Merge tag 'mvebu-dt-4.19-1' of git://git.infradead.org/linux-mvebu into next/dt
[linux-block.git] / arch / powerpc / kernel / smp.c
CommitLineData
1da177e4
LT
1/*
2 * SMP support for ppc.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
5 * deal of code from the sparc and intel versions.
6 *
7 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
8 *
9 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
10 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 */
17
18#undef DEBUG
19
1da177e4 20#include <linux/kernel.h>
4b16f8e2 21#include <linux/export.h>
68e21be2 22#include <linux/sched/mm.h>
105ab3d8 23#include <linux/sched/topology.h>
1da177e4
LT
24#include <linux/smp.h>
25#include <linux/interrupt.h>
26#include <linux/delay.h>
27#include <linux/init.h>
28#include <linux/spinlock.h>
29#include <linux/cache.h>
30#include <linux/err.h>
8a25a2fd 31#include <linux/device.h>
1da177e4
LT
32#include <linux/cpu.h>
33#include <linux/notifier.h>
4b703a23 34#include <linux/topology.h>
665e87ff 35#include <linux/profile.h>
4e287e65 36#include <linux/processor.h>
1da177e4
LT
37
38#include <asm/ptrace.h>
60063497 39#include <linux/atomic.h>
1da177e4 40#include <asm/irq.h>
1b67bee1 41#include <asm/hw_irq.h>
441c19c8 42#include <asm/kvm_ppc.h>
b866cc21 43#include <asm/dbell.h>
1da177e4
LT
44#include <asm/page.h>
45#include <asm/pgtable.h>
46#include <asm/prom.h>
47#include <asm/smp.h>
1da177e4
LT
48#include <asm/time.h>
49#include <asm/machdep.h>
e2075f79 50#include <asm/cputhreads.h>
1da177e4 51#include <asm/cputable.h>
bbeb3f4c 52#include <asm/mpic.h>
a7f290da 53#include <asm/vdso_datapage.h>
5ad57078
PM
54#ifdef CONFIG_PPC64
55#include <asm/paca.h>
56#endif
18ad51dd 57#include <asm/vdso.h>
ae3a197e 58#include <asm/debug.h>
1217d34b 59#include <asm/kexec.h>
42f5b4ca 60#include <asm/asm-prototypes.h>
b92a226e 61#include <asm/cpu_has_feature.h>
d1039786 62#include <asm/ftrace.h>
5ad57078 63
1da177e4 64#ifdef DEBUG
f9e4ec57 65#include <asm/udbg.h>
1da177e4
LT
66#define DBG(fmt...) udbg_printf(fmt)
67#else
68#define DBG(fmt...)
69#endif
70
c56e5853 71#ifdef CONFIG_HOTPLUG_CPU
fb82b839
BH
72/* State of each CPU during hotplug phases */
73static DEFINE_PER_CPU(int, cpu_state) = { 0 };
c56e5853
BH
74#endif
75
f9e4ec57
ME
76struct thread_info *secondary_ti;
77
cc1ba8ea 78DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
2a636a56 79DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
cc1ba8ea 80DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
1da177e4 81
d5a7430d 82EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
2a636a56 83EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
440a0857 84EXPORT_PER_CPU_SYMBOL(cpu_core_map);
1da177e4 85
5ad57078 86/* SMP operations for this machine */
1da177e4
LT
87struct smp_ops_t *smp_ops;
88
7ccbe504
BH
89/* Can't be static due to PowerMac hackery */
90volatile unsigned int cpu_callin_map[NR_CPUS];
1da177e4 91
1da177e4
LT
92int smt_enabled_at_boot = 1;
93
3cd85250
AF
94/*
95 * Returns 1 if the specified cpu should be brought up during boot.
96 * Used to inhibit booting threads if they've been disabled or
97 * limited on the command line
98 */
99int smp_generic_cpu_bootable(unsigned int nr)
100{
101 /* Special case - we inhibit secondary thread startup
102 * during boot if the user requests it.
103 */
a8fcfc19 104 if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
3cd85250
AF
105 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
106 return 0;
107 if (smt_enabled_at_boot
108 && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
109 return 0;
110 }
111
112 return 1;
113}
114
115
5ad57078 116#ifdef CONFIG_PPC64
cad5cef6 117int smp_generic_kick_cpu(int nr)
1da177e4 118{
c642af9c 119 if (nr < 0 || nr >= nr_cpu_ids)
f8d0d5dc 120 return -EINVAL;
1da177e4
LT
121
122 /*
123 * The processor is currently spinning, waiting for the
124 * cpu_start field to become non-zero After we set cpu_start,
125 * the processor will continue on to secondary_start
126 */
d2e60075
NP
127 if (!paca_ptrs[nr]->cpu_start) {
128 paca_ptrs[nr]->cpu_start = 1;
fb82b839
BH
129 smp_mb();
130 return 0;
131 }
132
133#ifdef CONFIG_HOTPLUG_CPU
134 /*
135 * Ok it's not there, so it might be soft-unplugged, let's
136 * try to bring it back
137 */
ae5cab47 138 generic_set_cpu_up(nr);
fb82b839
BH
139 smp_wmb();
140 smp_send_reschedule(nr);
141#endif /* CONFIG_HOTPLUG_CPU */
de300974
ME
142
143 return 0;
1da177e4 144}
fb82b839 145#endif /* CONFIG_PPC64 */
1da177e4 146
25ddd738
MM
147static irqreturn_t call_function_action(int irq, void *data)
148{
149 generic_smp_call_function_interrupt();
150 return IRQ_HANDLED;
151}
152
153static irqreturn_t reschedule_action(int irq, void *data)
154{
184748cc 155 scheduler_ipi();
25ddd738
MM
156 return IRQ_HANDLED;
157}
158
bc907113 159#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1b67bee1 160static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
25ddd738 161{
3f984620 162 timer_broadcast_interrupt();
25ddd738
MM
163 return IRQ_HANDLED;
164}
bc907113 165#endif
25ddd738 166
ddd703ca
NP
167#ifdef CONFIG_NMI_IPI
168static irqreturn_t nmi_ipi_action(int irq, void *data)
25ddd738 169{
ddd703ca 170 smp_handle_nmi_ipi(get_irq_regs());
25ddd738
MM
171 return IRQ_HANDLED;
172}
ddd703ca 173#endif
25ddd738
MM
174
175static irq_handler_t smp_ipi_action[] = {
176 [PPC_MSG_CALL_FUNCTION] = call_function_action,
177 [PPC_MSG_RESCHEDULE] = reschedule_action,
bc907113 178#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1b67bee1 179 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
bc907113 180#endif
ddd703ca
NP
181#ifdef CONFIG_NMI_IPI
182 [PPC_MSG_NMI_IPI] = nmi_ipi_action,
183#endif
25ddd738
MM
184};
185
ddd703ca
NP
186/*
187 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
188 * than going through the call function infrastructure, and strongly
189 * serialized, so it is more appropriate for debugging.
190 */
25ddd738
MM
191const char *smp_ipi_name[] = {
192 [PPC_MSG_CALL_FUNCTION] = "ipi call function",
193 [PPC_MSG_RESCHEDULE] = "ipi reschedule",
bc907113 194#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1b67bee1 195 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
bc907113 196#endif
21bfd6a8 197#ifdef CONFIG_NMI_IPI
ddd703ca 198 [PPC_MSG_NMI_IPI] = "nmi ipi",
21bfd6a8 199#endif
25ddd738
MM
200};
201
202/* optional function to request ipi, for controllers with >= 4 ipis */
203int smp_request_message_ipi(int virq, int msg)
204{
205 int err;
206
ddd703ca 207 if (msg < 0 || msg > PPC_MSG_NMI_IPI)
25ddd738 208 return -EINVAL;
ddd703ca
NP
209#ifndef CONFIG_NMI_IPI
210 if (msg == PPC_MSG_NMI_IPI)
25ddd738 211 return 1;
25ddd738 212#endif
ddd703ca 213
3b5e16d7 214 err = request_irq(virq, smp_ipi_action[msg],
e6651de9 215 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
b0d436c7 216 smp_ipi_name[msg], NULL);
25ddd738
MM
217 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
218 virq, smp_ipi_name[msg], err);
219
220 return err;
221}
222
1ece355b 223#ifdef CONFIG_PPC_SMP_MUXED_IPI
23d72bfd 224struct cpu_messages {
bd7f561f 225 long messages; /* current messages */
23d72bfd
MM
226};
227static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
228
31639c77 229void smp_muxed_ipi_set_message(int cpu, int msg)
23d72bfd
MM
230{
231 struct cpu_messages *info = &per_cpu(ipi_message, cpu);
71454272 232 char *message = (char *)&info->messages;
23d72bfd 233
9fb1b36c
PM
234 /*
235 * Order previous accesses before accesses in the IPI handler.
236 */
237 smp_mb();
71454272 238 message[msg] = 1;
31639c77
SW
239}
240
241void smp_muxed_ipi_message_pass(int cpu, int msg)
242{
31639c77 243 smp_muxed_ipi_set_message(cpu, msg);
b866cc21 244
9fb1b36c
PM
245 /*
246 * cause_ipi functions are required to include a full barrier
247 * before doing whatever causes the IPI.
248 */
b866cc21 249 smp_ops->cause_ipi(cpu);
23d72bfd
MM
250}
251
0654de1c 252#ifdef __BIG_ENDIAN__
bd7f561f 253#define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
0654de1c 254#else
bd7f561f 255#define IPI_MESSAGE(A) (1uL << (8 * (A)))
0654de1c
AB
256#endif
257
23d72bfd
MM
258irqreturn_t smp_ipi_demux(void)
259{
23d72bfd 260 mb(); /* order any irq clear */
71454272 261
b87ac021
NP
262 return smp_ipi_demux_relaxed();
263}
264
265/* sync-free variant. Callers should ensure synchronization */
266irqreturn_t smp_ipi_demux_relaxed(void)
23d72bfd 267{
b866cc21 268 struct cpu_messages *info;
bd7f561f 269 unsigned long all;
23d72bfd 270
b866cc21 271 info = this_cpu_ptr(&ipi_message);
71454272 272 do {
9fb1b36c 273 all = xchg(&info->messages, 0);
e17769eb
SW
274#if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
275 /*
276 * Must check for PPC_MSG_RM_HOST_ACTION messages
277 * before PPC_MSG_CALL_FUNCTION messages because when
278 * a VM is destroyed, we call kick_all_cpus_sync()
279 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
280 * messages have completed before we free any VCPUs.
281 */
282 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
283 kvmppc_xics_ipi_action();
284#endif
0654de1c 285 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
23d72bfd 286 generic_smp_call_function_interrupt();
0654de1c 287 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
880102e7 288 scheduler_ipi();
bc907113 289#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1b67bee1 290 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
3f984620 291 timer_broadcast_interrupt();
bc907113 292#endif
ddd703ca
NP
293#ifdef CONFIG_NMI_IPI
294 if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
295 nmi_ipi_action(0, NULL);
296#endif
71454272
MM
297 } while (info->messages);
298
23d72bfd
MM
299 return IRQ_HANDLED;
300}
1ece355b 301#endif /* CONFIG_PPC_SMP_MUXED_IPI */
23d72bfd 302
9ca980dc
PM
303static inline void do_message_pass(int cpu, int msg)
304{
305 if (smp_ops->message_pass)
306 smp_ops->message_pass(cpu, msg);
307#ifdef CONFIG_PPC_SMP_MUXED_IPI
308 else
309 smp_muxed_ipi_message_pass(cpu, msg);
310#endif
311}
312
1da177e4
LT
313void smp_send_reschedule(int cpu)
314{
8cffc6ac 315 if (likely(smp_ops))
9ca980dc 316 do_message_pass(cpu, PPC_MSG_RESCHEDULE);
1da177e4 317}
de56a948 318EXPORT_SYMBOL_GPL(smp_send_reschedule);
1da177e4 319
b7d7a240
JA
320void arch_send_call_function_single_ipi(int cpu)
321{
402d9a1e 322 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
b7d7a240
JA
323}
324
f063ea02 325void arch_send_call_function_ipi_mask(const struct cpumask *mask)
b7d7a240
JA
326{
327 unsigned int cpu;
328
f063ea02 329 for_each_cpu(cpu, mask)
9ca980dc 330 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
b7d7a240
JA
331}
332
ddd703ca
NP
333#ifdef CONFIG_NMI_IPI
334
335/*
336 * "NMI IPI" system.
337 *
338 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
339 * a running system. They can be used for crash, debug, halt/reboot, etc.
340 *
341 * NMI IPIs are globally single threaded. No more than one in progress at
342 * any time.
343 *
344 * The IPI call waits with interrupts disabled until all targets enter the
345 * NMI handler, then the call returns.
346 *
347 * No new NMI can be initiated until targets exit the handler.
348 *
349 * The IPI call may time out without all targets entering the NMI handler.
350 * In that case, there is some logic to recover (and ignore subsequent
351 * NMI interrupts that may eventually be raised), but the platform interrupt
352 * handler may not be able to distinguish this from other exception causes,
353 * which may cause a crash.
354 */
355
356static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
357static struct cpumask nmi_ipi_pending_mask;
358static int nmi_ipi_busy_count = 0;
359static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
360
361static void nmi_ipi_lock_start(unsigned long *flags)
362{
363 raw_local_irq_save(*flags);
364 hard_irq_disable();
365 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
366 raw_local_irq_restore(*flags);
0459ddfd 367 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
ddd703ca
NP
368 raw_local_irq_save(*flags);
369 hard_irq_disable();
370 }
371}
372
373static void nmi_ipi_lock(void)
374{
375 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
0459ddfd 376 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
ddd703ca
NP
377}
378
379static void nmi_ipi_unlock(void)
380{
381 smp_mb();
382 WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
383 atomic_set(&__nmi_ipi_lock, 0);
384}
385
386static void nmi_ipi_unlock_end(unsigned long *flags)
387{
388 nmi_ipi_unlock();
389 raw_local_irq_restore(*flags);
390}
391
392/*
393 * Platform NMI handler calls this to ack
394 */
395int smp_handle_nmi_ipi(struct pt_regs *regs)
396{
397 void (*fn)(struct pt_regs *);
398 unsigned long flags;
399 int me = raw_smp_processor_id();
400 int ret = 0;
401
402 /*
403 * Unexpected NMIs are possible here because the interrupt may not
404 * be able to distinguish NMI IPIs from other types of NMIs, or
405 * because the caller may have timed out.
406 */
407 nmi_ipi_lock_start(&flags);
408 if (!nmi_ipi_busy_count)
409 goto out;
410 if (!cpumask_test_cpu(me, &nmi_ipi_pending_mask))
411 goto out;
412
413 fn = nmi_ipi_function;
414 if (!fn)
415 goto out;
416
417 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
418 nmi_ipi_busy_count++;
419 nmi_ipi_unlock();
420
421 ret = 1;
422
423 fn(regs);
424
425 nmi_ipi_lock();
426 nmi_ipi_busy_count--;
427out:
428 nmi_ipi_unlock_end(&flags);
429
430 return ret;
431}
432
6ba55716 433static void do_smp_send_nmi_ipi(int cpu, bool safe)
ddd703ca 434{
6ba55716 435 if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
c64af645
NP
436 return;
437
ddd703ca
NP
438 if (cpu >= 0) {
439 do_message_pass(cpu, PPC_MSG_NMI_IPI);
440 } else {
441 int c;
442
443 for_each_online_cpu(c) {
444 if (c == raw_smp_processor_id())
445 continue;
446 do_message_pass(c, PPC_MSG_NMI_IPI);
447 }
448 }
449}
450
2104180a
NP
451void smp_flush_nmi_ipi(u64 delay_us)
452{
453 unsigned long flags;
454
455 nmi_ipi_lock_start(&flags);
456 while (nmi_ipi_busy_count) {
457 nmi_ipi_unlock_end(&flags);
458 udelay(1);
459 if (delay_us) {
460 delay_us--;
461 if (!delay_us)
462 return;
463 }
464 nmi_ipi_lock_start(&flags);
465 }
466 nmi_ipi_unlock_end(&flags);
467}
468
ddd703ca
NP
469/*
470 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
471 * - fn is the target callback function.
472 * - delay_us > 0 is the delay before giving up waiting for targets to
473 * enter the handler, == 0 specifies indefinite delay.
474 */
6ba55716 475int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us, bool safe)
ddd703ca
NP
476{
477 unsigned long flags;
478 int me = raw_smp_processor_id();
479 int ret = 1;
480
481 BUG_ON(cpu == me);
482 BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
483
484 if (unlikely(!smp_ops))
485 return 0;
486
487 /* Take the nmi_ipi_busy count/lock with interrupts hard disabled */
488 nmi_ipi_lock_start(&flags);
489 while (nmi_ipi_busy_count) {
490 nmi_ipi_unlock_end(&flags);
0459ddfd 491 spin_until_cond(nmi_ipi_busy_count == 0);
ddd703ca
NP
492 nmi_ipi_lock_start(&flags);
493 }
494
495 nmi_ipi_function = fn;
496
497 if (cpu < 0) {
498 /* ALL_OTHERS */
499 cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
500 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
501 } else {
502 /* cpumask starts clear */
503 cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
504 }
505 nmi_ipi_busy_count++;
506 nmi_ipi_unlock();
507
6ba55716 508 do_smp_send_nmi_ipi(cpu, safe);
ddd703ca
NP
509
510 while (!cpumask_empty(&nmi_ipi_pending_mask)) {
511 udelay(1);
512 if (delay_us) {
513 delay_us--;
514 if (!delay_us)
515 break;
516 }
517 }
518
519 nmi_ipi_lock();
520 if (!cpumask_empty(&nmi_ipi_pending_mask)) {
521 /* Could not gather all CPUs */
522 ret = 0;
523 cpumask_clear(&nmi_ipi_pending_mask);
524 }
525 nmi_ipi_busy_count--;
526 nmi_ipi_unlock_end(&flags);
527
528 return ret;
529}
6ba55716
ME
530
531int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
532{
533 return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
534}
535
536int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
537{
538 return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
539}
ddd703ca
NP
540#endif /* CONFIG_NMI_IPI */
541
1b67bee1
SB
542#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
543void tick_broadcast(const struct cpumask *mask)
544{
545 unsigned int cpu;
546
547 for_each_cpu(cpu, mask)
548 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
549}
550#endif
551
ddd703ca
NP
552#ifdef CONFIG_DEBUGGER
553void debugger_ipi_callback(struct pt_regs *regs)
1da177e4 554{
ddd703ca
NP
555 debugger_ipi(regs);
556}
e0476371 557
ddd703ca
NP
558void smp_send_debugger_break(void)
559{
560 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
1da177e4
LT
561}
562#endif
563
da665885 564#ifdef CONFIG_KEXEC_CORE
cc532915
ME
565void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
566{
4145f358
BS
567 int cpu;
568
ddd703ca 569 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
4145f358
BS
570 if (kdump_in_progress() && crash_wake_offline) {
571 for_each_present_cpu(cpu) {
572 if (cpu_online(cpu))
573 continue;
574 /*
575 * crash_ipi_callback will wait for
576 * all cpus, including offline CPUs.
577 * We don't care about nmi_ipi_function.
578 * Offline cpus will jump straight into
579 * crash_ipi_callback, we can skip the
580 * entire NMI dance and waiting for
581 * cpus to clear pending mask, etc.
582 */
6ba55716 583 do_smp_send_nmi_ipi(cpu, false);
4145f358
BS
584 }
585 }
cc532915
ME
586}
587#endif
588
ac61c115
NP
589#ifdef CONFIG_NMI_IPI
590static void nmi_stop_this_cpu(struct pt_regs *regs)
591{
592 /*
593 * This is a special case because it never returns, so the NMI IPI
594 * handling would never mark it as done, which makes any later
595 * smp_send_nmi_ipi() call spin forever. Mark it done now.
6029755e
NP
596 *
597 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
ac61c115
NP
598 */
599 nmi_ipi_lock();
600 nmi_ipi_busy_count--;
601 nmi_ipi_unlock();
602
6029755e
NP
603 spin_begin();
604 while (1)
605 spin_cpu_relax();
ac61c115 606}
ac61c115 607
8fd7675c
SS
608void smp_send_stop(void)
609{
ac61c115 610 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
6029755e
NP
611}
612
613#else /* CONFIG_NMI_IPI */
614
615static void stop_this_cpu(void *dummy)
616{
6029755e
NP
617 hard_irq_disable();
618 spin_begin();
619 while (1)
620 spin_cpu_relax();
621}
622
623void smp_send_stop(void)
624{
625 static bool stopped = false;
626
627 /*
628 * Prevent waiting on csd lock from a previous smp_send_stop.
629 * This is racy, but in general callers try to do the right
630 * thing and only fire off one smp_send_stop (e.g., see
631 * kernel/panic.c)
632 */
633 if (stopped)
634 return;
635
636 stopped = true;
637
8691e5a8 638 smp_call_function(stop_this_cpu, NULL, 0);
1da177e4 639}
6029755e 640#endif /* CONFIG_NMI_IPI */
1da177e4 641
1da177e4
LT
642struct thread_info *current_set[NR_CPUS];
643
cad5cef6 644static void smp_store_cpu_info(int id)
1da177e4 645{
6b7487fc 646 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
3160b097
BB
647#ifdef CONFIG_PPC_FSL_BOOK3E
648 per_cpu(next_tlbcam_idx, id)
649 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
650#endif
1da177e4
LT
651}
652
df52f671
OH
653/*
654 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
655 * rather than just passing around the cpumask we pass around a function that
656 * returns the that cpumask for the given CPU.
657 */
658static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
659{
660 cpumask_set_cpu(i, get_cpumask(j));
661 cpumask_set_cpu(j, get_cpumask(i));
662}
663
664#ifdef CONFIG_HOTPLUG_CPU
665static void set_cpus_unrelated(int i, int j,
666 struct cpumask *(*get_cpumask)(int))
667{
668 cpumask_clear_cpu(i, get_cpumask(j));
669 cpumask_clear_cpu(j, get_cpumask(i));
670}
671#endif
672
1da177e4
LT
673void __init smp_prepare_cpus(unsigned int max_cpus)
674{
675 unsigned int cpu;
676
677 DBG("smp_prepare_cpus\n");
678
679 /*
680 * setup_cpu may need to be called on the boot cpu. We havent
681 * spun any cpus up but lets be paranoid.
682 */
683 BUG_ON(boot_cpuid != smp_processor_id());
684
685 /* Fixup boot cpu */
686 smp_store_cpu_info(boot_cpuid);
687 cpu_callin_map[boot_cpuid] = 1;
688
cc1ba8ea
AB
689 for_each_possible_cpu(cpu) {
690 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
691 GFP_KERNEL, cpu_to_node(cpu));
2a636a56
OH
692 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
693 GFP_KERNEL, cpu_to_node(cpu));
cc1ba8ea
AB
694 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
695 GFP_KERNEL, cpu_to_node(cpu));
2fabf084
NA
696 /*
697 * numa_node_id() works after this.
698 */
bc3c4327
LZ
699 if (cpu_present(cpu)) {
700 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
701 set_cpu_numa_mem(cpu,
702 local_memory_node(numa_cpu_lookup_table[cpu]));
703 }
cc1ba8ea
AB
704 }
705
df52f671 706 /* Init the cpumasks so the boot CPU is related to itself */
cc1ba8ea 707 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
2a636a56 708 cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
cc1ba8ea
AB
709 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
710
dfee0efe
CG
711 if (smp_ops && smp_ops->probe)
712 smp_ops->probe();
1da177e4
LT
713}
714
cad5cef6 715void smp_prepare_boot_cpu(void)
1da177e4
LT
716{
717 BUG_ON(smp_processor_id() != boot_cpuid);
5ad57078 718#ifdef CONFIG_PPC64
d2e60075 719 paca_ptrs[boot_cpuid]->__current = current;
5ad57078 720#endif
8c272261 721 set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
b5e2fc1c 722 current_set[boot_cpuid] = task_thread_info(current);
1da177e4
LT
723}
724
725#ifdef CONFIG_HOTPLUG_CPU
1da177e4
LT
726
727int generic_cpu_disable(void)
728{
729 unsigned int cpu = smp_processor_id();
730
731 if (cpu == boot_cpuid)
732 return -EBUSY;
733
ea0f1cab 734 set_cpu_online(cpu, false);
799d6046 735#ifdef CONFIG_PPC64
a7f290da 736 vdso_data->processorCount--;
094fe2e7 737#endif
a978e139
BH
738 /* Update affinity of all IRQs previously aimed at this CPU */
739 irq_migrate_all_off_this_cpu();
740
687b8f24
ME
741 /*
742 * Depending on the details of the interrupt controller, it's possible
743 * that one of the interrupts we just migrated away from this CPU is
744 * actually already pending on this CPU. If we leave it in that state
745 * the interrupt will never be EOI'ed, and will never fire again. So
746 * temporarily enable interrupts here, to allow any pending interrupt to
747 * be received (and EOI'ed), before we take this CPU offline.
748 */
a978e139
BH
749 local_irq_enable();
750 mdelay(1);
751 local_irq_disable();
752
1da177e4
LT
753 return 0;
754}
755
1da177e4
LT
756void generic_cpu_die(unsigned int cpu)
757{
758 int i;
759
760 for (i = 0; i < 100; i++) {
0d8d4d42 761 smp_rmb();
2f4f1f81 762 if (is_cpu_dead(cpu))
1da177e4
LT
763 return;
764 msleep(100);
765 }
766 printk(KERN_ERR "CPU%d didn't die...\n", cpu);
767}
768
105765f4
BH
769void generic_set_cpu_dead(unsigned int cpu)
770{
771 per_cpu(cpu_state, cpu) = CPU_DEAD;
772}
fb82b839 773
ae5cab47
ZC
774/*
775 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
776 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
777 * which makes the delay in generic_cpu_die() not happen.
778 */
779void generic_set_cpu_up(unsigned int cpu)
780{
781 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
782}
783
fb82b839
BH
784int generic_check_cpu_restart(unsigned int cpu)
785{
786 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
787}
512691d4 788
2f4f1f81 789int is_cpu_dead(unsigned int cpu)
790{
791 return per_cpu(cpu_state, cpu) == CPU_DEAD;
792}
793
441c19c8 794static bool secondaries_inhibited(void)
512691d4 795{
441c19c8 796 return kvm_hv_mode_active();
512691d4
PM
797}
798
799#else /* HOTPLUG_CPU */
800
801#define secondaries_inhibited() 0
802
1da177e4
LT
803#endif
804
17e32eac 805static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
c56e5853 806{
17e32eac 807 struct thread_info *ti = task_thread_info(idle);
c56e5853
BH
808
809#ifdef CONFIG_PPC64
d2e60075
NP
810 paca_ptrs[cpu]->__current = idle;
811 paca_ptrs[cpu]->kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD;
c56e5853
BH
812#endif
813 ti->cpu = cpu;
17e32eac 814 secondary_ti = current_set[cpu] = ti;
c56e5853
BH
815}
816
061d19f2 817int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1da177e4 818{
c56e5853 819 int rc, c;
1da177e4 820
512691d4
PM
821 /*
822 * Don't allow secondary threads to come online if inhibited
823 */
824 if (threads_per_core > 1 && secondaries_inhibited() &&
6f5e40a3 825 cpu_thread_in_subcore(cpu))
512691d4
PM
826 return -EBUSY;
827
8cffc6ac
BH
828 if (smp_ops == NULL ||
829 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1da177e4
LT
830 return -EINVAL;
831
17e32eac 832 cpu_idle_thread_init(cpu, tidle);
c560bbce 833
14d4ae5c
BH
834 /*
835 * The platform might need to allocate resources prior to bringing
836 * up the CPU
837 */
838 if (smp_ops->prepare_cpu) {
839 rc = smp_ops->prepare_cpu(cpu);
840 if (rc)
841 return rc;
842 }
843
1da177e4
LT
844 /* Make sure callin-map entry is 0 (can be leftover a CPU
845 * hotplug
846 */
847 cpu_callin_map[cpu] = 0;
848
849 /* The information for processor bringup must
850 * be written out to main store before we release
851 * the processor.
852 */
0d8d4d42 853 smp_mb();
1da177e4
LT
854
855 /* wake up cpus */
856 DBG("smp: kicking cpu %d\n", cpu);
de300974
ME
857 rc = smp_ops->kick_cpu(cpu);
858 if (rc) {
859 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
860 return rc;
861 }
1da177e4
LT
862
863 /*
864 * wait to see if the cpu made a callin (is actually up).
865 * use this value that I found through experimentation.
866 * -- Cort
867 */
868 if (system_state < SYSTEM_RUNNING)
ee0339f2 869 for (c = 50000; c && !cpu_callin_map[cpu]; c--)
1da177e4
LT
870 udelay(100);
871#ifdef CONFIG_HOTPLUG_CPU
872 else
873 /*
874 * CPUs can take much longer to come up in the
875 * hotplug case. Wait five seconds.
876 */
67764263
GS
877 for (c = 5000; c && !cpu_callin_map[cpu]; c--)
878 msleep(1);
1da177e4
LT
879#endif
880
881 if (!cpu_callin_map[cpu]) {
6685a477 882 printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1da177e4
LT
883 return -ENOENT;
884 }
885
6685a477 886 DBG("Processor %u found.\n", cpu);
1da177e4
LT
887
888 if (smp_ops->give_timebase)
889 smp_ops->give_timebase();
890
875ebe94 891 /* Wait until cpu puts itself in the online & active maps */
4e287e65 892 spin_until_cond(cpu_online(cpu));
1da177e4
LT
893
894 return 0;
895}
896
e9efed3b
NL
897/* Return the value of the reg property corresponding to the given
898 * logical cpu.
899 */
900int cpu_to_core_id(int cpu)
901{
902 struct device_node *np;
f8a1883a 903 const __be32 *reg;
e9efed3b
NL
904 int id = -1;
905
906 np = of_get_cpu_node(cpu, NULL);
907 if (!np)
908 goto out;
909
910 reg = of_get_property(np, "reg", NULL);
911 if (!reg)
912 goto out;
913
f8a1883a 914 id = be32_to_cpup(reg);
e9efed3b
NL
915out:
916 of_node_put(np);
917 return id;
918}
f8ab4810 919EXPORT_SYMBOL_GPL(cpu_to_core_id);
e9efed3b 920
99d86705
VS
921/* Helper routines for cpu to core mapping */
922int cpu_core_index_of_thread(int cpu)
923{
924 return cpu >> threads_shift;
925}
926EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
927
928int cpu_first_thread_of_core(int core)
929{
930 return core << threads_shift;
931}
932EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
933
104699c0 934/* Must be called when no change can occur to cpu_present_mask,
440a0857
NL
935 * i.e. during cpu online or offline.
936 */
937static struct device_node *cpu_to_l2cache(int cpu)
938{
939 struct device_node *np;
b2ea25b9 940 struct device_node *cache;
440a0857
NL
941
942 if (!cpu_present(cpu))
943 return NULL;
944
945 np = of_get_cpu_node(cpu, NULL);
946 if (np == NULL)
947 return NULL;
948
b2ea25b9
NL
949 cache = of_find_next_cache_node(np);
950
440a0857
NL
951 of_node_put(np);
952
b2ea25b9 953 return cache;
440a0857 954}
1da177e4 955
df52f671 956static bool update_mask_by_l2(int cpu, struct cpumask *(*mask_fn)(int))
a8a5356c 957{
256f2d4b 958 struct device_node *l2_cache, *np;
e3d8b67e 959 int i;
256f2d4b 960
a8a5356c 961 l2_cache = cpu_to_l2cache(cpu);
df52f671
OH
962 if (!l2_cache)
963 return false;
964
965 for_each_cpu(i, cpu_online_mask) {
966 /*
967 * when updating the marks the current CPU has not been marked
968 * online, but we need to update the cache masks
969 */
256f2d4b 970 np = cpu_to_l2cache(i);
a8a5356c
PM
971 if (!np)
972 continue;
df52f671
OH
973
974 if (np == l2_cache)
975 set_cpus_related(cpu, i, mask_fn);
976
a8a5356c
PM
977 of_node_put(np);
978 }
979 of_node_put(l2_cache);
df52f671
OH
980
981 return true;
982}
983
984#ifdef CONFIG_HOTPLUG_CPU
985static void remove_cpu_from_masks(int cpu)
986{
987 int i;
988
989 /* NB: cpu_core_mask is a superset of the others */
990 for_each_cpu(i, cpu_core_mask(cpu)) {
991 set_cpus_unrelated(cpu, i, cpu_core_mask);
2a636a56 992 set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
df52f671
OH
993 set_cpus_unrelated(cpu, i, cpu_sibling_mask);
994 }
995}
996#endif
997
998static void add_cpu_to_masks(int cpu)
999{
1000 int first_thread = cpu_first_thread_sibling(cpu);
1001 int chipid = cpu_to_chip_id(cpu);
1002 int i;
1003
1004 /*
1005 * This CPU will not be in the online mask yet so we need to manually
1006 * add it to it's own thread sibling mask.
1007 */
1008 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1009
1010 for (i = first_thread; i < first_thread + threads_per_core; i++)
1011 if (cpu_online(i))
1012 set_cpus_related(i, cpu, cpu_sibling_mask);
1013
1014 /*
2a636a56
OH
1015 * Copy the thread sibling mask into the cache sibling mask
1016 * and mark any CPUs that share an L2 with this CPU.
df52f671
OH
1017 */
1018 for_each_cpu(i, cpu_sibling_mask(cpu))
2a636a56
OH
1019 set_cpus_related(cpu, i, cpu_l2_cache_mask);
1020 update_mask_by_l2(cpu, cpu_l2_cache_mask);
1021
1022 /*
1023 * Copy the cache sibling mask into core sibling mask and mark
1024 * any CPUs on the same chip as this CPU.
1025 */
1026 for_each_cpu(i, cpu_l2_cache_mask(cpu))
df52f671
OH
1027 set_cpus_related(cpu, i, cpu_core_mask);
1028
2a636a56 1029 if (chipid == -1)
df52f671 1030 return;
df52f671
OH
1031
1032 for_each_cpu(i, cpu_online_mask)
1033 if (cpu_to_chip_id(i) == chipid)
1034 set_cpus_related(cpu, i, cpu_core_mask);
a8a5356c
PM
1035}
1036
96d91431
OH
1037static bool shared_caches;
1038
1da177e4 1039/* Activate a secondary processor. */
061d19f2 1040void start_secondary(void *unused)
1da177e4
LT
1041{
1042 unsigned int cpu = smp_processor_id();
1043
f1f10076 1044 mmgrab(&init_mm);
1da177e4
LT
1045 current->active_mm = &init_mm;
1046
1047 smp_store_cpu_info(cpu);
5ad57078 1048 set_dec(tb_ticks_per_jiffy);
e4d76e1c 1049 preempt_disable();
1be6f10f 1050 cpu_callin_map[cpu] = 1;
1da177e4 1051
757cbd46
KG
1052 if (smp_ops->setup_cpu)
1053 smp_ops->setup_cpu(cpu);
1da177e4
LT
1054 if (smp_ops->take_timebase)
1055 smp_ops->take_timebase();
1056
d831d0b8
TB
1057 secondary_cpu_time_init();
1058
aeeafbfa
BH
1059#ifdef CONFIG_PPC64
1060 if (system_state == SYSTEM_RUNNING)
1061 vdso_data->processorCount++;
18ad51dd
AB
1062
1063 vdso_getcpu_init();
aeeafbfa 1064#endif
df52f671
OH
1065 /* Update topology CPU masks */
1066 add_cpu_to_masks(cpu);
1da177e4 1067
96d91431
OH
1068 /*
1069 * Check for any shared caches. Note that this must be done on a
1070 * per-core basis because one core in the pair might be disabled.
1071 */
1072 if (!cpumask_equal(cpu_l2_cache_mask(cpu), cpu_sibling_mask(cpu)))
1073 shared_caches = true;
1074
bc3c4327
LZ
1075 set_numa_node(numa_cpu_lookup_table[cpu]);
1076 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1077
cce606fe
LZ
1078 smp_wmb();
1079 notify_cpu_starting(cpu);
1080 set_cpu_online(cpu, true);
1081
1da177e4
LT
1082 local_irq_enable();
1083
d1039786
NR
1084 /* We can enable ftrace for secondary cpus now */
1085 this_cpu_enable_ftrace();
1086
fc6d73d6 1087 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
fa3f82c8
BH
1088
1089 BUG();
1da177e4
LT
1090}
1091
1092int setup_profiling_timer(unsigned int multiplier)
1093{
1094 return 0;
1095}
1096
607b45e9
VG
1097#ifdef CONFIG_SCHED_SMT
1098/* cpumask of CPUs with asymetric SMT dependancy */
b6220ad6 1099static int powerpc_smt_flags(void)
607b45e9 1100{
5d4dfddd 1101 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
607b45e9
VG
1102
1103 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
1104 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
1105 flags |= SD_ASYM_PACKING;
1106 }
1107 return flags;
1108}
1109#endif
1110
1111static struct sched_domain_topology_level powerpc_topology[] = {
1112#ifdef CONFIG_SCHED_SMT
1113 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1114#endif
1115 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1116 { NULL, },
1117};
1118
96d91431
OH
1119/*
1120 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1121 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1122 * since the migrated task remains cache hot. We want to take advantage of this
1123 * at the scheduler level so an extra topology level is required.
1124 */
1125static int powerpc_shared_cache_flags(void)
1126{
1127 return SD_SHARE_PKG_RESOURCES;
1128}
1129
1130/*
1131 * We can't just pass cpu_l2_cache_mask() directly because
1132 * returns a non-const pointer and the compiler barfs on that.
1133 */
1134static const struct cpumask *shared_cache_mask(int cpu)
1135{
1136 return cpu_l2_cache_mask(cpu);
1137}
1138
1139static struct sched_domain_topology_level power9_topology[] = {
1140#ifdef CONFIG_SCHED_SMT
1141 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1142#endif
1143 { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
1144 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1145 { NULL, },
1146};
1147
6d11b87d
TG
1148void __init smp_cpus_done(unsigned int max_cpus)
1149{
1150 /*
7b7622bb 1151 * We are running pinned to the boot CPU, see rest_init().
1da177e4 1152 */
757cbd46 1153 if (smp_ops && smp_ops->setup_cpu)
7b7622bb 1154 smp_ops->setup_cpu(boot_cpuid);
4b703a23 1155
d7294445
BH
1156 if (smp_ops && smp_ops->bringup_done)
1157 smp_ops->bringup_done();
1158
4b703a23 1159 dump_numa_cpu_topology();
d7294445 1160
96d91431
OH
1161 /*
1162 * If any CPU detects that it's sharing a cache with another CPU then
1163 * use the deeper topology that is aware of this sharing.
1164 */
1165 if (shared_caches) {
1166 pr_info("Using shared cache scheduler topology\n");
1167 set_sched_topology(power9_topology);
1168 } else {
1169 pr_info("Using standard scheduler topology\n");
1170 set_sched_topology(powerpc_topology);
1171 }
e1f0ece1
MN
1172}
1173
1da177e4
LT
1174#ifdef CONFIG_HOTPLUG_CPU
1175int __cpu_disable(void)
1176{
e2075f79 1177 int cpu = smp_processor_id();
e2075f79 1178 int err;
1da177e4 1179
e2075f79
NL
1180 if (!smp_ops->cpu_disable)
1181 return -ENOSYS;
1182
424ef016
NR
1183 this_cpu_disable_ftrace();
1184
e2075f79
NL
1185 err = smp_ops->cpu_disable();
1186 if (err)
1187 return err;
1188
1189 /* Update sibling maps */
df52f671 1190 remove_cpu_from_masks(cpu);
e2075f79
NL
1191
1192 return 0;
1da177e4
LT
1193}
1194
1195void __cpu_die(unsigned int cpu)
1196{
1197 if (smp_ops->cpu_die)
1198 smp_ops->cpu_die(cpu);
1199}
d0174c72 1200
abb17f9c
MM
1201void cpu_die(void)
1202{
424ef016
NR
1203 /*
1204 * Disable on the down path. This will be re-enabled by
1205 * start_secondary() via start_secondary_resume() below
1206 */
1207 this_cpu_disable_ftrace();
1208
abb17f9c
MM
1209 if (ppc_md.cpu_die)
1210 ppc_md.cpu_die();
fa3f82c8
BH
1211
1212 /* If we return, we re-enter start_secondary */
1213 start_secondary_resume();
abb17f9c 1214}
fa3f82c8 1215
1da177e4 1216#endif