powerpc: Update comments in preparation for THREAD_INFO_IN_TASK
[linux-block.git] / arch / powerpc / kernel / smp.c
CommitLineData
1da177e4
LT
1/*
2 * SMP support for ppc.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
5 * deal of code from the sparc and intel versions.
6 *
7 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
8 *
9 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
10 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 */
17
18#undef DEBUG
19
1da177e4 20#include <linux/kernel.h>
4b16f8e2 21#include <linux/export.h>
68e21be2 22#include <linux/sched/mm.h>
105ab3d8 23#include <linux/sched/topology.h>
1da177e4
LT
24#include <linux/smp.h>
25#include <linux/interrupt.h>
26#include <linux/delay.h>
27#include <linux/init.h>
28#include <linux/spinlock.h>
29#include <linux/cache.h>
30#include <linux/err.h>
8a25a2fd 31#include <linux/device.h>
1da177e4
LT
32#include <linux/cpu.h>
33#include <linux/notifier.h>
4b703a23 34#include <linux/topology.h>
665e87ff 35#include <linux/profile.h>
4e287e65 36#include <linux/processor.h>
7241d26e 37#include <linux/random.h>
b6aeddea 38#include <linux/stackprotector.h>
1da177e4
LT
39
40#include <asm/ptrace.h>
60063497 41#include <linux/atomic.h>
1da177e4 42#include <asm/irq.h>
1b67bee1 43#include <asm/hw_irq.h>
441c19c8 44#include <asm/kvm_ppc.h>
b866cc21 45#include <asm/dbell.h>
1da177e4
LT
46#include <asm/page.h>
47#include <asm/pgtable.h>
48#include <asm/prom.h>
49#include <asm/smp.h>
1da177e4
LT
50#include <asm/time.h>
51#include <asm/machdep.h>
e2075f79 52#include <asm/cputhreads.h>
1da177e4 53#include <asm/cputable.h>
bbeb3f4c 54#include <asm/mpic.h>
a7f290da 55#include <asm/vdso_datapage.h>
5ad57078
PM
56#ifdef CONFIG_PPC64
57#include <asm/paca.h>
58#endif
18ad51dd 59#include <asm/vdso.h>
ae3a197e 60#include <asm/debug.h>
1217d34b 61#include <asm/kexec.h>
42f5b4ca 62#include <asm/asm-prototypes.h>
b92a226e 63#include <asm/cpu_has_feature.h>
d1039786 64#include <asm/ftrace.h>
5ad57078 65
1da177e4 66#ifdef DEBUG
f9e4ec57 67#include <asm/udbg.h>
1da177e4
LT
68#define DBG(fmt...) udbg_printf(fmt)
69#else
70#define DBG(fmt...)
71#endif
72
c56e5853 73#ifdef CONFIG_HOTPLUG_CPU
fb82b839
BH
74/* State of each CPU during hotplug phases */
75static DEFINE_PER_CPU(int, cpu_state) = { 0 };
c56e5853
BH
76#endif
77
f9e4ec57 78struct thread_info *secondary_ti;
425752c6 79bool has_big_cores;
f9e4ec57 80
cc1ba8ea 81DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
425752c6 82DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
2a636a56 83DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
cc1ba8ea 84DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
1da177e4 85
d5a7430d 86EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
2a636a56 87EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
440a0857 88EXPORT_PER_CPU_SYMBOL(cpu_core_map);
425752c6
GS
89EXPORT_SYMBOL_GPL(has_big_cores);
90
91#define MAX_THREAD_LIST_SIZE 8
92#define THREAD_GROUP_SHARE_L1 1
93struct thread_groups {
94 unsigned int property;
95 unsigned int nr_groups;
96 unsigned int threads_per_group;
97 unsigned int thread_list[MAX_THREAD_LIST_SIZE];
98};
99
100/*
101 * On big-cores system, cpu_l1_cache_map for each CPU corresponds to
102 * the set its siblings that share the L1-cache.
103 */
104DEFINE_PER_CPU(cpumask_var_t, cpu_l1_cache_map);
1da177e4 105
5ad57078 106/* SMP operations for this machine */
1da177e4
LT
107struct smp_ops_t *smp_ops;
108
7ccbe504
BH
109/* Can't be static due to PowerMac hackery */
110volatile unsigned int cpu_callin_map[NR_CPUS];
1da177e4 111
1da177e4
LT
112int smt_enabled_at_boot = 1;
113
3cd85250
AF
114/*
115 * Returns 1 if the specified cpu should be brought up during boot.
116 * Used to inhibit booting threads if they've been disabled or
117 * limited on the command line
118 */
119int smp_generic_cpu_bootable(unsigned int nr)
120{
121 /* Special case - we inhibit secondary thread startup
122 * during boot if the user requests it.
123 */
a8fcfc19 124 if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
3cd85250
AF
125 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
126 return 0;
127 if (smt_enabled_at_boot
128 && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
129 return 0;
130 }
131
132 return 1;
133}
134
135
5ad57078 136#ifdef CONFIG_PPC64
cad5cef6 137int smp_generic_kick_cpu(int nr)
1da177e4 138{
c642af9c 139 if (nr < 0 || nr >= nr_cpu_ids)
f8d0d5dc 140 return -EINVAL;
1da177e4
LT
141
142 /*
143 * The processor is currently spinning, waiting for the
144 * cpu_start field to become non-zero After we set cpu_start,
145 * the processor will continue on to secondary_start
146 */
d2e60075
NP
147 if (!paca_ptrs[nr]->cpu_start) {
148 paca_ptrs[nr]->cpu_start = 1;
fb82b839
BH
149 smp_mb();
150 return 0;
151 }
152
153#ifdef CONFIG_HOTPLUG_CPU
154 /*
155 * Ok it's not there, so it might be soft-unplugged, let's
156 * try to bring it back
157 */
ae5cab47 158 generic_set_cpu_up(nr);
fb82b839
BH
159 smp_wmb();
160 smp_send_reschedule(nr);
161#endif /* CONFIG_HOTPLUG_CPU */
de300974
ME
162
163 return 0;
1da177e4 164}
fb82b839 165#endif /* CONFIG_PPC64 */
1da177e4 166
25ddd738
MM
167static irqreturn_t call_function_action(int irq, void *data)
168{
169 generic_smp_call_function_interrupt();
170 return IRQ_HANDLED;
171}
172
173static irqreturn_t reschedule_action(int irq, void *data)
174{
184748cc 175 scheduler_ipi();
25ddd738
MM
176 return IRQ_HANDLED;
177}
178
bc907113 179#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1b67bee1 180static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
25ddd738 181{
3f984620 182 timer_broadcast_interrupt();
25ddd738
MM
183 return IRQ_HANDLED;
184}
bc907113 185#endif
25ddd738 186
ddd703ca
NP
187#ifdef CONFIG_NMI_IPI
188static irqreturn_t nmi_ipi_action(int irq, void *data)
25ddd738 189{
ddd703ca 190 smp_handle_nmi_ipi(get_irq_regs());
25ddd738
MM
191 return IRQ_HANDLED;
192}
ddd703ca 193#endif
25ddd738
MM
194
195static irq_handler_t smp_ipi_action[] = {
196 [PPC_MSG_CALL_FUNCTION] = call_function_action,
197 [PPC_MSG_RESCHEDULE] = reschedule_action,
bc907113 198#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1b67bee1 199 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
bc907113 200#endif
ddd703ca
NP
201#ifdef CONFIG_NMI_IPI
202 [PPC_MSG_NMI_IPI] = nmi_ipi_action,
203#endif
25ddd738
MM
204};
205
ddd703ca
NP
206/*
207 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
208 * than going through the call function infrastructure, and strongly
209 * serialized, so it is more appropriate for debugging.
210 */
25ddd738
MM
211const char *smp_ipi_name[] = {
212 [PPC_MSG_CALL_FUNCTION] = "ipi call function",
213 [PPC_MSG_RESCHEDULE] = "ipi reschedule",
bc907113 214#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1b67bee1 215 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
bc907113 216#endif
21bfd6a8 217#ifdef CONFIG_NMI_IPI
ddd703ca 218 [PPC_MSG_NMI_IPI] = "nmi ipi",
21bfd6a8 219#endif
25ddd738
MM
220};
221
222/* optional function to request ipi, for controllers with >= 4 ipis */
223int smp_request_message_ipi(int virq, int msg)
224{
225 int err;
226
ddd703ca 227 if (msg < 0 || msg > PPC_MSG_NMI_IPI)
25ddd738 228 return -EINVAL;
ddd703ca
NP
229#ifndef CONFIG_NMI_IPI
230 if (msg == PPC_MSG_NMI_IPI)
25ddd738 231 return 1;
25ddd738 232#endif
ddd703ca 233
3b5e16d7 234 err = request_irq(virq, smp_ipi_action[msg],
e6651de9 235 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
b0d436c7 236 smp_ipi_name[msg], NULL);
25ddd738
MM
237 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
238 virq, smp_ipi_name[msg], err);
239
240 return err;
241}
242
1ece355b 243#ifdef CONFIG_PPC_SMP_MUXED_IPI
23d72bfd 244struct cpu_messages {
bd7f561f 245 long messages; /* current messages */
23d72bfd
MM
246};
247static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
248
31639c77 249void smp_muxed_ipi_set_message(int cpu, int msg)
23d72bfd
MM
250{
251 struct cpu_messages *info = &per_cpu(ipi_message, cpu);
71454272 252 char *message = (char *)&info->messages;
23d72bfd 253
9fb1b36c
PM
254 /*
255 * Order previous accesses before accesses in the IPI handler.
256 */
257 smp_mb();
71454272 258 message[msg] = 1;
31639c77
SW
259}
260
261void smp_muxed_ipi_message_pass(int cpu, int msg)
262{
31639c77 263 smp_muxed_ipi_set_message(cpu, msg);
b866cc21 264
9fb1b36c
PM
265 /*
266 * cause_ipi functions are required to include a full barrier
267 * before doing whatever causes the IPI.
268 */
b866cc21 269 smp_ops->cause_ipi(cpu);
23d72bfd
MM
270}
271
0654de1c 272#ifdef __BIG_ENDIAN__
bd7f561f 273#define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
0654de1c 274#else
bd7f561f 275#define IPI_MESSAGE(A) (1uL << (8 * (A)))
0654de1c
AB
276#endif
277
23d72bfd
MM
278irqreturn_t smp_ipi_demux(void)
279{
23d72bfd 280 mb(); /* order any irq clear */
71454272 281
b87ac021
NP
282 return smp_ipi_demux_relaxed();
283}
284
285/* sync-free variant. Callers should ensure synchronization */
286irqreturn_t smp_ipi_demux_relaxed(void)
23d72bfd 287{
b866cc21 288 struct cpu_messages *info;
bd7f561f 289 unsigned long all;
23d72bfd 290
b866cc21 291 info = this_cpu_ptr(&ipi_message);
71454272 292 do {
9fb1b36c 293 all = xchg(&info->messages, 0);
e17769eb
SW
294#if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
295 /*
296 * Must check for PPC_MSG_RM_HOST_ACTION messages
297 * before PPC_MSG_CALL_FUNCTION messages because when
298 * a VM is destroyed, we call kick_all_cpus_sync()
299 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
300 * messages have completed before we free any VCPUs.
301 */
302 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
303 kvmppc_xics_ipi_action();
304#endif
0654de1c 305 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
23d72bfd 306 generic_smp_call_function_interrupt();
0654de1c 307 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
880102e7 308 scheduler_ipi();
bc907113 309#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1b67bee1 310 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
3f984620 311 timer_broadcast_interrupt();
bc907113 312#endif
ddd703ca
NP
313#ifdef CONFIG_NMI_IPI
314 if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
315 nmi_ipi_action(0, NULL);
316#endif
71454272
MM
317 } while (info->messages);
318
23d72bfd
MM
319 return IRQ_HANDLED;
320}
1ece355b 321#endif /* CONFIG_PPC_SMP_MUXED_IPI */
23d72bfd 322
9ca980dc
PM
323static inline void do_message_pass(int cpu, int msg)
324{
325 if (smp_ops->message_pass)
326 smp_ops->message_pass(cpu, msg);
327#ifdef CONFIG_PPC_SMP_MUXED_IPI
328 else
329 smp_muxed_ipi_message_pass(cpu, msg);
330#endif
331}
332
1da177e4
LT
333void smp_send_reschedule(int cpu)
334{
8cffc6ac 335 if (likely(smp_ops))
9ca980dc 336 do_message_pass(cpu, PPC_MSG_RESCHEDULE);
1da177e4 337}
de56a948 338EXPORT_SYMBOL_GPL(smp_send_reschedule);
1da177e4 339
b7d7a240
JA
340void arch_send_call_function_single_ipi(int cpu)
341{
402d9a1e 342 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
b7d7a240
JA
343}
344
f063ea02 345void arch_send_call_function_ipi_mask(const struct cpumask *mask)
b7d7a240
JA
346{
347 unsigned int cpu;
348
f063ea02 349 for_each_cpu(cpu, mask)
9ca980dc 350 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
b7d7a240
JA
351}
352
ddd703ca
NP
353#ifdef CONFIG_NMI_IPI
354
355/*
356 * "NMI IPI" system.
357 *
358 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
359 * a running system. They can be used for crash, debug, halt/reboot, etc.
360 *
ddd703ca 361 * The IPI call waits with interrupts disabled until all targets enter the
88b9a3d1
NP
362 * NMI handler, then returns. Subsequent IPIs can be issued before targets
363 * have returned from their handlers, so there is no guarantee about
364 * concurrency or re-entrancy.
ddd703ca 365 *
88b9a3d1 366 * A new NMI can be issued before all targets exit the handler.
ddd703ca
NP
367 *
368 * The IPI call may time out without all targets entering the NMI handler.
369 * In that case, there is some logic to recover (and ignore subsequent
370 * NMI interrupts that may eventually be raised), but the platform interrupt
371 * handler may not be able to distinguish this from other exception causes,
372 * which may cause a crash.
373 */
374
375static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
376static struct cpumask nmi_ipi_pending_mask;
88b9a3d1 377static bool nmi_ipi_busy = false;
ddd703ca
NP
378static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
379
380static void nmi_ipi_lock_start(unsigned long *flags)
381{
382 raw_local_irq_save(*flags);
383 hard_irq_disable();
384 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
385 raw_local_irq_restore(*flags);
0459ddfd 386 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
ddd703ca
NP
387 raw_local_irq_save(*flags);
388 hard_irq_disable();
389 }
390}
391
392static void nmi_ipi_lock(void)
393{
394 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
0459ddfd 395 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
ddd703ca
NP
396}
397
398static void nmi_ipi_unlock(void)
399{
400 smp_mb();
401 WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
402 atomic_set(&__nmi_ipi_lock, 0);
403}
404
405static void nmi_ipi_unlock_end(unsigned long *flags)
406{
407 nmi_ipi_unlock();
408 raw_local_irq_restore(*flags);
409}
410
411/*
412 * Platform NMI handler calls this to ack
413 */
414int smp_handle_nmi_ipi(struct pt_regs *regs)
415{
88b9a3d1 416 void (*fn)(struct pt_regs *) = NULL;
ddd703ca
NP
417 unsigned long flags;
418 int me = raw_smp_processor_id();
419 int ret = 0;
420
421 /*
422 * Unexpected NMIs are possible here because the interrupt may not
423 * be able to distinguish NMI IPIs from other types of NMIs, or
424 * because the caller may have timed out.
425 */
426 nmi_ipi_lock_start(&flags);
88b9a3d1
NP
427 if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
428 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
429 fn = READ_ONCE(nmi_ipi_function);
430 WARN_ON_ONCE(!fn);
431 ret = 1;
432 }
ddd703ca
NP
433 nmi_ipi_unlock_end(&flags);
434
88b9a3d1
NP
435 if (fn)
436 fn(regs);
437
ddd703ca
NP
438 return ret;
439}
440
6ba55716 441static void do_smp_send_nmi_ipi(int cpu, bool safe)
ddd703ca 442{
6ba55716 443 if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
c64af645
NP
444 return;
445
ddd703ca
NP
446 if (cpu >= 0) {
447 do_message_pass(cpu, PPC_MSG_NMI_IPI);
448 } else {
449 int c;
450
451 for_each_online_cpu(c) {
452 if (c == raw_smp_processor_id())
453 continue;
454 do_message_pass(c, PPC_MSG_NMI_IPI);
455 }
456 }
457}
458
459/*
460 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
461 * - fn is the target callback function.
462 * - delay_us > 0 is the delay before giving up waiting for targets to
88b9a3d1 463 * begin executing the handler, == 0 specifies indefinite delay.
ddd703ca 464 */
6fe243fe
NP
465static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
466 u64 delay_us, bool safe)
ddd703ca
NP
467{
468 unsigned long flags;
469 int me = raw_smp_processor_id();
470 int ret = 1;
471
472 BUG_ON(cpu == me);
473 BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
474
475 if (unlikely(!smp_ops))
476 return 0;
477
ddd703ca 478 nmi_ipi_lock_start(&flags);
88b9a3d1 479 while (nmi_ipi_busy) {
ddd703ca 480 nmi_ipi_unlock_end(&flags);
88b9a3d1 481 spin_until_cond(!nmi_ipi_busy);
ddd703ca
NP
482 nmi_ipi_lock_start(&flags);
483 }
88b9a3d1 484 nmi_ipi_busy = true;
ddd703ca
NP
485 nmi_ipi_function = fn;
486
88b9a3d1
NP
487 WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
488
ddd703ca
NP
489 if (cpu < 0) {
490 /* ALL_OTHERS */
491 cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
492 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
493 } else {
ddd703ca
NP
494 cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
495 }
88b9a3d1 496
ddd703ca
NP
497 nmi_ipi_unlock();
498
88b9a3d1
NP
499 /* Interrupts remain hard disabled */
500
6ba55716 501 do_smp_send_nmi_ipi(cpu, safe);
ddd703ca 502
5b73151f 503 nmi_ipi_lock();
88b9a3d1 504 /* nmi_ipi_busy is set here, so unlock/lock is okay */
ddd703ca 505 while (!cpumask_empty(&nmi_ipi_pending_mask)) {
5b73151f 506 nmi_ipi_unlock();
ddd703ca 507 udelay(1);
5b73151f
NP
508 nmi_ipi_lock();
509 if (delay_us) {
510 delay_us--;
511 if (!delay_us)
88b9a3d1 512 break;
5b73151f
NP
513 }
514 }
515
ddd703ca 516 if (!cpumask_empty(&nmi_ipi_pending_mask)) {
5b73151f 517 /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
ddd703ca
NP
518 ret = 0;
519 cpumask_clear(&nmi_ipi_pending_mask);
520 }
5b73151f 521
88b9a3d1
NP
522 nmi_ipi_function = NULL;
523 nmi_ipi_busy = false;
524
ddd703ca
NP
525 nmi_ipi_unlock_end(&flags);
526
527 return ret;
528}
6ba55716
ME
529
530int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
531{
532 return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
533}
534
535int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
536{
537 return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
538}
ddd703ca
NP
539#endif /* CONFIG_NMI_IPI */
540
1b67bee1
SB
541#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
542void tick_broadcast(const struct cpumask *mask)
543{
544 unsigned int cpu;
545
546 for_each_cpu(cpu, mask)
547 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
548}
549#endif
550
ddd703ca
NP
551#ifdef CONFIG_DEBUGGER
552void debugger_ipi_callback(struct pt_regs *regs)
1da177e4 553{
ddd703ca
NP
554 debugger_ipi(regs);
555}
e0476371 556
ddd703ca
NP
557void smp_send_debugger_break(void)
558{
559 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
1da177e4
LT
560}
561#endif
562
da665885 563#ifdef CONFIG_KEXEC_CORE
cc532915
ME
564void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
565{
4145f358
BS
566 int cpu;
567
ddd703ca 568 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
4145f358
BS
569 if (kdump_in_progress() && crash_wake_offline) {
570 for_each_present_cpu(cpu) {
571 if (cpu_online(cpu))
572 continue;
573 /*
574 * crash_ipi_callback will wait for
575 * all cpus, including offline CPUs.
576 * We don't care about nmi_ipi_function.
577 * Offline cpus will jump straight into
578 * crash_ipi_callback, we can skip the
579 * entire NMI dance and waiting for
580 * cpus to clear pending mask, etc.
581 */
6ba55716 582 do_smp_send_nmi_ipi(cpu, false);
4145f358
BS
583 }
584 }
cc532915
ME
585}
586#endif
587
ac61c115
NP
588#ifdef CONFIG_NMI_IPI
589static void nmi_stop_this_cpu(struct pt_regs *regs)
590{
591 /*
6029755e 592 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
ac61c115 593 */
6029755e
NP
594 spin_begin();
595 while (1)
596 spin_cpu_relax();
ac61c115 597}
ac61c115 598
8fd7675c
SS
599void smp_send_stop(void)
600{
ac61c115 601 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
6029755e
NP
602}
603
604#else /* CONFIG_NMI_IPI */
605
606static void stop_this_cpu(void *dummy)
607{
6029755e
NP
608 hard_irq_disable();
609 spin_begin();
610 while (1)
611 spin_cpu_relax();
612}
613
614void smp_send_stop(void)
615{
616 static bool stopped = false;
617
618 /*
619 * Prevent waiting on csd lock from a previous smp_send_stop.
620 * This is racy, but in general callers try to do the right
621 * thing and only fire off one smp_send_stop (e.g., see
622 * kernel/panic.c)
623 */
624 if (stopped)
625 return;
626
627 stopped = true;
628
8691e5a8 629 smp_call_function(stop_this_cpu, NULL, 0);
1da177e4 630}
6029755e 631#endif /* CONFIG_NMI_IPI */
1da177e4 632
1da177e4
LT
633struct thread_info *current_set[NR_CPUS];
634
cad5cef6 635static void smp_store_cpu_info(int id)
1da177e4 636{
6b7487fc 637 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
3160b097
BB
638#ifdef CONFIG_PPC_FSL_BOOK3E
639 per_cpu(next_tlbcam_idx, id)
640 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
641#endif
1da177e4
LT
642}
643
df52f671
OH
644/*
645 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
646 * rather than just passing around the cpumask we pass around a function that
647 * returns the that cpumask for the given CPU.
648 */
649static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
650{
651 cpumask_set_cpu(i, get_cpumask(j));
652 cpumask_set_cpu(j, get_cpumask(i));
653}
654
655#ifdef CONFIG_HOTPLUG_CPU
656static void set_cpus_unrelated(int i, int j,
657 struct cpumask *(*get_cpumask)(int))
658{
659 cpumask_clear_cpu(i, get_cpumask(j));
660 cpumask_clear_cpu(j, get_cpumask(i));
661}
662#endif
663
425752c6
GS
664/*
665 * parse_thread_groups: Parses the "ibm,thread-groups" device tree
666 * property for the CPU device node @dn and stores
667 * the parsed output in the thread_groups
668 * structure @tg if the ibm,thread-groups[0]
669 * matches @property.
670 *
671 * @dn: The device node of the CPU device.
672 * @tg: Pointer to a thread group structure into which the parsed
673 * output of "ibm,thread-groups" is stored.
674 * @property: The property of the thread-group that the caller is
675 * interested in.
676 *
677 * ibm,thread-groups[0..N-1] array defines which group of threads in
678 * the CPU-device node can be grouped together based on the property.
679 *
680 * ibm,thread-groups[0] tells us the property based on which the
681 * threads are being grouped together. If this value is 1, it implies
682 * that the threads in the same group share L1, translation cache.
683 *
684 * ibm,thread-groups[1] tells us how many such thread groups exist.
685 *
686 * ibm,thread-groups[2] tells us the number of threads in each such
687 * group.
688 *
689 * ibm,thread-groups[3..N-1] is the list of threads identified by
690 * "ibm,ppc-interrupt-server#s" arranged as per their membership in
691 * the grouping.
692 *
693 * Example: If ibm,thread-groups = [1,2,4,5,6,7,8,9,10,11,12] it
694 * implies that there are 2 groups of 4 threads each, where each group
695 * of threads share L1, translation cache.
696 *
697 * The "ibm,ppc-interrupt-server#s" of the first group is {5,6,7,8}
698 * and the "ibm,ppc-interrupt-server#s" of the second group is {9, 10,
699 * 11, 12} structure
700 *
701 * Returns 0 on success, -EINVAL if the property does not exist,
702 * -ENODATA if property does not have a value, and -EOVERFLOW if the
703 * property data isn't large enough.
704 */
705static int parse_thread_groups(struct device_node *dn,
706 struct thread_groups *tg,
707 unsigned int property)
708{
709 int i;
710 u32 thread_group_array[3 + MAX_THREAD_LIST_SIZE];
711 u32 *thread_list;
712 size_t total_threads;
713 int ret;
714
715 ret = of_property_read_u32_array(dn, "ibm,thread-groups",
716 thread_group_array, 3);
717 if (ret)
718 return ret;
719
720 tg->property = thread_group_array[0];
721 tg->nr_groups = thread_group_array[1];
722 tg->threads_per_group = thread_group_array[2];
723 if (tg->property != property ||
724 tg->nr_groups < 1 ||
725 tg->threads_per_group < 1)
726 return -ENODATA;
727
728 total_threads = tg->nr_groups * tg->threads_per_group;
729
730 ret = of_property_read_u32_array(dn, "ibm,thread-groups",
731 thread_group_array,
732 3 + total_threads);
733 if (ret)
734 return ret;
735
736 thread_list = &thread_group_array[3];
737
738 for (i = 0 ; i < total_threads; i++)
739 tg->thread_list[i] = thread_list[i];
740
741 return 0;
742}
743
744/*
745 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
746 * that @cpu belongs to.
747 *
748 * @cpu : The logical CPU whose thread group is being searched.
749 * @tg : The thread-group structure of the CPU node which @cpu belongs
750 * to.
751 *
752 * Returns the index to tg->thread_list that points to the the start
753 * of the thread_group that @cpu belongs to.
754 *
755 * Returns -1 if cpu doesn't belong to any of the groups pointed to by
756 * tg->thread_list.
757 */
758static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
759{
760 int hw_cpu_id = get_hard_smp_processor_id(cpu);
761 int i, j;
762
763 for (i = 0; i < tg->nr_groups; i++) {
764 int group_start = i * tg->threads_per_group;
765
766 for (j = 0; j < tg->threads_per_group; j++) {
767 int idx = group_start + j;
768
769 if (tg->thread_list[idx] == hw_cpu_id)
770 return group_start;
771 }
772 }
773
774 return -1;
775}
776
777static int init_cpu_l1_cache_map(int cpu)
778
779{
780 struct device_node *dn = of_get_cpu_node(cpu, NULL);
781 struct thread_groups tg = {.property = 0,
782 .nr_groups = 0,
783 .threads_per_group = 0};
784 int first_thread = cpu_first_thread_sibling(cpu);
785 int i, cpu_group_start = -1, err = 0;
786
787 if (!dn)
788 return -ENODATA;
789
790 err = parse_thread_groups(dn, &tg, THREAD_GROUP_SHARE_L1);
791 if (err)
792 goto out;
793
794 zalloc_cpumask_var_node(&per_cpu(cpu_l1_cache_map, cpu),
795 GFP_KERNEL,
796 cpu_to_node(cpu));
797
798 cpu_group_start = get_cpu_thread_group_start(cpu, &tg);
799
800 if (unlikely(cpu_group_start == -1)) {
801 WARN_ON_ONCE(1);
802 err = -ENODATA;
803 goto out;
804 }
805
806 for (i = first_thread; i < first_thread + threads_per_core; i++) {
807 int i_group_start = get_cpu_thread_group_start(i, &tg);
808
809 if (unlikely(i_group_start == -1)) {
810 WARN_ON_ONCE(1);
811 err = -ENODATA;
812 goto out;
813 }
814
815 if (i_group_start == cpu_group_start)
816 cpumask_set_cpu(i, per_cpu(cpu_l1_cache_map, cpu));
817 }
818
819out:
820 of_node_put(dn);
821 return err;
822}
823
824static int init_big_cores(void)
825{
826 int cpu;
827
828 for_each_possible_cpu(cpu) {
829 int err = init_cpu_l1_cache_map(cpu);
830
831 if (err)
832 return err;
833
834 zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
835 GFP_KERNEL,
836 cpu_to_node(cpu));
837 }
838
839 has_big_cores = true;
840 return 0;
841}
842
1da177e4
LT
843void __init smp_prepare_cpus(unsigned int max_cpus)
844{
845 unsigned int cpu;
846
847 DBG("smp_prepare_cpus\n");
848
849 /*
850 * setup_cpu may need to be called on the boot cpu. We havent
851 * spun any cpus up but lets be paranoid.
852 */
853 BUG_ON(boot_cpuid != smp_processor_id());
854
855 /* Fixup boot cpu */
856 smp_store_cpu_info(boot_cpuid);
857 cpu_callin_map[boot_cpuid] = 1;
858
cc1ba8ea
AB
859 for_each_possible_cpu(cpu) {
860 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
861 GFP_KERNEL, cpu_to_node(cpu));
2a636a56
OH
862 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
863 GFP_KERNEL, cpu_to_node(cpu));
cc1ba8ea
AB
864 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
865 GFP_KERNEL, cpu_to_node(cpu));
2fabf084
NA
866 /*
867 * numa_node_id() works after this.
868 */
bc3c4327
LZ
869 if (cpu_present(cpu)) {
870 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
871 set_cpu_numa_mem(cpu,
872 local_memory_node(numa_cpu_lookup_table[cpu]));
873 }
cc1ba8ea
AB
874 }
875
df52f671 876 /* Init the cpumasks so the boot CPU is related to itself */
cc1ba8ea 877 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
2a636a56 878 cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
cc1ba8ea
AB
879 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
880
425752c6
GS
881 init_big_cores();
882 if (has_big_cores) {
883 cpumask_set_cpu(boot_cpuid,
884 cpu_smallcore_mask(boot_cpuid));
885 }
886
dfee0efe
CG
887 if (smp_ops && smp_ops->probe)
888 smp_ops->probe();
1da177e4
LT
889}
890
cad5cef6 891void smp_prepare_boot_cpu(void)
1da177e4
LT
892{
893 BUG_ON(smp_processor_id() != boot_cpuid);
5ad57078 894#ifdef CONFIG_PPC64
d2e60075 895 paca_ptrs[boot_cpuid]->__current = current;
5ad57078 896#endif
8c272261 897 set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
b5e2fc1c 898 current_set[boot_cpuid] = task_thread_info(current);
1da177e4
LT
899}
900
901#ifdef CONFIG_HOTPLUG_CPU
1da177e4
LT
902
903int generic_cpu_disable(void)
904{
905 unsigned int cpu = smp_processor_id();
906
907 if (cpu == boot_cpuid)
908 return -EBUSY;
909
ea0f1cab 910 set_cpu_online(cpu, false);
799d6046 911#ifdef CONFIG_PPC64
a7f290da 912 vdso_data->processorCount--;
094fe2e7 913#endif
a978e139
BH
914 /* Update affinity of all IRQs previously aimed at this CPU */
915 irq_migrate_all_off_this_cpu();
916
687b8f24
ME
917 /*
918 * Depending on the details of the interrupt controller, it's possible
919 * that one of the interrupts we just migrated away from this CPU is
920 * actually already pending on this CPU. If we leave it in that state
921 * the interrupt will never be EOI'ed, and will never fire again. So
922 * temporarily enable interrupts here, to allow any pending interrupt to
923 * be received (and EOI'ed), before we take this CPU offline.
924 */
a978e139
BH
925 local_irq_enable();
926 mdelay(1);
927 local_irq_disable();
928
1da177e4
LT
929 return 0;
930}
931
1da177e4
LT
932void generic_cpu_die(unsigned int cpu)
933{
934 int i;
935
936 for (i = 0; i < 100; i++) {
0d8d4d42 937 smp_rmb();
2f4f1f81 938 if (is_cpu_dead(cpu))
1da177e4
LT
939 return;
940 msleep(100);
941 }
942 printk(KERN_ERR "CPU%d didn't die...\n", cpu);
943}
944
105765f4
BH
945void generic_set_cpu_dead(unsigned int cpu)
946{
947 per_cpu(cpu_state, cpu) = CPU_DEAD;
948}
fb82b839 949
ae5cab47
ZC
950/*
951 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
952 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
953 * which makes the delay in generic_cpu_die() not happen.
954 */
955void generic_set_cpu_up(unsigned int cpu)
956{
957 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
958}
959
fb82b839
BH
960int generic_check_cpu_restart(unsigned int cpu)
961{
962 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
963}
512691d4 964
2f4f1f81 965int is_cpu_dead(unsigned int cpu)
966{
967 return per_cpu(cpu_state, cpu) == CPU_DEAD;
968}
969
441c19c8 970static bool secondaries_inhibited(void)
512691d4 971{
441c19c8 972 return kvm_hv_mode_active();
512691d4
PM
973}
974
975#else /* HOTPLUG_CPU */
976
977#define secondaries_inhibited() 0
978
1da177e4
LT
979#endif
980
17e32eac 981static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
c56e5853 982{
17e32eac 983 struct thread_info *ti = task_thread_info(idle);
c56e5853
BH
984
985#ifdef CONFIG_PPC64
d2e60075
NP
986 paca_ptrs[cpu]->__current = idle;
987 paca_ptrs[cpu]->kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD;
c56e5853
BH
988#endif
989 ti->cpu = cpu;
17e32eac 990 secondary_ti = current_set[cpu] = ti;
c56e5853
BH
991}
992
061d19f2 993int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1da177e4 994{
c56e5853 995 int rc, c;
1da177e4 996
512691d4
PM
997 /*
998 * Don't allow secondary threads to come online if inhibited
999 */
1000 if (threads_per_core > 1 && secondaries_inhibited() &&
6f5e40a3 1001 cpu_thread_in_subcore(cpu))
512691d4
PM
1002 return -EBUSY;
1003
8cffc6ac
BH
1004 if (smp_ops == NULL ||
1005 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1da177e4
LT
1006 return -EINVAL;
1007
17e32eac 1008 cpu_idle_thread_init(cpu, tidle);
c560bbce 1009
14d4ae5c
BH
1010 /*
1011 * The platform might need to allocate resources prior to bringing
1012 * up the CPU
1013 */
1014 if (smp_ops->prepare_cpu) {
1015 rc = smp_ops->prepare_cpu(cpu);
1016 if (rc)
1017 return rc;
1018 }
1019
1da177e4
LT
1020 /* Make sure callin-map entry is 0 (can be leftover a CPU
1021 * hotplug
1022 */
1023 cpu_callin_map[cpu] = 0;
1024
1025 /* The information for processor bringup must
1026 * be written out to main store before we release
1027 * the processor.
1028 */
0d8d4d42 1029 smp_mb();
1da177e4
LT
1030
1031 /* wake up cpus */
1032 DBG("smp: kicking cpu %d\n", cpu);
de300974
ME
1033 rc = smp_ops->kick_cpu(cpu);
1034 if (rc) {
1035 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1036 return rc;
1037 }
1da177e4
LT
1038
1039 /*
1040 * wait to see if the cpu made a callin (is actually up).
1041 * use this value that I found through experimentation.
1042 * -- Cort
1043 */
1044 if (system_state < SYSTEM_RUNNING)
ee0339f2 1045 for (c = 50000; c && !cpu_callin_map[cpu]; c--)
1da177e4
LT
1046 udelay(100);
1047#ifdef CONFIG_HOTPLUG_CPU
1048 else
1049 /*
1050 * CPUs can take much longer to come up in the
1051 * hotplug case. Wait five seconds.
1052 */
67764263
GS
1053 for (c = 5000; c && !cpu_callin_map[cpu]; c--)
1054 msleep(1);
1da177e4
LT
1055#endif
1056
1057 if (!cpu_callin_map[cpu]) {
6685a477 1058 printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1da177e4
LT
1059 return -ENOENT;
1060 }
1061
6685a477 1062 DBG("Processor %u found.\n", cpu);
1da177e4
LT
1063
1064 if (smp_ops->give_timebase)
1065 smp_ops->give_timebase();
1066
875ebe94 1067 /* Wait until cpu puts itself in the online & active maps */
4e287e65 1068 spin_until_cond(cpu_online(cpu));
1da177e4
LT
1069
1070 return 0;
1071}
1072
e9efed3b
NL
1073/* Return the value of the reg property corresponding to the given
1074 * logical cpu.
1075 */
1076int cpu_to_core_id(int cpu)
1077{
1078 struct device_node *np;
f8a1883a 1079 const __be32 *reg;
e9efed3b
NL
1080 int id = -1;
1081
1082 np = of_get_cpu_node(cpu, NULL);
1083 if (!np)
1084 goto out;
1085
1086 reg = of_get_property(np, "reg", NULL);
1087 if (!reg)
1088 goto out;
1089
f8a1883a 1090 id = be32_to_cpup(reg);
e9efed3b
NL
1091out:
1092 of_node_put(np);
1093 return id;
1094}
f8ab4810 1095EXPORT_SYMBOL_GPL(cpu_to_core_id);
e9efed3b 1096
99d86705
VS
1097/* Helper routines for cpu to core mapping */
1098int cpu_core_index_of_thread(int cpu)
1099{
1100 return cpu >> threads_shift;
1101}
1102EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1103
1104int cpu_first_thread_of_core(int core)
1105{
1106 return core << threads_shift;
1107}
1108EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1109
104699c0 1110/* Must be called when no change can occur to cpu_present_mask,
440a0857
NL
1111 * i.e. during cpu online or offline.
1112 */
1113static struct device_node *cpu_to_l2cache(int cpu)
1114{
1115 struct device_node *np;
b2ea25b9 1116 struct device_node *cache;
440a0857
NL
1117
1118 if (!cpu_present(cpu))
1119 return NULL;
1120
1121 np = of_get_cpu_node(cpu, NULL);
1122 if (np == NULL)
1123 return NULL;
1124
b2ea25b9
NL
1125 cache = of_find_next_cache_node(np);
1126
440a0857
NL
1127 of_node_put(np);
1128
b2ea25b9 1129 return cache;
440a0857 1130}
1da177e4 1131
df52f671 1132static bool update_mask_by_l2(int cpu, struct cpumask *(*mask_fn)(int))
a8a5356c 1133{
256f2d4b 1134 struct device_node *l2_cache, *np;
e3d8b67e 1135 int i;
256f2d4b 1136
a8a5356c 1137 l2_cache = cpu_to_l2cache(cpu);
df52f671
OH
1138 if (!l2_cache)
1139 return false;
1140
1141 for_each_cpu(i, cpu_online_mask) {
1142 /*
1143 * when updating the marks the current CPU has not been marked
1144 * online, but we need to update the cache masks
1145 */
256f2d4b 1146 np = cpu_to_l2cache(i);
a8a5356c
PM
1147 if (!np)
1148 continue;
df52f671
OH
1149
1150 if (np == l2_cache)
1151 set_cpus_related(cpu, i, mask_fn);
1152
a8a5356c
PM
1153 of_node_put(np);
1154 }
1155 of_node_put(l2_cache);
df52f671
OH
1156
1157 return true;
1158}
1159
1160#ifdef CONFIG_HOTPLUG_CPU
1161static void remove_cpu_from_masks(int cpu)
1162{
1163 int i;
1164
1165 /* NB: cpu_core_mask is a superset of the others */
1166 for_each_cpu(i, cpu_core_mask(cpu)) {
1167 set_cpus_unrelated(cpu, i, cpu_core_mask);
2a636a56 1168 set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
df52f671 1169 set_cpus_unrelated(cpu, i, cpu_sibling_mask);
425752c6
GS
1170 if (has_big_cores)
1171 set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
df52f671
OH
1172 }
1173}
1174#endif
1175
425752c6
GS
1176static inline void add_cpu_to_smallcore_masks(int cpu)
1177{
1178 struct cpumask *this_l1_cache_map = per_cpu(cpu_l1_cache_map, cpu);
1179 int i, first_thread = cpu_first_thread_sibling(cpu);
1180
1181 if (!has_big_cores)
1182 return;
1183
1184 cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1185
1186 for (i = first_thread; i < first_thread + threads_per_core; i++) {
1187 if (cpu_online(i) && cpumask_test_cpu(i, this_l1_cache_map))
1188 set_cpus_related(i, cpu, cpu_smallcore_mask);
1189 }
1190}
1191
df52f671
OH
1192static void add_cpu_to_masks(int cpu)
1193{
1194 int first_thread = cpu_first_thread_sibling(cpu);
1195 int chipid = cpu_to_chip_id(cpu);
1196 int i;
1197
1198 /*
1199 * This CPU will not be in the online mask yet so we need to manually
1200 * add it to it's own thread sibling mask.
1201 */
1202 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1203
1204 for (i = first_thread; i < first_thread + threads_per_core; i++)
1205 if (cpu_online(i))
1206 set_cpus_related(i, cpu, cpu_sibling_mask);
1207
425752c6 1208 add_cpu_to_smallcore_masks(cpu);
df52f671 1209 /*
2a636a56
OH
1210 * Copy the thread sibling mask into the cache sibling mask
1211 * and mark any CPUs that share an L2 with this CPU.
df52f671
OH
1212 */
1213 for_each_cpu(i, cpu_sibling_mask(cpu))
2a636a56
OH
1214 set_cpus_related(cpu, i, cpu_l2_cache_mask);
1215 update_mask_by_l2(cpu, cpu_l2_cache_mask);
1216
1217 /*
1218 * Copy the cache sibling mask into core sibling mask and mark
1219 * any CPUs on the same chip as this CPU.
1220 */
1221 for_each_cpu(i, cpu_l2_cache_mask(cpu))
df52f671
OH
1222 set_cpus_related(cpu, i, cpu_core_mask);
1223
2a636a56 1224 if (chipid == -1)
df52f671 1225 return;
df52f671
OH
1226
1227 for_each_cpu(i, cpu_online_mask)
1228 if (cpu_to_chip_id(i) == chipid)
1229 set_cpus_related(cpu, i, cpu_core_mask);
a8a5356c
PM
1230}
1231
96d91431
OH
1232static bool shared_caches;
1233
1da177e4 1234/* Activate a secondary processor. */
061d19f2 1235void start_secondary(void *unused)
1da177e4
LT
1236{
1237 unsigned int cpu = smp_processor_id();
8e8a31d7 1238 struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
1da177e4 1239
f1f10076 1240 mmgrab(&init_mm);
1da177e4
LT
1241 current->active_mm = &init_mm;
1242
1243 smp_store_cpu_info(cpu);
5ad57078 1244 set_dec(tb_ticks_per_jiffy);
e4d76e1c 1245 preempt_disable();
1be6f10f 1246 cpu_callin_map[cpu] = 1;
1da177e4 1247
757cbd46
KG
1248 if (smp_ops->setup_cpu)
1249 smp_ops->setup_cpu(cpu);
1da177e4
LT
1250 if (smp_ops->take_timebase)
1251 smp_ops->take_timebase();
1252
d831d0b8
TB
1253 secondary_cpu_time_init();
1254
aeeafbfa
BH
1255#ifdef CONFIG_PPC64
1256 if (system_state == SYSTEM_RUNNING)
1257 vdso_data->processorCount++;
18ad51dd
AB
1258
1259 vdso_getcpu_init();
aeeafbfa 1260#endif
df52f671
OH
1261 /* Update topology CPU masks */
1262 add_cpu_to_masks(cpu);
1da177e4 1263
8e8a31d7
GS
1264 if (has_big_cores)
1265 sibling_mask = cpu_smallcore_mask;
96d91431
OH
1266 /*
1267 * Check for any shared caches. Note that this must be done on a
1268 * per-core basis because one core in the pair might be disabled.
1269 */
8e8a31d7 1270 if (!cpumask_equal(cpu_l2_cache_mask(cpu), sibling_mask(cpu)))
96d91431
OH
1271 shared_caches = true;
1272
bc3c4327
LZ
1273 set_numa_node(numa_cpu_lookup_table[cpu]);
1274 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1275
cce606fe
LZ
1276 smp_wmb();
1277 notify_cpu_starting(cpu);
1278 set_cpu_online(cpu, true);
1279
b6aeddea
ME
1280 boot_init_stack_canary();
1281
1da177e4
LT
1282 local_irq_enable();
1283
d1039786
NR
1284 /* We can enable ftrace for secondary cpus now */
1285 this_cpu_enable_ftrace();
1286
fc6d73d6 1287 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
fa3f82c8
BH
1288
1289 BUG();
1da177e4
LT
1290}
1291
1292int setup_profiling_timer(unsigned int multiplier)
1293{
1294 return 0;
1295}
1296
607b45e9
VG
1297#ifdef CONFIG_SCHED_SMT
1298/* cpumask of CPUs with asymetric SMT dependancy */
b6220ad6 1299static int powerpc_smt_flags(void)
607b45e9 1300{
5d4dfddd 1301 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
607b45e9
VG
1302
1303 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
1304 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
1305 flags |= SD_ASYM_PACKING;
1306 }
1307 return flags;
1308}
1309#endif
1310
1311static struct sched_domain_topology_level powerpc_topology[] = {
1312#ifdef CONFIG_SCHED_SMT
1313 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1314#endif
1315 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1316 { NULL, },
1317};
1318
96d91431
OH
1319/*
1320 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1321 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1322 * since the migrated task remains cache hot. We want to take advantage of this
1323 * at the scheduler level so an extra topology level is required.
1324 */
1325static int powerpc_shared_cache_flags(void)
1326{
1327 return SD_SHARE_PKG_RESOURCES;
1328}
1329
1330/*
1331 * We can't just pass cpu_l2_cache_mask() directly because
1332 * returns a non-const pointer and the compiler barfs on that.
1333 */
1334static const struct cpumask *shared_cache_mask(int cpu)
1335{
1336 return cpu_l2_cache_mask(cpu);
1337}
1338
8e8a31d7
GS
1339#ifdef CONFIG_SCHED_SMT
1340static const struct cpumask *smallcore_smt_mask(int cpu)
1341{
1342 return cpu_smallcore_mask(cpu);
1343}
1344#endif
1345
96d91431
OH
1346static struct sched_domain_topology_level power9_topology[] = {
1347#ifdef CONFIG_SCHED_SMT
1348 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1349#endif
1350 { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
1351 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1352 { NULL, },
1353};
1354
6d11b87d
TG
1355void __init smp_cpus_done(unsigned int max_cpus)
1356{
1357 /*
7b7622bb 1358 * We are running pinned to the boot CPU, see rest_init().
1da177e4 1359 */
757cbd46 1360 if (smp_ops && smp_ops->setup_cpu)
7b7622bb 1361 smp_ops->setup_cpu(boot_cpuid);
4b703a23 1362
d7294445
BH
1363 if (smp_ops && smp_ops->bringup_done)
1364 smp_ops->bringup_done();
1365
2ea62630
SD
1366 /*
1367 * On a shared LPAR, associativity needs to be requested.
1368 * Hence, get numa topology before dumping cpu topology
1369 */
1370 shared_proc_topology_init();
4b703a23 1371 dump_numa_cpu_topology();
d7294445 1372
8e8a31d7
GS
1373#ifdef CONFIG_SCHED_SMT
1374 if (has_big_cores) {
1375 pr_info("Using small cores at SMT level\n");
1376 power9_topology[0].mask = smallcore_smt_mask;
1377 powerpc_topology[0].mask = smallcore_smt_mask;
1378 }
1379#endif
96d91431
OH
1380 /*
1381 * If any CPU detects that it's sharing a cache with another CPU then
1382 * use the deeper topology that is aware of this sharing.
1383 */
1384 if (shared_caches) {
1385 pr_info("Using shared cache scheduler topology\n");
1386 set_sched_topology(power9_topology);
1387 } else {
1388 pr_info("Using standard scheduler topology\n");
1389 set_sched_topology(powerpc_topology);
1390 }
e1f0ece1
MN
1391}
1392
1da177e4
LT
1393#ifdef CONFIG_HOTPLUG_CPU
1394int __cpu_disable(void)
1395{
e2075f79 1396 int cpu = smp_processor_id();
e2075f79 1397 int err;
1da177e4 1398
e2075f79
NL
1399 if (!smp_ops->cpu_disable)
1400 return -ENOSYS;
1401
424ef016
NR
1402 this_cpu_disable_ftrace();
1403
e2075f79
NL
1404 err = smp_ops->cpu_disable();
1405 if (err)
1406 return err;
1407
1408 /* Update sibling maps */
df52f671 1409 remove_cpu_from_masks(cpu);
e2075f79
NL
1410
1411 return 0;
1da177e4
LT
1412}
1413
1414void __cpu_die(unsigned int cpu)
1415{
1416 if (smp_ops->cpu_die)
1417 smp_ops->cpu_die(cpu);
1418}
d0174c72 1419
abb17f9c
MM
1420void cpu_die(void)
1421{
424ef016
NR
1422 /*
1423 * Disable on the down path. This will be re-enabled by
1424 * start_secondary() via start_secondary_resume() below
1425 */
1426 this_cpu_disable_ftrace();
1427
abb17f9c
MM
1428 if (ppc_md.cpu_die)
1429 ppc_md.cpu_die();
fa3f82c8
BH
1430
1431 /* If we return, we re-enter start_secondary */
1432 start_secondary_resume();
abb17f9c 1433}
fa3f82c8 1434
1da177e4 1435#endif