Merge tag 'dmaengine-4.21-rc1' of git://git.infradead.org/users/vkoul/slave-dma
[linux-2.6-block.git] / arch / powerpc / kernel / time.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
f5339277 20 * measurement at boot time.
1da177e4
LT
21 * - for astronomical applications: add a new function to get
22 * non ambiguous timestamps even around leap seconds. This needs
23 * a new timestamp format and a good name.
24 *
25 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
26 * "A Kernel Model for Precision Timekeeping" by Dave Mills
27 *
28 * This program is free software; you can redistribute it and/or
29 * modify it under the terms of the GNU General Public License
30 * as published by the Free Software Foundation; either version
31 * 2 of the License, or (at your option) any later version.
32 */
33
1da177e4 34#include <linux/errno.h>
4b16f8e2 35#include <linux/export.h>
1da177e4 36#include <linux/sched.h>
e6017571 37#include <linux/sched/clock.h>
1da177e4
LT
38#include <linux/kernel.h>
39#include <linux/param.h>
40#include <linux/string.h>
41#include <linux/mm.h>
42#include <linux/interrupt.h>
43#include <linux/timex.h>
44#include <linux/kernel_stat.h>
1da177e4 45#include <linux/time.h>
0d948730 46#include <linux/clockchips.h>
1da177e4
LT
47#include <linux/init.h>
48#include <linux/profile.h>
49#include <linux/cpu.h>
50#include <linux/security.h>
f2783c15
PM
51#include <linux/percpu.h>
52#include <linux/rtc.h>
092b8f34 53#include <linux/jiffies.h>
c6622f63 54#include <linux/posix-timers.h>
7d12e780 55#include <linux/irq.h>
177996e6 56#include <linux/delay.h>
e360adbe 57#include <linux/irq_work.h>
f0d37300 58#include <linux/clk-provider.h>
7f92bc56 59#include <linux/suspend.h>
169047f4 60#include <linux/rtc.h>
32ef5517 61#include <linux/sched/cputime.h>
4e287e65 62#include <linux/processor.h>
6795b85c 63#include <asm/trace.h>
1da177e4 64
1da177e4 65#include <asm/io.h>
1da177e4
LT
66#include <asm/nvram.h>
67#include <asm/cache.h>
68#include <asm/machdep.h>
7c0f6ba6 69#include <linux/uaccess.h>
1da177e4 70#include <asm/time.h>
1da177e4 71#include <asm/prom.h>
f2783c15
PM
72#include <asm/irq.h>
73#include <asm/div64.h>
2249ca9d 74#include <asm/smp.h>
a7f290da 75#include <asm/vdso_datapage.h>
1ababe11 76#include <asm/firmware.h>
0545d543 77#include <asm/asm-prototypes.h>
1da177e4 78
4a4cfe38
TB
79/* powerpc clocksource/clockevent code */
80
d831d0b8 81#include <linux/clockchips.h>
189374ae 82#include <linux/timekeeper_internal.h>
4a4cfe38 83
a5a1d1c2 84static u64 rtc_read(struct clocksource *);
4a4cfe38
TB
85static struct clocksource clocksource_rtc = {
86 .name = "rtc",
87 .rating = 400,
88 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
89 .mask = CLOCKSOURCE_MASK(64),
4a4cfe38
TB
90 .read = rtc_read,
91};
92
a5a1d1c2 93static u64 timebase_read(struct clocksource *);
4a4cfe38
TB
94static struct clocksource clocksource_timebase = {
95 .name = "timebase",
96 .rating = 400,
97 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
98 .mask = CLOCKSOURCE_MASK(64),
4a4cfe38
TB
99 .read = timebase_read,
100};
101
79901024
OH
102#define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
103u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
d831d0b8
TB
104
105static int decrementer_set_next_event(unsigned long evt,
106 struct clock_event_device *dev);
37a13e78 107static int decrementer_shutdown(struct clock_event_device *evt);
d831d0b8 108
6e35994d 109struct clock_event_device decrementer_clockevent = {
37a13e78
VK
110 .name = "decrementer",
111 .rating = 200,
112 .irq = 0,
113 .set_next_event = decrementer_set_next_event,
81759360 114 .set_state_oneshot_stopped = decrementer_shutdown,
37a13e78
VK
115 .set_state_shutdown = decrementer_shutdown,
116 .tick_resume = decrementer_shutdown,
117 .features = CLOCK_EVT_FEAT_ONESHOT |
118 CLOCK_EVT_FEAT_C3STOP,
d831d0b8 119};
6e35994d 120EXPORT_SYMBOL(decrementer_clockevent);
d831d0b8 121
7df10275
AB
122DEFINE_PER_CPU(u64, decrementers_next_tb);
123static DEFINE_PER_CPU(struct clock_event_device, decrementers);
d831d0b8 124
1da177e4
LT
125#define XSEC_PER_SEC (1024*1024)
126
f2783c15
PM
127#ifdef CONFIG_PPC64
128#define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
129#else
130/* compute ((xsec << 12) * max) >> 32 */
131#define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
132#endif
133
1da177e4
LT
134unsigned long tb_ticks_per_jiffy;
135unsigned long tb_ticks_per_usec = 100; /* sane default */
136EXPORT_SYMBOL(tb_ticks_per_usec);
137unsigned long tb_ticks_per_sec;
2cf82c02 138EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
092b8f34 139
1da177e4 140DEFINE_SPINLOCK(rtc_lock);
6ae3db11 141EXPORT_SYMBOL_GPL(rtc_lock);
1da177e4 142
fc9069fe
TB
143static u64 tb_to_ns_scale __read_mostly;
144static unsigned tb_to_ns_shift __read_mostly;
364a1246 145static u64 boot_tb __read_mostly;
1da177e4 146
1da177e4 147extern struct timezone sys_tz;
f2783c15 148static long timezone_offset;
1da177e4 149
10f7e7c1 150unsigned long ppc_proc_freq;
55ec2fca 151EXPORT_SYMBOL_GPL(ppc_proc_freq);
10f7e7c1 152unsigned long ppc_tb_freq;
55ec2fca 153EXPORT_SYMBOL_GPL(ppc_tb_freq);
96c44507 154
abf917cd 155#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
c6622f63 156/*
e7f340ca
FW
157 * Factor for converting from cputime_t (timebase ticks) to
158 * microseconds. This is stored as 0.64 fixed-point binary fraction.
c6622f63 159 */
9f5072d4
AS
160u64 __cputime_usec_factor;
161EXPORT_SYMBOL(__cputime_usec_factor);
a42548a1 162
c223c903 163#ifdef CONFIG_PPC_SPLPAR
872e439a 164void (*dtl_consumer)(struct dtl_entry *, u64);
c223c903
CL
165#endif
166
c6622f63
PM
167static void calc_cputime_factors(void)
168{
169 struct div_result res;
170
9f5072d4
AS
171 div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
172 __cputime_usec_factor = res.result_low;
c6622f63
PM
173}
174
175/*
cf9efce0
PM
176 * Read the SPURR on systems that have it, otherwise the PURR,
177 * or if that doesn't exist return the timebase value passed in.
c6622f63 178 */
abcff86d 179static inline unsigned long read_spurr(unsigned long tb)
c6622f63 180{
cf9efce0
PM
181 if (cpu_has_feature(CPU_FTR_SPURR))
182 return mfspr(SPRN_SPURR);
c6622f63
PM
183 if (cpu_has_feature(CPU_FTR_PURR))
184 return mfspr(SPRN_PURR);
cf9efce0 185 return tb;
c6622f63
PM
186}
187
cf9efce0
PM
188#ifdef CONFIG_PPC_SPLPAR
189
4603ac18 190/*
cf9efce0
PM
191 * Scan the dispatch trace log and count up the stolen time.
192 * Should be called with interrupts disabled.
4603ac18 193 */
cf9efce0 194static u64 scan_dispatch_log(u64 stop_tb)
4603ac18 195{
872e439a 196 u64 i = local_paca->dtl_ridx;
cf9efce0
PM
197 struct dtl_entry *dtl = local_paca->dtl_curr;
198 struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
199 struct lppaca *vpa = local_paca->lppaca_ptr;
200 u64 tb_delta;
201 u64 stolen = 0;
202 u64 dtb;
203
84ffae55
AB
204 if (!dtl)
205 return 0;
206
7ffcf8ec 207 if (i == be64_to_cpu(vpa->dtl_idx))
cf9efce0 208 return 0;
7ffcf8ec 209 while (i < be64_to_cpu(vpa->dtl_idx)) {
7ffcf8ec
AB
210 dtb = be64_to_cpu(dtl->timebase);
211 tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
212 be32_to_cpu(dtl->ready_to_enqueue_time);
cf9efce0 213 barrier();
7ffcf8ec 214 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
cf9efce0 215 /* buffer has overflowed */
7ffcf8ec 216 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
cf9efce0
PM
217 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
218 continue;
219 }
220 if (dtb > stop_tb)
221 break;
84b07386
AB
222 if (dtl_consumer)
223 dtl_consumer(dtl, i);
cf9efce0
PM
224 stolen += tb_delta;
225 ++i;
226 ++dtl;
227 if (dtl == dtl_end)
228 dtl = local_paca->dispatch_log;
229 }
230 local_paca->dtl_ridx = i;
231 local_paca->dtl_curr = dtl;
232 return stolen;
4603ac18
MN
233}
234
cf9efce0
PM
235/*
236 * Accumulate stolen time by scanning the dispatch trace log.
237 * Called on entry from user mode.
238 */
239void accumulate_stolen_time(void)
240{
241 u64 sst, ust;
4e26bc4a 242 unsigned long save_irq_soft_mask = irq_soft_mask_return();
c223c903 243 struct cpu_accounting_data *acct = &local_paca->accounting;
b18ae08d
TH
244
245 /* We are called early in the exception entry, before
246 * soft/hard_enabled are sync'ed to the expected state
247 * for the exception. We are hard disabled but the PACA
248 * needs to reflect that so various debug stuff doesn't
249 * complain
250 */
4e26bc4a 251 irq_soft_mask_set(IRQS_DISABLED);
b18ae08d 252
c223c903
CL
253 sst = scan_dispatch_log(acct->starttime_user);
254 ust = scan_dispatch_log(acct->starttime);
8c8b73c4
FW
255 acct->stime -= sst;
256 acct->utime -= ust;
f828c3d0 257 acct->steal_time += ust + sst;
b18ae08d 258
4e26bc4a 259 irq_soft_mask_set(save_irq_soft_mask);
cf9efce0
PM
260}
261
262static inline u64 calculate_stolen_time(u64 stop_tb)
263{
a6201da3
AK
264 if (!firmware_has_feature(FW_FEATURE_SPLPAR))
265 return 0;
266
a19ff1a2
FW
267 if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
268 return scan_dispatch_log(stop_tb);
cf9efce0 269
a19ff1a2 270 return 0;
4603ac18
MN
271}
272
cf9efce0
PM
273#else /* CONFIG_PPC_SPLPAR */
274static inline u64 calculate_stolen_time(u64 stop_tb)
275{
276 return 0;
277}
278
279#endif /* CONFIG_PPC_SPLPAR */
280
c6622f63
PM
281/*
282 * Account time for a transition between system, hard irq
283 * or soft irq state.
284 */
b38a181c
CL
285static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct,
286 unsigned long now, unsigned long stime)
c6622f63 287{
abcff86d
CL
288 unsigned long stime_scaled = 0;
289#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
b38a181c 290 unsigned long nowscaled, deltascaled;
a19ff1a2 291 unsigned long utime, utime_scaled;
c6622f63 292
4603ac18 293 nowscaled = read_spurr(now);
c223c903
CL
294 deltascaled = nowscaled - acct->startspurr;
295 acct->startspurr = nowscaled;
a19ff1a2 296 utime = acct->utime - acct->utime_sspurr;
8c8b73c4 297 acct->utime_sspurr = acct->utime;
cf9efce0
PM
298
299 /*
300 * Because we don't read the SPURR on every kernel entry/exit,
301 * deltascaled includes both user and system SPURR ticks.
302 * Apportion these ticks to system SPURR ticks and user
303 * SPURR ticks in the same ratio as the system time (delta)
304 * and user time (udelta) values obtained from the timebase
305 * over the same interval. The system ticks get accounted here;
306 * the user ticks get saved up in paca->user_time_scaled to be
307 * used by account_process_tick.
308 */
b38a181c 309 stime_scaled = stime;
a19ff1a2
FW
310 utime_scaled = utime;
311 if (deltascaled != stime + utime) {
312 if (utime) {
b38a181c
CL
313 stime_scaled = deltascaled * stime / (stime + utime);
314 utime_scaled = deltascaled - stime_scaled;
cf9efce0 315 } else {
b38a181c 316 stime_scaled = deltascaled;
cf9efce0
PM
317 }
318 }
a19ff1a2 319 acct->utime_scaled += utime_scaled;
abcff86d 320#endif
cf9efce0 321
b38a181c
CL
322 return stime_scaled;
323}
324
325static unsigned long vtime_delta(struct task_struct *tsk,
326 unsigned long *stime_scaled,
327 unsigned long *steal_time)
328{
329 unsigned long now, stime;
330 struct cpu_accounting_data *acct = get_accounting(tsk);
331
332 WARN_ON_ONCE(!irqs_disabled());
333
334 now = mftb();
335 stime = now - acct->starttime;
336 acct->starttime = now;
337
338 *stime_scaled = vtime_delta_scaled(acct, now, stime);
339
340 *steal_time = calculate_stolen_time(now);
341
a19ff1a2 342 return stime;
a7e1a9e3
FW
343}
344
fd25b4c2 345void vtime_account_system(struct task_struct *tsk)
a7e1a9e3 346{
a19ff1a2
FW
347 unsigned long stime, stime_scaled, steal_time;
348 struct cpu_accounting_data *acct = get_accounting(tsk);
349
350 stime = vtime_delta(tsk, &stime_scaled, &steal_time);
351
352 stime -= min(stime, steal_time);
353 acct->steal_time += steal_time;
a7e1a9e3 354
a19ff1a2
FW
355 if ((tsk->flags & PF_VCPU) && !irq_count()) {
356 acct->gtime += stime;
abcff86d 357#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
a19ff1a2 358 acct->utime_scaled += stime_scaled;
abcff86d 359#endif
a19ff1a2
FW
360 } else {
361 if (hardirq_count())
362 acct->hardirq_time += stime;
363 else if (in_serving_softirq())
364 acct->softirq_time += stime;
365 else
366 acct->stime += stime;
367
abcff86d 368#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
a19ff1a2 369 acct->stime_scaled += stime_scaled;
abcff86d 370#endif
a19ff1a2 371 }
a7e1a9e3 372}
c11f11fc 373EXPORT_SYMBOL_GPL(vtime_account_system);
a7e1a9e3 374
fd25b4c2 375void vtime_account_idle(struct task_struct *tsk)
a7e1a9e3 376{
a19ff1a2
FW
377 unsigned long stime, stime_scaled, steal_time;
378 struct cpu_accounting_data *acct = get_accounting(tsk);
a7e1a9e3 379
a19ff1a2
FW
380 stime = vtime_delta(tsk, &stime_scaled, &steal_time);
381 acct->idle_time += stime + steal_time;
c6622f63
PM
382}
383
b38a181c
CL
384static void vtime_flush_scaled(struct task_struct *tsk,
385 struct cpu_accounting_data *acct)
386{
abcff86d 387#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
b38a181c
CL
388 if (acct->utime_scaled)
389 tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
390 if (acct->stime_scaled)
391 tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
392
393 acct->utime_scaled = 0;
394 acct->utime_sspurr = 0;
395 acct->stime_scaled = 0;
abcff86d 396#endif
b38a181c
CL
397}
398
c6622f63 399/*
c8d7dabf 400 * Account the whole cputime accumulated in the paca
c6622f63 401 * Must be called with interrupts disabled.
bcebdf84
FW
402 * Assumes that vtime_account_system/idle() has been called
403 * recently (i.e. since the last entry from usermode) so that
cf9efce0 404 * get_paca()->user_time_scaled is up to date.
c6622f63 405 */
c8d7dabf 406void vtime_flush(struct task_struct *tsk)
c6622f63 407{
c223c903 408 struct cpu_accounting_data *acct = get_accounting(tsk);
c6622f63 409
a19ff1a2 410 if (acct->utime)
23244a5c 411 account_user_time(tsk, cputime_to_nsecs(acct->utime));
a19ff1a2 412
a19ff1a2 413 if (acct->gtime)
fb8b049c 414 account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
a19ff1a2 415
51eeef9e 416 if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) {
be9095ed 417 account_steal_time(cputime_to_nsecs(acct->steal_time));
51eeef9e
CL
418 acct->steal_time = 0;
419 }
a19ff1a2
FW
420
421 if (acct->idle_time)
18b43a9b 422 account_idle_time(cputime_to_nsecs(acct->idle_time));
a19ff1a2
FW
423
424 if (acct->stime)
fb8b049c
FW
425 account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
426 CPUTIME_SYSTEM);
a19ff1a2
FW
427
428 if (acct->hardirq_time)
fb8b049c
FW
429 account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
430 CPUTIME_IRQ);
a19ff1a2 431 if (acct->softirq_time)
fb8b049c
FW
432 account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
433 CPUTIME_SOFTIRQ);
a19ff1a2 434
b38a181c
CL
435 vtime_flush_scaled(tsk, acct);
436
8c8b73c4 437 acct->utime = 0;
a19ff1a2 438 acct->gtime = 0;
a19ff1a2
FW
439 acct->idle_time = 0;
440 acct->stime = 0;
a19ff1a2
FW
441 acct->hardirq_time = 0;
442 acct->softirq_time = 0;
c6622f63
PM
443}
444
abf917cd 445#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
c6622f63 446#define calc_cputime_factors()
c6622f63
PM
447#endif
448
6defa38b
PM
449void __delay(unsigned long loops)
450{
451 unsigned long start;
452 int diff;
453
4e287e65 454 spin_begin();
6defa38b
PM
455 if (__USE_RTC()) {
456 start = get_rtcl();
457 do {
458 /* the RTCL register wraps at 1000000000 */
459 diff = get_rtcl() - start;
460 if (diff < 0)
461 diff += 1000000000;
4e287e65 462 spin_cpu_relax();
6defa38b
PM
463 } while (diff < loops);
464 } else {
465 start = get_tbl();
466 while (get_tbl() - start < loops)
4e287e65 467 spin_cpu_relax();
6defa38b 468 }
4e287e65 469 spin_end();
6defa38b
PM
470}
471EXPORT_SYMBOL(__delay);
472
473void udelay(unsigned long usecs)
474{
475 __delay(tb_ticks_per_usec * usecs);
476}
477EXPORT_SYMBOL(udelay);
478
1da177e4
LT
479#ifdef CONFIG_SMP
480unsigned long profile_pc(struct pt_regs *regs)
481{
482 unsigned long pc = instruction_pointer(regs);
483
484 if (in_lock_functions(pc))
485 return regs->link;
486
487 return pc;
488}
489EXPORT_SYMBOL(profile_pc);
490#endif
491
e360adbe 492#ifdef CONFIG_IRQ_WORK
105988c0 493
0fe1ac48
PM
494/*
495 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
496 */
497#ifdef CONFIG_PPC64
e360adbe 498static inline unsigned long test_irq_work_pending(void)
105988c0 499{
0fe1ac48
PM
500 unsigned long x;
501
502 asm volatile("lbz %0,%1(13)"
503 : "=r" (x)
e360adbe 504 : "i" (offsetof(struct paca_struct, irq_work_pending)));
0fe1ac48
PM
505 return x;
506}
507
e360adbe 508static inline void set_irq_work_pending_flag(void)
0fe1ac48
PM
509{
510 asm volatile("stb %0,%1(13)" : :
511 "r" (1),
e360adbe 512 "i" (offsetof(struct paca_struct, irq_work_pending)));
0fe1ac48
PM
513}
514
e360adbe 515static inline void clear_irq_work_pending(void)
0fe1ac48
PM
516{
517 asm volatile("stb %0,%1(13)" : :
518 "r" (0),
e360adbe 519 "i" (offsetof(struct paca_struct, irq_work_pending)));
105988c0
PM
520}
521
ebb37cf3
NP
522void arch_irq_work_raise(void)
523{
524 preempt_disable();
525 set_irq_work_pending_flag();
526 /*
527 * Non-nmi code running with interrupts disabled will replay
528 * irq_happened before it re-enables interrupts, so setthe
529 * decrementer there instead of causing a hardware exception
530 * which would immediately hit the masked interrupt handler
531 * and have the net effect of setting the decrementer in
532 * irq_happened.
533 *
534 * NMI interrupts can not check this when they return, so the
535 * decrementer hardware exception is raised, which will fire
536 * when interrupts are next enabled.
537 *
538 * BookE does not support this yet, it must audit all NMI
539 * interrupt handlers to ensure they call nmi_enter() so this
540 * check would be correct.
541 */
542 if (IS_ENABLED(CONFIG_BOOKE) || !irqs_disabled() || in_nmi()) {
543 set_dec(1);
544 } else {
545 hard_irq_disable();
546 local_paca->irq_happened |= PACA_IRQ_DEC;
547 }
548 preempt_enable();
549}
550
0fe1ac48
PM
551#else /* 32-bit */
552
e360adbe 553DEFINE_PER_CPU(u8, irq_work_pending);
0fe1ac48 554
69111bac
CL
555#define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1)
556#define test_irq_work_pending() __this_cpu_read(irq_work_pending)
557#define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0)
105988c0 558
4f8b50bb 559void arch_irq_work_raise(void)
0fe1ac48
PM
560{
561 preempt_disable();
e360adbe 562 set_irq_work_pending_flag();
0fe1ac48
PM
563 set_dec(1);
564 preempt_enable();
565}
566
ebb37cf3
NP
567#endif /* 32 vs 64 bit */
568
e360adbe 569#else /* CONFIG_IRQ_WORK */
105988c0 570
e360adbe
PZ
571#define test_irq_work_pending() 0
572#define clear_irq_work_pending()
105988c0 573
e360adbe 574#endif /* CONFIG_IRQ_WORK */
105988c0 575
1da177e4
LT
576/*
577 * timer_interrupt - gets called when the decrementer overflows,
578 * with interrupts disabled.
579 */
3f984620 580void timer_interrupt(struct pt_regs *regs)
1da177e4 581{
3f984620 582 struct clock_event_device *evt = this_cpu_ptr(&decrementers);
69111bac 583 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
3f984620
NP
584 struct pt_regs *old_regs;
585 u64 now;
d831d0b8 586
963e5d3b 587 /* Some implementations of hotplug will get timer interrupts while
689dfa89
TC
588 * offline, just ignore these and we also need to set
589 * decrementers_next_tb as MAX to make sure __check_irq_replay
590 * don't replay timer interrupt when return, otherwise we'll trap
591 * here infinitely :(
963e5d3b 592 */
a7cba02d 593 if (unlikely(!cpu_online(smp_processor_id()))) {
689dfa89 594 *next_tb = ~(u64)0;
a7cba02d 595 set_dec(decrementer_max);
963e5d3b 596 return;
689dfa89 597 }
963e5d3b 598
a7cba02d
NP
599 /* Ensure a positive value is written to the decrementer, or else
600 * some CPUs will continue to take decrementer exceptions. When the
601 * PPC_WATCHDOG (decrementer based) is configured, keep this at most
602 * 31 bits, which is about 4 seconds on most systems, which gives
603 * the watchdog a chance of catching timer interrupt hard lockups.
604 */
605 if (IS_ENABLED(CONFIG_PPC_WATCHDOG))
606 set_dec(0x7fffffff);
607 else
608 set_dec(decrementer_max);
609
7230c564
BH
610 /* Conditionally hard-enable interrupts now that the DEC has been
611 * bumped to its maximum value
612 */
613 may_hard_irq_enable();
614
89713ed1 615
6e0fdf9a 616#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
f2783c15
PM
617 if (atomic_read(&ppc_n_lost_interrupts) != 0)
618 do_IRQ(regs);
619#endif
1da177e4 620
7d12e780 621 old_regs = set_irq_regs(regs);
1da177e4 622 irq_enter();
3f984620
NP
623 trace_timer_interrupt_entry(regs);
624
625 if (test_irq_work_pending()) {
626 clear_irq_work_pending();
627 irq_work_run();
628 }
629
630 now = get_tb_or_rtc();
631 if (now >= *next_tb) {
632 *next_tb = ~(u64)0;
633 if (evt->event_handler)
634 evt->event_handler(evt);
635 __this_cpu_inc(irq_stat.timer_irqs_event);
636 } else {
637 now = *next_tb - now;
638 if (now <= decrementer_max)
639 set_dec(now);
640 /* We may have raced with new irq work */
641 if (test_irq_work_pending())
642 set_dec(1);
643 __this_cpu_inc(irq_stat.timer_irqs_others);
644 }
1da177e4 645
3f984620 646 trace_timer_interrupt_exit(regs);
1da177e4 647 irq_exit();
7d12e780 648 set_irq_regs(old_regs);
1da177e4 649}
9445aa1a 650EXPORT_SYMBOL(timer_interrupt);
1da177e4 651
bc907113 652#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
3f984620
NP
653void timer_broadcast_interrupt(void)
654{
655 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
3f984620 656
3f984620
NP
657 *next_tb = ~(u64)0;
658 tick_receive_broadcast();
e360cd37 659 __this_cpu_inc(irq_stat.broadcast_irqs_event);
3f984620 660}
bc907113 661#endif
3f984620 662
dabe859e
PM
663/*
664 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
665 * left pending on exit from a KVM guest. We don't need to do anything
666 * to clear them, as they are edge-triggered.
667 */
668void hdec_interrupt(struct pt_regs *regs)
669{
670}
671
7ac5dde9 672#ifdef CONFIG_SUSPEND
d75d68cf 673static void generic_suspend_disable_irqs(void)
7ac5dde9 674{
7ac5dde9
SW
675 /* Disable the decrementer, so that it doesn't interfere
676 * with suspending.
677 */
678
79901024 679 set_dec(decrementer_max);
7ac5dde9 680 local_irq_disable();
79901024 681 set_dec(decrementer_max);
7ac5dde9
SW
682}
683
d75d68cf 684static void generic_suspend_enable_irqs(void)
7ac5dde9 685{
7ac5dde9 686 local_irq_enable();
7ac5dde9
SW
687}
688
689/* Overrides the weak version in kernel/power/main.c */
690void arch_suspend_disable_irqs(void)
691{
692 if (ppc_md.suspend_disable_irqs)
693 ppc_md.suspend_disable_irqs();
694 generic_suspend_disable_irqs();
695}
696
697/* Overrides the weak version in kernel/power/main.c */
698void arch_suspend_enable_irqs(void)
699{
700 generic_suspend_enable_irqs();
701 if (ppc_md.suspend_enable_irqs)
702 ppc_md.suspend_enable_irqs();
703}
704#endif
705
b6c295df
PM
706unsigned long long tb_to_ns(unsigned long long ticks)
707{
708 return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
709}
710EXPORT_SYMBOL_GPL(tb_to_ns);
711
1da177e4
LT
712/*
713 * Scheduler clock - returns current time in nanosec units.
714 *
715 * Note: mulhdu(a, b) (multiply high double unsigned) returns
716 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
717 * are 64-bit unsigned numbers.
718 */
6b847d79 719notrace unsigned long long sched_clock(void)
1da177e4 720{
96c44507
PM
721 if (__USE_RTC())
722 return get_rtc();
fc9069fe 723 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
1da177e4
LT
724}
725
4be1b297
CB
726
727#ifdef CONFIG_PPC_PSERIES
728
729/*
730 * Running clock - attempts to give a view of time passing for a virtualised
731 * kernels.
732 * Uses the VTB register if available otherwise a next best guess.
733 */
734unsigned long long running_clock(void)
735{
736 /*
737 * Don't read the VTB as a host since KVM does not switch in host
738 * timebase into the VTB when it takes a guest off the CPU, reading the
739 * VTB would result in reading 'last switched out' guest VTB.
740 *
741 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
742 * would be unsafe to rely only on the #ifdef above.
743 */
744 if (firmware_has_feature(FW_FEATURE_LPAR) &&
745 cpu_has_feature(CPU_FTR_ARCH_207S))
746 return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
747
748 /*
749 * This is a next best approximation without a VTB.
750 * On a host which is running bare metal there should never be any stolen
751 * time and on a host which doesn't do any virtualisation TB *should* equal
752 * VTB so it makes no difference anyway.
753 */
9f3768e0 754 return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
4be1b297
CB
755}
756#endif
757
0bb474a4 758static int __init get_freq(char *name, int cells, unsigned long *val)
10f7e7c1
AB
759{
760 struct device_node *cpu;
6f7aba7b 761 const __be32 *fp;
0bb474a4 762 int found = 0;
10f7e7c1 763
0bb474a4 764 /* The cpu node should have timebase and clock frequency properties */
10f7e7c1
AB
765 cpu = of_find_node_by_type(NULL, "cpu");
766
d8a8188d 767 if (cpu) {
e2eb6392 768 fp = of_get_property(cpu, name, NULL);
d8a8188d 769 if (fp) {
0bb474a4 770 found = 1;
a4dc7ff0 771 *val = of_read_ulong(fp, cells);
10f7e7c1 772 }
0bb474a4
AB
773
774 of_node_put(cpu);
10f7e7c1 775 }
0bb474a4
AB
776
777 return found;
778}
779
e51df2c1 780static void start_cpu_decrementer(void)
77c0a700
BH
781{
782#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
6e2f03e2
IM
783 unsigned int tcr;
784
77c0a700
BH
785 /* Clear any pending timer interrupts */
786 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
787
6e2f03e2
IM
788 tcr = mfspr(SPRN_TCR);
789 /*
790 * The watchdog may have already been enabled by u-boot. So leave
791 * TRC[WP] (Watchdog Period) alone.
792 */
793 tcr &= TCR_WP_MASK; /* Clear all bits except for TCR[WP] */
794 tcr |= TCR_DIE; /* Enable decrementer */
795 mtspr(SPRN_TCR, tcr);
796#endif
77c0a700
BH
797}
798
0bb474a4
AB
799void __init generic_calibrate_decr(void)
800{
801 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
802
803 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
804 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
805
10f7e7c1
AB
806 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
807 "(not found)\n");
0bb474a4 808 }
10f7e7c1 809
0bb474a4
AB
810 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
811
812 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
813 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
814
815 printk(KERN_ERR "WARNING: Estimating processor frequency "
816 "(not found)\n");
10f7e7c1 817 }
10f7e7c1 818}
10f7e7c1 819
5235afa8 820int update_persistent_clock64(struct timespec64 now)
f2783c15
PM
821{
822 struct rtc_time tm;
823
aa3be5f3 824 if (!ppc_md.set_rtc_time)
023f333a 825 return -ENODEV;
aa3be5f3 826
5235afa8 827 rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm);
aa3be5f3
TB
828
829 return ppc_md.set_rtc_time(&tm);
830}
831
5bfd6435 832static void __read_persistent_clock(struct timespec64 *ts)
aa3be5f3
TB
833{
834 struct rtc_time tm;
835 static int first = 1;
836
d90246cd 837 ts->tv_nsec = 0;
aa3be5f3
TB
838 /* XXX this is a litle fragile but will work okay in the short term */
839 if (first) {
840 first = 0;
841 if (ppc_md.time_init)
842 timezone_offset = ppc_md.time_init();
843
844 /* get_boot_time() isn't guaranteed to be safe to call late */
d90246cd
MS
845 if (ppc_md.get_boot_time) {
846 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
847 return;
848 }
849 }
850 if (!ppc_md.get_rtc_time) {
851 ts->tv_sec = 0;
852 return;
aa3be5f3 853 }
f2783c15 854 ppc_md.get_rtc_time(&tm);
978d7eb3 855
5bfd6435 856 ts->tv_sec = rtc_tm_to_time64(&tm);
f2783c15
PM
857}
858
5bfd6435 859void read_persistent_clock64(struct timespec64 *ts)
978d7eb3
BH
860{
861 __read_persistent_clock(ts);
862
863 /* Sanitize it in case real time clock is set below EPOCH */
864 if (ts->tv_sec < 0) {
865 ts->tv_sec = 0;
866 ts->tv_nsec = 0;
867 }
868
869}
870
4a4cfe38 871/* clocksource code */
6b847d79 872static notrace u64 rtc_read(struct clocksource *cs)
4a4cfe38 873{
a5a1d1c2 874 return (u64)get_rtc();
4a4cfe38
TB
875}
876
6b847d79 877static notrace u64 timebase_read(struct clocksource *cs)
4a4cfe38 878{
a5a1d1c2 879 return (u64)get_tb();
4a4cfe38
TB
880}
881
d4cfb113
PM
882
883void update_vsyscall(struct timekeeper *tk)
4a4cfe38 884{
d4cfb113
PM
885 struct timespec xt;
886 struct clocksource *clock = tk->tkr_mono.clock;
887 u32 mult = tk->tkr_mono.mult;
888 u32 shift = tk->tkr_mono.shift;
889 u64 cycle_last = tk->tkr_mono.cycle_last;
b0797b60 890 u64 new_tb_to_xs, new_stamp_xsec;
d4cfb113 891 u64 frac_sec;
4a4cfe38
TB
892
893 if (clock != &clocksource_timebase)
894 return;
895
d4cfb113
PM
896 xt.tv_sec = tk->xtime_sec;
897 xt.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
898
4a4cfe38
TB
899 /* Make userspace gettimeofday spin until we're done. */
900 ++vdso_data->tb_update_count;
901 smp_mb();
902
d4cfb113
PM
903 /*
904 * This computes ((2^20 / 1e9) * mult) >> shift as a
905 * 0.64 fixed-point fraction.
906 * The computation in the else clause below won't overflow
907 * (as long as the timebase frequency is >= 1.049 MHz)
908 * but loses precision because we lose the low bits of the constant
909 * in the shift. Note that 19342813113834067 ~= 2^(20+64) / 1e9.
910 * For a shift of 24 the error is about 0.5e-9, or about 0.5ns
911 * over a second. (Shift values are usually 22, 23 or 24.)
912 * For high frequency clocks such as the 512MHz timebase clock
913 * on POWER[6789], the mult value is small (e.g. 32768000)
914 * and so we can shift the constant by 16 initially
915 * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the
916 * remaining shifts after the multiplication, which gives a
917 * more accurate result (e.g. with mult = 32768000, shift = 24,
918 * the error is only about 1.2e-12, or 0.7ns over 10 minutes).
919 */
920 if (mult <= 62500000 && clock->shift >= 16)
921 new_tb_to_xs = ((u64) mult * 295147905179ULL) >> (clock->shift - 16);
922 else
923 new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
924
925 /*
926 * Compute the fractional second in units of 2^-32 seconds.
927 * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift
928 * in nanoseconds, so multiplying that by 2^32 / 1e9 gives
929 * it in units of 2^-32 seconds.
930 * We assume shift <= 32 because clocks_calc_mult_shift()
931 * generates shift values in the range 0 - 32.
932 */
933 frac_sec = tk->tkr_mono.xtime_nsec << (32 - shift);
934 do_div(frac_sec, NSEC_PER_SEC);
b0797b60 935
d4cfb113
PM
936 /*
937 * Work out new stamp_xsec value for any legacy users of systemcfg.
938 * stamp_xsec is in units of 2^-20 seconds.
939 */
940 new_stamp_xsec = frac_sec >> 12;
941 new_stamp_xsec += tk->xtime_sec * XSEC_PER_SEC;
47916be4 942
b0797b60
JS
943 /*
944 * tb_update_count is used to allow the userspace gettimeofday code
945 * to assure itself that it sees a consistent view of the tb_to_xs and
946 * stamp_xsec variables. It reads the tb_update_count, then reads
947 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
948 * the two values of tb_update_count match and are even then the
949 * tb_to_xs and stamp_xsec values are consistent. If not, then it
950 * loops back and reads them again until this criteria is met.
b0797b60 951 */
4a0e6377 952 vdso_data->tb_orig_stamp = cycle_last;
b0797b60
JS
953 vdso_data->stamp_xsec = new_stamp_xsec;
954 vdso_data->tb_to_xs = new_tb_to_xs;
d4cfb113
PM
955 vdso_data->wtom_clock_sec = tk->wall_to_monotonic.tv_sec;
956 vdso_data->wtom_clock_nsec = tk->wall_to_monotonic.tv_nsec;
957 vdso_data->stamp_xtime = xt;
0e469db8 958 vdso_data->stamp_sec_fraction = frac_sec;
b0797b60
JS
959 smp_wmb();
960 ++(vdso_data->tb_update_count);
4a4cfe38
TB
961}
962
963void update_vsyscall_tz(void)
964{
4a4cfe38
TB
965 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
966 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
4a4cfe38
TB
967}
968
1c21a293 969static void __init clocksource_init(void)
4a4cfe38
TB
970{
971 struct clocksource *clock;
972
973 if (__USE_RTC())
974 clock = &clocksource_rtc;
975 else
976 clock = &clocksource_timebase;
977
11b8633a 978 if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
4a4cfe38
TB
979 printk(KERN_ERR "clocksource: %s is already registered\n",
980 clock->name);
981 return;
982 }
983
984 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
985 clock->name, clock->mult, clock->shift);
986}
987
d831d0b8
TB
988static int decrementer_set_next_event(unsigned long evt,
989 struct clock_event_device *dev)
990{
69111bac 991 __this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
d831d0b8 992 set_dec(evt);
0215f7d8
BH
993
994 /* We may have raced with new irq work */
995 if (test_irq_work_pending())
996 set_dec(1);
997
d831d0b8
TB
998 return 0;
999}
1000
37a13e78 1001static int decrementer_shutdown(struct clock_event_device *dev)
d831d0b8 1002{
79901024 1003 decrementer_set_next_event(decrementer_max, dev);
37a13e78 1004 return 0;
d831d0b8
TB
1005}
1006
1007static void register_decrementer_clockevent(int cpu)
1008{
7df10275 1009 struct clock_event_device *dec = &per_cpu(decrementers, cpu);
d831d0b8
TB
1010
1011 *dec = decrementer_clockevent;
320ab2b0 1012 dec->cpumask = cpumask_of(cpu);
d831d0b8 1013
8b78fdb0
AB
1014 clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max);
1015
b919ee82
AB
1016 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
1017 dec->name, dec->mult, dec->shift, cpu);
b4d16ab5
ME
1018
1019 /* Set values for KVM, see kvm_emulate_dec() */
1020 decrementer_clockevent.mult = dec->mult;
1021 decrementer_clockevent.shift = dec->shift;
d831d0b8
TB
1022}
1023
79901024
OH
1024static void enable_large_decrementer(void)
1025{
1026 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1027 return;
1028
1029 if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
1030 return;
1031
1032 /*
1033 * If we're running as the hypervisor we need to enable the LD manually
1034 * otherwise firmware should have done it for us.
1035 */
1036 if (cpu_has_feature(CPU_FTR_HVMODE))
1037 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
1038}
1039
1040static void __init set_decrementer_max(void)
1041{
1042 struct device_node *cpu;
1043 u32 bits = 32;
1044
1045 /* Prior to ISAv3 the decrementer is always 32 bit */
1046 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1047 return;
1048
1049 cpu = of_find_node_by_type(NULL, "cpu");
1050
1051 if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
1052 if (bits > 64 || bits < 32) {
1053 pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
1054 bits = 32;
1055 }
1056
1057 /* calculate the signed maximum given this many bits */
1058 decrementer_max = (1ul << (bits - 1)) - 1;
1059 }
1060
1061 of_node_put(cpu);
1062
1063 pr_info("time_init: %u bit decrementer (max: %llx)\n",
1064 bits, decrementer_max);
1065}
1066
c481887f 1067static void __init init_decrementer_clockevent(void)
d831d0b8 1068{
8b78fdb0 1069 register_decrementer_clockevent(smp_processor_id());
d831d0b8
TB
1070}
1071
1072void secondary_cpu_time_init(void)
1073{
79901024
OH
1074 /* Enable and test the large decrementer for this cpu */
1075 enable_large_decrementer();
1076
77c0a700
BH
1077 /* Start the decrementer on CPUs that have manual control
1078 * such as BookE
1079 */
1080 start_cpu_decrementer();
1081
d831d0b8
TB
1082 /* FIME: Should make unrelatred change to move snapshot_timebase
1083 * call here ! */
1084 register_decrementer_clockevent(smp_processor_id());
1085}
1086
f2783c15 1087/* This function is only called on the boot processor */
1da177e4
LT
1088void __init time_init(void)
1089{
1da177e4 1090 struct div_result res;
d75d68cf 1091 u64 scale;
f2783c15
PM
1092 unsigned shift;
1093
96c44507
PM
1094 if (__USE_RTC()) {
1095 /* 601 processor: dec counts down by 128 every 128ns */
1096 ppc_tb_freq = 1000000000;
96c44507
PM
1097 } else {
1098 /* Normal PowerPC with timebase register */
1099 ppc_md.calibrate_decr();
224ad80a 1100 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
96c44507 1101 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
224ad80a 1102 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
96c44507 1103 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
96c44507 1104 }
374e99d4
PM
1105
1106 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
092b8f34 1107 tb_ticks_per_sec = ppc_tb_freq;
374e99d4 1108 tb_ticks_per_usec = ppc_tb_freq / 1000000;
c6622f63 1109 calc_cputime_factors();
092b8f34 1110
1da177e4
LT
1111 /*
1112 * Compute scale factor for sched_clock.
1113 * The calibrate_decr() function has set tb_ticks_per_sec,
1114 * which is the timebase frequency.
1115 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1116 * the 128-bit result as a 64.64 fixed-point number.
1117 * We then shift that number right until it is less than 1.0,
1118 * giving us the scale factor and shift count to use in
1119 * sched_clock().
1120 */
1121 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1122 scale = res.result_low;
1123 for (shift = 0; res.result_high != 0; ++shift) {
1124 scale = (scale >> 1) | (res.result_high << 63);
1125 res.result_high >>= 1;
1126 }
1127 tb_to_ns_scale = scale;
1128 tb_to_ns_shift = shift;
fc9069fe 1129 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
c27da339 1130 boot_tb = get_tb_or_rtc();
1da177e4 1131
092b8f34 1132 /* If platform provided a timezone (pmac), we correct the time */
621692cb 1133 if (timezone_offset) {
092b8f34
PM
1134 sys_tz.tz_minuteswest = -timezone_offset / 60;
1135 sys_tz.tz_dsttime = 0;
621692cb 1136 }
092b8f34 1137
a7f290da
BH
1138 vdso_data->tb_update_count = 0;
1139 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1da177e4 1140
79901024
OH
1141 /* initialise and enable the large decrementer (if we have one) */
1142 set_decrementer_max();
1143 enable_large_decrementer();
1144
77c0a700
BH
1145 /* Start the decrementer on CPUs that have manual control
1146 * such as BookE
1147 */
1148 start_cpu_decrementer();
1149
f5339277
SR
1150 /* Register the clocksource */
1151 clocksource_init();
4a4cfe38 1152
d831d0b8 1153 init_decrementer_clockevent();
0d948730 1154 tick_setup_hrtimer_broadcast();
f0d37300
KH
1155
1156#ifdef CONFIG_COMMON_CLK
1157 of_clk_init(NULL);
1158#endif
1da177e4
LT
1159}
1160
1da177e4
LT
1161/*
1162 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1163 * result.
1164 */
f2783c15
PM
1165void div128_by_32(u64 dividend_high, u64 dividend_low,
1166 unsigned divisor, struct div_result *dr)
1da177e4 1167{
f2783c15
PM
1168 unsigned long a, b, c, d;
1169 unsigned long w, x, y, z;
1170 u64 ra, rb, rc;
1da177e4
LT
1171
1172 a = dividend_high >> 32;
1173 b = dividend_high & 0xffffffff;
1174 c = dividend_low >> 32;
1175 d = dividend_low & 0xffffffff;
1176
f2783c15
PM
1177 w = a / divisor;
1178 ra = ((u64)(a - (w * divisor)) << 32) + b;
1179
f2783c15
PM
1180 rb = ((u64) do_div(ra, divisor) << 32) + c;
1181 x = ra;
1da177e4 1182
f2783c15
PM
1183 rc = ((u64) do_div(rb, divisor) << 32) + d;
1184 y = rb;
1185
1186 do_div(rc, divisor);
1187 z = rc;
1da177e4 1188
f2783c15
PM
1189 dr->result_high = ((u64)w << 32) + x;
1190 dr->result_low = ((u64)y << 32) + z;
1da177e4
LT
1191
1192}
bcd68a70 1193
177996e6
BH
1194/* We don't need to calibrate delay, we use the CPU timebase for that */
1195void calibrate_delay(void)
1196{
1197 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1198 * as the number of __delay(1) in a jiffy, so make it so
1199 */
1200 loops_per_jiffy = tb_ticks_per_jiffy;
1201}
1202
169047f4
AB
1203#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1204static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1205{
1206 ppc_md.get_rtc_time(tm);
890ae797 1207 return 0;
169047f4
AB
1208}
1209
1210static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1211{
1212 if (!ppc_md.set_rtc_time)
1213 return -EOPNOTSUPP;
1214
1215 if (ppc_md.set_rtc_time(tm) < 0)
1216 return -EOPNOTSUPP;
1217
1218 return 0;
1219}
1220
1221static const struct rtc_class_ops rtc_generic_ops = {
1222 .read_time = rtc_generic_get_time,
1223 .set_time = rtc_generic_set_time,
1224};
1225
bcd68a70
GU
1226static int __init rtc_init(void)
1227{
1228 struct platform_device *pdev;
1229
1230 if (!ppc_md.get_rtc_time)
1231 return -ENODEV;
1232
169047f4
AB
1233 pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1234 &rtc_generic_ops,
1235 sizeof(rtc_generic_ops));
bcd68a70 1236
8c6ffba0 1237 return PTR_ERR_OR_ZERO(pdev);
bcd68a70
GU
1238}
1239
8f6b9512 1240device_initcall(rtc_init);
169047f4 1241#endif