[POWERPC] Extra sanity check in EEH code
[linux-2.6-block.git] / arch / powerpc / kernel / time.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35#include <linux/config.h>
36#include <linux/errno.h>
37#include <linux/module.h>
38#include <linux/sched.h>
39#include <linux/kernel.h>
40#include <linux/param.h>
41#include <linux/string.h>
42#include <linux/mm.h>
43#include <linux/interrupt.h>
44#include <linux/timex.h>
45#include <linux/kernel_stat.h>
1da177e4
LT
46#include <linux/time.h>
47#include <linux/init.h>
48#include <linux/profile.h>
49#include <linux/cpu.h>
50#include <linux/security.h>
f2783c15
PM
51#include <linux/percpu.h>
52#include <linux/rtc.h>
092b8f34 53#include <linux/jiffies.h>
c6622f63 54#include <linux/posix-timers.h>
1da177e4 55
1da177e4
LT
56#include <asm/io.h>
57#include <asm/processor.h>
58#include <asm/nvram.h>
59#include <asm/cache.h>
60#include <asm/machdep.h>
1da177e4
LT
61#include <asm/uaccess.h>
62#include <asm/time.h>
1da177e4 63#include <asm/prom.h>
f2783c15
PM
64#include <asm/irq.h>
65#include <asm/div64.h>
2249ca9d 66#include <asm/smp.h>
a7f290da 67#include <asm/vdso_datapage.h>
f2783c15 68#ifdef CONFIG_PPC64
1ababe11 69#include <asm/firmware.h>
f2783c15
PM
70#endif
71#ifdef CONFIG_PPC_ISERIES
8875ccfb 72#include <asm/iseries/it_lp_queue.h>
8021b8a7 73#include <asm/iseries/hv_call_xm.h>
f2783c15 74#endif
732ee21f 75#include <asm/smp.h>
1da177e4 76
1da177e4
LT
77/* keep track of when we need to update the rtc */
78time_t last_rtc_update;
1da177e4
LT
79#ifdef CONFIG_PPC_ISERIES
80unsigned long iSeries_recal_titan = 0;
81unsigned long iSeries_recal_tb = 0;
82static unsigned long first_settimeofday = 1;
83#endif
84
f2783c15
PM
85/* The decrementer counts down by 128 every 128ns on a 601. */
86#define DECREMENTER_COUNT_601 (1000000000 / HZ)
87
1da177e4
LT
88#define XSEC_PER_SEC (1024*1024)
89
f2783c15
PM
90#ifdef CONFIG_PPC64
91#define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
92#else
93/* compute ((xsec << 12) * max) >> 32 */
94#define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
95#endif
96
1da177e4
LT
97unsigned long tb_ticks_per_jiffy;
98unsigned long tb_ticks_per_usec = 100; /* sane default */
99EXPORT_SYMBOL(tb_ticks_per_usec);
100unsigned long tb_ticks_per_sec;
2cf82c02 101EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
f2783c15
PM
102u64 tb_to_xs;
103unsigned tb_to_us;
092b8f34
PM
104
105#define TICKLEN_SCALE (SHIFT_SCALE - 10)
106u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
107u64 ticklen_to_xs; /* 0.64 fraction */
108
109/* If last_tick_len corresponds to about 1/HZ seconds, then
110 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
111#define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
112
1da177e4 113DEFINE_SPINLOCK(rtc_lock);
6ae3db11 114EXPORT_SYMBOL_GPL(rtc_lock);
1da177e4 115
f2783c15
PM
116u64 tb_to_ns_scale;
117unsigned tb_to_ns_shift;
1da177e4
LT
118
119struct gettimeofday_struct do_gtod;
120
121extern unsigned long wall_jiffies;
1da177e4
LT
122
123extern struct timezone sys_tz;
f2783c15 124static long timezone_offset;
1da177e4 125
10f7e7c1
AB
126unsigned long ppc_proc_freq;
127unsigned long ppc_tb_freq;
128
96c44507
PM
129u64 tb_last_jiffy __cacheline_aligned_in_smp;
130unsigned long tb_last_stamp;
131
132/*
133 * Note that on ppc32 this only stores the bottom 32 bits of
134 * the timebase value, but that's enough to tell when a jiffy
135 * has passed.
136 */
137DEFINE_PER_CPU(unsigned long, last_jiffy);
138
c6622f63
PM
139#ifdef CONFIG_VIRT_CPU_ACCOUNTING
140/*
141 * Factors for converting from cputime_t (timebase ticks) to
142 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
143 * These are all stored as 0.64 fixed-point binary fractions.
144 */
145u64 __cputime_jiffies_factor;
2cf82c02 146EXPORT_SYMBOL(__cputime_jiffies_factor);
c6622f63 147u64 __cputime_msec_factor;
2cf82c02 148EXPORT_SYMBOL(__cputime_msec_factor);
c6622f63 149u64 __cputime_sec_factor;
2cf82c02 150EXPORT_SYMBOL(__cputime_sec_factor);
c6622f63 151u64 __cputime_clockt_factor;
2cf82c02 152EXPORT_SYMBOL(__cputime_clockt_factor);
c6622f63
PM
153
154static void calc_cputime_factors(void)
155{
156 struct div_result res;
157
158 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
159 __cputime_jiffies_factor = res.result_low;
160 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
161 __cputime_msec_factor = res.result_low;
162 div128_by_32(1, 0, tb_ticks_per_sec, &res);
163 __cputime_sec_factor = res.result_low;
164 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
165 __cputime_clockt_factor = res.result_low;
166}
167
168/*
169 * Read the PURR on systems that have it, otherwise the timebase.
170 */
171static u64 read_purr(void)
172{
173 if (cpu_has_feature(CPU_FTR_PURR))
174 return mfspr(SPRN_PURR);
175 return mftb();
176}
177
178/*
179 * Account time for a transition between system, hard irq
180 * or soft irq state.
181 */
182void account_system_vtime(struct task_struct *tsk)
183{
184 u64 now, delta;
185 unsigned long flags;
186
187 local_irq_save(flags);
188 now = read_purr();
189 delta = now - get_paca()->startpurr;
190 get_paca()->startpurr = now;
191 if (!in_interrupt()) {
192 delta += get_paca()->system_time;
193 get_paca()->system_time = 0;
194 }
195 account_system_time(tsk, 0, delta);
196 local_irq_restore(flags);
197}
198
199/*
200 * Transfer the user and system times accumulated in the paca
201 * by the exception entry and exit code to the generic process
202 * user and system time records.
203 * Must be called with interrupts disabled.
204 */
205void account_process_vtime(struct task_struct *tsk)
206{
207 cputime_t utime;
208
209 utime = get_paca()->user_time;
210 get_paca()->user_time = 0;
211 account_user_time(tsk, utime);
212}
213
214static void account_process_time(struct pt_regs *regs)
215{
216 int cpu = smp_processor_id();
217
218 account_process_vtime(current);
219 run_local_timers();
220 if (rcu_pending(cpu))
221 rcu_check_callbacks(cpu, user_mode(regs));
222 scheduler_tick();
223 run_posix_cpu_timers(current);
224}
225
226#ifdef CONFIG_PPC_SPLPAR
227/*
228 * Stuff for accounting stolen time.
229 */
230struct cpu_purr_data {
231 int initialized; /* thread is running */
232 u64 tb0; /* timebase at origin time */
233 u64 purr0; /* PURR at origin time */
234 u64 tb; /* last TB value read */
235 u64 purr; /* last PURR value read */
236 u64 stolen; /* stolen time so far */
237 spinlock_t lock;
238};
239
240static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
241
242static void snapshot_tb_and_purr(void *data)
243{
244 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
245
246 p->tb0 = mftb();
247 p->purr0 = mfspr(SPRN_PURR);
248 p->tb = p->tb0;
249 p->purr = 0;
250 wmb();
251 p->initialized = 1;
252}
253
254/*
255 * Called during boot when all cpus have come up.
256 */
257void snapshot_timebases(void)
258{
259 int cpu;
260
261 if (!cpu_has_feature(CPU_FTR_PURR))
262 return;
0e551954 263 for_each_possible_cpu(cpu)
c6622f63
PM
264 spin_lock_init(&per_cpu(cpu_purr_data, cpu).lock);
265 on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
266}
267
268void calculate_steal_time(void)
269{
270 u64 tb, purr, t0;
271 s64 stolen;
272 struct cpu_purr_data *p0, *pme, *phim;
273 int cpu;
274
275 if (!cpu_has_feature(CPU_FTR_PURR))
276 return;
277 cpu = smp_processor_id();
278 pme = &per_cpu(cpu_purr_data, cpu);
279 if (!pme->initialized)
280 return; /* this can happen in early boot */
281 p0 = &per_cpu(cpu_purr_data, cpu & ~1);
282 phim = &per_cpu(cpu_purr_data, cpu ^ 1);
283 spin_lock(&p0->lock);
284 tb = mftb();
285 purr = mfspr(SPRN_PURR) - pme->purr0;
286 if (!phim->initialized || !cpu_online(cpu ^ 1)) {
287 stolen = (tb - pme->tb) - (purr - pme->purr);
288 } else {
289 t0 = pme->tb0;
290 if (phim->tb0 < t0)
291 t0 = phim->tb0;
292 stolen = phim->tb - t0 - phim->purr - purr - p0->stolen;
293 }
294 if (stolen > 0) {
295 account_steal_time(current, stolen);
296 p0->stolen += stolen;
297 }
298 pme->tb = tb;
299 pme->purr = purr;
300 spin_unlock(&p0->lock);
301}
302
303/*
304 * Must be called before the cpu is added to the online map when
305 * a cpu is being brought up at runtime.
306 */
307static void snapshot_purr(void)
308{
309 int cpu;
310 u64 purr;
311 struct cpu_purr_data *p0, *pme, *phim;
312 unsigned long flags;
313
314 if (!cpu_has_feature(CPU_FTR_PURR))
315 return;
316 cpu = smp_processor_id();
317 pme = &per_cpu(cpu_purr_data, cpu);
318 p0 = &per_cpu(cpu_purr_data, cpu & ~1);
319 phim = &per_cpu(cpu_purr_data, cpu ^ 1);
320 spin_lock_irqsave(&p0->lock, flags);
321 pme->tb = pme->tb0 = mftb();
322 purr = mfspr(SPRN_PURR);
323 if (!phim->initialized) {
324 pme->purr = 0;
325 pme->purr0 = purr;
326 } else {
327 /* set p->purr and p->purr0 for no change in p0->stolen */
328 pme->purr = phim->tb - phim->tb0 - phim->purr - p0->stolen;
329 pme->purr0 = purr - pme->purr;
330 }
331 pme->initialized = 1;
332 spin_unlock_irqrestore(&p0->lock, flags);
333}
334
335#endif /* CONFIG_PPC_SPLPAR */
336
337#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
338#define calc_cputime_factors()
339#define account_process_time(regs) update_process_times(user_mode(regs))
340#define calculate_steal_time() do { } while (0)
341#endif
342
343#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
344#define snapshot_purr() do { } while (0)
345#endif
346
347/*
348 * Called when a cpu comes up after the system has finished booting,
349 * i.e. as a result of a hotplug cpu action.
350 */
351void snapshot_timebase(void)
352{
353 __get_cpu_var(last_jiffy) = get_tb();
354 snapshot_purr();
355}
356
6defa38b
PM
357void __delay(unsigned long loops)
358{
359 unsigned long start;
360 int diff;
361
362 if (__USE_RTC()) {
363 start = get_rtcl();
364 do {
365 /* the RTCL register wraps at 1000000000 */
366 diff = get_rtcl() - start;
367 if (diff < 0)
368 diff += 1000000000;
369 } while (diff < loops);
370 } else {
371 start = get_tbl();
372 while (get_tbl() - start < loops)
373 HMT_low();
374 HMT_medium();
375 }
376}
377EXPORT_SYMBOL(__delay);
378
379void udelay(unsigned long usecs)
380{
381 __delay(tb_ticks_per_usec * usecs);
382}
383EXPORT_SYMBOL(udelay);
384
1da177e4
LT
385static __inline__ void timer_check_rtc(void)
386{
387 /*
388 * update the rtc when needed, this should be performed on the
389 * right fraction of a second. Half or full second ?
390 * Full second works on mk48t59 clocks, others need testing.
391 * Note that this update is basically only used through
392 * the adjtimex system calls. Setting the HW clock in
393 * any other way is a /dev/rtc and userland business.
394 * This is still wrong by -0.5/+1.5 jiffies because of the
395 * timer interrupt resolution and possible delay, but here we
396 * hit a quantization limit which can only be solved by higher
397 * resolution timers and decoupling time management from timer
398 * interrupts. This is also wrong on the clocks
399 * which require being written at the half second boundary.
400 * We should have an rtc call that only sets the minutes and
401 * seconds like on Intel to avoid problems with non UTC clocks.
402 */
d2e61512 403 if (ppc_md.set_rtc_time && ntp_synced() &&
f2783c15 404 xtime.tv_sec - last_rtc_update >= 659 &&
092b8f34 405 abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
f2783c15
PM
406 struct rtc_time tm;
407 to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
408 tm.tm_year -= 1900;
409 tm.tm_mon -= 1;
410 if (ppc_md.set_rtc_time(&tm) == 0)
411 last_rtc_update = xtime.tv_sec + 1;
412 else
413 /* Try again one minute later */
414 last_rtc_update += 60;
1da177e4
LT
415 }
416}
417
418/*
419 * This version of gettimeofday has microsecond resolution.
420 */
f2783c15 421static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val)
1da177e4 422{
f2783c15
PM
423 unsigned long sec, usec;
424 u64 tb_ticks, xsec;
425 struct gettimeofday_vars *temp_varp;
426 u64 temp_tb_to_xs, temp_stamp_xsec;
1da177e4
LT
427
428 /*
429 * These calculations are faster (gets rid of divides)
430 * if done in units of 1/2^20 rather than microseconds.
431 * The conversion to microseconds at the end is done
432 * without a divide (and in fact, without a multiply)
433 */
434 temp_varp = do_gtod.varp;
435 tb_ticks = tb_val - temp_varp->tb_orig_stamp;
436 temp_tb_to_xs = temp_varp->tb_to_xs;
437 temp_stamp_xsec = temp_varp->stamp_xsec;
f2783c15 438 xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
1da177e4 439 sec = xsec / XSEC_PER_SEC;
f2783c15
PM
440 usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
441 usec = SCALE_XSEC(usec, 1000000);
1da177e4
LT
442
443 tv->tv_sec = sec;
444 tv->tv_usec = usec;
445}
446
447void do_gettimeofday(struct timeval *tv)
448{
96c44507
PM
449 if (__USE_RTC()) {
450 /* do this the old way */
451 unsigned long flags, seq;
092b8f34 452 unsigned int sec, nsec, usec;
96c44507
PM
453
454 do {
455 seq = read_seqbegin_irqsave(&xtime_lock, flags);
456 sec = xtime.tv_sec;
457 nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp);
96c44507 458 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
092b8f34 459 usec = nsec / 1000;
96c44507
PM
460 while (usec >= 1000000) {
461 usec -= 1000000;
462 ++sec;
463 }
464 tv->tv_sec = sec;
465 tv->tv_usec = usec;
466 return;
467 }
1da177e4
LT
468 __do_gettimeofday(tv, get_tb());
469}
470
471EXPORT_SYMBOL(do_gettimeofday);
472
1da177e4 473/*
f2783c15
PM
474 * There are two copies of tb_to_xs and stamp_xsec so that no
475 * lock is needed to access and use these values in
476 * do_gettimeofday. We alternate the copies and as long as a
477 * reasonable time elapses between changes, there will never
478 * be inconsistent values. ntpd has a minimum of one minute
479 * between updates.
1da177e4 480 */
f2783c15 481static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
5d14a18d 482 u64 new_tb_to_xs)
1da177e4 483{
1da177e4 484 unsigned temp_idx;
f2783c15 485 struct gettimeofday_vars *temp_varp;
1da177e4
LT
486
487 temp_idx = (do_gtod.var_idx == 0);
488 temp_varp = &do_gtod.vars[temp_idx];
489
f2783c15
PM
490 temp_varp->tb_to_xs = new_tb_to_xs;
491 temp_varp->tb_orig_stamp = new_tb_stamp;
1da177e4 492 temp_varp->stamp_xsec = new_stamp_xsec;
0d8d4d42 493 smp_mb();
1da177e4
LT
494 do_gtod.varp = temp_varp;
495 do_gtod.var_idx = temp_idx;
496
f2783c15
PM
497 /*
498 * tb_update_count is used to allow the userspace gettimeofday code
499 * to assure itself that it sees a consistent view of the tb_to_xs and
500 * stamp_xsec variables. It reads the tb_update_count, then reads
501 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
502 * the two values of tb_update_count match and are even then the
503 * tb_to_xs and stamp_xsec values are consistent. If not, then it
504 * loops back and reads them again until this criteria is met.
0a45d449
PM
505 * We expect the caller to have done the first increment of
506 * vdso_data->tb_update_count already.
f2783c15 507 */
a7f290da
BH
508 vdso_data->tb_orig_stamp = new_tb_stamp;
509 vdso_data->stamp_xsec = new_stamp_xsec;
510 vdso_data->tb_to_xs = new_tb_to_xs;
511 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
512 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
0d8d4d42 513 smp_wmb();
a7f290da 514 ++(vdso_data->tb_update_count);
f2783c15
PM
515}
516
517/*
518 * When the timebase - tb_orig_stamp gets too big, we do a manipulation
519 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
520 * difference tb - tb_orig_stamp small enough to always fit inside a
521 * 32 bits number. This is a requirement of our fast 32 bits userland
522 * implementation in the vdso. If we "miss" a call to this function
523 * (interrupt latency, CPU locked in a spinlock, ...) and we end up
524 * with a too big difference, then the vdso will fallback to calling
525 * the syscall
526 */
527static __inline__ void timer_recalc_offset(u64 cur_tb)
528{
529 unsigned long offset;
530 u64 new_stamp_xsec;
092b8f34 531 u64 tlen, t2x;
0a45d449
PM
532 u64 tb, xsec_old, xsec_new;
533 struct gettimeofday_vars *varp;
f2783c15 534
96c44507
PM
535 if (__USE_RTC())
536 return;
092b8f34 537 tlen = current_tick_length();
f2783c15 538 offset = cur_tb - do_gtod.varp->tb_orig_stamp;
0a45d449
PM
539 if (tlen == last_tick_len && offset < 0x80000000u)
540 return;
092b8f34
PM
541 if (tlen != last_tick_len) {
542 t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
543 last_tick_len = tlen;
544 } else
545 t2x = do_gtod.varp->tb_to_xs;
546 new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
547 do_div(new_stamp_xsec, 1000000000);
548 new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
0a45d449
PM
549
550 ++vdso_data->tb_update_count;
551 smp_mb();
552
553 /*
554 * Make sure time doesn't go backwards for userspace gettimeofday.
555 */
556 tb = get_tb();
557 varp = do_gtod.varp;
558 xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
559 + varp->stamp_xsec;
560 xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
561 if (xsec_new < xsec_old)
562 new_stamp_xsec += xsec_old - xsec_new;
563
092b8f34 564 update_gtod(cur_tb, new_stamp_xsec, t2x);
1da177e4
LT
565}
566
567#ifdef CONFIG_SMP
568unsigned long profile_pc(struct pt_regs *regs)
569{
570 unsigned long pc = instruction_pointer(regs);
571
572 if (in_lock_functions(pc))
573 return regs->link;
574
575 return pc;
576}
577EXPORT_SYMBOL(profile_pc);
578#endif
579
580#ifdef CONFIG_PPC_ISERIES
581
582/*
583 * This function recalibrates the timebase based on the 49-bit time-of-day
584 * value in the Titan chip. The Titan is much more accurate than the value
585 * returned by the service processor for the timebase frequency.
586 */
587
588static void iSeries_tb_recal(void)
589{
590 struct div_result divres;
591 unsigned long titan, tb;
592 tb = get_tb();
593 titan = HvCallXm_loadTod();
594 if ( iSeries_recal_titan ) {
595 unsigned long tb_ticks = tb - iSeries_recal_tb;
596 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
597 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
598 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
599 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
600 char sign = '+';
601 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
602 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
603
604 if ( tick_diff < 0 ) {
605 tick_diff = -tick_diff;
606 sign = '-';
607 }
608 if ( tick_diff ) {
609 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
610 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
611 new_tb_ticks_per_jiffy, sign, tick_diff );
612 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
613 tb_ticks_per_sec = new_tb_ticks_per_sec;
c6622f63 614 calc_cputime_factors();
1da177e4
LT
615 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
616 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
617 tb_to_xs = divres.result_low;
618 do_gtod.varp->tb_to_xs = tb_to_xs;
a7f290da
BH
619 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
620 vdso_data->tb_to_xs = tb_to_xs;
1da177e4
LT
621 }
622 else {
623 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
624 " new tb_ticks_per_jiffy = %lu\n"
625 " old tb_ticks_per_jiffy = %lu\n",
626 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
627 }
628 }
629 }
630 iSeries_recal_titan = titan;
631 iSeries_recal_tb = tb;
632}
633#endif
634
635/*
636 * For iSeries shared processors, we have to let the hypervisor
637 * set the hardware decrementer. We set a virtual decrementer
638 * in the lppaca and call the hypervisor if the virtual
639 * decrementer is less than the current value in the hardware
640 * decrementer. (almost always the new decrementer value will
641 * be greater than the current hardware decementer so the hypervisor
642 * call will not be needed)
643 */
644
1da177e4
LT
645/*
646 * timer_interrupt - gets called when the decrementer overflows,
647 * with interrupts disabled.
648 */
c7aeffc4 649void timer_interrupt(struct pt_regs * regs)
1da177e4
LT
650{
651 int next_dec;
f2783c15
PM
652 int cpu = smp_processor_id();
653 unsigned long ticks;
654
655#ifdef CONFIG_PPC32
656 if (atomic_read(&ppc_n_lost_interrupts) != 0)
657 do_IRQ(regs);
658#endif
1da177e4
LT
659
660 irq_enter();
661
1da177e4 662 profile_tick(CPU_PROFILING, regs);
c6622f63 663 calculate_steal_time();
1da177e4 664
f2783c15 665#ifdef CONFIG_PPC_ISERIES
3356bb9f 666 get_lppaca()->int_dword.fields.decr_int = 0;
f2783c15
PM
667#endif
668
669 while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
670 >= tb_ticks_per_jiffy) {
671 /* Update last_jiffy */
672 per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
673 /* Handle RTCL overflow on 601 */
674 if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
675 per_cpu(last_jiffy, cpu) -= 1000000000;
1da177e4 676
1da177e4
LT
677 /*
678 * We cannot disable the decrementer, so in the period
679 * between this cpu's being marked offline in cpu_online_map
680 * and calling stop-self, it is taking timer interrupts.
681 * Avoid calling into the scheduler rebalancing code if this
682 * is the case.
683 */
684 if (!cpu_is_offline(cpu))
c6622f63 685 account_process_time(regs);
f2783c15 686
1da177e4
LT
687 /*
688 * No need to check whether cpu is offline here; boot_cpuid
689 * should have been fixed up by now.
690 */
f2783c15
PM
691 if (cpu != boot_cpuid)
692 continue;
693
694 write_seqlock(&xtime_lock);
96c44507
PM
695 tb_last_jiffy += tb_ticks_per_jiffy;
696 tb_last_stamp = per_cpu(last_jiffy, cpu);
f2783c15 697 do_timer(regs);
092b8f34 698 timer_recalc_offset(tb_last_jiffy);
f2783c15
PM
699 timer_check_rtc();
700 write_sequnlock(&xtime_lock);
1da177e4
LT
701 }
702
f2783c15 703 next_dec = tb_ticks_per_jiffy - ticks;
1da177e4
LT
704 set_dec(next_dec);
705
706#ifdef CONFIG_PPC_ISERIES
937b31b1 707 if (hvlpevent_is_pending())
74889802 708 process_hvlpevents(regs);
1da177e4
LT
709#endif
710
f2783c15 711#ifdef CONFIG_PPC64
8d15a3e5 712 /* collect purr register values often, for accurate calculations */
1ababe11 713 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1da177e4
LT
714 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
715 cu->current_tb = mfspr(SPRN_PURR);
716 }
f2783c15 717#endif
1da177e4
LT
718
719 irq_exit();
1da177e4
LT
720}
721
f2783c15
PM
722void wakeup_decrementer(void)
723{
092b8f34 724 unsigned long ticks;
f2783c15 725
f2783c15 726 /*
092b8f34
PM
727 * The timebase gets saved on sleep and restored on wakeup,
728 * so all we need to do is to reset the decrementer.
f2783c15 729 */
092b8f34
PM
730 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
731 if (ticks < tb_ticks_per_jiffy)
732 ticks = tb_ticks_per_jiffy - ticks;
733 else
734 ticks = 1;
735 set_dec(ticks);
f2783c15
PM
736}
737
a5b518ed 738#ifdef CONFIG_SMP
f2783c15
PM
739void __init smp_space_timers(unsigned int max_cpus)
740{
741 int i;
c6622f63 742 unsigned long half = tb_ticks_per_jiffy / 2;
f2783c15
PM
743 unsigned long offset = tb_ticks_per_jiffy / max_cpus;
744 unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid);
745
cbe62e2b
PM
746 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
747 previous_tb -= tb_ticks_per_jiffy;
c6622f63
PM
748 /*
749 * The stolen time calculation for POWER5 shared-processor LPAR
750 * systems works better if the two threads' timebase interrupts
751 * are staggered by half a jiffy with respect to each other.
752 */
0e551954 753 for_each_possible_cpu(i) {
c6622f63
PM
754 if (i == boot_cpuid)
755 continue;
756 if (i == (boot_cpuid ^ 1))
757 per_cpu(last_jiffy, i) =
758 per_cpu(last_jiffy, boot_cpuid) - half;
759 else if (i & 1)
760 per_cpu(last_jiffy, i) =
761 per_cpu(last_jiffy, i ^ 1) + half;
762 else {
f2783c15
PM
763 previous_tb += offset;
764 per_cpu(last_jiffy, i) = previous_tb;
765 }
766 }
767}
768#endif
769
1da177e4
LT
770/*
771 * Scheduler clock - returns current time in nanosec units.
772 *
773 * Note: mulhdu(a, b) (multiply high double unsigned) returns
774 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
775 * are 64-bit unsigned numbers.
776 */
777unsigned long long sched_clock(void)
778{
96c44507
PM
779 if (__USE_RTC())
780 return get_rtc();
1da177e4
LT
781 return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
782}
783
784int do_settimeofday(struct timespec *tv)
785{
786 time_t wtm_sec, new_sec = tv->tv_sec;
787 long wtm_nsec, new_nsec = tv->tv_nsec;
788 unsigned long flags;
092b8f34
PM
789 u64 new_xsec;
790 unsigned long tb_delta;
1da177e4
LT
791
792 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
793 return -EINVAL;
794
795 write_seqlock_irqsave(&xtime_lock, flags);
f2783c15
PM
796
797 /*
798 * Updating the RTC is not the job of this code. If the time is
799 * stepped under NTP, the RTC will be updated after STA_UNSYNC
800 * is cleared. Tools like clock/hwclock either copy the RTC
1da177e4
LT
801 * to the system time, in which case there is no point in writing
802 * to the RTC again, or write to the RTC but then they don't call
803 * settimeofday to perform this operation.
804 */
805#ifdef CONFIG_PPC_ISERIES
f2783c15 806 if (first_settimeofday) {
1da177e4
LT
807 iSeries_tb_recal();
808 first_settimeofday = 0;
809 }
810#endif
092b8f34 811
0a45d449
PM
812 /* Make userspace gettimeofday spin until we're done. */
813 ++vdso_data->tb_update_count;
814 smp_mb();
815
092b8f34
PM
816 /*
817 * Subtract off the number of nanoseconds since the
818 * beginning of the last tick.
819 * Note that since we don't increment jiffies_64 anywhere other
820 * than in do_timer (since we don't have a lost tick problem),
821 * wall_jiffies will always be the same as jiffies,
822 * and therefore the (jiffies - wall_jiffies) computation
823 * has been removed.
824 */
1da177e4 825 tb_delta = tb_ticks_since(tb_last_stamp);
092b8f34
PM
826 tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
827 new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
1da177e4
LT
828
829 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
830 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
831
832 set_normalized_timespec(&xtime, new_sec, new_nsec);
833 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
834
835 /* In case of a large backwards jump in time with NTP, we want the
836 * clock to be updated as soon as the PLL is again in lock.
837 */
838 last_rtc_update = new_sec - 658;
839
b149ee22 840 ntp_clear();
1da177e4 841
092b8f34
PM
842 new_xsec = xtime.tv_nsec;
843 if (new_xsec != 0) {
844 new_xsec *= XSEC_PER_SEC;
5f6b5b97
PM
845 do_div(new_xsec, NSEC_PER_SEC);
846 }
092b8f34 847 new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
96c44507 848 update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
1da177e4 849
a7f290da
BH
850 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
851 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
1da177e4
LT
852
853 write_sequnlock_irqrestore(&xtime_lock, flags);
854 clock_was_set();
855 return 0;
856}
857
858EXPORT_SYMBOL(do_settimeofday);
859
10f7e7c1
AB
860void __init generic_calibrate_decr(void)
861{
862 struct device_node *cpu;
10f7e7c1
AB
863 unsigned int *fp;
864 int node_found;
865
866 /*
867 * The cpu node should have a timebase-frequency property
868 * to tell us the rate at which the decrementer counts.
869 */
870 cpu = of_find_node_by_type(NULL, "cpu");
871
872 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
873 node_found = 0;
d8a8188d 874 if (cpu) {
10f7e7c1
AB
875 fp = (unsigned int *)get_property(cpu, "timebase-frequency",
876 NULL);
d8a8188d 877 if (fp) {
10f7e7c1
AB
878 node_found = 1;
879 ppc_tb_freq = *fp;
880 }
881 }
882 if (!node_found)
883 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
884 "(not found)\n");
885
886 ppc_proc_freq = DEFAULT_PROC_FREQ;
887 node_found = 0;
d8a8188d 888 if (cpu) {
10f7e7c1
AB
889 fp = (unsigned int *)get_property(cpu, "clock-frequency",
890 NULL);
d8a8188d 891 if (fp) {
10f7e7c1
AB
892 node_found = 1;
893 ppc_proc_freq = *fp;
894 }
895 }
0fd6f717
KG
896#ifdef CONFIG_BOOKE
897 /* Set the time base to zero */
898 mtspr(SPRN_TBWL, 0);
899 mtspr(SPRN_TBWU, 0);
900
901 /* Clear any pending timer interrupts */
902 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
903
904 /* Enable decrementer interrupt */
905 mtspr(SPRN_TCR, TCR_DIE);
906#endif
10f7e7c1
AB
907 if (!node_found)
908 printk(KERN_ERR "WARNING: Estimating processor frequency "
909 "(not found)\n");
910
911 of_node_put(cpu);
10f7e7c1 912}
10f7e7c1 913
f2783c15
PM
914unsigned long get_boot_time(void)
915{
916 struct rtc_time tm;
917
918 if (ppc_md.get_boot_time)
919 return ppc_md.get_boot_time();
920 if (!ppc_md.get_rtc_time)
921 return 0;
922 ppc_md.get_rtc_time(&tm);
923 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
924 tm.tm_hour, tm.tm_min, tm.tm_sec);
925}
926
927/* This function is only called on the boot processor */
1da177e4
LT
928void __init time_init(void)
929{
1da177e4 930 unsigned long flags;
f2783c15 931 unsigned long tm = 0;
1da177e4 932 struct div_result res;
092b8f34 933 u64 scale, x;
f2783c15
PM
934 unsigned shift;
935
936 if (ppc_md.time_init != NULL)
937 timezone_offset = ppc_md.time_init();
1da177e4 938
96c44507
PM
939 if (__USE_RTC()) {
940 /* 601 processor: dec counts down by 128 every 128ns */
941 ppc_tb_freq = 1000000000;
942 tb_last_stamp = get_rtcl();
943 tb_last_jiffy = tb_last_stamp;
944 } else {
945 /* Normal PowerPC with timebase register */
946 ppc_md.calibrate_decr();
224ad80a 947 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
96c44507 948 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
224ad80a 949 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
96c44507
PM
950 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
951 tb_last_stamp = tb_last_jiffy = get_tb();
952 }
374e99d4
PM
953
954 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
092b8f34 955 tb_ticks_per_sec = ppc_tb_freq;
374e99d4
PM
956 tb_ticks_per_usec = ppc_tb_freq / 1000000;
957 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
c6622f63 958 calc_cputime_factors();
092b8f34
PM
959
960 /*
961 * Calculate the length of each tick in ns. It will not be
962 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
963 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
964 * rounded up.
965 */
966 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
967 do_div(x, ppc_tb_freq);
968 tick_nsec = x;
969 last_tick_len = x << TICKLEN_SCALE;
970
971 /*
972 * Compute ticklen_to_xs, which is a factor which gets multiplied
973 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
974 * It is computed as:
975 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
976 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
0a45d449
PM
977 * which turns out to be N = 51 - SHIFT_HZ.
978 * This gives the result as a 0.64 fixed-point fraction.
979 * That value is reduced by an offset amounting to 1 xsec per
980 * 2^31 timebase ticks to avoid problems with time going backwards
981 * by 1 xsec when we do timer_recalc_offset due to losing the
982 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
983 * since there are 2^20 xsec in a second.
092b8f34 984 */
0a45d449
PM
985 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
986 tb_ticks_per_jiffy << SHIFT_HZ, &res);
092b8f34
PM
987 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
988 ticklen_to_xs = res.result_low;
989
990 /* Compute tb_to_xs from tick_nsec */
991 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
374e99d4 992
1da177e4
LT
993 /*
994 * Compute scale factor for sched_clock.
995 * The calibrate_decr() function has set tb_ticks_per_sec,
996 * which is the timebase frequency.
997 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
998 * the 128-bit result as a 64.64 fixed-point number.
999 * We then shift that number right until it is less than 1.0,
1000 * giving us the scale factor and shift count to use in
1001 * sched_clock().
1002 */
1003 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1004 scale = res.result_low;
1005 for (shift = 0; res.result_high != 0; ++shift) {
1006 scale = (scale >> 1) | (res.result_high << 63);
1007 res.result_high >>= 1;
1008 }
1009 tb_to_ns_scale = scale;
1010 tb_to_ns_shift = shift;
1011
4bd174fe 1012 tm = get_boot_time();
1da177e4
LT
1013
1014 write_seqlock_irqsave(&xtime_lock, flags);
092b8f34
PM
1015
1016 /* If platform provided a timezone (pmac), we correct the time */
1017 if (timezone_offset) {
1018 sys_tz.tz_minuteswest = -timezone_offset / 60;
1019 sys_tz.tz_dsttime = 0;
1020 tm -= timezone_offset;
1021 }
1022
f2783c15
PM
1023 xtime.tv_sec = tm;
1024 xtime.tv_nsec = 0;
1da177e4
LT
1025 do_gtod.varp = &do_gtod.vars[0];
1026 do_gtod.var_idx = 0;
96c44507 1027 do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
f2783c15
PM
1028 __get_cpu_var(last_jiffy) = tb_last_stamp;
1029 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1da177e4
LT
1030 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
1031 do_gtod.varp->tb_to_xs = tb_to_xs;
1032 do_gtod.tb_to_us = tb_to_us;
a7f290da
BH
1033
1034 vdso_data->tb_orig_stamp = tb_last_jiffy;
1035 vdso_data->tb_update_count = 0;
1036 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
092b8f34 1037 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
a7f290da 1038 vdso_data->tb_to_xs = tb_to_xs;
1da177e4
LT
1039
1040 time_freq = 0;
1041
1da177e4
LT
1042 last_rtc_update = xtime.tv_sec;
1043 set_normalized_timespec(&wall_to_monotonic,
1044 -xtime.tv_sec, -xtime.tv_nsec);
1045 write_sequnlock_irqrestore(&xtime_lock, flags);
1046
1047 /* Not exact, but the timer interrupt takes care of this */
1048 set_dec(tb_ticks_per_jiffy);
1049}
1050
1da177e4 1051
1da177e4
LT
1052#define FEBRUARY 2
1053#define STARTOFTIME 1970
1054#define SECDAY 86400L
1055#define SECYR (SECDAY * 365)
f2783c15
PM
1056#define leapyear(year) ((year) % 4 == 0 && \
1057 ((year) % 100 != 0 || (year) % 400 == 0))
1da177e4
LT
1058#define days_in_year(a) (leapyear(a) ? 366 : 365)
1059#define days_in_month(a) (month_days[(a) - 1])
1060
1061static int month_days[12] = {
1062 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1063};
1064
1065/*
1066 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1067 */
1068void GregorianDay(struct rtc_time * tm)
1069{
1070 int leapsToDate;
1071 int lastYear;
1072 int day;
1073 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1074
f2783c15 1075 lastYear = tm->tm_year - 1;
1da177e4
LT
1076
1077 /*
1078 * Number of leap corrections to apply up to end of last year
1079 */
f2783c15 1080 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1da177e4
LT
1081
1082 /*
1083 * This year is a leap year if it is divisible by 4 except when it is
1084 * divisible by 100 unless it is divisible by 400
1085 *
f2783c15 1086 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1da177e4 1087 */
f2783c15 1088 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1da177e4
LT
1089
1090 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1091 tm->tm_mday;
1092
f2783c15 1093 tm->tm_wday = day % 7;
1da177e4
LT
1094}
1095
1096void to_tm(int tim, struct rtc_time * tm)
1097{
1098 register int i;
1099 register long hms, day;
1100
1101 day = tim / SECDAY;
1102 hms = tim % SECDAY;
1103
1104 /* Hours, minutes, seconds are easy */
1105 tm->tm_hour = hms / 3600;
1106 tm->tm_min = (hms % 3600) / 60;
1107 tm->tm_sec = (hms % 3600) % 60;
1108
1109 /* Number of years in days */
1110 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1111 day -= days_in_year(i);
1112 tm->tm_year = i;
1113
1114 /* Number of months in days left */
1115 if (leapyear(tm->tm_year))
1116 days_in_month(FEBRUARY) = 29;
1117 for (i = 1; day >= days_in_month(i); i++)
1118 day -= days_in_month(i);
1119 days_in_month(FEBRUARY) = 28;
1120 tm->tm_mon = i;
1121
1122 /* Days are what is left over (+1) from all that. */
1123 tm->tm_mday = day + 1;
1124
1125 /*
1126 * Determine the day of week
1127 */
1128 GregorianDay(tm);
1129}
1130
1131/* Auxiliary function to compute scaling factors */
1132/* Actually the choice of a timebase running at 1/4 the of the bus
1133 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1134 * It makes this computation very precise (27-28 bits typically) which
1135 * is optimistic considering the stability of most processor clock
1136 * oscillators and the precision with which the timebase frequency
1137 * is measured but does not harm.
1138 */
f2783c15
PM
1139unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1140{
1da177e4
LT
1141 unsigned mlt=0, tmp, err;
1142 /* No concern for performance, it's done once: use a stupid
1143 * but safe and compact method to find the multiplier.
1144 */
1145
1146 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
f2783c15
PM
1147 if (mulhwu(inscale, mlt|tmp) < outscale)
1148 mlt |= tmp;
1da177e4
LT
1149 }
1150
1151 /* We might still be off by 1 for the best approximation.
1152 * A side effect of this is that if outscale is too large
1153 * the returned value will be zero.
1154 * Many corner cases have been checked and seem to work,
1155 * some might have been forgotten in the test however.
1156 */
1157
f2783c15
PM
1158 err = inscale * (mlt+1);
1159 if (err <= inscale/2)
1160 mlt++;
1da177e4 1161 return mlt;
f2783c15 1162}
1da177e4
LT
1163
1164/*
1165 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1166 * result.
1167 */
f2783c15
PM
1168void div128_by_32(u64 dividend_high, u64 dividend_low,
1169 unsigned divisor, struct div_result *dr)
1da177e4 1170{
f2783c15
PM
1171 unsigned long a, b, c, d;
1172 unsigned long w, x, y, z;
1173 u64 ra, rb, rc;
1da177e4
LT
1174
1175 a = dividend_high >> 32;
1176 b = dividend_high & 0xffffffff;
1177 c = dividend_low >> 32;
1178 d = dividend_low & 0xffffffff;
1179
f2783c15
PM
1180 w = a / divisor;
1181 ra = ((u64)(a - (w * divisor)) << 32) + b;
1182
f2783c15
PM
1183 rb = ((u64) do_div(ra, divisor) << 32) + c;
1184 x = ra;
1da177e4 1185
f2783c15
PM
1186 rc = ((u64) do_div(rb, divisor) << 32) + d;
1187 y = rb;
1188
1189 do_div(rc, divisor);
1190 z = rc;
1da177e4 1191
f2783c15
PM
1192 dr->result_high = ((u64)w << 32) + x;
1193 dr->result_low = ((u64)y << 32) + z;
1da177e4
LT
1194
1195}