powerpc/powernv/ioda2: Remove redundant free of TCE pages
[linux-2.6-block.git] / arch / powerpc / kernel / time.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
f5339277 20 * measurement at boot time.
1da177e4
LT
21 * - for astronomical applications: add a new function to get
22 * non ambiguous timestamps even around leap seconds. This needs
23 * a new timestamp format and a good name.
24 *
25 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
26 * "A Kernel Model for Precision Timekeeping" by Dave Mills
27 *
28 * This program is free software; you can redistribute it and/or
29 * modify it under the terms of the GNU General Public License
30 * as published by the Free Software Foundation; either version
31 * 2 of the License, or (at your option) any later version.
32 */
33
1da177e4 34#include <linux/errno.h>
4b16f8e2 35#include <linux/export.h>
1da177e4 36#include <linux/sched.h>
e6017571 37#include <linux/sched/clock.h>
1da177e4
LT
38#include <linux/kernel.h>
39#include <linux/param.h>
40#include <linux/string.h>
41#include <linux/mm.h>
42#include <linux/interrupt.h>
43#include <linux/timex.h>
44#include <linux/kernel_stat.h>
1da177e4 45#include <linux/time.h>
0d948730 46#include <linux/clockchips.h>
1da177e4
LT
47#include <linux/init.h>
48#include <linux/profile.h>
49#include <linux/cpu.h>
50#include <linux/security.h>
f2783c15
PM
51#include <linux/percpu.h>
52#include <linux/rtc.h>
092b8f34 53#include <linux/jiffies.h>
c6622f63 54#include <linux/posix-timers.h>
7d12e780 55#include <linux/irq.h>
177996e6 56#include <linux/delay.h>
e360adbe 57#include <linux/irq_work.h>
f0d37300 58#include <linux/clk-provider.h>
7f92bc56 59#include <linux/suspend.h>
169047f4 60#include <linux/rtc.h>
32ef5517 61#include <linux/sched/cputime.h>
4e287e65 62#include <linux/processor.h>
6795b85c 63#include <asm/trace.h>
1da177e4 64
1da177e4 65#include <asm/io.h>
1da177e4
LT
66#include <asm/nvram.h>
67#include <asm/cache.h>
68#include <asm/machdep.h>
7c0f6ba6 69#include <linux/uaccess.h>
1da177e4 70#include <asm/time.h>
1da177e4 71#include <asm/prom.h>
f2783c15
PM
72#include <asm/irq.h>
73#include <asm/div64.h>
2249ca9d 74#include <asm/smp.h>
a7f290da 75#include <asm/vdso_datapage.h>
1ababe11 76#include <asm/firmware.h>
0545d543 77#include <asm/asm-prototypes.h>
1da177e4 78
4a4cfe38
TB
79/* powerpc clocksource/clockevent code */
80
d831d0b8 81#include <linux/clockchips.h>
189374ae 82#include <linux/timekeeper_internal.h>
4a4cfe38 83
a5a1d1c2 84static u64 rtc_read(struct clocksource *);
4a4cfe38
TB
85static struct clocksource clocksource_rtc = {
86 .name = "rtc",
87 .rating = 400,
88 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
89 .mask = CLOCKSOURCE_MASK(64),
4a4cfe38
TB
90 .read = rtc_read,
91};
92
a5a1d1c2 93static u64 timebase_read(struct clocksource *);
4a4cfe38
TB
94static struct clocksource clocksource_timebase = {
95 .name = "timebase",
96 .rating = 400,
97 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
98 .mask = CLOCKSOURCE_MASK(64),
4a4cfe38
TB
99 .read = timebase_read,
100};
101
79901024
OH
102#define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
103u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
d831d0b8
TB
104
105static int decrementer_set_next_event(unsigned long evt,
106 struct clock_event_device *dev);
37a13e78 107static int decrementer_shutdown(struct clock_event_device *evt);
d831d0b8 108
6e35994d 109struct clock_event_device decrementer_clockevent = {
37a13e78
VK
110 .name = "decrementer",
111 .rating = 200,
112 .irq = 0,
113 .set_next_event = decrementer_set_next_event,
114 .set_state_shutdown = decrementer_shutdown,
115 .tick_resume = decrementer_shutdown,
116 .features = CLOCK_EVT_FEAT_ONESHOT |
117 CLOCK_EVT_FEAT_C3STOP,
d831d0b8 118};
6e35994d 119EXPORT_SYMBOL(decrementer_clockevent);
d831d0b8 120
7df10275
AB
121DEFINE_PER_CPU(u64, decrementers_next_tb);
122static DEFINE_PER_CPU(struct clock_event_device, decrementers);
d831d0b8 123
1da177e4
LT
124#define XSEC_PER_SEC (1024*1024)
125
f2783c15
PM
126#ifdef CONFIG_PPC64
127#define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
128#else
129/* compute ((xsec << 12) * max) >> 32 */
130#define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
131#endif
132
1da177e4
LT
133unsigned long tb_ticks_per_jiffy;
134unsigned long tb_ticks_per_usec = 100; /* sane default */
135EXPORT_SYMBOL(tb_ticks_per_usec);
136unsigned long tb_ticks_per_sec;
2cf82c02 137EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
092b8f34 138
1da177e4 139DEFINE_SPINLOCK(rtc_lock);
6ae3db11 140EXPORT_SYMBOL_GPL(rtc_lock);
1da177e4 141
fc9069fe
TB
142static u64 tb_to_ns_scale __read_mostly;
143static unsigned tb_to_ns_shift __read_mostly;
364a1246 144static u64 boot_tb __read_mostly;
1da177e4 145
1da177e4 146extern struct timezone sys_tz;
f2783c15 147static long timezone_offset;
1da177e4 148
10f7e7c1 149unsigned long ppc_proc_freq;
55ec2fca 150EXPORT_SYMBOL_GPL(ppc_proc_freq);
10f7e7c1 151unsigned long ppc_tb_freq;
55ec2fca 152EXPORT_SYMBOL_GPL(ppc_tb_freq);
96c44507 153
abf917cd 154#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
c6622f63 155/*
e7f340ca
FW
156 * Factor for converting from cputime_t (timebase ticks) to
157 * microseconds. This is stored as 0.64 fixed-point binary fraction.
c6622f63 158 */
9f5072d4
AS
159u64 __cputime_usec_factor;
160EXPORT_SYMBOL(__cputime_usec_factor);
a42548a1 161
c223c903 162#ifdef CONFIG_PPC_SPLPAR
872e439a 163void (*dtl_consumer)(struct dtl_entry *, u64);
c223c903
CL
164#endif
165
166#ifdef CONFIG_PPC64
167#define get_accounting(tsk) (&get_paca()->accounting)
168#else
169#define get_accounting(tsk) (&task_thread_info(tsk)->accounting)
170#endif
872e439a 171
c6622f63
PM
172static void calc_cputime_factors(void)
173{
174 struct div_result res;
175
9f5072d4
AS
176 div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
177 __cputime_usec_factor = res.result_low;
c6622f63
PM
178}
179
180/*
cf9efce0
PM
181 * Read the SPURR on systems that have it, otherwise the PURR,
182 * or if that doesn't exist return the timebase value passed in.
c6622f63 183 */
c223c903 184static unsigned long read_spurr(unsigned long tb)
c6622f63 185{
cf9efce0
PM
186 if (cpu_has_feature(CPU_FTR_SPURR))
187 return mfspr(SPRN_SPURR);
c6622f63
PM
188 if (cpu_has_feature(CPU_FTR_PURR))
189 return mfspr(SPRN_PURR);
cf9efce0 190 return tb;
c6622f63
PM
191}
192
cf9efce0
PM
193#ifdef CONFIG_PPC_SPLPAR
194
4603ac18 195/*
cf9efce0
PM
196 * Scan the dispatch trace log and count up the stolen time.
197 * Should be called with interrupts disabled.
4603ac18 198 */
cf9efce0 199static u64 scan_dispatch_log(u64 stop_tb)
4603ac18 200{
872e439a 201 u64 i = local_paca->dtl_ridx;
cf9efce0
PM
202 struct dtl_entry *dtl = local_paca->dtl_curr;
203 struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
204 struct lppaca *vpa = local_paca->lppaca_ptr;
205 u64 tb_delta;
206 u64 stolen = 0;
207 u64 dtb;
208
84ffae55
AB
209 if (!dtl)
210 return 0;
211
7ffcf8ec 212 if (i == be64_to_cpu(vpa->dtl_idx))
cf9efce0 213 return 0;
7ffcf8ec 214 while (i < be64_to_cpu(vpa->dtl_idx)) {
7ffcf8ec
AB
215 dtb = be64_to_cpu(dtl->timebase);
216 tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
217 be32_to_cpu(dtl->ready_to_enqueue_time);
cf9efce0 218 barrier();
7ffcf8ec 219 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
cf9efce0 220 /* buffer has overflowed */
7ffcf8ec 221 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
cf9efce0
PM
222 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
223 continue;
224 }
225 if (dtb > stop_tb)
226 break;
84b07386
AB
227 if (dtl_consumer)
228 dtl_consumer(dtl, i);
cf9efce0
PM
229 stolen += tb_delta;
230 ++i;
231 ++dtl;
232 if (dtl == dtl_end)
233 dtl = local_paca->dispatch_log;
234 }
235 local_paca->dtl_ridx = i;
236 local_paca->dtl_curr = dtl;
237 return stolen;
4603ac18
MN
238}
239
cf9efce0
PM
240/*
241 * Accumulate stolen time by scanning the dispatch trace log.
242 * Called on entry from user mode.
243 */
244void accumulate_stolen_time(void)
245{
246 u64 sst, ust;
4e26bc4a 247 unsigned long save_irq_soft_mask = irq_soft_mask_return();
c223c903 248 struct cpu_accounting_data *acct = &local_paca->accounting;
b18ae08d
TH
249
250 /* We are called early in the exception entry, before
251 * soft/hard_enabled are sync'ed to the expected state
252 * for the exception. We are hard disabled but the PACA
253 * needs to reflect that so various debug stuff doesn't
254 * complain
255 */
4e26bc4a 256 irq_soft_mask_set(IRQS_DISABLED);
b18ae08d 257
c223c903
CL
258 sst = scan_dispatch_log(acct->starttime_user);
259 ust = scan_dispatch_log(acct->starttime);
8c8b73c4
FW
260 acct->stime -= sst;
261 acct->utime -= ust;
f828c3d0 262 acct->steal_time += ust + sst;
b18ae08d 263
4e26bc4a 264 irq_soft_mask_set(save_irq_soft_mask);
cf9efce0
PM
265}
266
267static inline u64 calculate_stolen_time(u64 stop_tb)
268{
a6201da3
AK
269 if (!firmware_has_feature(FW_FEATURE_SPLPAR))
270 return 0;
271
a19ff1a2
FW
272 if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
273 return scan_dispatch_log(stop_tb);
cf9efce0 274
a19ff1a2 275 return 0;
4603ac18
MN
276}
277
cf9efce0
PM
278#else /* CONFIG_PPC_SPLPAR */
279static inline u64 calculate_stolen_time(u64 stop_tb)
280{
281 return 0;
282}
283
284#endif /* CONFIG_PPC_SPLPAR */
285
c6622f63
PM
286/*
287 * Account time for a transition between system, hard irq
288 * or soft irq state.
289 */
c223c903 290static unsigned long vtime_delta(struct task_struct *tsk,
a19ff1a2
FW
291 unsigned long *stime_scaled,
292 unsigned long *steal_time)
c6622f63 293{
c223c903 294 unsigned long now, nowscaled, deltascaled;
a19ff1a2
FW
295 unsigned long stime;
296 unsigned long utime, utime_scaled;
c223c903 297 struct cpu_accounting_data *acct = get_accounting(tsk);
c6622f63 298
1b2852b1
FW
299 WARN_ON_ONCE(!irqs_disabled());
300
cf9efce0 301 now = mftb();
4603ac18 302 nowscaled = read_spurr(now);
a19ff1a2 303 stime = now - acct->starttime;
c223c903
CL
304 acct->starttime = now;
305 deltascaled = nowscaled - acct->startspurr;
306 acct->startspurr = nowscaled;
cf9efce0 307
a19ff1a2 308 *steal_time = calculate_stolen_time(now);
cf9efce0 309
a19ff1a2 310 utime = acct->utime - acct->utime_sspurr;
8c8b73c4 311 acct->utime_sspurr = acct->utime;
cf9efce0
PM
312
313 /*
314 * Because we don't read the SPURR on every kernel entry/exit,
315 * deltascaled includes both user and system SPURR ticks.
316 * Apportion these ticks to system SPURR ticks and user
317 * SPURR ticks in the same ratio as the system time (delta)
318 * and user time (udelta) values obtained from the timebase
319 * over the same interval. The system ticks get accounted here;
320 * the user ticks get saved up in paca->user_time_scaled to be
321 * used by account_process_tick.
322 */
a19ff1a2
FW
323 *stime_scaled = stime;
324 utime_scaled = utime;
325 if (deltascaled != stime + utime) {
326 if (utime) {
327 *stime_scaled = deltascaled * stime / (stime + utime);
328 utime_scaled = deltascaled - *stime_scaled;
cf9efce0 329 } else {
a19ff1a2 330 *stime_scaled = deltascaled;
cf9efce0
PM
331 }
332 }
a19ff1a2 333 acct->utime_scaled += utime_scaled;
cf9efce0 334
a19ff1a2 335 return stime;
a7e1a9e3
FW
336}
337
fd25b4c2 338void vtime_account_system(struct task_struct *tsk)
a7e1a9e3 339{
a19ff1a2
FW
340 unsigned long stime, stime_scaled, steal_time;
341 struct cpu_accounting_data *acct = get_accounting(tsk);
342
343 stime = vtime_delta(tsk, &stime_scaled, &steal_time);
344
345 stime -= min(stime, steal_time);
346 acct->steal_time += steal_time;
a7e1a9e3 347
a19ff1a2
FW
348 if ((tsk->flags & PF_VCPU) && !irq_count()) {
349 acct->gtime += stime;
350 acct->utime_scaled += stime_scaled;
351 } else {
352 if (hardirq_count())
353 acct->hardirq_time += stime;
354 else if (in_serving_softirq())
355 acct->softirq_time += stime;
356 else
357 acct->stime += stime;
358
359 acct->stime_scaled += stime_scaled;
360 }
a7e1a9e3 361}
c11f11fc 362EXPORT_SYMBOL_GPL(vtime_account_system);
a7e1a9e3 363
fd25b4c2 364void vtime_account_idle(struct task_struct *tsk)
a7e1a9e3 365{
a19ff1a2
FW
366 unsigned long stime, stime_scaled, steal_time;
367 struct cpu_accounting_data *acct = get_accounting(tsk);
a7e1a9e3 368
a19ff1a2
FW
369 stime = vtime_delta(tsk, &stime_scaled, &steal_time);
370 acct->idle_time += stime + steal_time;
c6622f63
PM
371}
372
373/*
c8d7dabf 374 * Account the whole cputime accumulated in the paca
c6622f63 375 * Must be called with interrupts disabled.
bcebdf84
FW
376 * Assumes that vtime_account_system/idle() has been called
377 * recently (i.e. since the last entry from usermode) so that
cf9efce0 378 * get_paca()->user_time_scaled is up to date.
c6622f63 379 */
c8d7dabf 380void vtime_flush(struct task_struct *tsk)
c6622f63 381{
c223c903 382 struct cpu_accounting_data *acct = get_accounting(tsk);
c6622f63 383
a19ff1a2 384 if (acct->utime)
23244a5c 385 account_user_time(tsk, cputime_to_nsecs(acct->utime));
a19ff1a2
FW
386
387 if (acct->utime_scaled)
5613fda9 388 tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
a19ff1a2
FW
389
390 if (acct->gtime)
fb8b049c 391 account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
a19ff1a2
FW
392
393 if (acct->steal_time)
be9095ed 394 account_steal_time(cputime_to_nsecs(acct->steal_time));
a19ff1a2
FW
395
396 if (acct->idle_time)
18b43a9b 397 account_idle_time(cputime_to_nsecs(acct->idle_time));
a19ff1a2
FW
398
399 if (acct->stime)
fb8b049c
FW
400 account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
401 CPUTIME_SYSTEM);
a19ff1a2 402 if (acct->stime_scaled)
5613fda9 403 tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
a19ff1a2
FW
404
405 if (acct->hardirq_time)
fb8b049c
FW
406 account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
407 CPUTIME_IRQ);
a19ff1a2 408 if (acct->softirq_time)
fb8b049c
FW
409 account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
410 CPUTIME_SOFTIRQ);
a19ff1a2 411
8c8b73c4
FW
412 acct->utime = 0;
413 acct->utime_scaled = 0;
c223c903 414 acct->utime_sspurr = 0;
a19ff1a2
FW
415 acct->gtime = 0;
416 acct->steal_time = 0;
417 acct->idle_time = 0;
418 acct->stime = 0;
419 acct->stime_scaled = 0;
420 acct->hardirq_time = 0;
421 acct->softirq_time = 0;
c6622f63
PM
422}
423
c223c903
CL
424#ifdef CONFIG_PPC32
425/*
426 * Called from the context switch with interrupts disabled, to charge all
427 * accumulated times to the current process, and to prepare accounting on
428 * the next process.
429 */
430void arch_vtime_task_switch(struct task_struct *prev)
431{
432 struct cpu_accounting_data *acct = get_accounting(current);
433
434 acct->starttime = get_accounting(prev)->starttime;
90d08ba2 435 acct->startspurr = get_accounting(prev)->startspurr;
c223c903
CL
436}
437#endif /* CONFIG_PPC32 */
438
abf917cd 439#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
c6622f63 440#define calc_cputime_factors()
c6622f63
PM
441#endif
442
6defa38b
PM
443void __delay(unsigned long loops)
444{
445 unsigned long start;
446 int diff;
447
4e287e65 448 spin_begin();
6defa38b
PM
449 if (__USE_RTC()) {
450 start = get_rtcl();
451 do {
452 /* the RTCL register wraps at 1000000000 */
453 diff = get_rtcl() - start;
454 if (diff < 0)
455 diff += 1000000000;
4e287e65 456 spin_cpu_relax();
6defa38b
PM
457 } while (diff < loops);
458 } else {
459 start = get_tbl();
460 while (get_tbl() - start < loops)
4e287e65 461 spin_cpu_relax();
6defa38b 462 }
4e287e65 463 spin_end();
6defa38b
PM
464}
465EXPORT_SYMBOL(__delay);
466
467void udelay(unsigned long usecs)
468{
469 __delay(tb_ticks_per_usec * usecs);
470}
471EXPORT_SYMBOL(udelay);
472
1da177e4
LT
473#ifdef CONFIG_SMP
474unsigned long profile_pc(struct pt_regs *regs)
475{
476 unsigned long pc = instruction_pointer(regs);
477
478 if (in_lock_functions(pc))
479 return regs->link;
480
481 return pc;
482}
483EXPORT_SYMBOL(profile_pc);
484#endif
485
e360adbe 486#ifdef CONFIG_IRQ_WORK
105988c0 487
0fe1ac48
PM
488/*
489 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
490 */
491#ifdef CONFIG_PPC64
e360adbe 492static inline unsigned long test_irq_work_pending(void)
105988c0 493{
0fe1ac48
PM
494 unsigned long x;
495
496 asm volatile("lbz %0,%1(13)"
497 : "=r" (x)
e360adbe 498 : "i" (offsetof(struct paca_struct, irq_work_pending)));
0fe1ac48
PM
499 return x;
500}
501
e360adbe 502static inline void set_irq_work_pending_flag(void)
0fe1ac48
PM
503{
504 asm volatile("stb %0,%1(13)" : :
505 "r" (1),
e360adbe 506 "i" (offsetof(struct paca_struct, irq_work_pending)));
0fe1ac48
PM
507}
508
e360adbe 509static inline void clear_irq_work_pending(void)
0fe1ac48
PM
510{
511 asm volatile("stb %0,%1(13)" : :
512 "r" (0),
e360adbe 513 "i" (offsetof(struct paca_struct, irq_work_pending)));
105988c0
PM
514}
515
0fe1ac48
PM
516#else /* 32-bit */
517
e360adbe 518DEFINE_PER_CPU(u8, irq_work_pending);
0fe1ac48 519
69111bac
CL
520#define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1)
521#define test_irq_work_pending() __this_cpu_read(irq_work_pending)
522#define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0)
105988c0 523
0fe1ac48
PM
524#endif /* 32 vs 64 bit */
525
4f8b50bb 526void arch_irq_work_raise(void)
0fe1ac48
PM
527{
528 preempt_disable();
e360adbe 529 set_irq_work_pending_flag();
0fe1ac48
PM
530 set_dec(1);
531 preempt_enable();
532}
533
e360adbe 534#else /* CONFIG_IRQ_WORK */
105988c0 535
e360adbe
PZ
536#define test_irq_work_pending() 0
537#define clear_irq_work_pending()
105988c0 538
e360adbe 539#endif /* CONFIG_IRQ_WORK */
105988c0 540
e51df2c1 541static void __timer_interrupt(void)
1b783955
PM
542{
543 struct pt_regs *regs = get_irq_regs();
69111bac
CL
544 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
545 struct clock_event_device *evt = this_cpu_ptr(&decrementers);
1b783955
PM
546 u64 now;
547
548 trace_timer_interrupt_entry(regs);
549
550 if (test_irq_work_pending()) {
551 clear_irq_work_pending();
552 irq_work_run();
553 }
554
555 now = get_tb_or_rtc();
556 if (now >= *next_tb) {
557 *next_tb = ~(u64)0;
558 if (evt->event_handler)
559 evt->event_handler(evt);
69111bac 560 __this_cpu_inc(irq_stat.timer_irqs_event);
1b783955
PM
561 } else {
562 now = *next_tb - now;
79901024
OH
563 if (now <= decrementer_max)
564 set_dec(now);
1b783955
PM
565 /* We may have raced with new irq work */
566 if (test_irq_work_pending())
567 set_dec(1);
69111bac 568 __this_cpu_inc(irq_stat.timer_irqs_others);
1b783955
PM
569 }
570
571#ifdef CONFIG_PPC64
572 /* collect purr register values often, for accurate calculations */
573 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
69111bac 574 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1b783955
PM
575 cu->current_tb = mfspr(SPRN_PURR);
576 }
577#endif
578
579 trace_timer_interrupt_exit(regs);
580}
581
1da177e4
LT
582/*
583 * timer_interrupt - gets called when the decrementer overflows,
584 * with interrupts disabled.
585 */
c7aeffc4 586void timer_interrupt(struct pt_regs * regs)
1da177e4 587{
7d12e780 588 struct pt_regs *old_regs;
69111bac 589 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
d831d0b8 590
963e5d3b
BH
591 /* Ensure a positive value is written to the decrementer, or else
592 * some CPUs will continue to take decrementer exceptions.
593 */
79901024 594 set_dec(decrementer_max);
963e5d3b
BH
595
596 /* Some implementations of hotplug will get timer interrupts while
689dfa89
TC
597 * offline, just ignore these and we also need to set
598 * decrementers_next_tb as MAX to make sure __check_irq_replay
599 * don't replay timer interrupt when return, otherwise we'll trap
600 * here infinitely :(
963e5d3b 601 */
689dfa89
TC
602 if (!cpu_online(smp_processor_id())) {
603 *next_tb = ~(u64)0;
963e5d3b 604 return;
689dfa89 605 }
963e5d3b 606
7230c564
BH
607 /* Conditionally hard-enable interrupts now that the DEC has been
608 * bumped to its maximum value
609 */
610 may_hard_irq_enable();
611
89713ed1 612
6e0fdf9a 613#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
f2783c15
PM
614 if (atomic_read(&ppc_n_lost_interrupts) != 0)
615 do_IRQ(regs);
616#endif
1da177e4 617
7d12e780 618 old_regs = set_irq_regs(regs);
1da177e4
LT
619 irq_enter();
620
1b783955 621 __timer_interrupt();
1da177e4 622 irq_exit();
7d12e780 623 set_irq_regs(old_regs);
1da177e4 624}
9445aa1a 625EXPORT_SYMBOL(timer_interrupt);
1da177e4 626
dabe859e
PM
627/*
628 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
629 * left pending on exit from a KVM guest. We don't need to do anything
630 * to clear them, as they are edge-triggered.
631 */
632void hdec_interrupt(struct pt_regs *regs)
633{
634}
635
7ac5dde9 636#ifdef CONFIG_SUSPEND
d75d68cf 637static void generic_suspend_disable_irqs(void)
7ac5dde9 638{
7ac5dde9
SW
639 /* Disable the decrementer, so that it doesn't interfere
640 * with suspending.
641 */
642
79901024 643 set_dec(decrementer_max);
7ac5dde9 644 local_irq_disable();
79901024 645 set_dec(decrementer_max);
7ac5dde9
SW
646}
647
d75d68cf 648static void generic_suspend_enable_irqs(void)
7ac5dde9 649{
7ac5dde9 650 local_irq_enable();
7ac5dde9
SW
651}
652
653/* Overrides the weak version in kernel/power/main.c */
654void arch_suspend_disable_irqs(void)
655{
656 if (ppc_md.suspend_disable_irqs)
657 ppc_md.suspend_disable_irqs();
658 generic_suspend_disable_irqs();
659}
660
661/* Overrides the weak version in kernel/power/main.c */
662void arch_suspend_enable_irqs(void)
663{
664 generic_suspend_enable_irqs();
665 if (ppc_md.suspend_enable_irqs)
666 ppc_md.suspend_enable_irqs();
667}
668#endif
669
b6c295df
PM
670unsigned long long tb_to_ns(unsigned long long ticks)
671{
672 return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
673}
674EXPORT_SYMBOL_GPL(tb_to_ns);
675
1da177e4
LT
676/*
677 * Scheduler clock - returns current time in nanosec units.
678 *
679 * Note: mulhdu(a, b) (multiply high double unsigned) returns
680 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
681 * are 64-bit unsigned numbers.
682 */
6b847d79 683notrace unsigned long long sched_clock(void)
1da177e4 684{
96c44507
PM
685 if (__USE_RTC())
686 return get_rtc();
fc9069fe 687 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
1da177e4
LT
688}
689
4be1b297
CB
690
691#ifdef CONFIG_PPC_PSERIES
692
693/*
694 * Running clock - attempts to give a view of time passing for a virtualised
695 * kernels.
696 * Uses the VTB register if available otherwise a next best guess.
697 */
698unsigned long long running_clock(void)
699{
700 /*
701 * Don't read the VTB as a host since KVM does not switch in host
702 * timebase into the VTB when it takes a guest off the CPU, reading the
703 * VTB would result in reading 'last switched out' guest VTB.
704 *
705 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
706 * would be unsafe to rely only on the #ifdef above.
707 */
708 if (firmware_has_feature(FW_FEATURE_LPAR) &&
709 cpu_has_feature(CPU_FTR_ARCH_207S))
710 return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
711
712 /*
713 * This is a next best approximation without a VTB.
714 * On a host which is running bare metal there should never be any stolen
715 * time and on a host which doesn't do any virtualisation TB *should* equal
716 * VTB so it makes no difference anyway.
717 */
9f3768e0 718 return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
4be1b297
CB
719}
720#endif
721
0bb474a4 722static int __init get_freq(char *name, int cells, unsigned long *val)
10f7e7c1
AB
723{
724 struct device_node *cpu;
6f7aba7b 725 const __be32 *fp;
0bb474a4 726 int found = 0;
10f7e7c1 727
0bb474a4 728 /* The cpu node should have timebase and clock frequency properties */
10f7e7c1
AB
729 cpu = of_find_node_by_type(NULL, "cpu");
730
d8a8188d 731 if (cpu) {
e2eb6392 732 fp = of_get_property(cpu, name, NULL);
d8a8188d 733 if (fp) {
0bb474a4 734 found = 1;
a4dc7ff0 735 *val = of_read_ulong(fp, cells);
10f7e7c1 736 }
0bb474a4
AB
737
738 of_node_put(cpu);
10f7e7c1 739 }
0bb474a4
AB
740
741 return found;
742}
743
e51df2c1 744static void start_cpu_decrementer(void)
77c0a700
BH
745{
746#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
6e2f03e2
IM
747 unsigned int tcr;
748
77c0a700
BH
749 /* Clear any pending timer interrupts */
750 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
751
6e2f03e2
IM
752 tcr = mfspr(SPRN_TCR);
753 /*
754 * The watchdog may have already been enabled by u-boot. So leave
755 * TRC[WP] (Watchdog Period) alone.
756 */
757 tcr &= TCR_WP_MASK; /* Clear all bits except for TCR[WP] */
758 tcr |= TCR_DIE; /* Enable decrementer */
759 mtspr(SPRN_TCR, tcr);
760#endif
77c0a700
BH
761}
762
0bb474a4
AB
763void __init generic_calibrate_decr(void)
764{
765 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
766
767 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
768 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
769
10f7e7c1
AB
770 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
771 "(not found)\n");
0bb474a4 772 }
10f7e7c1 773
0bb474a4
AB
774 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
775
776 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
777 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
778
779 printk(KERN_ERR "WARNING: Estimating processor frequency "
780 "(not found)\n");
10f7e7c1 781 }
10f7e7c1 782}
10f7e7c1 783
aa3be5f3 784int update_persistent_clock(struct timespec now)
f2783c15
PM
785{
786 struct rtc_time tm;
787
aa3be5f3 788 if (!ppc_md.set_rtc_time)
023f333a 789 return -ENODEV;
aa3be5f3
TB
790
791 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
792 tm.tm_year -= 1900;
793 tm.tm_mon -= 1;
794
795 return ppc_md.set_rtc_time(&tm);
796}
797
978d7eb3 798static void __read_persistent_clock(struct timespec *ts)
aa3be5f3
TB
799{
800 struct rtc_time tm;
801 static int first = 1;
802
d90246cd 803 ts->tv_nsec = 0;
aa3be5f3
TB
804 /* XXX this is a litle fragile but will work okay in the short term */
805 if (first) {
806 first = 0;
807 if (ppc_md.time_init)
808 timezone_offset = ppc_md.time_init();
809
810 /* get_boot_time() isn't guaranteed to be safe to call late */
d90246cd
MS
811 if (ppc_md.get_boot_time) {
812 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
813 return;
814 }
815 }
816 if (!ppc_md.get_rtc_time) {
817 ts->tv_sec = 0;
818 return;
aa3be5f3 819 }
f2783c15 820 ppc_md.get_rtc_time(&tm);
978d7eb3 821
d4f587c6
MS
822 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
823 tm.tm_hour, tm.tm_min, tm.tm_sec);
f2783c15
PM
824}
825
978d7eb3
BH
826void read_persistent_clock(struct timespec *ts)
827{
828 __read_persistent_clock(ts);
829
830 /* Sanitize it in case real time clock is set below EPOCH */
831 if (ts->tv_sec < 0) {
832 ts->tv_sec = 0;
833 ts->tv_nsec = 0;
834 }
835
836}
837
4a4cfe38 838/* clocksource code */
6b847d79 839static notrace u64 rtc_read(struct clocksource *cs)
4a4cfe38 840{
a5a1d1c2 841 return (u64)get_rtc();
4a4cfe38
TB
842}
843
6b847d79 844static notrace u64 timebase_read(struct clocksource *cs)
4a4cfe38 845{
a5a1d1c2 846 return (u64)get_tb();
4a4cfe38
TB
847}
848
d4cfb113
PM
849
850void update_vsyscall(struct timekeeper *tk)
4a4cfe38 851{
d4cfb113
PM
852 struct timespec xt;
853 struct clocksource *clock = tk->tkr_mono.clock;
854 u32 mult = tk->tkr_mono.mult;
855 u32 shift = tk->tkr_mono.shift;
856 u64 cycle_last = tk->tkr_mono.cycle_last;
b0797b60 857 u64 new_tb_to_xs, new_stamp_xsec;
d4cfb113 858 u64 frac_sec;
4a4cfe38
TB
859
860 if (clock != &clocksource_timebase)
861 return;
862
d4cfb113
PM
863 xt.tv_sec = tk->xtime_sec;
864 xt.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
865
4a4cfe38
TB
866 /* Make userspace gettimeofday spin until we're done. */
867 ++vdso_data->tb_update_count;
868 smp_mb();
869
d4cfb113
PM
870 /*
871 * This computes ((2^20 / 1e9) * mult) >> shift as a
872 * 0.64 fixed-point fraction.
873 * The computation in the else clause below won't overflow
874 * (as long as the timebase frequency is >= 1.049 MHz)
875 * but loses precision because we lose the low bits of the constant
876 * in the shift. Note that 19342813113834067 ~= 2^(20+64) / 1e9.
877 * For a shift of 24 the error is about 0.5e-9, or about 0.5ns
878 * over a second. (Shift values are usually 22, 23 or 24.)
879 * For high frequency clocks such as the 512MHz timebase clock
880 * on POWER[6789], the mult value is small (e.g. 32768000)
881 * and so we can shift the constant by 16 initially
882 * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the
883 * remaining shifts after the multiplication, which gives a
884 * more accurate result (e.g. with mult = 32768000, shift = 24,
885 * the error is only about 1.2e-12, or 0.7ns over 10 minutes).
886 */
887 if (mult <= 62500000 && clock->shift >= 16)
888 new_tb_to_xs = ((u64) mult * 295147905179ULL) >> (clock->shift - 16);
889 else
890 new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
891
892 /*
893 * Compute the fractional second in units of 2^-32 seconds.
894 * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift
895 * in nanoseconds, so multiplying that by 2^32 / 1e9 gives
896 * it in units of 2^-32 seconds.
897 * We assume shift <= 32 because clocks_calc_mult_shift()
898 * generates shift values in the range 0 - 32.
899 */
900 frac_sec = tk->tkr_mono.xtime_nsec << (32 - shift);
901 do_div(frac_sec, NSEC_PER_SEC);
b0797b60 902
d4cfb113
PM
903 /*
904 * Work out new stamp_xsec value for any legacy users of systemcfg.
905 * stamp_xsec is in units of 2^-20 seconds.
906 */
907 new_stamp_xsec = frac_sec >> 12;
908 new_stamp_xsec += tk->xtime_sec * XSEC_PER_SEC;
47916be4 909
b0797b60
JS
910 /*
911 * tb_update_count is used to allow the userspace gettimeofday code
912 * to assure itself that it sees a consistent view of the tb_to_xs and
913 * stamp_xsec variables. It reads the tb_update_count, then reads
914 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
915 * the two values of tb_update_count match and are even then the
916 * tb_to_xs and stamp_xsec values are consistent. If not, then it
917 * loops back and reads them again until this criteria is met.
b0797b60 918 */
4a0e6377 919 vdso_data->tb_orig_stamp = cycle_last;
b0797b60
JS
920 vdso_data->stamp_xsec = new_stamp_xsec;
921 vdso_data->tb_to_xs = new_tb_to_xs;
d4cfb113
PM
922 vdso_data->wtom_clock_sec = tk->wall_to_monotonic.tv_sec;
923 vdso_data->wtom_clock_nsec = tk->wall_to_monotonic.tv_nsec;
924 vdso_data->stamp_xtime = xt;
0e469db8 925 vdso_data->stamp_sec_fraction = frac_sec;
b0797b60
JS
926 smp_wmb();
927 ++(vdso_data->tb_update_count);
4a4cfe38
TB
928}
929
930void update_vsyscall_tz(void)
931{
4a4cfe38
TB
932 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
933 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
4a4cfe38
TB
934}
935
1c21a293 936static void __init clocksource_init(void)
4a4cfe38
TB
937{
938 struct clocksource *clock;
939
940 if (__USE_RTC())
941 clock = &clocksource_rtc;
942 else
943 clock = &clocksource_timebase;
944
11b8633a 945 if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
4a4cfe38
TB
946 printk(KERN_ERR "clocksource: %s is already registered\n",
947 clock->name);
948 return;
949 }
950
951 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
952 clock->name, clock->mult, clock->shift);
953}
954
d831d0b8
TB
955static int decrementer_set_next_event(unsigned long evt,
956 struct clock_event_device *dev)
957{
69111bac 958 __this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
d831d0b8 959 set_dec(evt);
0215f7d8
BH
960
961 /* We may have raced with new irq work */
962 if (test_irq_work_pending())
963 set_dec(1);
964
d831d0b8
TB
965 return 0;
966}
967
37a13e78 968static int decrementer_shutdown(struct clock_event_device *dev)
d831d0b8 969{
79901024 970 decrementer_set_next_event(decrementer_max, dev);
37a13e78 971 return 0;
d831d0b8
TB
972}
973
1b67bee1
SB
974/* Interrupt handler for the timer broadcast IPI */
975void tick_broadcast_ipi_handler(void)
976{
69111bac 977 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
1b783955
PM
978
979 *next_tb = get_tb_or_rtc();
980 __timer_interrupt();
1b67bee1
SB
981}
982
d831d0b8
TB
983static void register_decrementer_clockevent(int cpu)
984{
7df10275 985 struct clock_event_device *dec = &per_cpu(decrementers, cpu);
d831d0b8
TB
986
987 *dec = decrementer_clockevent;
320ab2b0 988 dec->cpumask = cpumask_of(cpu);
d831d0b8 989
b919ee82
AB
990 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
991 dec->name, dec->mult, dec->shift, cpu);
d831d0b8
TB
992
993 clockevents_register_device(dec);
994}
995
79901024
OH
996static void enable_large_decrementer(void)
997{
998 if (!cpu_has_feature(CPU_FTR_ARCH_300))
999 return;
1000
1001 if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
1002 return;
1003
1004 /*
1005 * If we're running as the hypervisor we need to enable the LD manually
1006 * otherwise firmware should have done it for us.
1007 */
1008 if (cpu_has_feature(CPU_FTR_HVMODE))
1009 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
1010}
1011
1012static void __init set_decrementer_max(void)
1013{
1014 struct device_node *cpu;
1015 u32 bits = 32;
1016
1017 /* Prior to ISAv3 the decrementer is always 32 bit */
1018 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1019 return;
1020
1021 cpu = of_find_node_by_type(NULL, "cpu");
1022
1023 if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
1024 if (bits > 64 || bits < 32) {
1025 pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
1026 bits = 32;
1027 }
1028
1029 /* calculate the signed maximum given this many bits */
1030 decrementer_max = (1ul << (bits - 1)) - 1;
1031 }
1032
1033 of_node_put(cpu);
1034
1035 pr_info("time_init: %u bit decrementer (max: %llx)\n",
1036 bits, decrementer_max);
1037}
1038
c481887f 1039static void __init init_decrementer_clockevent(void)
d831d0b8
TB
1040{
1041 int cpu = smp_processor_id();
1042
d8afc6fd
AB
1043 clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
1044
d831d0b8 1045 decrementer_clockevent.max_delta_ns =
79901024 1046 clockevent_delta2ns(decrementer_max, &decrementer_clockevent);
115631c3 1047 decrementer_clockevent.max_delta_ticks = decrementer_max;
43875cc0
PM
1048 decrementer_clockevent.min_delta_ns =
1049 clockevent_delta2ns(2, &decrementer_clockevent);
115631c3 1050 decrementer_clockevent.min_delta_ticks = 2;
d831d0b8
TB
1051
1052 register_decrementer_clockevent(cpu);
1053}
1054
1055void secondary_cpu_time_init(void)
1056{
79901024
OH
1057 /* Enable and test the large decrementer for this cpu */
1058 enable_large_decrementer();
1059
77c0a700
BH
1060 /* Start the decrementer on CPUs that have manual control
1061 * such as BookE
1062 */
1063 start_cpu_decrementer();
1064
d831d0b8
TB
1065 /* FIME: Should make unrelatred change to move snapshot_timebase
1066 * call here ! */
1067 register_decrementer_clockevent(smp_processor_id());
1068}
1069
f2783c15 1070/* This function is only called on the boot processor */
1da177e4
LT
1071void __init time_init(void)
1072{
1da177e4 1073 struct div_result res;
d75d68cf 1074 u64 scale;
f2783c15
PM
1075 unsigned shift;
1076
96c44507
PM
1077 if (__USE_RTC()) {
1078 /* 601 processor: dec counts down by 128 every 128ns */
1079 ppc_tb_freq = 1000000000;
96c44507
PM
1080 } else {
1081 /* Normal PowerPC with timebase register */
1082 ppc_md.calibrate_decr();
224ad80a 1083 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
96c44507 1084 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
224ad80a 1085 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
96c44507 1086 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
96c44507 1087 }
374e99d4
PM
1088
1089 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
092b8f34 1090 tb_ticks_per_sec = ppc_tb_freq;
374e99d4 1091 tb_ticks_per_usec = ppc_tb_freq / 1000000;
c6622f63 1092 calc_cputime_factors();
092b8f34 1093
1da177e4
LT
1094 /*
1095 * Compute scale factor for sched_clock.
1096 * The calibrate_decr() function has set tb_ticks_per_sec,
1097 * which is the timebase frequency.
1098 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1099 * the 128-bit result as a 64.64 fixed-point number.
1100 * We then shift that number right until it is less than 1.0,
1101 * giving us the scale factor and shift count to use in
1102 * sched_clock().
1103 */
1104 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1105 scale = res.result_low;
1106 for (shift = 0; res.result_high != 0; ++shift) {
1107 scale = (scale >> 1) | (res.result_high << 63);
1108 res.result_high >>= 1;
1109 }
1110 tb_to_ns_scale = scale;
1111 tb_to_ns_shift = shift;
fc9069fe 1112 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
c27da339 1113 boot_tb = get_tb_or_rtc();
1da177e4 1114
092b8f34 1115 /* If platform provided a timezone (pmac), we correct the time */
621692cb 1116 if (timezone_offset) {
092b8f34
PM
1117 sys_tz.tz_minuteswest = -timezone_offset / 60;
1118 sys_tz.tz_dsttime = 0;
621692cb 1119 }
092b8f34 1120
a7f290da
BH
1121 vdso_data->tb_update_count = 0;
1122 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1da177e4 1123
79901024
OH
1124 /* initialise and enable the large decrementer (if we have one) */
1125 set_decrementer_max();
1126 enable_large_decrementer();
1127
77c0a700
BH
1128 /* Start the decrementer on CPUs that have manual control
1129 * such as BookE
1130 */
1131 start_cpu_decrementer();
1132
f5339277
SR
1133 /* Register the clocksource */
1134 clocksource_init();
4a4cfe38 1135
d831d0b8 1136 init_decrementer_clockevent();
0d948730 1137 tick_setup_hrtimer_broadcast();
f0d37300
KH
1138
1139#ifdef CONFIG_COMMON_CLK
1140 of_clk_init(NULL);
1141#endif
1da177e4
LT
1142}
1143
1da177e4 1144
1da177e4
LT
1145#define FEBRUARY 2
1146#define STARTOFTIME 1970
1147#define SECDAY 86400L
1148#define SECYR (SECDAY * 365)
f2783c15
PM
1149#define leapyear(year) ((year) % 4 == 0 && \
1150 ((year) % 100 != 0 || (year) % 400 == 0))
1da177e4
LT
1151#define days_in_year(a) (leapyear(a) ? 366 : 365)
1152#define days_in_month(a) (month_days[(a) - 1])
1153
1154static int month_days[12] = {
1155 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1156};
1157
1da177e4
LT
1158void to_tm(int tim, struct rtc_time * tm)
1159{
1160 register int i;
1161 register long hms, day;
1162
1163 day = tim / SECDAY;
1164 hms = tim % SECDAY;
1165
1166 /* Hours, minutes, seconds are easy */
1167 tm->tm_hour = hms / 3600;
1168 tm->tm_min = (hms % 3600) / 60;
1169 tm->tm_sec = (hms % 3600) % 60;
1170
1171 /* Number of years in days */
1172 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1173 day -= days_in_year(i);
1174 tm->tm_year = i;
1175
1176 /* Number of months in days left */
1177 if (leapyear(tm->tm_year))
1178 days_in_month(FEBRUARY) = 29;
1179 for (i = 1; day >= days_in_month(i); i++)
1180 day -= days_in_month(i);
1181 days_in_month(FEBRUARY) = 28;
1182 tm->tm_mon = i;
1183
1184 /* Days are what is left over (+1) from all that. */
1185 tm->tm_mday = day + 1;
1186
1187 /*
00b912b0 1188 * No-one uses the day of the week.
1da177e4 1189 */
00b912b0 1190 tm->tm_wday = -1;
1da177e4 1191}
e1802b06 1192EXPORT_SYMBOL(to_tm);
1da177e4 1193
1da177e4
LT
1194/*
1195 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1196 * result.
1197 */
f2783c15
PM
1198void div128_by_32(u64 dividend_high, u64 dividend_low,
1199 unsigned divisor, struct div_result *dr)
1da177e4 1200{
f2783c15
PM
1201 unsigned long a, b, c, d;
1202 unsigned long w, x, y, z;
1203 u64 ra, rb, rc;
1da177e4
LT
1204
1205 a = dividend_high >> 32;
1206 b = dividend_high & 0xffffffff;
1207 c = dividend_low >> 32;
1208 d = dividend_low & 0xffffffff;
1209
f2783c15
PM
1210 w = a / divisor;
1211 ra = ((u64)(a - (w * divisor)) << 32) + b;
1212
f2783c15
PM
1213 rb = ((u64) do_div(ra, divisor) << 32) + c;
1214 x = ra;
1da177e4 1215
f2783c15
PM
1216 rc = ((u64) do_div(rb, divisor) << 32) + d;
1217 y = rb;
1218
1219 do_div(rc, divisor);
1220 z = rc;
1da177e4 1221
f2783c15
PM
1222 dr->result_high = ((u64)w << 32) + x;
1223 dr->result_low = ((u64)y << 32) + z;
1da177e4
LT
1224
1225}
bcd68a70 1226
177996e6
BH
1227/* We don't need to calibrate delay, we use the CPU timebase for that */
1228void calibrate_delay(void)
1229{
1230 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1231 * as the number of __delay(1) in a jiffy, so make it so
1232 */
1233 loops_per_jiffy = tb_ticks_per_jiffy;
1234}
1235
169047f4
AB
1236#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1237static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1238{
1239 ppc_md.get_rtc_time(tm);
890ae797 1240 return 0;
169047f4
AB
1241}
1242
1243static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1244{
1245 if (!ppc_md.set_rtc_time)
1246 return -EOPNOTSUPP;
1247
1248 if (ppc_md.set_rtc_time(tm) < 0)
1249 return -EOPNOTSUPP;
1250
1251 return 0;
1252}
1253
1254static const struct rtc_class_ops rtc_generic_ops = {
1255 .read_time = rtc_generic_get_time,
1256 .set_time = rtc_generic_set_time,
1257};
1258
bcd68a70
GU
1259static int __init rtc_init(void)
1260{
1261 struct platform_device *pdev;
1262
1263 if (!ppc_md.get_rtc_time)
1264 return -ENODEV;
1265
169047f4
AB
1266 pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1267 &rtc_generic_ops,
1268 sizeof(rtc_generic_ops));
bcd68a70 1269
8c6ffba0 1270 return PTR_ERR_OR_ZERO(pdev);
bcd68a70
GU
1271}
1272
8f6b9512 1273device_initcall(rtc_init);
169047f4 1274#endif