powerpc/smp: Move powerpc_topology above
[linux-block.git] / arch / powerpc / kernel / smp.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * SMP support for ppc.
4 *
5 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
6 * deal of code from the sparc and intel versions.
7 *
8 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
9 *
10 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
11 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
1da177e4
LT
12 */
13
14#undef DEBUG
15
1da177e4 16#include <linux/kernel.h>
4b16f8e2 17#include <linux/export.h>
68e21be2 18#include <linux/sched/mm.h>
678c668a 19#include <linux/sched/task_stack.h>
105ab3d8 20#include <linux/sched/topology.h>
1da177e4
LT
21#include <linux/smp.h>
22#include <linux/interrupt.h>
23#include <linux/delay.h>
24#include <linux/init.h>
25#include <linux/spinlock.h>
26#include <linux/cache.h>
27#include <linux/err.h>
8a25a2fd 28#include <linux/device.h>
1da177e4
LT
29#include <linux/cpu.h>
30#include <linux/notifier.h>
4b703a23 31#include <linux/topology.h>
665e87ff 32#include <linux/profile.h>
4e287e65 33#include <linux/processor.h>
7241d26e 34#include <linux/random.h>
b6aeddea 35#include <linux/stackprotector.h>
65fddcfc 36#include <linux/pgtable.h>
1da177e4
LT
37
38#include <asm/ptrace.h>
60063497 39#include <linux/atomic.h>
1da177e4 40#include <asm/irq.h>
1b67bee1 41#include <asm/hw_irq.h>
441c19c8 42#include <asm/kvm_ppc.h>
b866cc21 43#include <asm/dbell.h>
1da177e4 44#include <asm/page.h>
1da177e4
LT
45#include <asm/prom.h>
46#include <asm/smp.h>
1da177e4
LT
47#include <asm/time.h>
48#include <asm/machdep.h>
e2075f79 49#include <asm/cputhreads.h>
1da177e4 50#include <asm/cputable.h>
bbeb3f4c 51#include <asm/mpic.h>
a7f290da 52#include <asm/vdso_datapage.h>
5ad57078
PM
53#ifdef CONFIG_PPC64
54#include <asm/paca.h>
55#endif
18ad51dd 56#include <asm/vdso.h>
ae3a197e 57#include <asm/debug.h>
1217d34b 58#include <asm/kexec.h>
42f5b4ca 59#include <asm/asm-prototypes.h>
b92a226e 60#include <asm/cpu_has_feature.h>
d1039786 61#include <asm/ftrace.h>
e0d8e991 62#include <asm/kup.h>
5ad57078 63
1da177e4 64#ifdef DEBUG
f9e4ec57 65#include <asm/udbg.h>
1da177e4
LT
66#define DBG(fmt...) udbg_printf(fmt)
67#else
68#define DBG(fmt...)
69#endif
70
c56e5853 71#ifdef CONFIG_HOTPLUG_CPU
fb82b839
BH
72/* State of each CPU during hotplug phases */
73static DEFINE_PER_CPU(int, cpu_state) = { 0 };
c56e5853
BH
74#endif
75
7c19c2e5 76struct task_struct *secondary_current;
425752c6 77bool has_big_cores;
f9e4ec57 78
cc1ba8ea 79DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
425752c6 80DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
2a636a56 81DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
cc1ba8ea 82DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
1da177e4 83
d5a7430d 84EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
2a636a56 85EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
440a0857 86EXPORT_PER_CPU_SYMBOL(cpu_core_map);
425752c6
GS
87EXPORT_SYMBOL_GPL(has_big_cores);
88
89#define MAX_THREAD_LIST_SIZE 8
90#define THREAD_GROUP_SHARE_L1 1
91struct thread_groups {
92 unsigned int property;
93 unsigned int nr_groups;
94 unsigned int threads_per_group;
95 unsigned int thread_list[MAX_THREAD_LIST_SIZE];
96};
97
98/*
99 * On big-cores system, cpu_l1_cache_map for each CPU corresponds to
100 * the set its siblings that share the L1-cache.
101 */
102DEFINE_PER_CPU(cpumask_var_t, cpu_l1_cache_map);
1da177e4 103
5ad57078 104/* SMP operations for this machine */
1da177e4
LT
105struct smp_ops_t *smp_ops;
106
7ccbe504
BH
107/* Can't be static due to PowerMac hackery */
108volatile unsigned int cpu_callin_map[NR_CPUS];
1da177e4 109
1da177e4
LT
110int smt_enabled_at_boot = 1;
111
3cd85250
AF
112/*
113 * Returns 1 if the specified cpu should be brought up during boot.
114 * Used to inhibit booting threads if they've been disabled or
115 * limited on the command line
116 */
117int smp_generic_cpu_bootable(unsigned int nr)
118{
119 /* Special case - we inhibit secondary thread startup
120 * during boot if the user requests it.
121 */
a8fcfc19 122 if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
3cd85250
AF
123 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
124 return 0;
125 if (smt_enabled_at_boot
126 && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
127 return 0;
128 }
129
130 return 1;
131}
132
133
5ad57078 134#ifdef CONFIG_PPC64
cad5cef6 135int smp_generic_kick_cpu(int nr)
1da177e4 136{
c642af9c 137 if (nr < 0 || nr >= nr_cpu_ids)
f8d0d5dc 138 return -EINVAL;
1da177e4
LT
139
140 /*
141 * The processor is currently spinning, waiting for the
142 * cpu_start field to become non-zero After we set cpu_start,
143 * the processor will continue on to secondary_start
144 */
d2e60075
NP
145 if (!paca_ptrs[nr]->cpu_start) {
146 paca_ptrs[nr]->cpu_start = 1;
fb82b839
BH
147 smp_mb();
148 return 0;
149 }
150
151#ifdef CONFIG_HOTPLUG_CPU
152 /*
153 * Ok it's not there, so it might be soft-unplugged, let's
154 * try to bring it back
155 */
ae5cab47 156 generic_set_cpu_up(nr);
fb82b839
BH
157 smp_wmb();
158 smp_send_reschedule(nr);
159#endif /* CONFIG_HOTPLUG_CPU */
de300974
ME
160
161 return 0;
1da177e4 162}
fb82b839 163#endif /* CONFIG_PPC64 */
1da177e4 164
25ddd738
MM
165static irqreturn_t call_function_action(int irq, void *data)
166{
167 generic_smp_call_function_interrupt();
168 return IRQ_HANDLED;
169}
170
171static irqreturn_t reschedule_action(int irq, void *data)
172{
184748cc 173 scheduler_ipi();
25ddd738
MM
174 return IRQ_HANDLED;
175}
176
bc907113 177#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1b67bee1 178static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
25ddd738 179{
3f984620 180 timer_broadcast_interrupt();
25ddd738
MM
181 return IRQ_HANDLED;
182}
bc907113 183#endif
25ddd738 184
ddd703ca
NP
185#ifdef CONFIG_NMI_IPI
186static irqreturn_t nmi_ipi_action(int irq, void *data)
25ddd738 187{
ddd703ca 188 smp_handle_nmi_ipi(get_irq_regs());
25ddd738
MM
189 return IRQ_HANDLED;
190}
ddd703ca 191#endif
25ddd738
MM
192
193static irq_handler_t smp_ipi_action[] = {
194 [PPC_MSG_CALL_FUNCTION] = call_function_action,
195 [PPC_MSG_RESCHEDULE] = reschedule_action,
bc907113 196#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1b67bee1 197 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
bc907113 198#endif
ddd703ca
NP
199#ifdef CONFIG_NMI_IPI
200 [PPC_MSG_NMI_IPI] = nmi_ipi_action,
201#endif
25ddd738
MM
202};
203
ddd703ca
NP
204/*
205 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
206 * than going through the call function infrastructure, and strongly
207 * serialized, so it is more appropriate for debugging.
208 */
25ddd738
MM
209const char *smp_ipi_name[] = {
210 [PPC_MSG_CALL_FUNCTION] = "ipi call function",
211 [PPC_MSG_RESCHEDULE] = "ipi reschedule",
bc907113 212#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1b67bee1 213 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
bc907113 214#endif
21bfd6a8 215#ifdef CONFIG_NMI_IPI
ddd703ca 216 [PPC_MSG_NMI_IPI] = "nmi ipi",
21bfd6a8 217#endif
25ddd738
MM
218};
219
220/* optional function to request ipi, for controllers with >= 4 ipis */
221int smp_request_message_ipi(int virq, int msg)
222{
223 int err;
224
ddd703ca 225 if (msg < 0 || msg > PPC_MSG_NMI_IPI)
25ddd738 226 return -EINVAL;
ddd703ca
NP
227#ifndef CONFIG_NMI_IPI
228 if (msg == PPC_MSG_NMI_IPI)
25ddd738 229 return 1;
25ddd738 230#endif
ddd703ca 231
3b5e16d7 232 err = request_irq(virq, smp_ipi_action[msg],
e6651de9 233 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
b0d436c7 234 smp_ipi_name[msg], NULL);
25ddd738
MM
235 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
236 virq, smp_ipi_name[msg], err);
237
238 return err;
239}
240
1ece355b 241#ifdef CONFIG_PPC_SMP_MUXED_IPI
23d72bfd 242struct cpu_messages {
bd7f561f 243 long messages; /* current messages */
23d72bfd
MM
244};
245static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
246
31639c77 247void smp_muxed_ipi_set_message(int cpu, int msg)
23d72bfd
MM
248{
249 struct cpu_messages *info = &per_cpu(ipi_message, cpu);
71454272 250 char *message = (char *)&info->messages;
23d72bfd 251
9fb1b36c
PM
252 /*
253 * Order previous accesses before accesses in the IPI handler.
254 */
255 smp_mb();
71454272 256 message[msg] = 1;
31639c77
SW
257}
258
259void smp_muxed_ipi_message_pass(int cpu, int msg)
260{
31639c77 261 smp_muxed_ipi_set_message(cpu, msg);
b866cc21 262
9fb1b36c
PM
263 /*
264 * cause_ipi functions are required to include a full barrier
265 * before doing whatever causes the IPI.
266 */
b866cc21 267 smp_ops->cause_ipi(cpu);
23d72bfd
MM
268}
269
0654de1c 270#ifdef __BIG_ENDIAN__
bd7f561f 271#define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
0654de1c 272#else
bd7f561f 273#define IPI_MESSAGE(A) (1uL << (8 * (A)))
0654de1c
AB
274#endif
275
23d72bfd
MM
276irqreturn_t smp_ipi_demux(void)
277{
23d72bfd 278 mb(); /* order any irq clear */
71454272 279
b87ac021
NP
280 return smp_ipi_demux_relaxed();
281}
282
283/* sync-free variant. Callers should ensure synchronization */
284irqreturn_t smp_ipi_demux_relaxed(void)
23d72bfd 285{
b866cc21 286 struct cpu_messages *info;
bd7f561f 287 unsigned long all;
23d72bfd 288
b866cc21 289 info = this_cpu_ptr(&ipi_message);
71454272 290 do {
9fb1b36c 291 all = xchg(&info->messages, 0);
e17769eb
SW
292#if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
293 /*
294 * Must check for PPC_MSG_RM_HOST_ACTION messages
295 * before PPC_MSG_CALL_FUNCTION messages because when
296 * a VM is destroyed, we call kick_all_cpus_sync()
297 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
298 * messages have completed before we free any VCPUs.
299 */
300 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
301 kvmppc_xics_ipi_action();
302#endif
0654de1c 303 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
23d72bfd 304 generic_smp_call_function_interrupt();
0654de1c 305 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
880102e7 306 scheduler_ipi();
bc907113 307#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1b67bee1 308 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
3f984620 309 timer_broadcast_interrupt();
bc907113 310#endif
ddd703ca
NP
311#ifdef CONFIG_NMI_IPI
312 if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
313 nmi_ipi_action(0, NULL);
314#endif
71454272
MM
315 } while (info->messages);
316
23d72bfd
MM
317 return IRQ_HANDLED;
318}
1ece355b 319#endif /* CONFIG_PPC_SMP_MUXED_IPI */
23d72bfd 320
9ca980dc
PM
321static inline void do_message_pass(int cpu, int msg)
322{
323 if (smp_ops->message_pass)
324 smp_ops->message_pass(cpu, msg);
325#ifdef CONFIG_PPC_SMP_MUXED_IPI
326 else
327 smp_muxed_ipi_message_pass(cpu, msg);
328#endif
329}
330
1da177e4
LT
331void smp_send_reschedule(int cpu)
332{
8cffc6ac 333 if (likely(smp_ops))
9ca980dc 334 do_message_pass(cpu, PPC_MSG_RESCHEDULE);
1da177e4 335}
de56a948 336EXPORT_SYMBOL_GPL(smp_send_reschedule);
1da177e4 337
b7d7a240
JA
338void arch_send_call_function_single_ipi(int cpu)
339{
402d9a1e 340 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
b7d7a240
JA
341}
342
f063ea02 343void arch_send_call_function_ipi_mask(const struct cpumask *mask)
b7d7a240
JA
344{
345 unsigned int cpu;
346
f063ea02 347 for_each_cpu(cpu, mask)
9ca980dc 348 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
b7d7a240
JA
349}
350
ddd703ca
NP
351#ifdef CONFIG_NMI_IPI
352
353/*
354 * "NMI IPI" system.
355 *
356 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
357 * a running system. They can be used for crash, debug, halt/reboot, etc.
358 *
ddd703ca 359 * The IPI call waits with interrupts disabled until all targets enter the
88b9a3d1
NP
360 * NMI handler, then returns. Subsequent IPIs can be issued before targets
361 * have returned from their handlers, so there is no guarantee about
362 * concurrency or re-entrancy.
ddd703ca 363 *
88b9a3d1 364 * A new NMI can be issued before all targets exit the handler.
ddd703ca
NP
365 *
366 * The IPI call may time out without all targets entering the NMI handler.
367 * In that case, there is some logic to recover (and ignore subsequent
368 * NMI interrupts that may eventually be raised), but the platform interrupt
369 * handler may not be able to distinguish this from other exception causes,
370 * which may cause a crash.
371 */
372
373static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
374static struct cpumask nmi_ipi_pending_mask;
88b9a3d1 375static bool nmi_ipi_busy = false;
ddd703ca
NP
376static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
377
378static void nmi_ipi_lock_start(unsigned long *flags)
379{
380 raw_local_irq_save(*flags);
381 hard_irq_disable();
382 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
383 raw_local_irq_restore(*flags);
0459ddfd 384 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
ddd703ca
NP
385 raw_local_irq_save(*flags);
386 hard_irq_disable();
387 }
388}
389
390static void nmi_ipi_lock(void)
391{
392 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
0459ddfd 393 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
ddd703ca
NP
394}
395
396static void nmi_ipi_unlock(void)
397{
398 smp_mb();
399 WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
400 atomic_set(&__nmi_ipi_lock, 0);
401}
402
403static void nmi_ipi_unlock_end(unsigned long *flags)
404{
405 nmi_ipi_unlock();
406 raw_local_irq_restore(*flags);
407}
408
409/*
410 * Platform NMI handler calls this to ack
411 */
412int smp_handle_nmi_ipi(struct pt_regs *regs)
413{
88b9a3d1 414 void (*fn)(struct pt_regs *) = NULL;
ddd703ca
NP
415 unsigned long flags;
416 int me = raw_smp_processor_id();
417 int ret = 0;
418
419 /*
420 * Unexpected NMIs are possible here because the interrupt may not
421 * be able to distinguish NMI IPIs from other types of NMIs, or
422 * because the caller may have timed out.
423 */
424 nmi_ipi_lock_start(&flags);
88b9a3d1
NP
425 if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
426 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
427 fn = READ_ONCE(nmi_ipi_function);
428 WARN_ON_ONCE(!fn);
429 ret = 1;
430 }
ddd703ca
NP
431 nmi_ipi_unlock_end(&flags);
432
88b9a3d1
NP
433 if (fn)
434 fn(regs);
435
ddd703ca
NP
436 return ret;
437}
438
6ba55716 439static void do_smp_send_nmi_ipi(int cpu, bool safe)
ddd703ca 440{
6ba55716 441 if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
c64af645
NP
442 return;
443
ddd703ca
NP
444 if (cpu >= 0) {
445 do_message_pass(cpu, PPC_MSG_NMI_IPI);
446 } else {
447 int c;
448
449 for_each_online_cpu(c) {
450 if (c == raw_smp_processor_id())
451 continue;
452 do_message_pass(c, PPC_MSG_NMI_IPI);
453 }
454 }
455}
456
457/*
458 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
459 * - fn is the target callback function.
460 * - delay_us > 0 is the delay before giving up waiting for targets to
88b9a3d1 461 * begin executing the handler, == 0 specifies indefinite delay.
ddd703ca 462 */
6fe243fe
NP
463static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
464 u64 delay_us, bool safe)
ddd703ca
NP
465{
466 unsigned long flags;
467 int me = raw_smp_processor_id();
468 int ret = 1;
469
470 BUG_ON(cpu == me);
471 BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
472
473 if (unlikely(!smp_ops))
474 return 0;
475
ddd703ca 476 nmi_ipi_lock_start(&flags);
88b9a3d1 477 while (nmi_ipi_busy) {
ddd703ca 478 nmi_ipi_unlock_end(&flags);
88b9a3d1 479 spin_until_cond(!nmi_ipi_busy);
ddd703ca
NP
480 nmi_ipi_lock_start(&flags);
481 }
88b9a3d1 482 nmi_ipi_busy = true;
ddd703ca
NP
483 nmi_ipi_function = fn;
484
88b9a3d1
NP
485 WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
486
ddd703ca
NP
487 if (cpu < 0) {
488 /* ALL_OTHERS */
489 cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
490 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
491 } else {
ddd703ca
NP
492 cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
493 }
88b9a3d1 494
ddd703ca
NP
495 nmi_ipi_unlock();
496
88b9a3d1
NP
497 /* Interrupts remain hard disabled */
498
6ba55716 499 do_smp_send_nmi_ipi(cpu, safe);
ddd703ca 500
5b73151f 501 nmi_ipi_lock();
88b9a3d1 502 /* nmi_ipi_busy is set here, so unlock/lock is okay */
ddd703ca 503 while (!cpumask_empty(&nmi_ipi_pending_mask)) {
5b73151f 504 nmi_ipi_unlock();
ddd703ca 505 udelay(1);
5b73151f
NP
506 nmi_ipi_lock();
507 if (delay_us) {
508 delay_us--;
509 if (!delay_us)
88b9a3d1 510 break;
5b73151f
NP
511 }
512 }
513
ddd703ca 514 if (!cpumask_empty(&nmi_ipi_pending_mask)) {
5b73151f 515 /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
ddd703ca
NP
516 ret = 0;
517 cpumask_clear(&nmi_ipi_pending_mask);
518 }
5b73151f 519
88b9a3d1
NP
520 nmi_ipi_function = NULL;
521 nmi_ipi_busy = false;
522
ddd703ca
NP
523 nmi_ipi_unlock_end(&flags);
524
525 return ret;
526}
6ba55716
ME
527
528int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
529{
530 return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
531}
532
533int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
534{
535 return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
536}
ddd703ca
NP
537#endif /* CONFIG_NMI_IPI */
538
1b67bee1
SB
539#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
540void tick_broadcast(const struct cpumask *mask)
541{
542 unsigned int cpu;
543
544 for_each_cpu(cpu, mask)
545 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
546}
547#endif
548
ddd703ca
NP
549#ifdef CONFIG_DEBUGGER
550void debugger_ipi_callback(struct pt_regs *regs)
1da177e4 551{
ddd703ca
NP
552 debugger_ipi(regs);
553}
e0476371 554
ddd703ca
NP
555void smp_send_debugger_break(void)
556{
557 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
1da177e4
LT
558}
559#endif
560
da665885 561#ifdef CONFIG_KEXEC_CORE
cc532915
ME
562void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
563{
4145f358
BS
564 int cpu;
565
ddd703ca 566 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
4145f358
BS
567 if (kdump_in_progress() && crash_wake_offline) {
568 for_each_present_cpu(cpu) {
569 if (cpu_online(cpu))
570 continue;
571 /*
572 * crash_ipi_callback will wait for
573 * all cpus, including offline CPUs.
574 * We don't care about nmi_ipi_function.
575 * Offline cpus will jump straight into
576 * crash_ipi_callback, we can skip the
577 * entire NMI dance and waiting for
578 * cpus to clear pending mask, etc.
579 */
6ba55716 580 do_smp_send_nmi_ipi(cpu, false);
4145f358
BS
581 }
582 }
cc532915
ME
583}
584#endif
585
ac61c115
NP
586#ifdef CONFIG_NMI_IPI
587static void nmi_stop_this_cpu(struct pt_regs *regs)
588{
589 /*
6029755e 590 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
ac61c115 591 */
6029755e
NP
592 spin_begin();
593 while (1)
594 spin_cpu_relax();
ac61c115 595}
ac61c115 596
8fd7675c
SS
597void smp_send_stop(void)
598{
ac61c115 599 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
6029755e
NP
600}
601
602#else /* CONFIG_NMI_IPI */
603
604static void stop_this_cpu(void *dummy)
605{
6029755e
NP
606 hard_irq_disable();
607 spin_begin();
608 while (1)
609 spin_cpu_relax();
610}
611
612void smp_send_stop(void)
613{
614 static bool stopped = false;
615
616 /*
617 * Prevent waiting on csd lock from a previous smp_send_stop.
618 * This is racy, but in general callers try to do the right
619 * thing and only fire off one smp_send_stop (e.g., see
620 * kernel/panic.c)
621 */
622 if (stopped)
623 return;
624
625 stopped = true;
626
8691e5a8 627 smp_call_function(stop_this_cpu, NULL, 0);
1da177e4 628}
6029755e 629#endif /* CONFIG_NMI_IPI */
1da177e4 630
7c19c2e5 631struct task_struct *current_set[NR_CPUS];
1da177e4 632
cad5cef6 633static void smp_store_cpu_info(int id)
1da177e4 634{
6b7487fc 635 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
3160b097
BB
636#ifdef CONFIG_PPC_FSL_BOOK3E
637 per_cpu(next_tlbcam_idx, id)
638 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
639#endif
1da177e4
LT
640}
641
df52f671
OH
642/*
643 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
644 * rather than just passing around the cpumask we pass around a function that
645 * returns the that cpumask for the given CPU.
646 */
647static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
648{
649 cpumask_set_cpu(i, get_cpumask(j));
650 cpumask_set_cpu(j, get_cpumask(i));
651}
652
653#ifdef CONFIG_HOTPLUG_CPU
654static void set_cpus_unrelated(int i, int j,
655 struct cpumask *(*get_cpumask)(int))
656{
657 cpumask_clear_cpu(i, get_cpumask(j));
658 cpumask_clear_cpu(j, get_cpumask(i));
659}
660#endif
661
425752c6
GS
662/*
663 * parse_thread_groups: Parses the "ibm,thread-groups" device tree
664 * property for the CPU device node @dn and stores
665 * the parsed output in the thread_groups
666 * structure @tg if the ibm,thread-groups[0]
667 * matches @property.
668 *
669 * @dn: The device node of the CPU device.
670 * @tg: Pointer to a thread group structure into which the parsed
671 * output of "ibm,thread-groups" is stored.
672 * @property: The property of the thread-group that the caller is
673 * interested in.
674 *
675 * ibm,thread-groups[0..N-1] array defines which group of threads in
676 * the CPU-device node can be grouped together based on the property.
677 *
678 * ibm,thread-groups[0] tells us the property based on which the
679 * threads are being grouped together. If this value is 1, it implies
680 * that the threads in the same group share L1, translation cache.
681 *
682 * ibm,thread-groups[1] tells us how many such thread groups exist.
683 *
684 * ibm,thread-groups[2] tells us the number of threads in each such
685 * group.
686 *
687 * ibm,thread-groups[3..N-1] is the list of threads identified by
688 * "ibm,ppc-interrupt-server#s" arranged as per their membership in
689 * the grouping.
690 *
691 * Example: If ibm,thread-groups = [1,2,4,5,6,7,8,9,10,11,12] it
692 * implies that there are 2 groups of 4 threads each, where each group
693 * of threads share L1, translation cache.
694 *
695 * The "ibm,ppc-interrupt-server#s" of the first group is {5,6,7,8}
696 * and the "ibm,ppc-interrupt-server#s" of the second group is {9, 10,
697 * 11, 12} structure
698 *
699 * Returns 0 on success, -EINVAL if the property does not exist,
700 * -ENODATA if property does not have a value, and -EOVERFLOW if the
701 * property data isn't large enough.
702 */
703static int parse_thread_groups(struct device_node *dn,
704 struct thread_groups *tg,
705 unsigned int property)
706{
707 int i;
708 u32 thread_group_array[3 + MAX_THREAD_LIST_SIZE];
709 u32 *thread_list;
710 size_t total_threads;
711 int ret;
712
713 ret = of_property_read_u32_array(dn, "ibm,thread-groups",
714 thread_group_array, 3);
715 if (ret)
716 return ret;
717
718 tg->property = thread_group_array[0];
719 tg->nr_groups = thread_group_array[1];
720 tg->threads_per_group = thread_group_array[2];
721 if (tg->property != property ||
722 tg->nr_groups < 1 ||
723 tg->threads_per_group < 1)
724 return -ENODATA;
725
726 total_threads = tg->nr_groups * tg->threads_per_group;
727
728 ret = of_property_read_u32_array(dn, "ibm,thread-groups",
729 thread_group_array,
730 3 + total_threads);
731 if (ret)
732 return ret;
733
734 thread_list = &thread_group_array[3];
735
736 for (i = 0 ; i < total_threads; i++)
737 tg->thread_list[i] = thread_list[i];
738
739 return 0;
740}
741
742/*
743 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
744 * that @cpu belongs to.
745 *
746 * @cpu : The logical CPU whose thread group is being searched.
747 * @tg : The thread-group structure of the CPU node which @cpu belongs
748 * to.
749 *
750 * Returns the index to tg->thread_list that points to the the start
751 * of the thread_group that @cpu belongs to.
752 *
753 * Returns -1 if cpu doesn't belong to any of the groups pointed to by
754 * tg->thread_list.
755 */
756static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
757{
758 int hw_cpu_id = get_hard_smp_processor_id(cpu);
759 int i, j;
760
761 for (i = 0; i < tg->nr_groups; i++) {
762 int group_start = i * tg->threads_per_group;
763
764 for (j = 0; j < tg->threads_per_group; j++) {
765 int idx = group_start + j;
766
767 if (tg->thread_list[idx] == hw_cpu_id)
768 return group_start;
769 }
770 }
771
772 return -1;
773}
774
775static int init_cpu_l1_cache_map(int cpu)
776
777{
778 struct device_node *dn = of_get_cpu_node(cpu, NULL);
779 struct thread_groups tg = {.property = 0,
780 .nr_groups = 0,
781 .threads_per_group = 0};
782 int first_thread = cpu_first_thread_sibling(cpu);
783 int i, cpu_group_start = -1, err = 0;
784
785 if (!dn)
786 return -ENODATA;
787
788 err = parse_thread_groups(dn, &tg, THREAD_GROUP_SHARE_L1);
789 if (err)
790 goto out;
791
792 zalloc_cpumask_var_node(&per_cpu(cpu_l1_cache_map, cpu),
793 GFP_KERNEL,
794 cpu_to_node(cpu));
795
796 cpu_group_start = get_cpu_thread_group_start(cpu, &tg);
797
798 if (unlikely(cpu_group_start == -1)) {
799 WARN_ON_ONCE(1);
800 err = -ENODATA;
801 goto out;
802 }
803
804 for (i = first_thread; i < first_thread + threads_per_core; i++) {
805 int i_group_start = get_cpu_thread_group_start(i, &tg);
806
807 if (unlikely(i_group_start == -1)) {
808 WARN_ON_ONCE(1);
809 err = -ENODATA;
810 goto out;
811 }
812
813 if (i_group_start == cpu_group_start)
814 cpumask_set_cpu(i, per_cpu(cpu_l1_cache_map, cpu));
815 }
816
817out:
818 of_node_put(dn);
819 return err;
820}
821
5e93f16a
SD
822static bool shared_caches;
823
824#ifdef CONFIG_SCHED_SMT
825/* cpumask of CPUs with asymmetric SMT dependency */
826static int powerpc_smt_flags(void)
827{
828 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
829
830 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
831 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
832 flags |= SD_ASYM_PACKING;
833 }
834 return flags;
835}
836#endif
837
838/*
839 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
840 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
841 * since the migrated task remains cache hot. We want to take advantage of this
842 * at the scheduler level so an extra topology level is required.
843 */
844static int powerpc_shared_cache_flags(void)
845{
846 return SD_SHARE_PKG_RESOURCES;
847}
848
849/*
850 * We can't just pass cpu_l2_cache_mask() directly because
851 * returns a non-const pointer and the compiler barfs on that.
852 */
853static const struct cpumask *shared_cache_mask(int cpu)
854{
855 return cpu_l2_cache_mask(cpu);
856}
857
858#ifdef CONFIG_SCHED_SMT
859static const struct cpumask *smallcore_smt_mask(int cpu)
860{
861 return cpu_smallcore_mask(cpu);
862}
863#endif
864
865static struct sched_domain_topology_level powerpc_topology[] = {
866#ifdef CONFIG_SCHED_SMT
867 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
868#endif
869 { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
870 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
871 { NULL, },
872};
873
425752c6
GS
874static int init_big_cores(void)
875{
876 int cpu;
877
878 for_each_possible_cpu(cpu) {
879 int err = init_cpu_l1_cache_map(cpu);
880
881 if (err)
882 return err;
883
884 zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
885 GFP_KERNEL,
886 cpu_to_node(cpu));
887 }
888
889 has_big_cores = true;
890 return 0;
891}
892
1da177e4
LT
893void __init smp_prepare_cpus(unsigned int max_cpus)
894{
895 unsigned int cpu;
896
897 DBG("smp_prepare_cpus\n");
898
899 /*
900 * setup_cpu may need to be called on the boot cpu. We havent
901 * spun any cpus up but lets be paranoid.
902 */
903 BUG_ON(boot_cpuid != smp_processor_id());
904
905 /* Fixup boot cpu */
906 smp_store_cpu_info(boot_cpuid);
907 cpu_callin_map[boot_cpuid] = 1;
908
cc1ba8ea
AB
909 for_each_possible_cpu(cpu) {
910 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
911 GFP_KERNEL, cpu_to_node(cpu));
2a636a56
OH
912 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
913 GFP_KERNEL, cpu_to_node(cpu));
cc1ba8ea
AB
914 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
915 GFP_KERNEL, cpu_to_node(cpu));
d0fd24bb 916#ifdef CONFIG_NEED_MULTIPLE_NODES
2fabf084
NA
917 /*
918 * numa_node_id() works after this.
919 */
bc3c4327
LZ
920 if (cpu_present(cpu)) {
921 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
922 set_cpu_numa_mem(cpu,
923 local_memory_node(numa_cpu_lookup_table[cpu]));
924 }
d0fd24bb 925#endif
cc1ba8ea
AB
926 }
927
df52f671 928 /* Init the cpumasks so the boot CPU is related to itself */
cc1ba8ea 929 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
2a636a56 930 cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
cc1ba8ea
AB
931 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
932
425752c6
GS
933 init_big_cores();
934 if (has_big_cores) {
935 cpumask_set_cpu(boot_cpuid,
936 cpu_smallcore_mask(boot_cpuid));
937 }
938
dfee0efe
CG
939 if (smp_ops && smp_ops->probe)
940 smp_ops->probe();
1da177e4
LT
941}
942
cad5cef6 943void smp_prepare_boot_cpu(void)
1da177e4
LT
944{
945 BUG_ON(smp_processor_id() != boot_cpuid);
5ad57078 946#ifdef CONFIG_PPC64
d2e60075 947 paca_ptrs[boot_cpuid]->__current = current;
5ad57078 948#endif
8c272261 949 set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
7c19c2e5 950 current_set[boot_cpuid] = current;
1da177e4
LT
951}
952
953#ifdef CONFIG_HOTPLUG_CPU
1da177e4
LT
954
955int generic_cpu_disable(void)
956{
957 unsigned int cpu = smp_processor_id();
958
959 if (cpu == boot_cpuid)
960 return -EBUSY;
961
ea0f1cab 962 set_cpu_online(cpu, false);
799d6046 963#ifdef CONFIG_PPC64
a7f290da 964 vdso_data->processorCount--;
094fe2e7 965#endif
a978e139
BH
966 /* Update affinity of all IRQs previously aimed at this CPU */
967 irq_migrate_all_off_this_cpu();
968
687b8f24
ME
969 /*
970 * Depending on the details of the interrupt controller, it's possible
971 * that one of the interrupts we just migrated away from this CPU is
972 * actually already pending on this CPU. If we leave it in that state
973 * the interrupt will never be EOI'ed, and will never fire again. So
974 * temporarily enable interrupts here, to allow any pending interrupt to
975 * be received (and EOI'ed), before we take this CPU offline.
976 */
a978e139
BH
977 local_irq_enable();
978 mdelay(1);
979 local_irq_disable();
980
1da177e4
LT
981 return 0;
982}
983
1da177e4
LT
984void generic_cpu_die(unsigned int cpu)
985{
986 int i;
987
988 for (i = 0; i < 100; i++) {
0d8d4d42 989 smp_rmb();
2f4f1f81 990 if (is_cpu_dead(cpu))
1da177e4
LT
991 return;
992 msleep(100);
993 }
994 printk(KERN_ERR "CPU%d didn't die...\n", cpu);
995}
996
105765f4
BH
997void generic_set_cpu_dead(unsigned int cpu)
998{
999 per_cpu(cpu_state, cpu) = CPU_DEAD;
1000}
fb82b839 1001
ae5cab47
ZC
1002/*
1003 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
1004 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
1005 * which makes the delay in generic_cpu_die() not happen.
1006 */
1007void generic_set_cpu_up(unsigned int cpu)
1008{
1009 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1010}
1011
fb82b839
BH
1012int generic_check_cpu_restart(unsigned int cpu)
1013{
1014 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
1015}
512691d4 1016
2f4f1f81 1017int is_cpu_dead(unsigned int cpu)
1018{
1019 return per_cpu(cpu_state, cpu) == CPU_DEAD;
1020}
1021
441c19c8 1022static bool secondaries_inhibited(void)
512691d4 1023{
441c19c8 1024 return kvm_hv_mode_active();
512691d4
PM
1025}
1026
1027#else /* HOTPLUG_CPU */
1028
1029#define secondaries_inhibited() 0
1030
1da177e4
LT
1031#endif
1032
17e32eac 1033static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
c56e5853 1034{
c56e5853 1035#ifdef CONFIG_PPC64
d2e60075 1036 paca_ptrs[cpu]->__current = idle;
678c668a
CL
1037 paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
1038 THREAD_SIZE - STACK_FRAME_OVERHEAD;
c56e5853 1039#endif
ed1cd6de 1040 idle->cpu = cpu;
7c19c2e5 1041 secondary_current = current_set[cpu] = idle;
c56e5853
BH
1042}
1043
061d19f2 1044int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1da177e4 1045{
c56e5853 1046 int rc, c;
1da177e4 1047
512691d4
PM
1048 /*
1049 * Don't allow secondary threads to come online if inhibited
1050 */
1051 if (threads_per_core > 1 && secondaries_inhibited() &&
6f5e40a3 1052 cpu_thread_in_subcore(cpu))
512691d4
PM
1053 return -EBUSY;
1054
8cffc6ac
BH
1055 if (smp_ops == NULL ||
1056 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1da177e4
LT
1057 return -EINVAL;
1058
17e32eac 1059 cpu_idle_thread_init(cpu, tidle);
c560bbce 1060
14d4ae5c
BH
1061 /*
1062 * The platform might need to allocate resources prior to bringing
1063 * up the CPU
1064 */
1065 if (smp_ops->prepare_cpu) {
1066 rc = smp_ops->prepare_cpu(cpu);
1067 if (rc)
1068 return rc;
1069 }
1070
1da177e4
LT
1071 /* Make sure callin-map entry is 0 (can be leftover a CPU
1072 * hotplug
1073 */
1074 cpu_callin_map[cpu] = 0;
1075
1076 /* The information for processor bringup must
1077 * be written out to main store before we release
1078 * the processor.
1079 */
0d8d4d42 1080 smp_mb();
1da177e4
LT
1081
1082 /* wake up cpus */
1083 DBG("smp: kicking cpu %d\n", cpu);
de300974
ME
1084 rc = smp_ops->kick_cpu(cpu);
1085 if (rc) {
1086 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1087 return rc;
1088 }
1da177e4
LT
1089
1090 /*
1091 * wait to see if the cpu made a callin (is actually up).
1092 * use this value that I found through experimentation.
1093 * -- Cort
1094 */
1095 if (system_state < SYSTEM_RUNNING)
ee0339f2 1096 for (c = 50000; c && !cpu_callin_map[cpu]; c--)
1da177e4
LT
1097 udelay(100);
1098#ifdef CONFIG_HOTPLUG_CPU
1099 else
1100 /*
1101 * CPUs can take much longer to come up in the
1102 * hotplug case. Wait five seconds.
1103 */
67764263
GS
1104 for (c = 5000; c && !cpu_callin_map[cpu]; c--)
1105 msleep(1);
1da177e4
LT
1106#endif
1107
1108 if (!cpu_callin_map[cpu]) {
6685a477 1109 printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1da177e4
LT
1110 return -ENOENT;
1111 }
1112
6685a477 1113 DBG("Processor %u found.\n", cpu);
1da177e4
LT
1114
1115 if (smp_ops->give_timebase)
1116 smp_ops->give_timebase();
1117
875ebe94 1118 /* Wait until cpu puts itself in the online & active maps */
4e287e65 1119 spin_until_cond(cpu_online(cpu));
1da177e4
LT
1120
1121 return 0;
1122}
1123
e9efed3b
NL
1124/* Return the value of the reg property corresponding to the given
1125 * logical cpu.
1126 */
1127int cpu_to_core_id(int cpu)
1128{
1129 struct device_node *np;
f8a1883a 1130 const __be32 *reg;
e9efed3b
NL
1131 int id = -1;
1132
1133 np = of_get_cpu_node(cpu, NULL);
1134 if (!np)
1135 goto out;
1136
1137 reg = of_get_property(np, "reg", NULL);
1138 if (!reg)
1139 goto out;
1140
f8a1883a 1141 id = be32_to_cpup(reg);
e9efed3b
NL
1142out:
1143 of_node_put(np);
1144 return id;
1145}
f8ab4810 1146EXPORT_SYMBOL_GPL(cpu_to_core_id);
e9efed3b 1147
99d86705
VS
1148/* Helper routines for cpu to core mapping */
1149int cpu_core_index_of_thread(int cpu)
1150{
1151 return cpu >> threads_shift;
1152}
1153EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1154
1155int cpu_first_thread_of_core(int core)
1156{
1157 return core << threads_shift;
1158}
1159EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1160
104699c0 1161/* Must be called when no change can occur to cpu_present_mask,
440a0857
NL
1162 * i.e. during cpu online or offline.
1163 */
1164static struct device_node *cpu_to_l2cache(int cpu)
1165{
1166 struct device_node *np;
b2ea25b9 1167 struct device_node *cache;
440a0857
NL
1168
1169 if (!cpu_present(cpu))
1170 return NULL;
1171
1172 np = of_get_cpu_node(cpu, NULL);
1173 if (np == NULL)
1174 return NULL;
1175
b2ea25b9
NL
1176 cache = of_find_next_cache_node(np);
1177
440a0857
NL
1178 of_node_put(np);
1179
b2ea25b9 1180 return cache;
440a0857 1181}
1da177e4 1182
df52f671 1183static bool update_mask_by_l2(int cpu, struct cpumask *(*mask_fn)(int))
a8a5356c 1184{
256f2d4b 1185 struct device_node *l2_cache, *np;
e3d8b67e 1186 int i;
256f2d4b 1187
a8a5356c 1188 l2_cache = cpu_to_l2cache(cpu);
df52f671
OH
1189 if (!l2_cache)
1190 return false;
1191
1192 for_each_cpu(i, cpu_online_mask) {
1193 /*
1194 * when updating the marks the current CPU has not been marked
1195 * online, but we need to update the cache masks
1196 */
256f2d4b 1197 np = cpu_to_l2cache(i);
a8a5356c
PM
1198 if (!np)
1199 continue;
df52f671
OH
1200
1201 if (np == l2_cache)
1202 set_cpus_related(cpu, i, mask_fn);
1203
a8a5356c
PM
1204 of_node_put(np);
1205 }
1206 of_node_put(l2_cache);
df52f671
OH
1207
1208 return true;
1209}
1210
1211#ifdef CONFIG_HOTPLUG_CPU
1212static void remove_cpu_from_masks(int cpu)
1213{
1214 int i;
1215
1216 /* NB: cpu_core_mask is a superset of the others */
1217 for_each_cpu(i, cpu_core_mask(cpu)) {
1218 set_cpus_unrelated(cpu, i, cpu_core_mask);
2a636a56 1219 set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
df52f671 1220 set_cpus_unrelated(cpu, i, cpu_sibling_mask);
425752c6
GS
1221 if (has_big_cores)
1222 set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
df52f671
OH
1223 }
1224}
1225#endif
1226
425752c6
GS
1227static inline void add_cpu_to_smallcore_masks(int cpu)
1228{
1229 struct cpumask *this_l1_cache_map = per_cpu(cpu_l1_cache_map, cpu);
1230 int i, first_thread = cpu_first_thread_sibling(cpu);
1231
1232 if (!has_big_cores)
1233 return;
1234
1235 cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1236
1237 for (i = first_thread; i < first_thread + threads_per_core; i++) {
1238 if (cpu_online(i) && cpumask_test_cpu(i, this_l1_cache_map))
1239 set_cpus_related(i, cpu, cpu_smallcore_mask);
1240 }
1241}
1242
a05f0e5b
SD
1243int get_physical_package_id(int cpu)
1244{
1245 int pkg_id = cpu_to_chip_id(cpu);
1246
a05f0e5b
SD
1247 /*
1248 * If the platform is PowerNV or Guest on KVM, ibm,chip-id is
1249 * defined. Hence we would return the chip-id as the result of
1250 * get_physical_package_id.
1251 */
c72e8da0
ME
1252 if (pkg_id == -1 && firmware_has_feature(FW_FEATURE_LPAR) &&
1253 IS_ENABLED(CONFIG_PPC_SPLPAR)) {
a05f0e5b 1254 struct device_node *np = of_get_cpu_node(cpu, NULL);
4b4d181d
ME
1255 pkg_id = of_node_to_nid(np);
1256 of_node_put(np);
a05f0e5b 1257 }
a05f0e5b
SD
1258
1259 return pkg_id;
1260}
1261EXPORT_SYMBOL_GPL(get_physical_package_id);
1262
df52f671
OH
1263static void add_cpu_to_masks(int cpu)
1264{
1265 int first_thread = cpu_first_thread_sibling(cpu);
a05f0e5b 1266 int pkg_id = get_physical_package_id(cpu);
df52f671
OH
1267 int i;
1268
1269 /*
1270 * This CPU will not be in the online mask yet so we need to manually
1271 * add it to it's own thread sibling mask.
1272 */
1273 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1274
1275 for (i = first_thread; i < first_thread + threads_per_core; i++)
1276 if (cpu_online(i))
1277 set_cpus_related(i, cpu, cpu_sibling_mask);
1278
425752c6 1279 add_cpu_to_smallcore_masks(cpu);
df52f671 1280 /*
2a636a56
OH
1281 * Copy the thread sibling mask into the cache sibling mask
1282 * and mark any CPUs that share an L2 with this CPU.
df52f671
OH
1283 */
1284 for_each_cpu(i, cpu_sibling_mask(cpu))
2a636a56
OH
1285 set_cpus_related(cpu, i, cpu_l2_cache_mask);
1286 update_mask_by_l2(cpu, cpu_l2_cache_mask);
1287
1288 /*
1289 * Copy the cache sibling mask into core sibling mask and mark
1290 * any CPUs on the same chip as this CPU.
1291 */
1292 for_each_cpu(i, cpu_l2_cache_mask(cpu))
df52f671
OH
1293 set_cpus_related(cpu, i, cpu_core_mask);
1294
a05f0e5b 1295 if (pkg_id == -1)
df52f671 1296 return;
df52f671
OH
1297
1298 for_each_cpu(i, cpu_online_mask)
a05f0e5b 1299 if (get_physical_package_id(i) == pkg_id)
df52f671 1300 set_cpus_related(cpu, i, cpu_core_mask);
a8a5356c
PM
1301}
1302
1da177e4 1303/* Activate a secondary processor. */
061d19f2 1304void start_secondary(void *unused)
1da177e4
LT
1305{
1306 unsigned int cpu = smp_processor_id();
8e8a31d7 1307 struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
1da177e4 1308
f1f10076 1309 mmgrab(&init_mm);
1da177e4
LT
1310 current->active_mm = &init_mm;
1311
1312 smp_store_cpu_info(cpu);
5ad57078 1313 set_dec(tb_ticks_per_jiffy);
e4d76e1c 1314 preempt_disable();
1be6f10f 1315 cpu_callin_map[cpu] = 1;
1da177e4 1316
757cbd46
KG
1317 if (smp_ops->setup_cpu)
1318 smp_ops->setup_cpu(cpu);
1da177e4
LT
1319 if (smp_ops->take_timebase)
1320 smp_ops->take_timebase();
1321
d831d0b8
TB
1322 secondary_cpu_time_init();
1323
aeeafbfa
BH
1324#ifdef CONFIG_PPC64
1325 if (system_state == SYSTEM_RUNNING)
1326 vdso_data->processorCount++;
18ad51dd
AB
1327
1328 vdso_getcpu_init();
aeeafbfa 1329#endif
df52f671
OH
1330 /* Update topology CPU masks */
1331 add_cpu_to_masks(cpu);
1da177e4 1332
8e8a31d7
GS
1333 if (has_big_cores)
1334 sibling_mask = cpu_smallcore_mask;
96d91431
OH
1335 /*
1336 * Check for any shared caches. Note that this must be done on a
1337 * per-core basis because one core in the pair might be disabled.
1338 */
8e8a31d7 1339 if (!cpumask_equal(cpu_l2_cache_mask(cpu), sibling_mask(cpu)))
96d91431
OH
1340 shared_caches = true;
1341
bc3c4327
LZ
1342 set_numa_node(numa_cpu_lookup_table[cpu]);
1343 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1344
cce606fe
LZ
1345 smp_wmb();
1346 notify_cpu_starting(cpu);
1347 set_cpu_online(cpu, true);
1348
b6aeddea
ME
1349 boot_init_stack_canary();
1350
1da177e4
LT
1351 local_irq_enable();
1352
d1039786
NR
1353 /* We can enable ftrace for secondary cpus now */
1354 this_cpu_enable_ftrace();
1355
fc6d73d6 1356 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
fa3f82c8
BH
1357
1358 BUG();
1da177e4
LT
1359}
1360
1361int setup_profiling_timer(unsigned int multiplier)
1362{
1363 return 0;
1364}
1365
6d11b87d
TG
1366void __init smp_cpus_done(unsigned int max_cpus)
1367{
1368 /*
7b7622bb 1369 * We are running pinned to the boot CPU, see rest_init().
1da177e4 1370 */
757cbd46 1371 if (smp_ops && smp_ops->setup_cpu)
7b7622bb 1372 smp_ops->setup_cpu(boot_cpuid);
4b703a23 1373
d7294445
BH
1374 if (smp_ops && smp_ops->bringup_done)
1375 smp_ops->bringup_done();
1376
4b703a23 1377 dump_numa_cpu_topology();
d7294445 1378
8e8a31d7
GS
1379#ifdef CONFIG_SCHED_SMT
1380 if (has_big_cores) {
82a7cebd 1381 pr_info("Big cores detected but using small core scheduling\n");
8e8a31d7
GS
1382 powerpc_topology[0].mask = smallcore_smt_mask;
1383 }
1384#endif
2ef0ca54 1385 set_sched_topology(powerpc_topology);
e1f0ece1
MN
1386}
1387
1da177e4
LT
1388#ifdef CONFIG_HOTPLUG_CPU
1389int __cpu_disable(void)
1390{
e2075f79 1391 int cpu = smp_processor_id();
e2075f79 1392 int err;
1da177e4 1393
e2075f79
NL
1394 if (!smp_ops->cpu_disable)
1395 return -ENOSYS;
1396
424ef016
NR
1397 this_cpu_disable_ftrace();
1398
e2075f79
NL
1399 err = smp_ops->cpu_disable();
1400 if (err)
1401 return err;
1402
1403 /* Update sibling maps */
df52f671 1404 remove_cpu_from_masks(cpu);
e2075f79
NL
1405
1406 return 0;
1da177e4
LT
1407}
1408
1409void __cpu_die(unsigned int cpu)
1410{
1411 if (smp_ops->cpu_die)
1412 smp_ops->cpu_die(cpu);
1413}
d0174c72 1414
abb17f9c
MM
1415void cpu_die(void)
1416{
424ef016
NR
1417 /*
1418 * Disable on the down path. This will be re-enabled by
1419 * start_secondary() via start_secondary_resume() below
1420 */
1421 this_cpu_disable_ftrace();
1422
abb17f9c
MM
1423 if (ppc_md.cpu_die)
1424 ppc_md.cpu_die();
fa3f82c8
BH
1425
1426 /* If we return, we re-enter start_secondary */
1427 start_secondary_resume();
abb17f9c 1428}
fa3f82c8 1429
1da177e4 1430#endif