementer
353 * in the lppaca and call the hypervisor if the virtual
354 * decrementer is less than the current value in the hardware
355 * decrementer. (almost always the new decrementer value will
356 * be greater than the current hardware decementer so the hypervisor
357 * call will not be needed)
358 */
359
f2783c15
PM
360u64 tb_last_stamp __cacheline_aligned_in_smp;
361
362/*
363 * Note that on ppc32 this only stores the bottom 32 bits of
364 * the timebase value, but that's enough to tell when a jiffy
365 * has passed.
366 */
367DEFINE_PER_CPU(unsigned long, last_jiffy);
1da177e4
LT
368
369/*
370 * timer_interrupt - gets called when the decrementer overflows,
371 * with interrupts disabled.
372 */
c7aeffc4 373void timer_interrupt(struct pt_regs * regs)
1da177e4
LT
374{
375 int next_dec;
f2783c15
PM
376 int cpu = smp_processor_id();
377 unsigned long ticks;
378
379#ifdef CONFIG_PPC32
380 if (atomic_read(&ppc_n_lost_interrupts) != 0)
381 do_IRQ(regs);
382#endif
1da177e4
LT
383
384 irq_enter();
385
1da177e4 386 profile_tick(CPU_PROFILING, regs);
1da177e4 387
f2783c15
PM
388#ifdef CONFIG_PPC_ISERIES
389 get_paca()->lppaca.int_dword.fields.decr_int = 0;
390#endif
391
392 while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
393 >= tb_ticks_per_jiffy) {
394 /* Update last_jiffy */
395 per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
396 /* Handle RTCL overflow on 601 */
397 if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
398 per_cpu(last_jiffy, cpu) -= 1000000000;
1da177e4 399
1da177e4
LT
400 /*
401 * We cannot disable the decrementer, so in the period
402 * between this cpu's being marked offline in cpu_online_map
403 * and calling stop-self, it is taking timer interrupts.
404 * Avoid calling into the scheduler rebalancing code if this
405 * is the case.
406 */
407 if (!cpu_is_offline(cpu))
408 update_process_times(user_mode(regs));
f2783c15 409
1da177e4
LT
410 /*
411 * No need to check whether cpu is offline here; boot_cpuid
412 * should have been fixed up by now.
413 */
f2783c15
PM
414 if (cpu != boot_cpuid)
415 continue;
416
417 write_seqlock(&xtime_lock);
418 tb_last_stamp += tb_ticks_per_jiffy;
419 timer_recalc_offset(tb_last_stamp);
420 do_timer(regs);
421 timer_sync_xtime(tb_last_stamp);
422 timer_check_rtc();
423 write_sequnlock(&xtime_lock);
424 if (adjusting_time && (time_adjust == 0))
425 ppc_adjtimex();
1da177e4
LT
426 }
427
f2783c15 428 next_dec = tb_ticks_per_jiffy - ticks;
1da177e4
LT
429 set_dec(next_dec);
430
431#ifdef CONFIG_PPC_ISERIES
937b31b1 432 if (hvlpevent_is_pending())
74889802 433 process_hvlpevents(regs);
1da177e4
LT
434#endif
435
f2783c15 436#ifdef CONFIG_PPC64
8d15a3e5 437 /* collect purr register values often, for accurate calculations */
1ababe11 438 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1da177e4
LT
439 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
440 cu->current_tb = mfspr(SPRN_PURR);
441 }
f2783c15 442#endif
1da177e4
LT
443
444 irq_exit();
1da177e4
LT
445}
446
f2783c15
PM
447void wakeup_decrementer(void)
448{
449 int i;
450
451 set_dec(tb_ticks_per_jiffy);
452 /*
453 * We don't expect this to be called on a machine with a 601,
454 * so using get_tbl is fine.
455 */
456 tb_last_stamp = get_tb();
457 for_each_cpu(i)
458 per_cpu(last_jiffy, i) = tb_last_stamp;
459}
460
461#ifdef CONFIG_SMPxxx
462void __init smp_space_timers(unsigned int max_cpus)
463{
464 int i;
465 unsigned long offset = tb_ticks_per_jiffy / max_cpus;
466 unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid);
467
468 for_each_cpu(i) {
469 if (i != boot_cpuid) {
470 previous_tb += offset;
471 per_cpu(last_jiffy, i) = previous_tb;
472 }
473 }
474}
475#endif
476
1da177e4
LT
477/*
478 * Scheduler clock - returns current time in nanosec units.
479 *
480 * Note: mulhdu(a, b) (multiply high double unsigned) returns
481 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
482 * are 64-bit unsigned numbers.
483 */
484unsigned long long sched_clock(void)
485{
486 return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
487}
488
489int do_settimeofday(struct timespec *tv)
490{
491 time_t wtm_sec, new_sec = tv->tv_sec;
492 long wtm_nsec, new_nsec = tv->tv_nsec;
493 unsigned long flags;
1da177e4 494 long int tb_delta;
f2783c15 495 u64 new_xsec;
1da177e4
LT
496
497 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
498 return -EINVAL;
499
500 write_seqlock_irqsave(&xtime_lock, flags);
f2783c15
PM
501
502 /*
503 * Updating the RTC is not the job of this code. If the time is
504 * stepped under NTP, the RTC will be updated after STA_UNSYNC
505 * is cleared. Tools like clock/hwclock either copy the RTC
1da177e4
LT
506 * to the system time, in which case there is no point in writing
507 * to the RTC again, or write to the RTC but then they don't call
508 * settimeofday to perform this operation.
509 */
510#ifdef CONFIG_PPC_ISERIES
f2783c15 511 if (first_settimeofday) {
1da177e4
LT
512 iSeries_tb_recal();
513 first_settimeofday = 0;
514 }
515#endif
516 tb_delta = tb_ticks_since(tb_last_stamp);
517 tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy;
518
f2783c15 519 new_nsec -= 1000 * mulhwu(tb_to_us, tb_delta);
1da177e4
LT
520
521 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
522 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
523
524 set_normalized_timespec(&xtime, new_sec, new_nsec);
525 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
526
527 /* In case of a large backwards jump in time with NTP, we want the
528 * clock to be updated as soon as the PLL is again in lock.
529 */
530 last_rtc_update = new_sec - 658;
531
b149ee22 532 ntp_clear();
1da177e4 533
f2783c15
PM
534 new_xsec = (u64)new_nsec * XSEC_PER_SEC;
535 do_div(new_xsec, NSEC_PER_SEC);
536 new_xsec += (u64)new_sec * XSEC_PER_SEC;
537 update_gtod(tb_last_stamp, new_xsec, do_gtod.varp->tb_to_xs);
1da177e4 538
f2783c15 539#ifdef CONFIG_PPC64
1da177e4
LT
540 systemcfg->tz_minuteswest = sys_tz.tz_minuteswest;
541 systemcfg->tz_dsttime = sys_tz.tz_dsttime;
f2783c15 542#endif
1da177e4
LT
543
544 write_sequnlock_irqrestore(&xtime_lock, flags);
545 clock_was_set();
546 return 0;
547}
548
549EXPORT_SYMBOL(do_settimeofday);
550
10f7e7c1
AB
551void __init generic_calibrate_decr(void)
552{
553 struct device_node *cpu;
10f7e7c1
AB
554 unsigned int *fp;
555 int node_found;
556
557 /*
558 * The cpu node should have a timebase-frequency property
559 * to tell us the rate at which the decrementer counts.
560 */
561 cpu = of_find_node_by_type(NULL, "cpu");
562
563 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
564 node_found = 0;
565 if (cpu != 0) {
566 fp = (unsigned int *)get_property(cpu, "timebase-frequency",
567 NULL);
568 if (fp != 0) {
569 node_found = 1;
570 ppc_tb_freq = *fp;
571 }
572 }
573 if (!node_found)
574 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
575 "(not found)\n");
576
577 ppc_proc_freq = DEFAULT_PROC_FREQ;
578 node_found = 0;
579 if (cpu != 0) {
580 fp = (unsigned int *)get_property(cpu, "clock-frequency",
581 NULL);
582 if (fp != 0) {
583 node_found = 1;
584 ppc_proc_freq = *fp;
585 }
586 }
587 if (!node_found)
588 printk(KERN_ERR "WARNING: Estimating processor frequency "
589 "(not found)\n");
590
591 of_node_put(cpu);
10f7e7c1 592}
10f7e7c1 593
f2783c15
PM
594unsigned long get_boot_time(void)
595{
596 struct rtc_time tm;
597
598 if (ppc_md.get_boot_time)
599 return ppc_md.get_boot_time();
600 if (!ppc_md.get_rtc_time)
601 return 0;
602 ppc_md.get_rtc_time(&tm);
603 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
604 tm.tm_hour, tm.tm_min, tm.tm_sec);
605}
606
607/* This function is only called on the boot processor */
1da177e4
LT
608void __init time_init(void)
609{
1da177e4 610 unsigned long flags;
f2783c15 611 unsigned long tm = 0;
1da177e4 612 struct div_result res;
f2783c15
PM
613 u64 scale;
614 unsigned shift;
615
616 if (ppc_md.time_init != NULL)
617 timezone_offset = ppc_md.time_init();
1da177e4
LT
618
619 ppc_md.calibrate_decr();
620
374e99d4
PM
621 printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n",
622 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
623 printk(KERN_INFO "time_init: processor frequency = %lu.%.6lu MHz\n",
624 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
625
626 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
627 tb_ticks_per_sec = tb_ticks_per_jiffy * HZ;
628 tb_ticks_per_usec = ppc_tb_freq / 1000000;
629 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
630 div128_by_32(1024*1024, 0, tb_ticks_per_sec, &res);
631 tb_to_xs = res.result_low;
632
f2783c15
PM
633#ifdef CONFIG_PPC64
634 get_paca()->default_decr = tb_ticks_per_jiffy;
635#endif
636
1da177e4
LT
637 /*
638 * Compute scale factor for sched_clock.
639 * The calibrate_decr() function has set tb_ticks_per_sec,
640 * which is the timebase frequency.
641 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
642 * the 128-bit result as a 64.64 fixed-point number.
643 * We then shift that number right until it is less than 1.0,
644 * giving us the scale factor and shift count to use in
645 * sched_clock().
646 */
647 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
648 scale = res.result_low;
649 for (shift = 0; res.result_high != 0; ++shift) {
650 scale = (scale >> 1) | (res.result_high << 63);
651 res.result_high >>= 1;
652 }
653 tb_to_ns_scale = scale;
654 tb_to_ns_shift = shift;
655
656#ifdef CONFIG_PPC_ISERIES
657 if (!piranha_simulator)
658#endif
f2783c15 659 tm = get_boot_time();
1da177e4
LT
660
661 write_seqlock_irqsave(&xtime_lock, flags);
f2783c15
PM
662 xtime.tv_sec = tm;
663 xtime.tv_nsec = 0;
1da177e4
LT
664 tb_last_stamp = get_tb();
665 do_gtod.varp = &do_gtod.vars[0];
666 do_gtod.var_idx = 0;
667 do_gtod.varp->tb_orig_stamp = tb_last_stamp;
f2783c15
PM
668 __get_cpu_var(last_jiffy) = tb_last_stamp;
669 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1da177e4
LT
670 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
671 do_gtod.varp->tb_to_xs = tb_to_xs;
672 do_gtod.tb_to_us = tb_to_us;
f2783c15 673#ifdef CONFIG_PPC64
1da177e4
LT
674 systemcfg->tb_orig_stamp = tb_last_stamp;
675 systemcfg->tb_update_count = 0;
676 systemcfg->tb_ticks_per_sec = tb_ticks_per_sec;
677 systemcfg->stamp_xsec = xtime.tv_sec * XSEC_PER_SEC;
678 systemcfg->tb_to_xs = tb_to_xs;
f2783c15 679#endif
1da177e4
LT
680
681 time_freq = 0;
682
f2783c15
PM
683 /* If platform provided a timezone (pmac), we correct the time */
684 if (timezone_offset) {
685 sys_tz.tz_minuteswest = -timezone_offset / 60;
686 sys_tz.tz_dsttime = 0;
687 xtime.tv_sec -= timezone_offset;
688 }
689
1da177e4
LT
690 last_rtc_update = xtime.tv_sec;
691 set_normalized_timespec(&wall_to_monotonic,
692 -xtime.tv_sec, -xtime.tv_nsec);
693 write_sequnlock_irqrestore(&xtime_lock, flags);
694
695 /* Not exact, but the timer interrupt takes care of this */
696 set_dec(tb_ticks_per_jiffy);
697}
698
699/*
700 * After adjtimex is called, adjust the conversion of tb ticks
701 * to microseconds to keep do_gettimeofday synchronized
702 * with ntpd.
703 *
704 * Use the time_adjust, time_freq and time_offset computed by adjtimex to
705 * adjust the frequency.
706 */
707
708/* #define DEBUG_PPC_ADJTIMEX 1 */
709
710void ppc_adjtimex(void)
711{
f2783c15
PM
712#ifdef CONFIG_PPC64
713 unsigned long den, new_tb_ticks_per_sec, tb_ticks, old_xsec,
714 new_tb_to_xs, new_xsec, new_stamp_xsec;
1da177e4
LT
715 unsigned long tb_ticks_per_sec_delta;
716 long delta_freq, ltemp;
717 struct div_result divres;
718 unsigned long flags;
1da177e4
LT
719 long singleshot_ppm = 0;
720
f2783c15
PM
721 /*
722 * Compute parts per million frequency adjustment to
723 * accomplish the time adjustment implied by time_offset to be
724 * applied over the elapsed time indicated by time_constant.
725 * Use SHIFT_USEC to get it into the same units as
726 * time_freq.
727 */
1da177e4
LT
728 if ( time_offset < 0 ) {
729 ltemp = -time_offset;
730 ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
731 ltemp >>= SHIFT_KG + time_constant;
732 ltemp = -ltemp;
f2783c15 733 } else {
1da177e4
LT
734 ltemp = time_offset;
735 ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
736 ltemp >>= SHIFT_KG + time_constant;
737 }
738
739 /* If there is a single shot time adjustment in progress */
740 if ( time_adjust ) {
741#ifdef DEBUG_PPC_ADJTIMEX
742 printk("ppc_adjtimex: ");
743 if ( adjusting_time == 0 )
744 printk("starting ");
745 printk("single shot time_adjust = %ld\n", time_adjust);
746#endif
747
748 adjusting_time = 1;
749
f2783c15
PM
750 /*
751 * Compute parts per million frequency adjustment
752 * to match time_adjust
753 */
1da177e4
LT
754 singleshot_ppm = tickadj * HZ;
755 /*
756 * The adjustment should be tickadj*HZ to match the code in
757 * linux/kernel/timer.c, but experiments show that this is too
758 * large. 3/4 of tickadj*HZ seems about right
759 */
760 singleshot_ppm -= singleshot_ppm / 4;
f2783c15 761 /* Use SHIFT_USEC to get it into the same units as time_freq */
1da177e4
LT
762 singleshot_ppm <<= SHIFT_USEC;
763 if ( time_adjust < 0 )
764 singleshot_ppm = -singleshot_ppm;
765 }
766 else {
767#ifdef DEBUG_PPC_ADJTIMEX
768 if ( adjusting_time )
769 printk("ppc_adjtimex: ending single shot time_adjust\n");
770#endif
771 adjusting_time = 0;
772 }
773
774 /* Add up all of the frequency adjustments */
775 delta_freq = time_freq + ltemp + singleshot_ppm;
776
f2783c15
PM
777 /*
778 * Compute a new value for tb_ticks_per_sec based on
779 * the frequency adjustment
780 */
1da177e4
LT
781 den = 1000000 * (1 << (SHIFT_USEC - 8));
782 if ( delta_freq < 0 ) {
783 tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( (-delta_freq) >> (SHIFT_USEC - 8))) / den;
784 new_tb_ticks_per_sec = tb_ticks_per_sec + tb_ticks_per_sec_delta;
785 }
786 else {
787 tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( delta_freq >> (SHIFT_USEC - 8))) / den;
788 new_tb_ticks_per_sec = tb_ticks_per_sec - tb_ticks_per_sec_delta;
789 }
790
791#ifdef DEBUG_PPC_ADJTIMEX
792 printk("ppc_adjtimex: ltemp = %ld, time_freq = %ld, singleshot_ppm = %ld\n", ltemp, time_freq, singleshot_ppm);
793 printk("ppc_adjtimex: tb_ticks_per_sec - base = %ld new = %ld\n", tb_ticks_per_sec, new_tb_ticks_per_sec);
794#endif
f2783c15
PM
795
796 /*
797 * Compute a new value of tb_to_xs (used to convert tb to
798 * microseconds) and a new value of stamp_xsec which is the
799 * time (in 1/2^20 second units) corresponding to
800 * tb_orig_stamp. This new value of stamp_xsec compensates
801 * for the change in frequency (implied by the new tb_to_xs)
802 * which guarantees that the current time remains the same.
803 */
1da177e4
LT
804 write_seqlock_irqsave( &xtime_lock, flags );
805 tb_ticks = get_tb() - do_gtod.varp->tb_orig_stamp;
f2783c15 806 div128_by_32(1024*1024, 0, new_tb_ticks_per_sec, &divres);
1da177e4 807 new_tb_to_xs = divres.result_low;
f2783c15 808 new_xsec = mulhdu(tb_ticks, new_tb_to_xs);
1da177e4 809
f2783c15 810 old_xsec = mulhdu(tb_ticks, do_gtod.varp->tb_to_xs);
1da177e4
LT
811 new_stamp_xsec = do_gtod.varp->stamp_xsec + old_xsec - new_xsec;
812
f2783c15 813 update_gtod(do_gtod.varp->tb_orig_stamp, new_stamp_xsec, new_tb_to_xs);
1da177e4
LT
814
815 write_sequnlock_irqrestore( &xtime_lock, flags );
f2783c15 816#endif /* CONFIG_PPC64 */
1da177e4
LT
817}
818
819
1da177e4
LT
820#define FEBRUARY 2
821#define STARTOFTIME 1970
822#define SECDAY 86400L
823#define SECYR (SECDAY * 365)
f2783c15
PM
824#define leapyear(year) ((year) % 4 == 0 && \
825 ((year) % 100 != 0 || (year) % 400 == 0))
1da177e4
LT
826#define days_in_year(a) (leapyear(a) ? 366 : 365)
827#define days_in_month(a) (month_days[(a) - 1])
828
829static int month_days[12] = {
830 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
831};
832
833/*
834 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
835 */
836void GregorianDay(struct rtc_time * tm)
837{
838 int leapsToDate;
839 int lastYear;
840 int day;
841 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
842
f2783c15 843 lastYear = tm->tm_year - 1;
1da177e4
LT
844
845 /*
846 * Number of leap corrections to apply up to end of last year
847 */
f2783c15 848 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1da177e4
LT
849
850 /*
851 * This year is a leap year if it is divisible by 4 except when it is
852 * divisible by 100 unless it is divisible by 400
853 *
f2783c15 854 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1da177e4 855 */
f2783c15 856 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1da177e4
LT
857
858 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
859 tm->tm_mday;
860
f2783c15 861 tm->tm_wday = day % 7;
1da177e4
LT
862}
863
864void to_tm(int tim, struct rtc_time * tm)
865{
866 register int i;
867 register long hms, day;
868
869 day = tim / SECDAY;
870 hms = tim % SECDAY;
871
872 /* Hours, minutes, seconds are easy */
873 tm->tm_hour = hms / 3600;
874 tm->tm_min = (hms % 3600) / 60;
875 tm->tm_sec = (hms % 3600) % 60;
876
877 /* Number of years in days */
878 for (i = STARTOFTIME; day >= days_in_year(i); i++)
879 day -= days_in_year(i);
880 tm->tm_year = i;
881
882 /* Number of months in days left */
883 if (leapyear(tm->tm_year))
884 days_in_month(FEBRUARY) = 29;
885 for (i = 1; day >= days_in_month(i); i++)
886 day -= days_in_month(i);
887 days_in_month(FEBRUARY) = 28;
888 tm->tm_mon = i;
889
890 /* Days are what is left over (+1) from all that. */
891 tm->tm_mday = day + 1;
892
893 /*
894 * Determine the day of week
895 */
896 GregorianDay(tm);
897}
898
899/* Auxiliary function to compute scaling factors */
900/* Actually the choice of a timebase running at 1/4 the of the bus
901 * frequency giving resolution of a few tens of nanoseconds is quite nice.
902 * It makes this computation very precise (27-28 bits typically) which
903 * is optimistic considering the stability of most processor clock
904 * oscillators and the precision with which the timebase frequency
905 * is measured but does not harm.
906 */
f2783c15
PM
907unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
908{
1da177e4
LT
909 unsigned mlt=0, tmp, err;
910 /* No concern for performance, it's done once: use a stupid
911 * but safe and compact method to find the multiplier.
912 */
913
914 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
f2783c15
PM
915 if (mulhwu(inscale, mlt|tmp) < outscale)
916 mlt |= tmp;
1da177e4
LT
917 }
918
919 /* We might still be off by 1 for the best approximation.
920 * A side effect of this is that if outscale is too large
921 * the returned value will be zero.
922 * Many corner cases have been checked and seem to work,
923 * some might have been forgotten in the test however.
924 */
925
f2783c15
PM
926 err = inscale * (mlt+1);
927 if (err <= inscale/2)
928 mlt++;
1da177e4 929 return mlt;
f2783c15 930}
1da177e4
LT
931
932/*
933 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
934 * result.
935 */
f2783c15
PM
936void div128_by_32(u64 dividend_high, u64 dividend_low,
937 unsigned divisor, struct div_result *dr)
1da177e4 938{
f2783c15
PM
939 unsigned long a, b, c, d;
940 unsigned long w, x, y, z;
941 u64 ra, rb, rc;
1da177e4
LT
942
943 a = dividend_high >> 32;
944 b = dividend_high & 0xffffffff;
945 c = dividend_low >> 32;
946 d = dividend_low & 0xffffffff;
947
f2783c15
PM
948 w = a / divisor;
949 ra = ((u64)(a - (w * divisor)) << 32) + b;
950
951#ifdef CONFIG_PPC64
952 x = ra / divisor;
953 rb = ((ra - (x * divisor)) << 32) + c;
1da177e4 954
f2783c15
PM
955 y = rb / divisor;
956 rc = ((rb - (y * divisor)) << 32) + d;
1da177e4 957
f2783c15
PM
958 z = rc / divisor;
959#else
960 /* for 32-bit, use do_div from div64.h */
961 rb = ((u64) do_div(ra, divisor) << 32) + c;
962 x = ra;
1da177e4 963
f2783c15
PM
964 rc = ((u64) do_div(rb, divisor) << 32) + d;
965 y = rb;
966
967 do_div(rc, divisor);
968 z = rc;
969#endif
1da177e4 970
f2783c15
PM
971 dr->result_high = ((u64)w << 32) + x;
972 dr->result_low = ((u64)y << 32) + z;
1da177e4
LT
973
974}
975