powerpc: move a stray NMI IPI case under NMI_IPI ifdef
[linux-2.6-block.git] / arch / powerpc / kernel / time.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
f5339277 20 * measurement at boot time.
1da177e4
LT
21 * - for astronomical applications: add a new function to get
22 * non ambiguous timestamps even around leap seconds. This needs
23 * a new timestamp format and a good name.
24 *
25 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
26 * "A Kernel Model for Precision Timekeeping" by Dave Mills
27 *
28 * This program is free software; you can redistribute it and/or
29 * modify it under the terms of the GNU General Public License
30 * as published by the Free Software Foundation; either version
31 * 2 of the License, or (at your option) any later version.
32 */
33
1da177e4 34#include <linux/errno.h>
4b16f8e2 35#include <linux/export.h>
1da177e4 36#include <linux/sched.h>
e6017571 37#include <linux/sched/clock.h>
1da177e4
LT
38#include <linux/kernel.h>
39#include <linux/param.h>
40#include <linux/string.h>
41#include <linux/mm.h>
42#include <linux/interrupt.h>
43#include <linux/timex.h>
44#include <linux/kernel_stat.h>
1da177e4 45#include <linux/time.h>
0d948730 46#include <linux/clockchips.h>
1da177e4
LT
47#include <linux/init.h>
48#include <linux/profile.h>
49#include <linux/cpu.h>
50#include <linux/security.h>
f2783c15
PM
51#include <linux/percpu.h>
52#include <linux/rtc.h>
092b8f34 53#include <linux/jiffies.h>
c6622f63 54#include <linux/posix-timers.h>
7d12e780 55#include <linux/irq.h>
177996e6 56#include <linux/delay.h>
e360adbe 57#include <linux/irq_work.h>
f0d37300 58#include <linux/clk-provider.h>
7f92bc56 59#include <linux/suspend.h>
169047f4 60#include <linux/rtc.h>
32ef5517 61#include <linux/sched/cputime.h>
4e287e65 62#include <linux/processor.h>
6795b85c 63#include <asm/trace.h>
1da177e4 64
1da177e4 65#include <asm/io.h>
1da177e4
LT
66#include <asm/nvram.h>
67#include <asm/cache.h>
68#include <asm/machdep.h>
7c0f6ba6 69#include <linux/uaccess.h>
1da177e4 70#include <asm/time.h>
1da177e4 71#include <asm/prom.h>
f2783c15
PM
72#include <asm/irq.h>
73#include <asm/div64.h>
2249ca9d 74#include <asm/smp.h>
a7f290da 75#include <asm/vdso_datapage.h>
1ababe11 76#include <asm/firmware.h>
0545d543 77#include <asm/asm-prototypes.h>
1da177e4 78
4a4cfe38
TB
79/* powerpc clocksource/clockevent code */
80
d831d0b8 81#include <linux/clockchips.h>
189374ae 82#include <linux/timekeeper_internal.h>
4a4cfe38 83
a5a1d1c2 84static u64 rtc_read(struct clocksource *);
4a4cfe38
TB
85static struct clocksource clocksource_rtc = {
86 .name = "rtc",
87 .rating = 400,
88 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
89 .mask = CLOCKSOURCE_MASK(64),
4a4cfe38
TB
90 .read = rtc_read,
91};
92
a5a1d1c2 93static u64 timebase_read(struct clocksource *);
4a4cfe38
TB
94static struct clocksource clocksource_timebase = {
95 .name = "timebase",
96 .rating = 400,
97 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
98 .mask = CLOCKSOURCE_MASK(64),
4a4cfe38
TB
99 .read = timebase_read,
100};
101
79901024
OH
102#define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
103u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
d831d0b8
TB
104
105static int decrementer_set_next_event(unsigned long evt,
106 struct clock_event_device *dev);
37a13e78 107static int decrementer_shutdown(struct clock_event_device *evt);
d831d0b8 108
6e35994d 109struct clock_event_device decrementer_clockevent = {
37a13e78
VK
110 .name = "decrementer",
111 .rating = 200,
112 .irq = 0,
113 .set_next_event = decrementer_set_next_event,
114 .set_state_shutdown = decrementer_shutdown,
115 .tick_resume = decrementer_shutdown,
116 .features = CLOCK_EVT_FEAT_ONESHOT |
117 CLOCK_EVT_FEAT_C3STOP,
d831d0b8 118};
6e35994d 119EXPORT_SYMBOL(decrementer_clockevent);
d831d0b8 120
7df10275
AB
121DEFINE_PER_CPU(u64, decrementers_next_tb);
122static DEFINE_PER_CPU(struct clock_event_device, decrementers);
d831d0b8 123
1da177e4
LT
124#define XSEC_PER_SEC (1024*1024)
125
f2783c15
PM
126#ifdef CONFIG_PPC64
127#define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
128#else
129/* compute ((xsec << 12) * max) >> 32 */
130#define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
131#endif
132
1da177e4
LT
133unsigned long tb_ticks_per_jiffy;
134unsigned long tb_ticks_per_usec = 100; /* sane default */
135EXPORT_SYMBOL(tb_ticks_per_usec);
136unsigned long tb_ticks_per_sec;
2cf82c02 137EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
092b8f34 138
1da177e4 139DEFINE_SPINLOCK(rtc_lock);
6ae3db11 140EXPORT_SYMBOL_GPL(rtc_lock);
1da177e4 141
fc9069fe
TB
142static u64 tb_to_ns_scale __read_mostly;
143static unsigned tb_to_ns_shift __read_mostly;
364a1246 144static u64 boot_tb __read_mostly;
1da177e4 145
1da177e4 146extern struct timezone sys_tz;
f2783c15 147static long timezone_offset;
1da177e4 148
10f7e7c1 149unsigned long ppc_proc_freq;
55ec2fca 150EXPORT_SYMBOL_GPL(ppc_proc_freq);
10f7e7c1 151unsigned long ppc_tb_freq;
55ec2fca 152EXPORT_SYMBOL_GPL(ppc_tb_freq);
96c44507 153
abf917cd 154#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
c6622f63 155/*
e7f340ca
FW
156 * Factor for converting from cputime_t (timebase ticks) to
157 * microseconds. This is stored as 0.64 fixed-point binary fraction.
c6622f63 158 */
9f5072d4
AS
159u64 __cputime_usec_factor;
160EXPORT_SYMBOL(__cputime_usec_factor);
a42548a1 161
c223c903 162#ifdef CONFIG_PPC_SPLPAR
872e439a 163void (*dtl_consumer)(struct dtl_entry *, u64);
c223c903
CL
164#endif
165
166#ifdef CONFIG_PPC64
167#define get_accounting(tsk) (&get_paca()->accounting)
168#else
169#define get_accounting(tsk) (&task_thread_info(tsk)->accounting)
170#endif
872e439a 171
c6622f63
PM
172static void calc_cputime_factors(void)
173{
174 struct div_result res;
175
9f5072d4
AS
176 div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
177 __cputime_usec_factor = res.result_low;
c6622f63
PM
178}
179
180/*
cf9efce0
PM
181 * Read the SPURR on systems that have it, otherwise the PURR,
182 * or if that doesn't exist return the timebase value passed in.
c6622f63 183 */
c223c903 184static unsigned long read_spurr(unsigned long tb)
c6622f63 185{
cf9efce0
PM
186 if (cpu_has_feature(CPU_FTR_SPURR))
187 return mfspr(SPRN_SPURR);
c6622f63
PM
188 if (cpu_has_feature(CPU_FTR_PURR))
189 return mfspr(SPRN_PURR);
cf9efce0 190 return tb;
c6622f63
PM
191}
192
cf9efce0
PM
193#ifdef CONFIG_PPC_SPLPAR
194
4603ac18 195/*
cf9efce0
PM
196 * Scan the dispatch trace log and count up the stolen time.
197 * Should be called with interrupts disabled.
4603ac18 198 */
cf9efce0 199static u64 scan_dispatch_log(u64 stop_tb)
4603ac18 200{
872e439a 201 u64 i = local_paca->dtl_ridx;
cf9efce0
PM
202 struct dtl_entry *dtl = local_paca->dtl_curr;
203 struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
204 struct lppaca *vpa = local_paca->lppaca_ptr;
205 u64 tb_delta;
206 u64 stolen = 0;
207 u64 dtb;
208
84ffae55
AB
209 if (!dtl)
210 return 0;
211
7ffcf8ec 212 if (i == be64_to_cpu(vpa->dtl_idx))
cf9efce0 213 return 0;
7ffcf8ec 214 while (i < be64_to_cpu(vpa->dtl_idx)) {
7ffcf8ec
AB
215 dtb = be64_to_cpu(dtl->timebase);
216 tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
217 be32_to_cpu(dtl->ready_to_enqueue_time);
cf9efce0 218 barrier();
7ffcf8ec 219 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
cf9efce0 220 /* buffer has overflowed */
7ffcf8ec 221 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
cf9efce0
PM
222 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
223 continue;
224 }
225 if (dtb > stop_tb)
226 break;
84b07386
AB
227 if (dtl_consumer)
228 dtl_consumer(dtl, i);
cf9efce0
PM
229 stolen += tb_delta;
230 ++i;
231 ++dtl;
232 if (dtl == dtl_end)
233 dtl = local_paca->dispatch_log;
234 }
235 local_paca->dtl_ridx = i;
236 local_paca->dtl_curr = dtl;
237 return stolen;
4603ac18
MN
238}
239
cf9efce0
PM
240/*
241 * Accumulate stolen time by scanning the dispatch trace log.
242 * Called on entry from user mode.
243 */
244void accumulate_stolen_time(void)
245{
246 u64 sst, ust;
4e26bc4a 247 unsigned long save_irq_soft_mask = irq_soft_mask_return();
c223c903 248 struct cpu_accounting_data *acct = &local_paca->accounting;
b18ae08d
TH
249
250 /* We are called early in the exception entry, before
251 * soft/hard_enabled are sync'ed to the expected state
252 * for the exception. We are hard disabled but the PACA
253 * needs to reflect that so various debug stuff doesn't
254 * complain
255 */
4e26bc4a 256 irq_soft_mask_set(IRQS_DISABLED);
b18ae08d 257
c223c903
CL
258 sst = scan_dispatch_log(acct->starttime_user);
259 ust = scan_dispatch_log(acct->starttime);
8c8b73c4
FW
260 acct->stime -= sst;
261 acct->utime -= ust;
f828c3d0 262 acct->steal_time += ust + sst;
b18ae08d 263
4e26bc4a 264 irq_soft_mask_set(save_irq_soft_mask);
cf9efce0
PM
265}
266
267static inline u64 calculate_stolen_time(u64 stop_tb)
268{
a6201da3
AK
269 if (!firmware_has_feature(FW_FEATURE_SPLPAR))
270 return 0;
271
a19ff1a2
FW
272 if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
273 return scan_dispatch_log(stop_tb);
cf9efce0 274
a19ff1a2 275 return 0;
4603ac18
MN
276}
277
cf9efce0
PM
278#else /* CONFIG_PPC_SPLPAR */
279static inline u64 calculate_stolen_time(u64 stop_tb)
280{
281 return 0;
282}
283
284#endif /* CONFIG_PPC_SPLPAR */
285
c6622f63
PM
286/*
287 * Account time for a transition between system, hard irq
288 * or soft irq state.
289 */
c223c903 290static unsigned long vtime_delta(struct task_struct *tsk,
a19ff1a2
FW
291 unsigned long *stime_scaled,
292 unsigned long *steal_time)
c6622f63 293{
c223c903 294 unsigned long now, nowscaled, deltascaled;
a19ff1a2
FW
295 unsigned long stime;
296 unsigned long utime, utime_scaled;
c223c903 297 struct cpu_accounting_data *acct = get_accounting(tsk);
c6622f63 298
1b2852b1
FW
299 WARN_ON_ONCE(!irqs_disabled());
300
cf9efce0 301 now = mftb();
4603ac18 302 nowscaled = read_spurr(now);
a19ff1a2 303 stime = now - acct->starttime;
c223c903
CL
304 acct->starttime = now;
305 deltascaled = nowscaled - acct->startspurr;
306 acct->startspurr = nowscaled;
cf9efce0 307
a19ff1a2 308 *steal_time = calculate_stolen_time(now);
cf9efce0 309
a19ff1a2 310 utime = acct->utime - acct->utime_sspurr;
8c8b73c4 311 acct->utime_sspurr = acct->utime;
cf9efce0
PM
312
313 /*
314 * Because we don't read the SPURR on every kernel entry/exit,
315 * deltascaled includes both user and system SPURR ticks.
316 * Apportion these ticks to system SPURR ticks and user
317 * SPURR ticks in the same ratio as the system time (delta)
318 * and user time (udelta) values obtained from the timebase
319 * over the same interval. The system ticks get accounted here;
320 * the user ticks get saved up in paca->user_time_scaled to be
321 * used by account_process_tick.
322 */
a19ff1a2
FW
323 *stime_scaled = stime;
324 utime_scaled = utime;
325 if (deltascaled != stime + utime) {
326 if (utime) {
327 *stime_scaled = deltascaled * stime / (stime + utime);
328 utime_scaled = deltascaled - *stime_scaled;
cf9efce0 329 } else {
a19ff1a2 330 *stime_scaled = deltascaled;
cf9efce0
PM
331 }
332 }
a19ff1a2 333 acct->utime_scaled += utime_scaled;
cf9efce0 334
a19ff1a2 335 return stime;
a7e1a9e3
FW
336}
337
fd25b4c2 338void vtime_account_system(struct task_struct *tsk)
a7e1a9e3 339{
a19ff1a2
FW
340 unsigned long stime, stime_scaled, steal_time;
341 struct cpu_accounting_data *acct = get_accounting(tsk);
342
343 stime = vtime_delta(tsk, &stime_scaled, &steal_time);
344
345 stime -= min(stime, steal_time);
346 acct->steal_time += steal_time;
a7e1a9e3 347
a19ff1a2
FW
348 if ((tsk->flags & PF_VCPU) && !irq_count()) {
349 acct->gtime += stime;
350 acct->utime_scaled += stime_scaled;
351 } else {
352 if (hardirq_count())
353 acct->hardirq_time += stime;
354 else if (in_serving_softirq())
355 acct->softirq_time += stime;
356 else
357 acct->stime += stime;
358
359 acct->stime_scaled += stime_scaled;
360 }
a7e1a9e3 361}
c11f11fc 362EXPORT_SYMBOL_GPL(vtime_account_system);
a7e1a9e3 363
fd25b4c2 364void vtime_account_idle(struct task_struct *tsk)
a7e1a9e3 365{
a19ff1a2
FW
366 unsigned long stime, stime_scaled, steal_time;
367 struct cpu_accounting_data *acct = get_accounting(tsk);
a7e1a9e3 368
a19ff1a2
FW
369 stime = vtime_delta(tsk, &stime_scaled, &steal_time);
370 acct->idle_time += stime + steal_time;
c6622f63
PM
371}
372
373/*
c8d7dabf 374 * Account the whole cputime accumulated in the paca
c6622f63 375 * Must be called with interrupts disabled.
bcebdf84
FW
376 * Assumes that vtime_account_system/idle() has been called
377 * recently (i.e. since the last entry from usermode) so that
cf9efce0 378 * get_paca()->user_time_scaled is up to date.
c6622f63 379 */
c8d7dabf 380void vtime_flush(struct task_struct *tsk)
c6622f63 381{
c223c903 382 struct cpu_accounting_data *acct = get_accounting(tsk);
c6622f63 383
a19ff1a2 384 if (acct->utime)
23244a5c 385 account_user_time(tsk, cputime_to_nsecs(acct->utime));
a19ff1a2
FW
386
387 if (acct->utime_scaled)
5613fda9 388 tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
a19ff1a2
FW
389
390 if (acct->gtime)
fb8b049c 391 account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
a19ff1a2
FW
392
393 if (acct->steal_time)
be9095ed 394 account_steal_time(cputime_to_nsecs(acct->steal_time));
a19ff1a2
FW
395
396 if (acct->idle_time)
18b43a9b 397 account_idle_time(cputime_to_nsecs(acct->idle_time));
a19ff1a2
FW
398
399 if (acct->stime)
fb8b049c
FW
400 account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
401 CPUTIME_SYSTEM);
a19ff1a2 402 if (acct->stime_scaled)
5613fda9 403 tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
a19ff1a2
FW
404
405 if (acct->hardirq_time)
fb8b049c
FW
406 account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
407 CPUTIME_IRQ);
a19ff1a2 408 if (acct->softirq_time)
fb8b049c
FW
409 account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
410 CPUTIME_SOFTIRQ);
a19ff1a2 411
8c8b73c4
FW
412 acct->utime = 0;
413 acct->utime_scaled = 0;
c223c903 414 acct->utime_sspurr = 0;
a19ff1a2
FW
415 acct->gtime = 0;
416 acct->steal_time = 0;
417 acct->idle_time = 0;
418 acct->stime = 0;
419 acct->stime_scaled = 0;
420 acct->hardirq_time = 0;
421 acct->softirq_time = 0;
c6622f63
PM
422}
423
c223c903
CL
424#ifdef CONFIG_PPC32
425/*
426 * Called from the context switch with interrupts disabled, to charge all
427 * accumulated times to the current process, and to prepare accounting on
428 * the next process.
429 */
430void arch_vtime_task_switch(struct task_struct *prev)
431{
432 struct cpu_accounting_data *acct = get_accounting(current);
433
434 acct->starttime = get_accounting(prev)->starttime;
90d08ba2 435 acct->startspurr = get_accounting(prev)->startspurr;
c223c903
CL
436}
437#endif /* CONFIG_PPC32 */
438
abf917cd 439#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
c6622f63 440#define calc_cputime_factors()
c6622f63
PM
441#endif
442
6defa38b
PM
443void __delay(unsigned long loops)
444{
445 unsigned long start;
446 int diff;
447
4e287e65 448 spin_begin();
6defa38b
PM
449 if (__USE_RTC()) {
450 start = get_rtcl();
451 do {
452 /* the RTCL register wraps at 1000000000 */
453 diff = get_rtcl() - start;
454 if (diff < 0)
455 diff += 1000000000;
4e287e65 456 spin_cpu_relax();
6defa38b
PM
457 } while (diff < loops);
458 } else {
459 start = get_tbl();
460 while (get_tbl() - start < loops)
4e287e65 461 spin_cpu_relax();
6defa38b 462 }
4e287e65 463 spin_end();
6defa38b
PM
464}
465EXPORT_SYMBOL(__delay);
466
467void udelay(unsigned long usecs)
468{
469 __delay(tb_ticks_per_usec * usecs);
470}
471EXPORT_SYMBOL(udelay);
472
1da177e4
LT
473#ifdef CONFIG_SMP
474unsigned long profile_pc(struct pt_regs *regs)
475{
476 unsigned long pc = instruction_pointer(regs);
477
478 if (in_lock_functions(pc))
479 return regs->link;
480
481 return pc;
482}
483EXPORT_SYMBOL(profile_pc);
484#endif
485
e360adbe 486#ifdef CONFIG_IRQ_WORK
105988c0 487
0fe1ac48
PM
488/*
489 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
490 */
491#ifdef CONFIG_PPC64
e360adbe 492static inline unsigned long test_irq_work_pending(void)
105988c0 493{
0fe1ac48
PM
494 unsigned long x;
495
496 asm volatile("lbz %0,%1(13)"
497 : "=r" (x)
e360adbe 498 : "i" (offsetof(struct paca_struct, irq_work_pending)));
0fe1ac48
PM
499 return x;
500}
501
e360adbe 502static inline void set_irq_work_pending_flag(void)
0fe1ac48
PM
503{
504 asm volatile("stb %0,%1(13)" : :
505 "r" (1),
e360adbe 506 "i" (offsetof(struct paca_struct, irq_work_pending)));
0fe1ac48
PM
507}
508
e360adbe 509static inline void clear_irq_work_pending(void)
0fe1ac48
PM
510{
511 asm volatile("stb %0,%1(13)" : :
512 "r" (0),
e360adbe 513 "i" (offsetof(struct paca_struct, irq_work_pending)));
105988c0
PM
514}
515
ebb37cf3
NP
516void arch_irq_work_raise(void)
517{
518 preempt_disable();
519 set_irq_work_pending_flag();
520 /*
521 * Non-nmi code running with interrupts disabled will replay
522 * irq_happened before it re-enables interrupts, so setthe
523 * decrementer there instead of causing a hardware exception
524 * which would immediately hit the masked interrupt handler
525 * and have the net effect of setting the decrementer in
526 * irq_happened.
527 *
528 * NMI interrupts can not check this when they return, so the
529 * decrementer hardware exception is raised, which will fire
530 * when interrupts are next enabled.
531 *
532 * BookE does not support this yet, it must audit all NMI
533 * interrupt handlers to ensure they call nmi_enter() so this
534 * check would be correct.
535 */
536 if (IS_ENABLED(CONFIG_BOOKE) || !irqs_disabled() || in_nmi()) {
537 set_dec(1);
538 } else {
539 hard_irq_disable();
540 local_paca->irq_happened |= PACA_IRQ_DEC;
541 }
542 preempt_enable();
543}
544
0fe1ac48
PM
545#else /* 32-bit */
546
e360adbe 547DEFINE_PER_CPU(u8, irq_work_pending);
0fe1ac48 548
69111bac
CL
549#define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1)
550#define test_irq_work_pending() __this_cpu_read(irq_work_pending)
551#define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0)
105988c0 552
4f8b50bb 553void arch_irq_work_raise(void)
0fe1ac48
PM
554{
555 preempt_disable();
e360adbe 556 set_irq_work_pending_flag();
0fe1ac48
PM
557 set_dec(1);
558 preempt_enable();
559}
560
ebb37cf3
NP
561#endif /* 32 vs 64 bit */
562
e360adbe 563#else /* CONFIG_IRQ_WORK */
105988c0 564
e360adbe
PZ
565#define test_irq_work_pending() 0
566#define clear_irq_work_pending()
105988c0 567
e360adbe 568#endif /* CONFIG_IRQ_WORK */
105988c0 569
1da177e4
LT
570/*
571 * timer_interrupt - gets called when the decrementer overflows,
572 * with interrupts disabled.
573 */
3f984620 574void timer_interrupt(struct pt_regs *regs)
1da177e4 575{
3f984620 576 struct clock_event_device *evt = this_cpu_ptr(&decrementers);
69111bac 577 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
3f984620
NP
578 struct pt_regs *old_regs;
579 u64 now;
d831d0b8 580
963e5d3b 581 /* Some implementations of hotplug will get timer interrupts while
689dfa89
TC
582 * offline, just ignore these and we also need to set
583 * decrementers_next_tb as MAX to make sure __check_irq_replay
584 * don't replay timer interrupt when return, otherwise we'll trap
585 * here infinitely :(
963e5d3b 586 */
a7cba02d 587 if (unlikely(!cpu_online(smp_processor_id()))) {
689dfa89 588 *next_tb = ~(u64)0;
a7cba02d 589 set_dec(decrementer_max);
963e5d3b 590 return;
689dfa89 591 }
963e5d3b 592
a7cba02d
NP
593 /* Ensure a positive value is written to the decrementer, or else
594 * some CPUs will continue to take decrementer exceptions. When the
595 * PPC_WATCHDOG (decrementer based) is configured, keep this at most
596 * 31 bits, which is about 4 seconds on most systems, which gives
597 * the watchdog a chance of catching timer interrupt hard lockups.
598 */
599 if (IS_ENABLED(CONFIG_PPC_WATCHDOG))
600 set_dec(0x7fffffff);
601 else
602 set_dec(decrementer_max);
603
7230c564
BH
604 /* Conditionally hard-enable interrupts now that the DEC has been
605 * bumped to its maximum value
606 */
607 may_hard_irq_enable();
608
89713ed1 609
6e0fdf9a 610#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
f2783c15
PM
611 if (atomic_read(&ppc_n_lost_interrupts) != 0)
612 do_IRQ(regs);
613#endif
1da177e4 614
7d12e780 615 old_regs = set_irq_regs(regs);
1da177e4 616 irq_enter();
3f984620
NP
617 trace_timer_interrupt_entry(regs);
618
619 if (test_irq_work_pending()) {
620 clear_irq_work_pending();
621 irq_work_run();
622 }
623
624 now = get_tb_or_rtc();
625 if (now >= *next_tb) {
626 *next_tb = ~(u64)0;
627 if (evt->event_handler)
628 evt->event_handler(evt);
629 __this_cpu_inc(irq_stat.timer_irqs_event);
630 } else {
631 now = *next_tb - now;
632 if (now <= decrementer_max)
633 set_dec(now);
634 /* We may have raced with new irq work */
635 if (test_irq_work_pending())
636 set_dec(1);
637 __this_cpu_inc(irq_stat.timer_irqs_others);
638 }
1da177e4 639
3f984620 640 trace_timer_interrupt_exit(regs);
1da177e4 641 irq_exit();
7d12e780 642 set_irq_regs(old_regs);
1da177e4 643}
9445aa1a 644EXPORT_SYMBOL(timer_interrupt);
1da177e4 645
bc907113 646#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
3f984620
NP
647void timer_broadcast_interrupt(void)
648{
649 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
650 struct pt_regs *regs = get_irq_regs();
651
652 trace_timer_interrupt_entry(regs);
653 *next_tb = ~(u64)0;
654 tick_receive_broadcast();
655 __this_cpu_inc(irq_stat.timer_irqs_event);
656 trace_timer_interrupt_exit(regs);
657}
bc907113 658#endif
3f984620 659
dabe859e
PM
660/*
661 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
662 * left pending on exit from a KVM guest. We don't need to do anything
663 * to clear them, as they are edge-triggered.
664 */
665void hdec_interrupt(struct pt_regs *regs)
666{
667}
668
7ac5dde9 669#ifdef CONFIG_SUSPEND
d75d68cf 670static void generic_suspend_disable_irqs(void)
7ac5dde9 671{
7ac5dde9
SW
672 /* Disable the decrementer, so that it doesn't interfere
673 * with suspending.
674 */
675
79901024 676 set_dec(decrementer_max);
7ac5dde9 677 local_irq_disable();
79901024 678 set_dec(decrementer_max);
7ac5dde9
SW
679}
680
d75d68cf 681static void generic_suspend_enable_irqs(void)
7ac5dde9 682{
7ac5dde9 683 local_irq_enable();
7ac5dde9
SW
684}
685
686/* Overrides the weak version in kernel/power/main.c */
687void arch_suspend_disable_irqs(void)
688{
689 if (ppc_md.suspend_disable_irqs)
690 ppc_md.suspend_disable_irqs();
691 generic_suspend_disable_irqs();
692}
693
694/* Overrides the weak version in kernel/power/main.c */
695void arch_suspend_enable_irqs(void)
696{
697 generic_suspend_enable_irqs();
698 if (ppc_md.suspend_enable_irqs)
699 ppc_md.suspend_enable_irqs();
700}
701#endif
702
b6c295df
PM
703unsigned long long tb_to_ns(unsigned long long ticks)
704{
705 return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
706}
707EXPORT_SYMBOL_GPL(tb_to_ns);
708
1da177e4
LT
709/*
710 * Scheduler clock - returns current time in nanosec units.
711 *
712 * Note: mulhdu(a, b) (multiply high double unsigned) returns
713 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
714 * are 64-bit unsigned numbers.
715 */
6b847d79 716notrace unsigned long long sched_clock(void)
1da177e4 717{
96c44507
PM
718 if (__USE_RTC())
719 return get_rtc();
fc9069fe 720 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
1da177e4
LT
721}
722
4be1b297
CB
723
724#ifdef CONFIG_PPC_PSERIES
725
726/*
727 * Running clock - attempts to give a view of time passing for a virtualised
728 * kernels.
729 * Uses the VTB register if available otherwise a next best guess.
730 */
731unsigned long long running_clock(void)
732{
733 /*
734 * Don't read the VTB as a host since KVM does not switch in host
735 * timebase into the VTB when it takes a guest off the CPU, reading the
736 * VTB would result in reading 'last switched out' guest VTB.
737 *
738 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
739 * would be unsafe to rely only on the #ifdef above.
740 */
741 if (firmware_has_feature(FW_FEATURE_LPAR) &&
742 cpu_has_feature(CPU_FTR_ARCH_207S))
743 return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
744
745 /*
746 * This is a next best approximation without a VTB.
747 * On a host which is running bare metal there should never be any stolen
748 * time and on a host which doesn't do any virtualisation TB *should* equal
749 * VTB so it makes no difference anyway.
750 */
9f3768e0 751 return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
4be1b297
CB
752}
753#endif
754
0bb474a4 755static int __init get_freq(char *name, int cells, unsigned long *val)
10f7e7c1
AB
756{
757 struct device_node *cpu;
6f7aba7b 758 const __be32 *fp;
0bb474a4 759 int found = 0;
10f7e7c1 760
0bb474a4 761 /* The cpu node should have timebase and clock frequency properties */
10f7e7c1
AB
762 cpu = of_find_node_by_type(NULL, "cpu");
763
d8a8188d 764 if (cpu) {
e2eb6392 765 fp = of_get_property(cpu, name, NULL);
d8a8188d 766 if (fp) {
0bb474a4 767 found = 1;
a4dc7ff0 768 *val = of_read_ulong(fp, cells);
10f7e7c1 769 }
0bb474a4
AB
770
771 of_node_put(cpu);
10f7e7c1 772 }
0bb474a4
AB
773
774 return found;
775}
776
e51df2c1 777static void start_cpu_decrementer(void)
77c0a700
BH
778{
779#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
6e2f03e2
IM
780 unsigned int tcr;
781
77c0a700
BH
782 /* Clear any pending timer interrupts */
783 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
784
6e2f03e2
IM
785 tcr = mfspr(SPRN_TCR);
786 /*
787 * The watchdog may have already been enabled by u-boot. So leave
788 * TRC[WP] (Watchdog Period) alone.
789 */
790 tcr &= TCR_WP_MASK; /* Clear all bits except for TCR[WP] */
791 tcr |= TCR_DIE; /* Enable decrementer */
792 mtspr(SPRN_TCR, tcr);
793#endif
77c0a700
BH
794}
795
0bb474a4
AB
796void __init generic_calibrate_decr(void)
797{
798 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
799
800 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
801 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
802
10f7e7c1
AB
803 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
804 "(not found)\n");
0bb474a4 805 }
10f7e7c1 806
0bb474a4
AB
807 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
808
809 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
810 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
811
812 printk(KERN_ERR "WARNING: Estimating processor frequency "
813 "(not found)\n");
10f7e7c1 814 }
10f7e7c1 815}
10f7e7c1 816
aa3be5f3 817int update_persistent_clock(struct timespec now)
f2783c15
PM
818{
819 struct rtc_time tm;
820
aa3be5f3 821 if (!ppc_md.set_rtc_time)
023f333a 822 return -ENODEV;
aa3be5f3
TB
823
824 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
825 tm.tm_year -= 1900;
826 tm.tm_mon -= 1;
827
828 return ppc_md.set_rtc_time(&tm);
829}
830
978d7eb3 831static void __read_persistent_clock(struct timespec *ts)
aa3be5f3
TB
832{
833 struct rtc_time tm;
834 static int first = 1;
835
d90246cd 836 ts->tv_nsec = 0;
aa3be5f3
TB
837 /* XXX this is a litle fragile but will work okay in the short term */
838 if (first) {
839 first = 0;
840 if (ppc_md.time_init)
841 timezone_offset = ppc_md.time_init();
842
843 /* get_boot_time() isn't guaranteed to be safe to call late */
d90246cd
MS
844 if (ppc_md.get_boot_time) {
845 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
846 return;
847 }
848 }
849 if (!ppc_md.get_rtc_time) {
850 ts->tv_sec = 0;
851 return;
aa3be5f3 852 }
f2783c15 853 ppc_md.get_rtc_time(&tm);
978d7eb3 854
d4f587c6
MS
855 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
856 tm.tm_hour, tm.tm_min, tm.tm_sec);
f2783c15
PM
857}
858
978d7eb3
BH
859void read_persistent_clock(struct timespec *ts)
860{
861 __read_persistent_clock(ts);
862
863 /* Sanitize it in case real time clock is set below EPOCH */
864 if (ts->tv_sec < 0) {
865 ts->tv_sec = 0;
866 ts->tv_nsec = 0;
867 }
868
869}
870
4a4cfe38 871/* clocksource code */
6b847d79 872static notrace u64 rtc_read(struct clocksource *cs)
4a4cfe38 873{
a5a1d1c2 874 return (u64)get_rtc();
4a4cfe38
TB
875}
876
6b847d79 877static notrace u64 timebase_read(struct clocksource *cs)
4a4cfe38 878{
a5a1d1c2 879 return (u64)get_tb();
4a4cfe38
TB
880}
881
d4cfb113
PM
882
883void update_vsyscall(struct timekeeper *tk)
4a4cfe38 884{
d4cfb113
PM
885 struct timespec xt;
886 struct clocksource *clock = tk->tkr_mono.clock;
887 u32 mult = tk->tkr_mono.mult;
888 u32 shift = tk->tkr_mono.shift;
889 u64 cycle_last = tk->tkr_mono.cycle_last;
b0797b60 890 u64 new_tb_to_xs, new_stamp_xsec;
d4cfb113 891 u64 frac_sec;
4a4cfe38
TB
892
893 if (clock != &clocksource_timebase)
894 return;
895
d4cfb113
PM
896 xt.tv_sec = tk->xtime_sec;
897 xt.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
898
4a4cfe38
TB
899 /* Make userspace gettimeofday spin until we're done. */
900 ++vdso_data->tb_update_count;
901 smp_mb();
902
d4cfb113
PM
903 /*
904 * This computes ((2^20 / 1e9) * mult) >> shift as a
905 * 0.64 fixed-point fraction.
906 * The computation in the else clause below won't overflow
907 * (as long as the timebase frequency is >= 1.049 MHz)
908 * but loses precision because we lose the low bits of the constant
909 * in the shift. Note that 19342813113834067 ~= 2^(20+64) / 1e9.
910 * For a shift of 24 the error is about 0.5e-9, or about 0.5ns
911 * over a second. (Shift values are usually 22, 23 or 24.)
912 * For high frequency clocks such as the 512MHz timebase clock
913 * on POWER[6789], the mult value is small (e.g. 32768000)
914 * and so we can shift the constant by 16 initially
915 * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the
916 * remaining shifts after the multiplication, which gives a
917 * more accurate result (e.g. with mult = 32768000, shift = 24,
918 * the error is only about 1.2e-12, or 0.7ns over 10 minutes).
919 */
920 if (mult <= 62500000 && clock->shift >= 16)
921 new_tb_to_xs = ((u64) mult * 295147905179ULL) >> (clock->shift - 16);
922 else
923 new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
924
925 /*
926 * Compute the fractional second in units of 2^-32 seconds.
927 * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift
928 * in nanoseconds, so multiplying that by 2^32 / 1e9 gives
929 * it in units of 2^-32 seconds.
930 * We assume shift <= 32 because clocks_calc_mult_shift()
931 * generates shift values in the range 0 - 32.
932 */
933 frac_sec = tk->tkr_mono.xtime_nsec << (32 - shift);
934 do_div(frac_sec, NSEC_PER_SEC);
b0797b60 935
d4cfb113
PM
936 /*
937 * Work out new stamp_xsec value for any legacy users of systemcfg.
938 * stamp_xsec is in units of 2^-20 seconds.
939 */
940 new_stamp_xsec = frac_sec >> 12;
941 new_stamp_xsec += tk->xtime_sec * XSEC_PER_SEC;
47916be4 942
b0797b60
JS
943 /*
944 * tb_update_count is used to allow the userspace gettimeofday code
945 * to assure itself that it sees a consistent view of the tb_to_xs and
946 * stamp_xsec variables. It reads the tb_update_count, then reads
947 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
948 * the two values of tb_update_count match and are even then the
949 * tb_to_xs and stamp_xsec values are consistent. If not, then it
950 * loops back and reads them again until this criteria is met.
b0797b60 951 */
4a0e6377 952 vdso_data->tb_orig_stamp = cycle_last;
b0797b60
JS
953 vdso_data->stamp_xsec = new_stamp_xsec;
954 vdso_data->tb_to_xs = new_tb_to_xs;
d4cfb113
PM
955 vdso_data->wtom_clock_sec = tk->wall_to_monotonic.tv_sec;
956 vdso_data->wtom_clock_nsec = tk->wall_to_monotonic.tv_nsec;
957 vdso_data->stamp_xtime = xt;
0e469db8 958 vdso_data->stamp_sec_fraction = frac_sec;
b0797b60
JS
959 smp_wmb();
960 ++(vdso_data->tb_update_count);
4a4cfe38
TB
961}
962
963void update_vsyscall_tz(void)
964{
4a4cfe38
TB
965 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
966 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
4a4cfe38
TB
967}
968
1c21a293 969static void __init clocksource_init(void)
4a4cfe38
TB
970{
971 struct clocksource *clock;
972
973 if (__USE_RTC())
974 clock = &clocksource_rtc;
975 else
976 clock = &clocksource_timebase;
977
11b8633a 978 if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
4a4cfe38
TB
979 printk(KERN_ERR "clocksource: %s is already registered\n",
980 clock->name);
981 return;
982 }
983
984 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
985 clock->name, clock->mult, clock->shift);
986}
987
d831d0b8
TB
988static int decrementer_set_next_event(unsigned long evt,
989 struct clock_event_device *dev)
990{
69111bac 991 __this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
d831d0b8 992 set_dec(evt);
0215f7d8
BH
993
994 /* We may have raced with new irq work */
995 if (test_irq_work_pending())
996 set_dec(1);
997
d831d0b8
TB
998 return 0;
999}
1000
37a13e78 1001static int decrementer_shutdown(struct clock_event_device *dev)
d831d0b8 1002{
79901024 1003 decrementer_set_next_event(decrementer_max, dev);
37a13e78 1004 return 0;
d831d0b8
TB
1005}
1006
1007static void register_decrementer_clockevent(int cpu)
1008{
7df10275 1009 struct clock_event_device *dec = &per_cpu(decrementers, cpu);
d831d0b8
TB
1010
1011 *dec = decrementer_clockevent;
320ab2b0 1012 dec->cpumask = cpumask_of(cpu);
d831d0b8 1013
b919ee82
AB
1014 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
1015 dec->name, dec->mult, dec->shift, cpu);
d831d0b8
TB
1016
1017 clockevents_register_device(dec);
1018}
1019
79901024
OH
1020static void enable_large_decrementer(void)
1021{
1022 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1023 return;
1024
1025 if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
1026 return;
1027
1028 /*
1029 * If we're running as the hypervisor we need to enable the LD manually
1030 * otherwise firmware should have done it for us.
1031 */
1032 if (cpu_has_feature(CPU_FTR_HVMODE))
1033 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
1034}
1035
1036static void __init set_decrementer_max(void)
1037{
1038 struct device_node *cpu;
1039 u32 bits = 32;
1040
1041 /* Prior to ISAv3 the decrementer is always 32 bit */
1042 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1043 return;
1044
1045 cpu = of_find_node_by_type(NULL, "cpu");
1046
1047 if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
1048 if (bits > 64 || bits < 32) {
1049 pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
1050 bits = 32;
1051 }
1052
1053 /* calculate the signed maximum given this many bits */
1054 decrementer_max = (1ul << (bits - 1)) - 1;
1055 }
1056
1057 of_node_put(cpu);
1058
1059 pr_info("time_init: %u bit decrementer (max: %llx)\n",
1060 bits, decrementer_max);
1061}
1062
c481887f 1063static void __init init_decrementer_clockevent(void)
d831d0b8
TB
1064{
1065 int cpu = smp_processor_id();
1066
d8afc6fd
AB
1067 clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
1068
d831d0b8 1069 decrementer_clockevent.max_delta_ns =
79901024 1070 clockevent_delta2ns(decrementer_max, &decrementer_clockevent);
115631c3 1071 decrementer_clockevent.max_delta_ticks = decrementer_max;
43875cc0
PM
1072 decrementer_clockevent.min_delta_ns =
1073 clockevent_delta2ns(2, &decrementer_clockevent);
115631c3 1074 decrementer_clockevent.min_delta_ticks = 2;
d831d0b8
TB
1075
1076 register_decrementer_clockevent(cpu);
1077}
1078
1079void secondary_cpu_time_init(void)
1080{
79901024
OH
1081 /* Enable and test the large decrementer for this cpu */
1082 enable_large_decrementer();
1083
77c0a700
BH
1084 /* Start the decrementer on CPUs that have manual control
1085 * such as BookE
1086 */
1087 start_cpu_decrementer();
1088
d831d0b8
TB
1089 /* FIME: Should make unrelatred change to move snapshot_timebase
1090 * call here ! */
1091 register_decrementer_clockevent(smp_processor_id());
1092}
1093
f2783c15 1094/* This function is only called on the boot processor */
1da177e4
LT
1095void __init time_init(void)
1096{
1da177e4 1097 struct div_result res;
d75d68cf 1098 u64 scale;
f2783c15
PM
1099 unsigned shift;
1100
96c44507
PM
1101 if (__USE_RTC()) {
1102 /* 601 processor: dec counts down by 128 every 128ns */
1103 ppc_tb_freq = 1000000000;
96c44507
PM
1104 } else {
1105 /* Normal PowerPC with timebase register */
1106 ppc_md.calibrate_decr();
224ad80a 1107 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
96c44507 1108 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
224ad80a 1109 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
96c44507 1110 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
96c44507 1111 }
374e99d4
PM
1112
1113 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
092b8f34 1114 tb_ticks_per_sec = ppc_tb_freq;
374e99d4 1115 tb_ticks_per_usec = ppc_tb_freq / 1000000;
c6622f63 1116 calc_cputime_factors();
092b8f34 1117
1da177e4
LT
1118 /*
1119 * Compute scale factor for sched_clock.
1120 * The calibrate_decr() function has set tb_ticks_per_sec,
1121 * which is the timebase frequency.
1122 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1123 * the 128-bit result as a 64.64 fixed-point number.
1124 * We then shift that number right until it is less than 1.0,
1125 * giving us the scale factor and shift count to use in
1126 * sched_clock().
1127 */
1128 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1129 scale = res.result_low;
1130 for (shift = 0; res.result_high != 0; ++shift) {
1131 scale = (scale >> 1) | (res.result_high << 63);
1132 res.result_high >>= 1;
1133 }
1134 tb_to_ns_scale = scale;
1135 tb_to_ns_shift = shift;
fc9069fe 1136 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
c27da339 1137 boot_tb = get_tb_or_rtc();
1da177e4 1138
092b8f34 1139 /* If platform provided a timezone (pmac), we correct the time */
621692cb 1140 if (timezone_offset) {
092b8f34
PM
1141 sys_tz.tz_minuteswest = -timezone_offset / 60;
1142 sys_tz.tz_dsttime = 0;
621692cb 1143 }
092b8f34 1144
a7f290da
BH
1145 vdso_data->tb_update_count = 0;
1146 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1da177e4 1147
79901024
OH
1148 /* initialise and enable the large decrementer (if we have one) */
1149 set_decrementer_max();
1150 enable_large_decrementer();
1151
77c0a700
BH
1152 /* Start the decrementer on CPUs that have manual control
1153 * such as BookE
1154 */
1155 start_cpu_decrementer();
1156
f5339277
SR
1157 /* Register the clocksource */
1158 clocksource_init();
4a4cfe38 1159
d831d0b8 1160 init_decrementer_clockevent();
0d948730 1161 tick_setup_hrtimer_broadcast();
f0d37300
KH
1162
1163#ifdef CONFIG_COMMON_CLK
1164 of_clk_init(NULL);
1165#endif
1da177e4
LT
1166}
1167
1da177e4 1168
1da177e4
LT
1169#define FEBRUARY 2
1170#define STARTOFTIME 1970
1171#define SECDAY 86400L
1172#define SECYR (SECDAY * 365)
f2783c15
PM
1173#define leapyear(year) ((year) % 4 == 0 && \
1174 ((year) % 100 != 0 || (year) % 400 == 0))
1da177e4
LT
1175#define days_in_year(a) (leapyear(a) ? 366 : 365)
1176#define days_in_month(a) (month_days[(a) - 1])
1177
1178static int month_days[12] = {
1179 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1180};
1181
1da177e4
LT
1182void to_tm(int tim, struct rtc_time * tm)
1183{
1184 register int i;
1185 register long hms, day;
1186
1187 day = tim / SECDAY;
1188 hms = tim % SECDAY;
1189
1190 /* Hours, minutes, seconds are easy */
1191 tm->tm_hour = hms / 3600;
1192 tm->tm_min = (hms % 3600) / 60;
1193 tm->tm_sec = (hms % 3600) % 60;
1194
1195 /* Number of years in days */
1196 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1197 day -= days_in_year(i);
1198 tm->tm_year = i;
1199
1200 /* Number of months in days left */
1201 if (leapyear(tm->tm_year))
1202 days_in_month(FEBRUARY) = 29;
1203 for (i = 1; day >= days_in_month(i); i++)
1204 day -= days_in_month(i);
1205 days_in_month(FEBRUARY) = 28;
1206 tm->tm_mon = i;
1207
1208 /* Days are what is left over (+1) from all that. */
1209 tm->tm_mday = day + 1;
1210
1211 /*
00b912b0 1212 * No-one uses the day of the week.
1da177e4 1213 */
00b912b0 1214 tm->tm_wday = -1;
1da177e4 1215}
e1802b06 1216EXPORT_SYMBOL(to_tm);
1da177e4 1217
1da177e4
LT
1218/*
1219 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1220 * result.
1221 */
f2783c15
PM
1222void div128_by_32(u64 dividend_high, u64 dividend_low,
1223 unsigned divisor, struct div_result *dr)
1da177e4 1224{
f2783c15
PM
1225 unsigned long a, b, c, d;
1226 unsigned long w, x, y, z;
1227 u64 ra, rb, rc;
1da177e4
LT
1228
1229 a = dividend_high >> 32;
1230 b = dividend_high & 0xffffffff;
1231 c = dividend_low >> 32;
1232 d = dividend_low & 0xffffffff;
1233
f2783c15
PM
1234 w = a / divisor;
1235 ra = ((u64)(a - (w * divisor)) << 32) + b;
1236
f2783c15
PM
1237 rb = ((u64) do_div(ra, divisor) << 32) + c;
1238 x = ra;
1da177e4 1239
f2783c15
PM
1240 rc = ((u64) do_div(rb, divisor) << 32) + d;
1241 y = rb;
1242
1243 do_div(rc, divisor);
1244 z = rc;
1da177e4 1245
f2783c15
PM
1246 dr->result_high = ((u64)w << 32) + x;
1247 dr->result_low = ((u64)y << 32) + z;
1da177e4
LT
1248
1249}
bcd68a70 1250
177996e6
BH
1251/* We don't need to calibrate delay, we use the CPU timebase for that */
1252void calibrate_delay(void)
1253{
1254 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1255 * as the number of __delay(1) in a jiffy, so make it so
1256 */
1257 loops_per_jiffy = tb_ticks_per_jiffy;
1258}
1259
169047f4
AB
1260#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1261static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1262{
1263 ppc_md.get_rtc_time(tm);
890ae797 1264 return 0;
169047f4
AB
1265}
1266
1267static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1268{
1269 if (!ppc_md.set_rtc_time)
1270 return -EOPNOTSUPP;
1271
1272 if (ppc_md.set_rtc_time(tm) < 0)
1273 return -EOPNOTSUPP;
1274
1275 return 0;
1276}
1277
1278static const struct rtc_class_ops rtc_generic_ops = {
1279 .read_time = rtc_generic_get_time,
1280 .set_time = rtc_generic_set_time,
1281};
1282
bcd68a70
GU
1283static int __init rtc_init(void)
1284{
1285 struct platform_device *pdev;
1286
1287 if (!ppc_md.get_rtc_time)
1288 return -ENODEV;
1289
169047f4
AB
1290 pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1291 &rtc_generic_ops,
1292 sizeof(rtc_generic_ops));
bcd68a70 1293
8c6ffba0 1294 return PTR_ERR_OR_ZERO(pdev);
bcd68a70
GU
1295}
1296
8f6b9512 1297device_initcall(rtc_init);
169047f4 1298#endif