IRQ: Typedef the IRQ handler function type
[linux-block.git] / arch / powerpc / kernel / time.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
1da177e4
LT
35#include <linux/errno.h>
36#include <linux/module.h>
37#include <linux/sched.h>
38#include <linux/kernel.h>
39#include <linux/param.h>
40#include <linux/string.h>
41#include <linux/mm.h>
42#include <linux/interrupt.h>
43#include <linux/timex.h>
44#include <linux/kernel_stat.h>
1da177e4
LT
45#include <linux/time.h>
46#include <linux/init.h>
47#include <linux/profile.h>
48#include <linux/cpu.h>
49#include <linux/security.h>
f2783c15
PM
50#include <linux/percpu.h>
51#include <linux/rtc.h>
092b8f34 52#include <linux/jiffies.h>
c6622f63 53#include <linux/posix-timers.h>
1da177e4 54
1da177e4
LT
55#include <asm/io.h>
56#include <asm/processor.h>
57#include <asm/nvram.h>
58#include <asm/cache.h>
59#include <asm/machdep.h>
1da177e4
LT
60#include <asm/uaccess.h>
61#include <asm/time.h>
1da177e4 62#include <asm/prom.h>
f2783c15
PM
63#include <asm/irq.h>
64#include <asm/div64.h>
2249ca9d 65#include <asm/smp.h>
a7f290da 66#include <asm/vdso_datapage.h>
f2783c15 67#ifdef CONFIG_PPC64
1ababe11 68#include <asm/firmware.h>
f2783c15
PM
69#endif
70#ifdef CONFIG_PPC_ISERIES
8875ccfb 71#include <asm/iseries/it_lp_queue.h>
8021b8a7 72#include <asm/iseries/hv_call_xm.h>
f2783c15 73#endif
732ee21f 74#include <asm/smp.h>
1da177e4 75
1da177e4
LT
76/* keep track of when we need to update the rtc */
77time_t last_rtc_update;
1da177e4
LT
78#ifdef CONFIG_PPC_ISERIES
79unsigned long iSeries_recal_titan = 0;
80unsigned long iSeries_recal_tb = 0;
81static unsigned long first_settimeofday = 1;
82#endif
83
f2783c15
PM
84/* The decrementer counts down by 128 every 128ns on a 601. */
85#define DECREMENTER_COUNT_601 (1000000000 / HZ)
86
1da177e4
LT
87#define XSEC_PER_SEC (1024*1024)
88
f2783c15
PM
89#ifdef CONFIG_PPC64
90#define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
91#else
92/* compute ((xsec << 12) * max) >> 32 */
93#define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
94#endif
95
1da177e4
LT
96unsigned long tb_ticks_per_jiffy;
97unsigned long tb_ticks_per_usec = 100; /* sane default */
98EXPORT_SYMBOL(tb_ticks_per_usec);
99unsigned long tb_ticks_per_sec;
2cf82c02 100EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
f2783c15
PM
101u64 tb_to_xs;
102unsigned tb_to_us;
092b8f34 103
19923c19 104#define TICKLEN_SCALE TICK_LENGTH_SHIFT
092b8f34
PM
105u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
106u64 ticklen_to_xs; /* 0.64 fraction */
107
108/* If last_tick_len corresponds to about 1/HZ seconds, then
109 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
110#define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
111
1da177e4 112DEFINE_SPINLOCK(rtc_lock);
6ae3db11 113EXPORT_SYMBOL_GPL(rtc_lock);
1da177e4 114
f2783c15
PM
115u64 tb_to_ns_scale;
116unsigned tb_to_ns_shift;
1da177e4
LT
117
118struct gettimeofday_struct do_gtod;
119
1da177e4 120extern struct timezone sys_tz;
f2783c15 121static long timezone_offset;
1da177e4 122
10f7e7c1
AB
123unsigned long ppc_proc_freq;
124unsigned long ppc_tb_freq;
125
eb36c288
PM
126static u64 tb_last_jiffy __cacheline_aligned_in_smp;
127static DEFINE_PER_CPU(u64, last_jiffy);
96c44507 128
c6622f63
PM
129#ifdef CONFIG_VIRT_CPU_ACCOUNTING
130/*
131 * Factors for converting from cputime_t (timebase ticks) to
132 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
133 * These are all stored as 0.64 fixed-point binary fractions.
134 */
135u64 __cputime_jiffies_factor;
2cf82c02 136EXPORT_SYMBOL(__cputime_jiffies_factor);
c6622f63 137u64 __cputime_msec_factor;
2cf82c02 138EXPORT_SYMBOL(__cputime_msec_factor);
c6622f63 139u64 __cputime_sec_factor;
2cf82c02 140EXPORT_SYMBOL(__cputime_sec_factor);
c6622f63 141u64 __cputime_clockt_factor;
2cf82c02 142EXPORT_SYMBOL(__cputime_clockt_factor);
c6622f63
PM
143
144static void calc_cputime_factors(void)
145{
146 struct div_result res;
147
148 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
149 __cputime_jiffies_factor = res.result_low;
150 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
151 __cputime_msec_factor = res.result_low;
152 div128_by_32(1, 0, tb_ticks_per_sec, &res);
153 __cputime_sec_factor = res.result_low;
154 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
155 __cputime_clockt_factor = res.result_low;
156}
157
158/*
159 * Read the PURR on systems that have it, otherwise the timebase.
160 */
161static u64 read_purr(void)
162{
163 if (cpu_has_feature(CPU_FTR_PURR))
164 return mfspr(SPRN_PURR);
165 return mftb();
166}
167
168/*
169 * Account time for a transition between system, hard irq
170 * or soft irq state.
171 */
172void account_system_vtime(struct task_struct *tsk)
173{
174 u64 now, delta;
175 unsigned long flags;
176
177 local_irq_save(flags);
178 now = read_purr();
179 delta = now - get_paca()->startpurr;
180 get_paca()->startpurr = now;
181 if (!in_interrupt()) {
182 delta += get_paca()->system_time;
183 get_paca()->system_time = 0;
184 }
185 account_system_time(tsk, 0, delta);
186 local_irq_restore(flags);
187}
188
189/*
190 * Transfer the user and system times accumulated in the paca
191 * by the exception entry and exit code to the generic process
192 * user and system time records.
193 * Must be called with interrupts disabled.
194 */
195void account_process_vtime(struct task_struct *tsk)
196{
197 cputime_t utime;
198
199 utime = get_paca()->user_time;
200 get_paca()->user_time = 0;
201 account_user_time(tsk, utime);
202}
203
204static void account_process_time(struct pt_regs *regs)
205{
206 int cpu = smp_processor_id();
207
208 account_process_vtime(current);
209 run_local_timers();
210 if (rcu_pending(cpu))
211 rcu_check_callbacks(cpu, user_mode(regs));
212 scheduler_tick();
213 run_posix_cpu_timers(current);
214}
215
216#ifdef CONFIG_PPC_SPLPAR
217/*
218 * Stuff for accounting stolen time.
219 */
220struct cpu_purr_data {
221 int initialized; /* thread is running */
222 u64 tb0; /* timebase at origin time */
223 u64 purr0; /* PURR at origin time */
224 u64 tb; /* last TB value read */
225 u64 purr; /* last PURR value read */
226 u64 stolen; /* stolen time so far */
227 spinlock_t lock;
228};
229
230static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
231
232static void snapshot_tb_and_purr(void *data)
233{
234 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
235
236 p->tb0 = mftb();
237 p->purr0 = mfspr(SPRN_PURR);
238 p->tb = p->tb0;
239 p->purr = 0;
240 wmb();
241 p->initialized = 1;
242}
243
244/*
245 * Called during boot when all cpus have come up.
246 */
247void snapshot_timebases(void)
248{
249 int cpu;
250
251 if (!cpu_has_feature(CPU_FTR_PURR))
252 return;
0e551954 253 for_each_possible_cpu(cpu)
c6622f63
PM
254 spin_lock_init(&per_cpu(cpu_purr_data, cpu).lock);
255 on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
256}
257
258void calculate_steal_time(void)
259{
260 u64 tb, purr, t0;
261 s64 stolen;
262 struct cpu_purr_data *p0, *pme, *phim;
263 int cpu;
264
265 if (!cpu_has_feature(CPU_FTR_PURR))
266 return;
267 cpu = smp_processor_id();
268 pme = &per_cpu(cpu_purr_data, cpu);
269 if (!pme->initialized)
270 return; /* this can happen in early boot */
271 p0 = &per_cpu(cpu_purr_data, cpu & ~1);
272 phim = &per_cpu(cpu_purr_data, cpu ^ 1);
273 spin_lock(&p0->lock);
274 tb = mftb();
275 purr = mfspr(SPRN_PURR) - pme->purr0;
276 if (!phim->initialized || !cpu_online(cpu ^ 1)) {
277 stolen = (tb - pme->tb) - (purr - pme->purr);
278 } else {
279 t0 = pme->tb0;
280 if (phim->tb0 < t0)
281 t0 = phim->tb0;
282 stolen = phim->tb - t0 - phim->purr - purr - p0->stolen;
283 }
284 if (stolen > 0) {
285 account_steal_time(current, stolen);
286 p0->stolen += stolen;
287 }
288 pme->tb = tb;
289 pme->purr = purr;
290 spin_unlock(&p0->lock);
291}
292
293/*
294 * Must be called before the cpu is added to the online map when
295 * a cpu is being brought up at runtime.
296 */
297static void snapshot_purr(void)
298{
299 int cpu;
300 u64 purr;
301 struct cpu_purr_data *p0, *pme, *phim;
302 unsigned long flags;
303
304 if (!cpu_has_feature(CPU_FTR_PURR))
305 return;
306 cpu = smp_processor_id();
307 pme = &per_cpu(cpu_purr_data, cpu);
308 p0 = &per_cpu(cpu_purr_data, cpu & ~1);
309 phim = &per_cpu(cpu_purr_data, cpu ^ 1);
310 spin_lock_irqsave(&p0->lock, flags);
311 pme->tb = pme->tb0 = mftb();
312 purr = mfspr(SPRN_PURR);
313 if (!phim->initialized) {
314 pme->purr = 0;
315 pme->purr0 = purr;
316 } else {
317 /* set p->purr and p->purr0 for no change in p0->stolen */
318 pme->purr = phim->tb - phim->tb0 - phim->purr - p0->stolen;
319 pme->purr0 = purr - pme->purr;
320 }
321 pme->initialized = 1;
322 spin_unlock_irqrestore(&p0->lock, flags);
323}
324
325#endif /* CONFIG_PPC_SPLPAR */
326
327#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
328#define calc_cputime_factors()
329#define account_process_time(regs) update_process_times(user_mode(regs))
330#define calculate_steal_time() do { } while (0)
331#endif
332
333#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
334#define snapshot_purr() do { } while (0)
335#endif
336
337/*
338 * Called when a cpu comes up after the system has finished booting,
339 * i.e. as a result of a hotplug cpu action.
340 */
341void snapshot_timebase(void)
342{
343 __get_cpu_var(last_jiffy) = get_tb();
344 snapshot_purr();
345}
346
6defa38b
PM
347void __delay(unsigned long loops)
348{
349 unsigned long start;
350 int diff;
351
352 if (__USE_RTC()) {
353 start = get_rtcl();
354 do {
355 /* the RTCL register wraps at 1000000000 */
356 diff = get_rtcl() - start;
357 if (diff < 0)
358 diff += 1000000000;
359 } while (diff < loops);
360 } else {
361 start = get_tbl();
362 while (get_tbl() - start < loops)
363 HMT_low();
364 HMT_medium();
365 }
366}
367EXPORT_SYMBOL(__delay);
368
369void udelay(unsigned long usecs)
370{
371 __delay(tb_ticks_per_usec * usecs);
372}
373EXPORT_SYMBOL(udelay);
374
1da177e4
LT
375static __inline__ void timer_check_rtc(void)
376{
377 /*
378 * update the rtc when needed, this should be performed on the
379 * right fraction of a second. Half or full second ?
380 * Full second works on mk48t59 clocks, others need testing.
381 * Note that this update is basically only used through
382 * the adjtimex system calls. Setting the HW clock in
383 * any other way is a /dev/rtc and userland business.
384 * This is still wrong by -0.5/+1.5 jiffies because of the
385 * timer interrupt resolution and possible delay, but here we
386 * hit a quantization limit which can only be solved by higher
387 * resolution timers and decoupling time management from timer
388 * interrupts. This is also wrong on the clocks
389 * which require being written at the half second boundary.
390 * We should have an rtc call that only sets the minutes and
391 * seconds like on Intel to avoid problems with non UTC clocks.
392 */
d2e61512 393 if (ppc_md.set_rtc_time && ntp_synced() &&
f2783c15 394 xtime.tv_sec - last_rtc_update >= 659 &&
092b8f34 395 abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
f2783c15
PM
396 struct rtc_time tm;
397 to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
398 tm.tm_year -= 1900;
399 tm.tm_mon -= 1;
400 if (ppc_md.set_rtc_time(&tm) == 0)
401 last_rtc_update = xtime.tv_sec + 1;
402 else
403 /* Try again one minute later */
404 last_rtc_update += 60;
1da177e4
LT
405 }
406}
407
408/*
409 * This version of gettimeofday has microsecond resolution.
410 */
5db9fa95 411static inline void __do_gettimeofday(struct timeval *tv)
1da177e4 412{
f2783c15
PM
413 unsigned long sec, usec;
414 u64 tb_ticks, xsec;
415 struct gettimeofday_vars *temp_varp;
416 u64 temp_tb_to_xs, temp_stamp_xsec;
1da177e4
LT
417
418 /*
419 * These calculations are faster (gets rid of divides)
420 * if done in units of 1/2^20 rather than microseconds.
421 * The conversion to microseconds at the end is done
422 * without a divide (and in fact, without a multiply)
423 */
424 temp_varp = do_gtod.varp;
5db9fa95
NL
425
426 /* Sampling the time base must be done after loading
427 * do_gtod.varp in order to avoid racing with update_gtod.
428 */
429 data_barrier(temp_varp);
430 tb_ticks = get_tb() - temp_varp->tb_orig_stamp;
1da177e4
LT
431 temp_tb_to_xs = temp_varp->tb_to_xs;
432 temp_stamp_xsec = temp_varp->stamp_xsec;
f2783c15 433 xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
1da177e4 434 sec = xsec / XSEC_PER_SEC;
f2783c15
PM
435 usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
436 usec = SCALE_XSEC(usec, 1000000);
1da177e4
LT
437
438 tv->tv_sec = sec;
439 tv->tv_usec = usec;
440}
441
442void do_gettimeofday(struct timeval *tv)
443{
96c44507
PM
444 if (__USE_RTC()) {
445 /* do this the old way */
446 unsigned long flags, seq;
092b8f34 447 unsigned int sec, nsec, usec;
96c44507
PM
448
449 do {
450 seq = read_seqbegin_irqsave(&xtime_lock, flags);
451 sec = xtime.tv_sec;
eb36c288 452 nsec = xtime.tv_nsec + tb_ticks_since(tb_last_jiffy);
96c44507 453 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
092b8f34 454 usec = nsec / 1000;
96c44507
PM
455 while (usec >= 1000000) {
456 usec -= 1000000;
457 ++sec;
458 }
459 tv->tv_sec = sec;
460 tv->tv_usec = usec;
461 return;
462 }
5db9fa95 463 __do_gettimeofday(tv);
1da177e4
LT
464}
465
466EXPORT_SYMBOL(do_gettimeofday);
467
1da177e4 468/*
f2783c15
PM
469 * There are two copies of tb_to_xs and stamp_xsec so that no
470 * lock is needed to access and use these values in
471 * do_gettimeofday. We alternate the copies and as long as a
472 * reasonable time elapses between changes, there will never
473 * be inconsistent values. ntpd has a minimum of one minute
474 * between updates.
1da177e4 475 */
f2783c15 476static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
5d14a18d 477 u64 new_tb_to_xs)
1da177e4 478{
1da177e4 479 unsigned temp_idx;
f2783c15 480 struct gettimeofday_vars *temp_varp;
1da177e4
LT
481
482 temp_idx = (do_gtod.var_idx == 0);
483 temp_varp = &do_gtod.vars[temp_idx];
484
f2783c15
PM
485 temp_varp->tb_to_xs = new_tb_to_xs;
486 temp_varp->tb_orig_stamp = new_tb_stamp;
1da177e4 487 temp_varp->stamp_xsec = new_stamp_xsec;
0d8d4d42 488 smp_mb();
1da177e4
LT
489 do_gtod.varp = temp_varp;
490 do_gtod.var_idx = temp_idx;
491
f2783c15
PM
492 /*
493 * tb_update_count is used to allow the userspace gettimeofday code
494 * to assure itself that it sees a consistent view of the tb_to_xs and
495 * stamp_xsec variables. It reads the tb_update_count, then reads
496 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
497 * the two values of tb_update_count match and are even then the
498 * tb_to_xs and stamp_xsec values are consistent. If not, then it
499 * loops back and reads them again until this criteria is met.
0a45d449
PM
500 * We expect the caller to have done the first increment of
501 * vdso_data->tb_update_count already.
f2783c15 502 */
a7f290da
BH
503 vdso_data->tb_orig_stamp = new_tb_stamp;
504 vdso_data->stamp_xsec = new_stamp_xsec;
505 vdso_data->tb_to_xs = new_tb_to_xs;
506 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
507 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
0d8d4d42 508 smp_wmb();
a7f290da 509 ++(vdso_data->tb_update_count);
f2783c15
PM
510}
511
512/*
513 * When the timebase - tb_orig_stamp gets too big, we do a manipulation
514 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
515 * difference tb - tb_orig_stamp small enough to always fit inside a
516 * 32 bits number. This is a requirement of our fast 32 bits userland
517 * implementation in the vdso. If we "miss" a call to this function
518 * (interrupt latency, CPU locked in a spinlock, ...) and we end up
519 * with a too big difference, then the vdso will fallback to calling
520 * the syscall
521 */
522static __inline__ void timer_recalc_offset(u64 cur_tb)
523{
524 unsigned long offset;
525 u64 new_stamp_xsec;
092b8f34 526 u64 tlen, t2x;
0a45d449
PM
527 u64 tb, xsec_old, xsec_new;
528 struct gettimeofday_vars *varp;
f2783c15 529
96c44507
PM
530 if (__USE_RTC())
531 return;
19923c19 532 tlen = current_tick_length();
f2783c15 533 offset = cur_tb - do_gtod.varp->tb_orig_stamp;
0a45d449
PM
534 if (tlen == last_tick_len && offset < 0x80000000u)
535 return;
092b8f34
PM
536 if (tlen != last_tick_len) {
537 t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
538 last_tick_len = tlen;
539 } else
540 t2x = do_gtod.varp->tb_to_xs;
541 new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
542 do_div(new_stamp_xsec, 1000000000);
543 new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
0a45d449
PM
544
545 ++vdso_data->tb_update_count;
546 smp_mb();
547
548 /*
549 * Make sure time doesn't go backwards for userspace gettimeofday.
550 */
551 tb = get_tb();
552 varp = do_gtod.varp;
553 xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
554 + varp->stamp_xsec;
555 xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
556 if (xsec_new < xsec_old)
557 new_stamp_xsec += xsec_old - xsec_new;
558
092b8f34 559 update_gtod(cur_tb, new_stamp_xsec, t2x);
1da177e4
LT
560}
561
562#ifdef CONFIG_SMP
563unsigned long profile_pc(struct pt_regs *regs)
564{
565 unsigned long pc = instruction_pointer(regs);
566
567 if (in_lock_functions(pc))
568 return regs->link;
569
570 return pc;
571}
572EXPORT_SYMBOL(profile_pc);
573#endif
574
575#ifdef CONFIG_PPC_ISERIES
576
577/*
578 * This function recalibrates the timebase based on the 49-bit time-of-day
579 * value in the Titan chip. The Titan is much more accurate than the value
580 * returned by the service processor for the timebase frequency.
581 */
582
583static void iSeries_tb_recal(void)
584{
585 struct div_result divres;
586 unsigned long titan, tb;
587 tb = get_tb();
588 titan = HvCallXm_loadTod();
589 if ( iSeries_recal_titan ) {
590 unsigned long tb_ticks = tb - iSeries_recal_tb;
591 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
592 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
593 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
594 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
595 char sign = '+';
596 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
597 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
598
599 if ( tick_diff < 0 ) {
600 tick_diff = -tick_diff;
601 sign = '-';
602 }
603 if ( tick_diff ) {
604 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
605 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
606 new_tb_ticks_per_jiffy, sign, tick_diff );
607 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
608 tb_ticks_per_sec = new_tb_ticks_per_sec;
c6622f63 609 calc_cputime_factors();
1da177e4
LT
610 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
611 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
612 tb_to_xs = divres.result_low;
613 do_gtod.varp->tb_to_xs = tb_to_xs;
a7f290da
BH
614 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
615 vdso_data->tb_to_xs = tb_to_xs;
1da177e4
LT
616 }
617 else {
618 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
619 " new tb_ticks_per_jiffy = %lu\n"
620 " old tb_ticks_per_jiffy = %lu\n",
621 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
622 }
623 }
624 }
625 iSeries_recal_titan = titan;
626 iSeries_recal_tb = tb;
627}
628#endif
629
630/*
631 * For iSeries shared processors, we have to let the hypervisor
632 * set the hardware decrementer. We set a virtual decrementer
633 * in the lppaca and call the hypervisor if the virtual
634 * decrementer is less than the current value in the hardware
635 * decrementer. (almost always the new decrementer value will
636 * be greater than the current hardware decementer so the hypervisor
637 * call will not be needed)
638 */
639
1da177e4
LT
640/*
641 * timer_interrupt - gets called when the decrementer overflows,
642 * with interrupts disabled.
643 */
c7aeffc4 644void timer_interrupt(struct pt_regs * regs)
1da177e4
LT
645{
646 int next_dec;
f2783c15
PM
647 int cpu = smp_processor_id();
648 unsigned long ticks;
5db9fa95 649 u64 tb_next_jiffy;
f2783c15
PM
650
651#ifdef CONFIG_PPC32
652 if (atomic_read(&ppc_n_lost_interrupts) != 0)
653 do_IRQ(regs);
654#endif
1da177e4
LT
655
656 irq_enter();
657
1da177e4 658 profile_tick(CPU_PROFILING, regs);
c6622f63 659 calculate_steal_time();
1da177e4 660
f2783c15 661#ifdef CONFIG_PPC_ISERIES
3356bb9f 662 get_lppaca()->int_dword.fields.decr_int = 0;
f2783c15
PM
663#endif
664
665 while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
666 >= tb_ticks_per_jiffy) {
667 /* Update last_jiffy */
668 per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
669 /* Handle RTCL overflow on 601 */
670 if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
671 per_cpu(last_jiffy, cpu) -= 1000000000;
1da177e4 672
1da177e4
LT
673 /*
674 * We cannot disable the decrementer, so in the period
675 * between this cpu's being marked offline in cpu_online_map
676 * and calling stop-self, it is taking timer interrupts.
677 * Avoid calling into the scheduler rebalancing code if this
678 * is the case.
679 */
680 if (!cpu_is_offline(cpu))
c6622f63 681 account_process_time(regs);
f2783c15 682
1da177e4
LT
683 /*
684 * No need to check whether cpu is offline here; boot_cpuid
685 * should have been fixed up by now.
686 */
f2783c15
PM
687 if (cpu != boot_cpuid)
688 continue;
689
690 write_seqlock(&xtime_lock);
5db9fa95
NL
691 tb_next_jiffy = tb_last_jiffy + tb_ticks_per_jiffy;
692 if (per_cpu(last_jiffy, cpu) >= tb_next_jiffy) {
693 tb_last_jiffy = tb_next_jiffy;
3171a030 694 do_timer(1);
5db9fa95
NL
695 timer_recalc_offset(tb_last_jiffy);
696 timer_check_rtc();
697 }
f2783c15 698 write_sequnlock(&xtime_lock);
1da177e4
LT
699 }
700
f2783c15 701 next_dec = tb_ticks_per_jiffy - ticks;
1da177e4
LT
702 set_dec(next_dec);
703
704#ifdef CONFIG_PPC_ISERIES
937b31b1 705 if (hvlpevent_is_pending())
74889802 706 process_hvlpevents(regs);
1da177e4
LT
707#endif
708
f2783c15 709#ifdef CONFIG_PPC64
8d15a3e5 710 /* collect purr register values often, for accurate calculations */
1ababe11 711 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1da177e4
LT
712 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
713 cu->current_tb = mfspr(SPRN_PURR);
714 }
f2783c15 715#endif
1da177e4
LT
716
717 irq_exit();
1da177e4
LT
718}
719
f2783c15
PM
720void wakeup_decrementer(void)
721{
092b8f34 722 unsigned long ticks;
f2783c15 723
f2783c15 724 /*
092b8f34
PM
725 * The timebase gets saved on sleep and restored on wakeup,
726 * so all we need to do is to reset the decrementer.
f2783c15 727 */
092b8f34
PM
728 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
729 if (ticks < tb_ticks_per_jiffy)
730 ticks = tb_ticks_per_jiffy - ticks;
731 else
732 ticks = 1;
733 set_dec(ticks);
f2783c15
PM
734}
735
a5b518ed 736#ifdef CONFIG_SMP
f2783c15
PM
737void __init smp_space_timers(unsigned int max_cpus)
738{
739 int i;
c6622f63 740 unsigned long half = tb_ticks_per_jiffy / 2;
f2783c15 741 unsigned long offset = tb_ticks_per_jiffy / max_cpus;
eb36c288 742 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
f2783c15 743
cbe62e2b
PM
744 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
745 previous_tb -= tb_ticks_per_jiffy;
c6622f63
PM
746 /*
747 * The stolen time calculation for POWER5 shared-processor LPAR
748 * systems works better if the two threads' timebase interrupts
749 * are staggered by half a jiffy with respect to each other.
750 */
0e551954 751 for_each_possible_cpu(i) {
c6622f63
PM
752 if (i == boot_cpuid)
753 continue;
754 if (i == (boot_cpuid ^ 1))
755 per_cpu(last_jiffy, i) =
756 per_cpu(last_jiffy, boot_cpuid) - half;
757 else if (i & 1)
758 per_cpu(last_jiffy, i) =
759 per_cpu(last_jiffy, i ^ 1) + half;
760 else {
f2783c15
PM
761 previous_tb += offset;
762 per_cpu(last_jiffy, i) = previous_tb;
763 }
764 }
765}
766#endif
767
1da177e4
LT
768/*
769 * Scheduler clock - returns current time in nanosec units.
770 *
771 * Note: mulhdu(a, b) (multiply high double unsigned) returns
772 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
773 * are 64-bit unsigned numbers.
774 */
775unsigned long long sched_clock(void)
776{
96c44507
PM
777 if (__USE_RTC())
778 return get_rtc();
1da177e4
LT
779 return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
780}
781
782int do_settimeofday(struct timespec *tv)
783{
784 time_t wtm_sec, new_sec = tv->tv_sec;
785 long wtm_nsec, new_nsec = tv->tv_nsec;
786 unsigned long flags;
092b8f34
PM
787 u64 new_xsec;
788 unsigned long tb_delta;
1da177e4
LT
789
790 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
791 return -EINVAL;
792
793 write_seqlock_irqsave(&xtime_lock, flags);
f2783c15
PM
794
795 /*
796 * Updating the RTC is not the job of this code. If the time is
797 * stepped under NTP, the RTC will be updated after STA_UNSYNC
798 * is cleared. Tools like clock/hwclock either copy the RTC
1da177e4
LT
799 * to the system time, in which case there is no point in writing
800 * to the RTC again, or write to the RTC but then they don't call
801 * settimeofday to perform this operation.
802 */
803#ifdef CONFIG_PPC_ISERIES
f2783c15 804 if (first_settimeofday) {
1da177e4
LT
805 iSeries_tb_recal();
806 first_settimeofday = 0;
807 }
808#endif
092b8f34 809
0a45d449
PM
810 /* Make userspace gettimeofday spin until we're done. */
811 ++vdso_data->tb_update_count;
812 smp_mb();
813
092b8f34
PM
814 /*
815 * Subtract off the number of nanoseconds since the
816 * beginning of the last tick.
092b8f34 817 */
eb36c288 818 tb_delta = tb_ticks_since(tb_last_jiffy);
092b8f34
PM
819 tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
820 new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
1da177e4
LT
821
822 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
823 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
824
825 set_normalized_timespec(&xtime, new_sec, new_nsec);
826 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
827
828 /* In case of a large backwards jump in time with NTP, we want the
829 * clock to be updated as soon as the PLL is again in lock.
830 */
831 last_rtc_update = new_sec - 658;
832
b149ee22 833 ntp_clear();
1da177e4 834
092b8f34
PM
835 new_xsec = xtime.tv_nsec;
836 if (new_xsec != 0) {
837 new_xsec *= XSEC_PER_SEC;
5f6b5b97
PM
838 do_div(new_xsec, NSEC_PER_SEC);
839 }
092b8f34 840 new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
96c44507 841 update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
1da177e4 842
a7f290da
BH
843 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
844 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
1da177e4
LT
845
846 write_sequnlock_irqrestore(&xtime_lock, flags);
847 clock_was_set();
848 return 0;
849}
850
851EXPORT_SYMBOL(do_settimeofday);
852
0bb474a4 853static int __init get_freq(char *name, int cells, unsigned long *val)
10f7e7c1
AB
854{
855 struct device_node *cpu;
a7f67bdf 856 const unsigned int *fp;
0bb474a4 857 int found = 0;
10f7e7c1 858
0bb474a4 859 /* The cpu node should have timebase and clock frequency properties */
10f7e7c1
AB
860 cpu = of_find_node_by_type(NULL, "cpu");
861
d8a8188d 862 if (cpu) {
a7f67bdf 863 fp = get_property(cpu, name, NULL);
d8a8188d 864 if (fp) {
0bb474a4 865 found = 1;
a4dc7ff0 866 *val = of_read_ulong(fp, cells);
10f7e7c1 867 }
0bb474a4
AB
868
869 of_node_put(cpu);
10f7e7c1 870 }
0bb474a4
AB
871
872 return found;
873}
874
875void __init generic_calibrate_decr(void)
876{
877 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
878
879 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
880 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
881
10f7e7c1
AB
882 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
883 "(not found)\n");
0bb474a4 884 }
10f7e7c1 885
0bb474a4
AB
886 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
887
888 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
889 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
890
891 printk(KERN_ERR "WARNING: Estimating processor frequency "
892 "(not found)\n");
10f7e7c1 893 }
0bb474a4 894
0fd6f717
KG
895#ifdef CONFIG_BOOKE
896 /* Set the time base to zero */
897 mtspr(SPRN_TBWL, 0);
898 mtspr(SPRN_TBWU, 0);
899
900 /* Clear any pending timer interrupts */
901 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
902
903 /* Enable decrementer interrupt */
904 mtspr(SPRN_TCR, TCR_DIE);
905#endif
10f7e7c1 906}
10f7e7c1 907
f2783c15
PM
908unsigned long get_boot_time(void)
909{
910 struct rtc_time tm;
911
912 if (ppc_md.get_boot_time)
913 return ppc_md.get_boot_time();
914 if (!ppc_md.get_rtc_time)
915 return 0;
916 ppc_md.get_rtc_time(&tm);
917 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
918 tm.tm_hour, tm.tm_min, tm.tm_sec);
919}
920
921/* This function is only called on the boot processor */
1da177e4
LT
922void __init time_init(void)
923{
1da177e4 924 unsigned long flags;
f2783c15 925 unsigned long tm = 0;
1da177e4 926 struct div_result res;
092b8f34 927 u64 scale, x;
f2783c15
PM
928 unsigned shift;
929
930 if (ppc_md.time_init != NULL)
931 timezone_offset = ppc_md.time_init();
1da177e4 932
96c44507
PM
933 if (__USE_RTC()) {
934 /* 601 processor: dec counts down by 128 every 128ns */
935 ppc_tb_freq = 1000000000;
eb36c288 936 tb_last_jiffy = get_rtcl();
96c44507
PM
937 } else {
938 /* Normal PowerPC with timebase register */
939 ppc_md.calibrate_decr();
224ad80a 940 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
96c44507 941 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
224ad80a 942 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
96c44507 943 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
eb36c288 944 tb_last_jiffy = get_tb();
96c44507 945 }
374e99d4
PM
946
947 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
092b8f34 948 tb_ticks_per_sec = ppc_tb_freq;
374e99d4
PM
949 tb_ticks_per_usec = ppc_tb_freq / 1000000;
950 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
c6622f63 951 calc_cputime_factors();
092b8f34
PM
952
953 /*
954 * Calculate the length of each tick in ns. It will not be
955 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
956 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
957 * rounded up.
958 */
959 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
960 do_div(x, ppc_tb_freq);
961 tick_nsec = x;
962 last_tick_len = x << TICKLEN_SCALE;
963
964 /*
965 * Compute ticklen_to_xs, which is a factor which gets multiplied
966 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
967 * It is computed as:
968 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
969 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
0a45d449
PM
970 * which turns out to be N = 51 - SHIFT_HZ.
971 * This gives the result as a 0.64 fixed-point fraction.
972 * That value is reduced by an offset amounting to 1 xsec per
973 * 2^31 timebase ticks to avoid problems with time going backwards
974 * by 1 xsec when we do timer_recalc_offset due to losing the
975 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
976 * since there are 2^20 xsec in a second.
092b8f34 977 */
0a45d449
PM
978 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
979 tb_ticks_per_jiffy << SHIFT_HZ, &res);
092b8f34
PM
980 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
981 ticklen_to_xs = res.result_low;
982
983 /* Compute tb_to_xs from tick_nsec */
984 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
374e99d4 985
1da177e4
LT
986 /*
987 * Compute scale factor for sched_clock.
988 * The calibrate_decr() function has set tb_ticks_per_sec,
989 * which is the timebase frequency.
990 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
991 * the 128-bit result as a 64.64 fixed-point number.
992 * We then shift that number right until it is less than 1.0,
993 * giving us the scale factor and shift count to use in
994 * sched_clock().
995 */
996 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
997 scale = res.result_low;
998 for (shift = 0; res.result_high != 0; ++shift) {
999 scale = (scale >> 1) | (res.result_high << 63);
1000 res.result_high >>= 1;
1001 }
1002 tb_to_ns_scale = scale;
1003 tb_to_ns_shift = shift;
1004
4bd174fe 1005 tm = get_boot_time();
1da177e4
LT
1006
1007 write_seqlock_irqsave(&xtime_lock, flags);
092b8f34
PM
1008
1009 /* If platform provided a timezone (pmac), we correct the time */
1010 if (timezone_offset) {
1011 sys_tz.tz_minuteswest = -timezone_offset / 60;
1012 sys_tz.tz_dsttime = 0;
1013 tm -= timezone_offset;
1014 }
1015
f2783c15
PM
1016 xtime.tv_sec = tm;
1017 xtime.tv_nsec = 0;
1da177e4
LT
1018 do_gtod.varp = &do_gtod.vars[0];
1019 do_gtod.var_idx = 0;
96c44507 1020 do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
eb36c288 1021 __get_cpu_var(last_jiffy) = tb_last_jiffy;
f2783c15 1022 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1da177e4
LT
1023 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
1024 do_gtod.varp->tb_to_xs = tb_to_xs;
1025 do_gtod.tb_to_us = tb_to_us;
a7f290da
BH
1026
1027 vdso_data->tb_orig_stamp = tb_last_jiffy;
1028 vdso_data->tb_update_count = 0;
1029 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
092b8f34 1030 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
a7f290da 1031 vdso_data->tb_to_xs = tb_to_xs;
1da177e4
LT
1032
1033 time_freq = 0;
1034
1da177e4
LT
1035 last_rtc_update = xtime.tv_sec;
1036 set_normalized_timespec(&wall_to_monotonic,
1037 -xtime.tv_sec, -xtime.tv_nsec);
1038 write_sequnlock_irqrestore(&xtime_lock, flags);
1039
1040 /* Not exact, but the timer interrupt takes care of this */
1041 set_dec(tb_ticks_per_jiffy);
1042}
1043
7a69af63
KP
1044#ifdef CONFIG_RTC_CLASS
1045static int set_rtc_class_time(struct rtc_time *tm)
1046{
1047 int err;
1048 struct class_device *class_dev =
1049 rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE);
1050
1051 if (class_dev == NULL)
1052 return -ENODEV;
1053
1054 err = rtc_set_time(class_dev, tm);
1055
1056 rtc_class_close(class_dev);
1057
1058 return 0;
1059}
1060
1061static void get_rtc_class_time(struct rtc_time *tm)
1062{
1063 int err;
1064 struct class_device *class_dev =
1065 rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE);
1066
1067 if (class_dev == NULL)
1068 return;
1069
1070 err = rtc_read_time(class_dev, tm);
1071
1072 rtc_class_close(class_dev);
1073
1074 return;
1075}
1076
1077int __init rtc_class_hookup(void)
1078{
1079 ppc_md.get_rtc_time = get_rtc_class_time;
1080 ppc_md.set_rtc_time = set_rtc_class_time;
1081
1082 return 0;
1083}
1084#endif /* CONFIG_RTC_CLASS */
1085
1da177e4 1086
1da177e4
LT
1087#define FEBRUARY 2
1088#define STARTOFTIME 1970
1089#define SECDAY 86400L
1090#define SECYR (SECDAY * 365)
f2783c15
PM
1091#define leapyear(year) ((year) % 4 == 0 && \
1092 ((year) % 100 != 0 || (year) % 400 == 0))
1da177e4
LT
1093#define days_in_year(a) (leapyear(a) ? 366 : 365)
1094#define days_in_month(a) (month_days[(a) - 1])
1095
1096static int month_days[12] = {
1097 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1098};
1099
1100/*
1101 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1102 */
1103void GregorianDay(struct rtc_time * tm)
1104{
1105 int leapsToDate;
1106 int lastYear;
1107 int day;
1108 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1109
f2783c15 1110 lastYear = tm->tm_year - 1;
1da177e4
LT
1111
1112 /*
1113 * Number of leap corrections to apply up to end of last year
1114 */
f2783c15 1115 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1da177e4
LT
1116
1117 /*
1118 * This year is a leap year if it is divisible by 4 except when it is
1119 * divisible by 100 unless it is divisible by 400
1120 *
f2783c15 1121 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1da177e4 1122 */
f2783c15 1123 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1da177e4
LT
1124
1125 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1126 tm->tm_mday;
1127
f2783c15 1128 tm->tm_wday = day % 7;
1da177e4
LT
1129}
1130
1131void to_tm(int tim, struct rtc_time * tm)
1132{
1133 register int i;
1134 register long hms, day;
1135
1136 day = tim / SECDAY;
1137 hms = tim % SECDAY;
1138
1139 /* Hours, minutes, seconds are easy */
1140 tm->tm_hour = hms / 3600;
1141 tm->tm_min = (hms % 3600) / 60;
1142 tm->tm_sec = (hms % 3600) % 60;
1143
1144 /* Number of years in days */
1145 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1146 day -= days_in_year(i);
1147 tm->tm_year = i;
1148
1149 /* Number of months in days left */
1150 if (leapyear(tm->tm_year))
1151 days_in_month(FEBRUARY) = 29;
1152 for (i = 1; day >= days_in_month(i); i++)
1153 day -= days_in_month(i);
1154 days_in_month(FEBRUARY) = 28;
1155 tm->tm_mon = i;
1156
1157 /* Days are what is left over (+1) from all that. */
1158 tm->tm_mday = day + 1;
1159
1160 /*
1161 * Determine the day of week
1162 */
1163 GregorianDay(tm);
1164}
1165
1166/* Auxiliary function to compute scaling factors */
1167/* Actually the choice of a timebase running at 1/4 the of the bus
1168 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1169 * It makes this computation very precise (27-28 bits typically) which
1170 * is optimistic considering the stability of most processor clock
1171 * oscillators and the precision with which the timebase frequency
1172 * is measured but does not harm.
1173 */
f2783c15
PM
1174unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1175{
1da177e4
LT
1176 unsigned mlt=0, tmp, err;
1177 /* No concern for performance, it's done once: use a stupid
1178 * but safe and compact method to find the multiplier.
1179 */
1180
1181 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
f2783c15
PM
1182 if (mulhwu(inscale, mlt|tmp) < outscale)
1183 mlt |= tmp;
1da177e4
LT
1184 }
1185
1186 /* We might still be off by 1 for the best approximation.
1187 * A side effect of this is that if outscale is too large
1188 * the returned value will be zero.
1189 * Many corner cases have been checked and seem to work,
1190 * some might have been forgotten in the test however.
1191 */
1192
f2783c15
PM
1193 err = inscale * (mlt+1);
1194 if (err <= inscale/2)
1195 mlt++;
1da177e4 1196 return mlt;
f2783c15 1197}
1da177e4
LT
1198
1199/*
1200 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1201 * result.
1202 */
f2783c15
PM
1203void div128_by_32(u64 dividend_high, u64 dividend_low,
1204 unsigned divisor, struct div_result *dr)
1da177e4 1205{
f2783c15
PM
1206 unsigned long a, b, c, d;
1207 unsigned long w, x, y, z;
1208 u64 ra, rb, rc;
1da177e4
LT
1209
1210 a = dividend_high >> 32;
1211 b = dividend_high & 0xffffffff;
1212 c = dividend_low >> 32;
1213 d = dividend_low & 0xffffffff;
1214
f2783c15
PM
1215 w = a / divisor;
1216 ra = ((u64)(a - (w * divisor)) << 32) + b;
1217
f2783c15
PM
1218 rb = ((u64) do_div(ra, divisor) << 32) + c;
1219 x = ra;
1da177e4 1220
f2783c15
PM
1221 rc = ((u64) do_div(rb, divisor) << 32) + d;
1222 y = rb;
1223
1224 do_div(rc, divisor);
1225 z = rc;
1da177e4 1226
f2783c15
PM
1227 dr->result_high = ((u64)w << 32) + x;
1228 dr->result_low = ((u64)y << 32) + z;
1da177e4
LT
1229
1230}