[PATCH] powerpc: Merge vdso's and add vdso support to 32 bits kernel
[linux-2.6-block.git] / arch / powerpc / kernel / time.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35#include <linux/config.h>
36#include <linux/errno.h>
37#include <linux/module.h>
38#include <linux/sched.h>
39#include <linux/kernel.h>
40#include <linux/param.h>
41#include <linux/string.h>
42#include <linux/mm.h>
43#include <linux/interrupt.h>
44#include <linux/timex.h>
45#include <linux/kernel_stat.h>
1da177e4
LT
46#include <linux/time.h>
47#include <linux/init.h>
48#include <linux/profile.h>
49#include <linux/cpu.h>
50#include <linux/security.h>
f2783c15
PM
51#include <linux/percpu.h>
52#include <linux/rtc.h>
1da177e4 53
1da177e4
LT
54#include <asm/io.h>
55#include <asm/processor.h>
56#include <asm/nvram.h>
57#include <asm/cache.h>
58#include <asm/machdep.h>
1da177e4
LT
59#include <asm/uaccess.h>
60#include <asm/time.h>
1da177e4 61#include <asm/prom.h>
f2783c15
PM
62#include <asm/irq.h>
63#include <asm/div64.h>
2249ca9d 64#include <asm/smp.h>
a7f290da 65#include <asm/vdso_datapage.h>
f2783c15 66#ifdef CONFIG_PPC64
1ababe11 67#include <asm/firmware.h>
f2783c15
PM
68#endif
69#ifdef CONFIG_PPC_ISERIES
8875ccfb 70#include <asm/iseries/it_lp_queue.h>
8021b8a7 71#include <asm/iseries/hv_call_xm.h>
f2783c15 72#endif
732ee21f 73#include <asm/smp.h>
1da177e4 74
1da177e4
LT
75/* keep track of when we need to update the rtc */
76time_t last_rtc_update;
77extern int piranha_simulator;
78#ifdef CONFIG_PPC_ISERIES
79unsigned long iSeries_recal_titan = 0;
80unsigned long iSeries_recal_tb = 0;
81static unsigned long first_settimeofday = 1;
82#endif
83
f2783c15
PM
84/* The decrementer counts down by 128 every 128ns on a 601. */
85#define DECREMENTER_COUNT_601 (1000000000 / HZ)
86
1da177e4
LT
87#define XSEC_PER_SEC (1024*1024)
88
f2783c15
PM
89#ifdef CONFIG_PPC64
90#define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
91#else
92/* compute ((xsec << 12) * max) >> 32 */
93#define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
94#endif
95
1da177e4
LT
96unsigned long tb_ticks_per_jiffy;
97unsigned long tb_ticks_per_usec = 100; /* sane default */
98EXPORT_SYMBOL(tb_ticks_per_usec);
99unsigned long tb_ticks_per_sec;
f2783c15
PM
100u64 tb_to_xs;
101unsigned tb_to_us;
1da177e4
LT
102unsigned long processor_freq;
103DEFINE_SPINLOCK(rtc_lock);
6ae3db11 104EXPORT_SYMBOL_GPL(rtc_lock);
1da177e4 105
f2783c15
PM
106u64 tb_to_ns_scale;
107unsigned tb_to_ns_shift;
1da177e4
LT
108
109struct gettimeofday_struct do_gtod;
110
111extern unsigned long wall_jiffies;
1da177e4
LT
112
113extern struct timezone sys_tz;
f2783c15 114static long timezone_offset;
1da177e4
LT
115
116void ppc_adjtimex(void);
117
118static unsigned adjusting_time = 0;
119
10f7e7c1
AB
120unsigned long ppc_proc_freq;
121unsigned long ppc_tb_freq;
122
96c44507
PM
123u64 tb_last_jiffy __cacheline_aligned_in_smp;
124unsigned long tb_last_stamp;
125
126/*
127 * Note that on ppc32 this only stores the bottom 32 bits of
128 * the timebase value, but that's enough to tell when a jiffy
129 * has passed.
130 */
131DEFINE_PER_CPU(unsigned long, last_jiffy);
132
1da177e4
LT
133static __inline__ void timer_check_rtc(void)
134{
135 /*
136 * update the rtc when needed, this should be performed on the
137 * right fraction of a second. Half or full second ?
138 * Full second works on mk48t59 clocks, others need testing.
139 * Note that this update is basically only used through
140 * the adjtimex system calls. Setting the HW clock in
141 * any other way is a /dev/rtc and userland business.
142 * This is still wrong by -0.5/+1.5 jiffies because of the
143 * timer interrupt resolution and possible delay, but here we
144 * hit a quantization limit which can only be solved by higher
145 * resolution timers and decoupling time management from timer
146 * interrupts. This is also wrong on the clocks
147 * which require being written at the half second boundary.
148 * We should have an rtc call that only sets the minutes and
149 * seconds like on Intel to avoid problems with non UTC clocks.
150 */
d2e61512 151 if (ppc_md.set_rtc_time && ntp_synced() &&
f2783c15
PM
152 xtime.tv_sec - last_rtc_update >= 659 &&
153 abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ &&
154 jiffies - wall_jiffies == 1) {
155 struct rtc_time tm;
156 to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
157 tm.tm_year -= 1900;
158 tm.tm_mon -= 1;
159 if (ppc_md.set_rtc_time(&tm) == 0)
160 last_rtc_update = xtime.tv_sec + 1;
161 else
162 /* Try again one minute later */
163 last_rtc_update += 60;
1da177e4
LT
164 }
165}
166
167/*
168 * This version of gettimeofday has microsecond resolution.
169 */
f2783c15 170static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val)
1da177e4 171{
f2783c15
PM
172 unsigned long sec, usec;
173 u64 tb_ticks, xsec;
174 struct gettimeofday_vars *temp_varp;
175 u64 temp_tb_to_xs, temp_stamp_xsec;
1da177e4
LT
176
177 /*
178 * These calculations are faster (gets rid of divides)
179 * if done in units of 1/2^20 rather than microseconds.
180 * The conversion to microseconds at the end is done
181 * without a divide (and in fact, without a multiply)
182 */
183 temp_varp = do_gtod.varp;
184 tb_ticks = tb_val - temp_varp->tb_orig_stamp;
185 temp_tb_to_xs = temp_varp->tb_to_xs;
186 temp_stamp_xsec = temp_varp->stamp_xsec;
f2783c15 187 xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
1da177e4 188 sec = xsec / XSEC_PER_SEC;
f2783c15
PM
189 usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
190 usec = SCALE_XSEC(usec, 1000000);
1da177e4
LT
191
192 tv->tv_sec = sec;
193 tv->tv_usec = usec;
194}
195
196void do_gettimeofday(struct timeval *tv)
197{
96c44507
PM
198 if (__USE_RTC()) {
199 /* do this the old way */
200 unsigned long flags, seq;
201 unsigned int sec, nsec, usec, lost;
202
203 do {
204 seq = read_seqbegin_irqsave(&xtime_lock, flags);
205 sec = xtime.tv_sec;
206 nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp);
207 lost = jiffies - wall_jiffies;
208 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
209 usec = nsec / 1000 + lost * (1000000 / HZ);
210 while (usec >= 1000000) {
211 usec -= 1000000;
212 ++sec;
213 }
214 tv->tv_sec = sec;
215 tv->tv_usec = usec;
216 return;
217 }
1da177e4
LT
218 __do_gettimeofday(tv, get_tb());
219}
220
221EXPORT_SYMBOL(do_gettimeofday);
222
223/* Synchronize xtime with do_gettimeofday */
224
225static inline void timer_sync_xtime(unsigned long cur_tb)
226{
f2783c15
PM
227#ifdef CONFIG_PPC64
228 /* why do we do this? */
1da177e4
LT
229 struct timeval my_tv;
230
231 __do_gettimeofday(&my_tv, cur_tb);
232
233 if (xtime.tv_sec <= my_tv.tv_sec) {
234 xtime.tv_sec = my_tv.tv_sec;
235 xtime.tv_nsec = my_tv.tv_usec * 1000;
236 }
f2783c15 237#endif
1da177e4
LT
238}
239
240/*
f2783c15
PM
241 * There are two copies of tb_to_xs and stamp_xsec so that no
242 * lock is needed to access and use these values in
243 * do_gettimeofday. We alternate the copies and as long as a
244 * reasonable time elapses between changes, there will never
245 * be inconsistent values. ntpd has a minimum of one minute
246 * between updates.
1da177e4 247 */
f2783c15 248static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
5d14a18d 249 u64 new_tb_to_xs)
1da177e4 250{
1da177e4 251 unsigned temp_idx;
f2783c15 252 struct gettimeofday_vars *temp_varp;
1da177e4
LT
253
254 temp_idx = (do_gtod.var_idx == 0);
255 temp_varp = &do_gtod.vars[temp_idx];
256
f2783c15
PM
257 temp_varp->tb_to_xs = new_tb_to_xs;
258 temp_varp->tb_orig_stamp = new_tb_stamp;
1da177e4 259 temp_varp->stamp_xsec = new_stamp_xsec;
0d8d4d42 260 smp_mb();
1da177e4
LT
261 do_gtod.varp = temp_varp;
262 do_gtod.var_idx = temp_idx;
263
f2783c15
PM
264 /*
265 * tb_update_count is used to allow the userspace gettimeofday code
266 * to assure itself that it sees a consistent view of the tb_to_xs and
267 * stamp_xsec variables. It reads the tb_update_count, then reads
268 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
269 * the two values of tb_update_count match and are even then the
270 * tb_to_xs and stamp_xsec values are consistent. If not, then it
271 * loops back and reads them again until this criteria is met.
272 */
a7f290da 273 ++(vdso_data->tb_update_count);
0d8d4d42 274 smp_wmb();
a7f290da
BH
275 vdso_data->tb_orig_stamp = new_tb_stamp;
276 vdso_data->stamp_xsec = new_stamp_xsec;
277 vdso_data->tb_to_xs = new_tb_to_xs;
278 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
279 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
0d8d4d42 280 smp_wmb();
a7f290da 281 ++(vdso_data->tb_update_count);
f2783c15
PM
282}
283
284/*
285 * When the timebase - tb_orig_stamp gets too big, we do a manipulation
286 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
287 * difference tb - tb_orig_stamp small enough to always fit inside a
288 * 32 bits number. This is a requirement of our fast 32 bits userland
289 * implementation in the vdso. If we "miss" a call to this function
290 * (interrupt latency, CPU locked in a spinlock, ...) and we end up
291 * with a too big difference, then the vdso will fallback to calling
292 * the syscall
293 */
294static __inline__ void timer_recalc_offset(u64 cur_tb)
295{
296 unsigned long offset;
297 u64 new_stamp_xsec;
298
96c44507
PM
299 if (__USE_RTC())
300 return;
f2783c15
PM
301 offset = cur_tb - do_gtod.varp->tb_orig_stamp;
302 if ((offset & 0x80000000u) == 0)
303 return;
304 new_stamp_xsec = do_gtod.varp->stamp_xsec
305 + mulhdu(offset, do_gtod.varp->tb_to_xs);
306 update_gtod(cur_tb, new_stamp_xsec, do_gtod.varp->tb_to_xs);
1da177e4
LT
307}
308
309#ifdef CONFIG_SMP
310unsigned long profile_pc(struct pt_regs *regs)
311{
312 unsigned long pc = instruction_pointer(regs);
313
314 if (in_lock_functions(pc))
315 return regs->link;
316
317 return pc;
318}
319EXPORT_SYMBOL(profile_pc);
320#endif
321
322#ifdef CONFIG_PPC_ISERIES
323
324/*
325 * This function recalibrates the timebase based on the 49-bit time-of-day
326 * value in the Titan chip. The Titan is much more accurate than the value
327 * returned by the service processor for the timebase frequency.
328 */
329
330static void iSeries_tb_recal(void)
331{
332 struct div_result divres;
333 unsigned long titan, tb;
334 tb = get_tb();
335 titan = HvCallXm_loadTod();
336 if ( iSeries_recal_titan ) {
337 unsigned long tb_ticks = tb - iSeries_recal_tb;
338 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
339 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
340 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
341 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
342 char sign = '+';
343 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
344 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
345
346 if ( tick_diff < 0 ) {
347 tick_diff = -tick_diff;
348 sign = '-';
349 }
350 if ( tick_diff ) {
351 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
352 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
353 new_tb_ticks_per_jiffy, sign, tick_diff );
354 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
355 tb_ticks_per_sec = new_tb_ticks_per_sec;
356 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
357 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
358 tb_to_xs = divres.result_low;
359 do_gtod.varp->tb_to_xs = tb_to_xs;
a7f290da
BH
360 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
361 vdso_data->tb_to_xs = tb_to_xs;
1da177e4
LT
362 }
363 else {
364 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
365 " new tb_ticks_per_jiffy = %lu\n"
366 " old tb_ticks_per_jiffy = %lu\n",
367 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
368 }
369 }
370 }
371 iSeries_recal_titan = titan;
372 iSeries_recal_tb = tb;
373}
374#endif
375
376/*
377 * For iSeries shared processors, we have to let the hypervisor
378 * set the hardware decrementer. We set a virtual decrementer
379 * in the lppaca and call the hypervisor if the virtual
380 * decrementer is less than the current value in the hardware
381 * decrementer. (almost always the new decrementer value will
382 * be greater than the current hardware decementer so the hypervisor
383 * call will not be needed)
384 */
385
1da177e4
LT
386/*
387 * timer_interrupt - gets called when the decrementer overflows,
388 * with interrupts disabled.
389 */
c7aeffc4 390void timer_interrupt(struct pt_regs * regs)
1da177e4
LT
391{
392 int next_dec;
f2783c15
PM
393 int cpu = smp_processor_id();
394 unsigned long ticks;
395
396#ifdef CONFIG_PPC32
397 if (atomic_read(&ppc_n_lost_interrupts) != 0)
398 do_IRQ(regs);
399#endif
1da177e4
LT
400
401 irq_enter();
402
1da177e4 403 profile_tick(CPU_PROFILING, regs);
1da177e4 404
f2783c15
PM
405#ifdef CONFIG_PPC_ISERIES
406 get_paca()->lppaca.int_dword.fields.decr_int = 0;
407#endif
408
409 while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
410 >= tb_ticks_per_jiffy) {
411 /* Update last_jiffy */
412 per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
413 /* Handle RTCL overflow on 601 */
414 if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
415 per_cpu(last_jiffy, cpu) -= 1000000000;
1da177e4 416
1da177e4
LT
417 /*
418 * We cannot disable the decrementer, so in the period
419 * between this cpu's being marked offline in cpu_online_map
420 * and calling stop-self, it is taking timer interrupts.
421 * Avoid calling into the scheduler rebalancing code if this
422 * is the case.
423 */
424 if (!cpu_is_offline(cpu))
425 update_process_times(user_mode(regs));
f2783c15 426
1da177e4
LT
427 /*
428 * No need to check whether cpu is offline here; boot_cpuid
429 * should have been fixed up by now.
430 */
f2783c15
PM
431 if (cpu != boot_cpuid)
432 continue;
433
434 write_seqlock(&xtime_lock);
96c44507
PM
435 tb_last_jiffy += tb_ticks_per_jiffy;
436 tb_last_stamp = per_cpu(last_jiffy, cpu);
437 timer_recalc_offset(tb_last_jiffy);
f2783c15 438 do_timer(regs);
96c44507 439 timer_sync_xtime(tb_last_jiffy);
f2783c15
PM
440 timer_check_rtc();
441 write_sequnlock(&xtime_lock);
442 if (adjusting_time && (time_adjust == 0))
443 ppc_adjtimex();
1da177e4
LT
444 }
445
f2783c15 446 next_dec = tb_ticks_per_jiffy - ticks;
1da177e4
LT
447 set_dec(next_dec);
448
449#ifdef CONFIG_PPC_ISERIES
937b31b1 450 if (hvlpevent_is_pending())
74889802 451 process_hvlpevents(regs);
1da177e4
LT
452#endif
453
f2783c15 454#ifdef CONFIG_PPC64
8d15a3e5 455 /* collect purr register values often, for accurate calculations */
1ababe11 456 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1da177e4
LT
457 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
458 cu->current_tb = mfspr(SPRN_PURR);
459 }
f2783c15 460#endif
1da177e4
LT
461
462 irq_exit();
1da177e4
LT
463}
464
f2783c15
PM
465void wakeup_decrementer(void)
466{
467 int i;
468
469 set_dec(tb_ticks_per_jiffy);
470 /*
471 * We don't expect this to be called on a machine with a 601,
472 * so using get_tbl is fine.
473 */
96c44507 474 tb_last_stamp = tb_last_jiffy = get_tb();
f2783c15
PM
475 for_each_cpu(i)
476 per_cpu(last_jiffy, i) = tb_last_stamp;
477}
478
a5b518ed 479#ifdef CONFIG_SMP
f2783c15
PM
480void __init smp_space_timers(unsigned int max_cpus)
481{
482 int i;
483 unsigned long offset = tb_ticks_per_jiffy / max_cpus;
484 unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid);
485
cbe62e2b
PM
486 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
487 previous_tb -= tb_ticks_per_jiffy;
f2783c15
PM
488 for_each_cpu(i) {
489 if (i != boot_cpuid) {
490 previous_tb += offset;
491 per_cpu(last_jiffy, i) = previous_tb;
492 }
493 }
494}
495#endif
496
1da177e4
LT
497/*
498 * Scheduler clock - returns current time in nanosec units.
499 *
500 * Note: mulhdu(a, b) (multiply high double unsigned) returns
501 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
502 * are 64-bit unsigned numbers.
503 */
504unsigned long long sched_clock(void)
505{
96c44507
PM
506 if (__USE_RTC())
507 return get_rtc();
1da177e4
LT
508 return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
509}
510
511int do_settimeofday(struct timespec *tv)
512{
513 time_t wtm_sec, new_sec = tv->tv_sec;
514 long wtm_nsec, new_nsec = tv->tv_nsec;
515 unsigned long flags;
1da177e4 516 long int tb_delta;
5f6b5b97 517 u64 new_xsec, tb_delta_xs;
1da177e4
LT
518
519 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
520 return -EINVAL;
521
522 write_seqlock_irqsave(&xtime_lock, flags);
f2783c15
PM
523
524 /*
525 * Updating the RTC is not the job of this code. If the time is
526 * stepped under NTP, the RTC will be updated after STA_UNSYNC
527 * is cleared. Tools like clock/hwclock either copy the RTC
1da177e4
LT
528 * to the system time, in which case there is no point in writing
529 * to the RTC again, or write to the RTC but then they don't call
530 * settimeofday to perform this operation.
531 */
532#ifdef CONFIG_PPC_ISERIES
f2783c15 533 if (first_settimeofday) {
1da177e4
LT
534 iSeries_tb_recal();
535 first_settimeofday = 0;
536 }
537#endif
538 tb_delta = tb_ticks_since(tb_last_stamp);
539 tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy;
5f6b5b97 540 tb_delta_xs = mulhdu(tb_delta, do_gtod.varp->tb_to_xs);
1da177e4
LT
541
542 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
543 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
544
545 set_normalized_timespec(&xtime, new_sec, new_nsec);
546 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
547
548 /* In case of a large backwards jump in time with NTP, we want the
549 * clock to be updated as soon as the PLL is again in lock.
550 */
551 last_rtc_update = new_sec - 658;
552
b149ee22 553 ntp_clear();
1da177e4 554
5f6b5b97
PM
555 new_xsec = 0;
556 if (new_nsec != 0) {
557 new_xsec = (u64)new_nsec * XSEC_PER_SEC;
558 do_div(new_xsec, NSEC_PER_SEC);
559 }
560 new_xsec += (u64)new_sec * XSEC_PER_SEC - tb_delta_xs;
96c44507 561 update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
1da177e4 562
a7f290da
BH
563 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
564 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
1da177e4
LT
565
566 write_sequnlock_irqrestore(&xtime_lock, flags);
567 clock_was_set();
568 return 0;
569}
570
571EXPORT_SYMBOL(do_settimeofday);
572
10f7e7c1
AB
573void __init generic_calibrate_decr(void)
574{
575 struct device_node *cpu;
10f7e7c1
AB
576 unsigned int *fp;
577 int node_found;
578
579 /*
580 * The cpu node should have a timebase-frequency property
581 * to tell us the rate at which the decrementer counts.
582 */
583 cpu = of_find_node_by_type(NULL, "cpu");
584
585 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
586 node_found = 0;
587 if (cpu != 0) {
588 fp = (unsigned int *)get_property(cpu, "timebase-frequency",
589 NULL);
590 if (fp != 0) {
591 node_found = 1;
592 ppc_tb_freq = *fp;
593 }
594 }
595 if (!node_found)
596 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
597 "(not found)\n");
598
599 ppc_proc_freq = DEFAULT_PROC_FREQ;
600 node_found = 0;
601 if (cpu != 0) {
602 fp = (unsigned int *)get_property(cpu, "clock-frequency",
603 NULL);
604 if (fp != 0) {
605 node_found = 1;
606 ppc_proc_freq = *fp;
607 }
608 }
0fd6f717
KG
609#ifdef CONFIG_BOOKE
610 /* Set the time base to zero */
611 mtspr(SPRN_TBWL, 0);
612 mtspr(SPRN_TBWU, 0);
613
614 /* Clear any pending timer interrupts */
615 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
616
617 /* Enable decrementer interrupt */
618 mtspr(SPRN_TCR, TCR_DIE);
619#endif
10f7e7c1
AB
620 if (!node_found)
621 printk(KERN_ERR "WARNING: Estimating processor frequency "
622 "(not found)\n");
623
624 of_node_put(cpu);
10f7e7c1 625}
10f7e7c1 626
f2783c15
PM
627unsigned long get_boot_time(void)
628{
629 struct rtc_time tm;
630
631 if (ppc_md.get_boot_time)
632 return ppc_md.get_boot_time();
633 if (!ppc_md.get_rtc_time)
634 return 0;
635 ppc_md.get_rtc_time(&tm);
636 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
637 tm.tm_hour, tm.tm_min, tm.tm_sec);
638}
639
640/* This function is only called on the boot processor */
1da177e4
LT
641void __init time_init(void)
642{
1da177e4 643 unsigned long flags;
f2783c15 644 unsigned long tm = 0;
1da177e4 645 struct div_result res;
f2783c15
PM
646 u64 scale;
647 unsigned shift;
648
649 if (ppc_md.time_init != NULL)
650 timezone_offset = ppc_md.time_init();
1da177e4 651
96c44507
PM
652 if (__USE_RTC()) {
653 /* 601 processor: dec counts down by 128 every 128ns */
654 ppc_tb_freq = 1000000000;
655 tb_last_stamp = get_rtcl();
656 tb_last_jiffy = tb_last_stamp;
657 } else {
658 /* Normal PowerPC with timebase register */
659 ppc_md.calibrate_decr();
660 printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n",
661 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
662 printk(KERN_INFO "time_init: processor frequency = %lu.%.6lu MHz\n",
663 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
664 tb_last_stamp = tb_last_jiffy = get_tb();
665 }
374e99d4
PM
666
667 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
668 tb_ticks_per_sec = tb_ticks_per_jiffy * HZ;
669 tb_ticks_per_usec = ppc_tb_freq / 1000000;
670 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
671 div128_by_32(1024*1024, 0, tb_ticks_per_sec, &res);
672 tb_to_xs = res.result_low;
673
f2783c15
PM
674#ifdef CONFIG_PPC64
675 get_paca()->default_decr = tb_ticks_per_jiffy;
676#endif
677
1da177e4
LT
678 /*
679 * Compute scale factor for sched_clock.
680 * The calibrate_decr() function has set tb_ticks_per_sec,
681 * which is the timebase frequency.
682 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
683 * the 128-bit result as a 64.64 fixed-point number.
684 * We then shift that number right until it is less than 1.0,
685 * giving us the scale factor and shift count to use in
686 * sched_clock().
687 */
688 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
689 scale = res.result_low;
690 for (shift = 0; res.result_high != 0; ++shift) {
691 scale = (scale >> 1) | (res.result_high << 63);
692 res.result_high >>= 1;
693 }
694 tb_to_ns_scale = scale;
695 tb_to_ns_shift = shift;
696
697#ifdef CONFIG_PPC_ISERIES
698 if (!piranha_simulator)
699#endif
f2783c15 700 tm = get_boot_time();
1da177e4
LT
701
702 write_seqlock_irqsave(&xtime_lock, flags);
f2783c15
PM
703 xtime.tv_sec = tm;
704 xtime.tv_nsec = 0;
1da177e4
LT
705 do_gtod.varp = &do_gtod.vars[0];
706 do_gtod.var_idx = 0;
96c44507 707 do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
f2783c15
PM
708 __get_cpu_var(last_jiffy) = tb_last_stamp;
709 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1da177e4
LT
710 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
711 do_gtod.varp->tb_to_xs = tb_to_xs;
712 do_gtod.tb_to_us = tb_to_us;
a7f290da
BH
713
714 vdso_data->tb_orig_stamp = tb_last_jiffy;
715 vdso_data->tb_update_count = 0;
716 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
717 vdso_data->stamp_xsec = xtime.tv_sec * XSEC_PER_SEC;
718 vdso_data->tb_to_xs = tb_to_xs;
1da177e4
LT
719
720 time_freq = 0;
721
f2783c15
PM
722 /* If platform provided a timezone (pmac), we correct the time */
723 if (timezone_offset) {
724 sys_tz.tz_minuteswest = -timezone_offset / 60;
725 sys_tz.tz_dsttime = 0;
726 xtime.tv_sec -= timezone_offset;
727 }
728
1da177e4
LT
729 last_rtc_update = xtime.tv_sec;
730 set_normalized_timespec(&wall_to_monotonic,
731 -xtime.tv_sec, -xtime.tv_nsec);
732 write_sequnlock_irqrestore(&xtime_lock, flags);
733
734 /* Not exact, but the timer interrupt takes care of this */
735 set_dec(tb_ticks_per_jiffy);
736}
737
738/*
739 * After adjtimex is called, adjust the conversion of tb ticks
740 * to microseconds to keep do_gettimeofday synchronized
741 * with ntpd.
742 *
743 * Use the time_adjust, time_freq and time_offset computed by adjtimex to
744 * adjust the frequency.
745 */
746
747/* #define DEBUG_PPC_ADJTIMEX 1 */
748
749void ppc_adjtimex(void)
750{
f2783c15
PM
751#ifdef CONFIG_PPC64
752 unsigned long den, new_tb_ticks_per_sec, tb_ticks, old_xsec,
753 new_tb_to_xs, new_xsec, new_stamp_xsec;
1da177e4
LT
754 unsigned long tb_ticks_per_sec_delta;
755 long delta_freq, ltemp;
756 struct div_result divres;
757 unsigned long flags;
1da177e4
LT
758 long singleshot_ppm = 0;
759
f2783c15
PM
760 /*
761 * Compute parts per million frequency adjustment to
762 * accomplish the time adjustment implied by time_offset to be
763 * applied over the elapsed time indicated by time_constant.
764 * Use SHIFT_USEC to get it into the same units as
765 * time_freq.
766 */
1da177e4
LT
767 if ( time_offset < 0 ) {
768 ltemp = -time_offset;
769 ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
770 ltemp >>= SHIFT_KG + time_constant;
771 ltemp = -ltemp;
f2783c15 772 } else {
1da177e4
LT
773 ltemp = time_offset;
774 ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
775 ltemp >>= SHIFT_KG + time_constant;
776 }
777
778 /* If there is a single shot time adjustment in progress */
779 if ( time_adjust ) {
780#ifdef DEBUG_PPC_ADJTIMEX
781 printk("ppc_adjtimex: ");
782 if ( adjusting_time == 0 )
783 printk("starting ");
784 printk("single shot time_adjust = %ld\n", time_adjust);
785#endif
786
787 adjusting_time = 1;
788
f2783c15
PM
789 /*
790 * Compute parts per million frequency adjustment
791 * to match time_adjust
792 */
1da177e4
LT
793 singleshot_ppm = tickadj * HZ;
794 /*
795 * The adjustment should be tickadj*HZ to match the code in
796 * linux/kernel/timer.c, but experiments show that this is too
797 * large. 3/4 of tickadj*HZ seems about right
798 */
799 singleshot_ppm -= singleshot_ppm / 4;
f2783c15 800 /* Use SHIFT_USEC to get it into the same units as time_freq */
1da177e4
LT
801 singleshot_ppm <<= SHIFT_USEC;
802 if ( time_adjust < 0 )
803 singleshot_ppm = -singleshot_ppm;
804 }
805 else {
806#ifdef DEBUG_PPC_ADJTIMEX
807 if ( adjusting_time )
808 printk("ppc_adjtimex: ending single shot time_adjust\n");
809#endif
810 adjusting_time = 0;
811 }
812
813 /* Add up all of the frequency adjustments */
814 delta_freq = time_freq + ltemp + singleshot_ppm;
815
f2783c15
PM
816 /*
817 * Compute a new value for tb_ticks_per_sec based on
818 * the frequency adjustment
819 */
1da177e4
LT
820 den = 1000000 * (1 << (SHIFT_USEC - 8));
821 if ( delta_freq < 0 ) {
822 tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( (-delta_freq) >> (SHIFT_USEC - 8))) / den;
823 new_tb_ticks_per_sec = tb_ticks_per_sec + tb_ticks_per_sec_delta;
824 }
825 else {
826 tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( delta_freq >> (SHIFT_USEC - 8))) / den;
827 new_tb_ticks_per_sec = tb_ticks_per_sec - tb_ticks_per_sec_delta;
828 }
829
830#ifdef DEBUG_PPC_ADJTIMEX
831 printk("ppc_adjtimex: ltemp = %ld, time_freq = %ld, singleshot_ppm = %ld\n", ltemp, time_freq, singleshot_ppm);
832 printk("ppc_adjtimex: tb_ticks_per_sec - base = %ld new = %ld\n", tb_ticks_per_sec, new_tb_ticks_per_sec);
833#endif
f2783c15
PM
834
835 /*
836 * Compute a new value of tb_to_xs (used to convert tb to
837 * microseconds) and a new value of stamp_xsec which is the
838 * time (in 1/2^20 second units) corresponding to
839 * tb_orig_stamp. This new value of stamp_xsec compensates
840 * for the change in frequency (implied by the new tb_to_xs)
841 * which guarantees that the current time remains the same.
842 */
1da177e4
LT
843 write_seqlock_irqsave( &xtime_lock, flags );
844 tb_ticks = get_tb() - do_gtod.varp->tb_orig_stamp;
f2783c15 845 div128_by_32(1024*1024, 0, new_tb_ticks_per_sec, &divres);
1da177e4 846 new_tb_to_xs = divres.result_low;
f2783c15 847 new_xsec = mulhdu(tb_ticks, new_tb_to_xs);
1da177e4 848
f2783c15 849 old_xsec = mulhdu(tb_ticks, do_gtod.varp->tb_to_xs);
1da177e4
LT
850 new_stamp_xsec = do_gtod.varp->stamp_xsec + old_xsec - new_xsec;
851
f2783c15 852 update_gtod(do_gtod.varp->tb_orig_stamp, new_stamp_xsec, new_tb_to_xs);
1da177e4
LT
853
854 write_sequnlock_irqrestore( &xtime_lock, flags );
f2783c15 855#endif /* CONFIG_PPC64 */
1da177e4
LT
856}
857
858
1da177e4
LT
859#define FEBRUARY 2
860#define STARTOFTIME 1970
861#define SECDAY 86400L
862#define SECYR (SECDAY * 365)
f2783c15
PM
863#define leapyear(year) ((year) % 4 == 0 && \
864 ((year) % 100 != 0 || (year) % 400 == 0))
1da177e4
LT
865#define days_in_year(a) (leapyear(a) ? 366 : 365)
866#define days_in_month(a) (month_days[(a) - 1])
867
868static int month_days[12] = {
869 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
870};
871
872/*
873 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
874 */
875void GregorianDay(struct rtc_time * tm)
876{
877 int leapsToDate;
878 int lastYear;
879 int day;
880 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
881
f2783c15 882 lastYear = tm->tm_year - 1;
1da177e4
LT
883
884 /*
885 * Number of leap corrections to apply up to end of last year
886 */
f2783c15 887 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1da177e4
LT
888
889 /*
890 * This year is a leap year if it is divisible by 4 except when it is
891 * divisible by 100 unless it is divisible by 400
892 *
f2783c15 893 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1da177e4 894 */
f2783c15 895 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1da177e4
LT
896
897 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
898 tm->tm_mday;
899
f2783c15 900 tm->tm_wday = day % 7;
1da177e4
LT
901}
902
903void to_tm(int tim, struct rtc_time * tm)
904{
905 register int i;
906 register long hms, day;
907
908 day = tim / SECDAY;
909 hms = tim % SECDAY;
910
911 /* Hours, minutes, seconds are easy */
912 tm->tm_hour = hms / 3600;
913 tm->tm_min = (hms % 3600) / 60;
914 tm->tm_sec = (hms % 3600) % 60;
915
916 /* Number of years in days */
917 for (i = STARTOFTIME; day >= days_in_year(i); i++)
918 day -= days_in_year(i);
919 tm->tm_year = i;
920
921 /* Number of months in days left */
922 if (leapyear(tm->tm_year))
923 days_in_month(FEBRUARY) = 29;
924 for (i = 1; day >= days_in_month(i); i++)
925 day -= days_in_month(i);
926 days_in_month(FEBRUARY) = 28;
927 tm->tm_mon = i;
928
929 /* Days are what is left over (+1) from all that. */
930 tm->tm_mday = day + 1;
931
932 /*
933 * Determine the day of week
934 */
935 GregorianDay(tm);
936}
937
938/* Auxiliary function to compute scaling factors */
939/* Actually the choice of a timebase running at 1/4 the of the bus
940 * frequency giving resolution of a few tens of nanoseconds is quite nice.
941 * It makes this computation very precise (27-28 bits typically) which
942 * is optimistic considering the stability of most processor clock
943 * oscillators and the precision with which the timebase frequency
944 * is measured but does not harm.
945 */
f2783c15
PM
946unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
947{
1da177e4
LT
948 unsigned mlt=0, tmp, err;
949 /* No concern for performance, it's done once: use a stupid
950 * but safe and compact method to find the multiplier.
951 */
952
953 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
f2783c15
PM
954 if (mulhwu(inscale, mlt|tmp) < outscale)
955 mlt |= tmp;
1da177e4
LT
956 }
957
958 /* We might still be off by 1 for the best approximation.
959 * A side effect of this is that if outscale is too large
960 * the returned value will be zero.
961 * Many corner cases have been checked and seem to work,
962 * some might have been forgotten in the test however.
963 */
964
f2783c15
PM
965 err = inscale * (mlt+1);
966 if (err <= inscale/2)
967 mlt++;
1da177e4 968 return mlt;
f2783c15 969}
1da177e4
LT
970
971/*
972 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
973 * result.
974 */
f2783c15
PM
975void div128_by_32(u64 dividend_high, u64 dividend_low,
976 unsigned divisor, struct div_result *dr)
1da177e4 977{
f2783c15
PM
978 unsigned long a, b, c, d;
979 unsigned long w, x, y, z;
980 u64 ra, rb, rc;
1da177e4
LT
981
982 a = dividend_high >> 32;
983 b = dividend_high & 0xffffffff;
984 c = dividend_low >> 32;
985 d = dividend_low & 0xffffffff;
986
f2783c15
PM
987 w = a / divisor;
988 ra = ((u64)(a - (w * divisor)) << 32) + b;
989
f2783c15
PM
990 rb = ((u64) do_div(ra, divisor) << 32) + c;
991 x = ra;
1da177e4 992
f2783c15
PM
993 rc = ((u64) do_div(rb, divisor) << 32) + d;
994 y = rb;
995
996 do_div(rc, divisor);
997 z = rc;
1da177e4 998
f2783c15
PM
999 dr->result_high = ((u64)w << 32) + x;
1000 dr->result_low = ((u64)y << 32) + z;
1da177e4
LT
1001
1002}