Merge tag 'signal-for-v5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/ebieder...
[linux-block.git] / arch / powerpc / kernel / smp.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * SMP support for ppc.
4 *
5 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
6 * deal of code from the sparc and intel versions.
7 *
8 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
9 *
10 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
11 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
1da177e4
LT
12 */
13
14#undef DEBUG
15
1da177e4 16#include <linux/kernel.h>
4b16f8e2 17#include <linux/export.h>
68e21be2 18#include <linux/sched/mm.h>
678c668a 19#include <linux/sched/task_stack.h>
105ab3d8 20#include <linux/sched/topology.h>
1da177e4
LT
21#include <linux/smp.h>
22#include <linux/interrupt.h>
23#include <linux/delay.h>
24#include <linux/init.h>
25#include <linux/spinlock.h>
26#include <linux/cache.h>
27#include <linux/err.h>
8a25a2fd 28#include <linux/device.h>
1da177e4
LT
29#include <linux/cpu.h>
30#include <linux/notifier.h>
4b703a23 31#include <linux/topology.h>
665e87ff 32#include <linux/profile.h>
4e287e65 33#include <linux/processor.h>
7241d26e 34#include <linux/random.h>
b6aeddea 35#include <linux/stackprotector.h>
65fddcfc 36#include <linux/pgtable.h>
cd7aa5d2 37#include <linux/clockchips.h>
c7255058 38#include <linux/kexec.h>
1da177e4
LT
39
40#include <asm/ptrace.h>
60063497 41#include <linux/atomic.h>
1da177e4 42#include <asm/irq.h>
1b67bee1 43#include <asm/hw_irq.h>
441c19c8 44#include <asm/kvm_ppc.h>
b866cc21 45#include <asm/dbell.h>
1da177e4 46#include <asm/page.h>
1da177e4 47#include <asm/smp.h>
1da177e4
LT
48#include <asm/time.h>
49#include <asm/machdep.h>
e2075f79 50#include <asm/cputhreads.h>
1da177e4 51#include <asm/cputable.h>
bbeb3f4c 52#include <asm/mpic.h>
a7f290da 53#include <asm/vdso_datapage.h>
5ad57078
PM
54#ifdef CONFIG_PPC64
55#include <asm/paca.h>
56#endif
18ad51dd 57#include <asm/vdso.h>
ae3a197e 58#include <asm/debug.h>
b92a226e 59#include <asm/cpu_has_feature.h>
d1039786 60#include <asm/ftrace.h>
e0d8e991 61#include <asm/kup.h>
06e629c2 62#include <asm/fadump.h>
5ad57078 63
1da177e4 64#ifdef DEBUG
f9e4ec57 65#include <asm/udbg.h>
1da177e4
LT
66#define DBG(fmt...) udbg_printf(fmt)
67#else
68#define DBG(fmt...)
69#endif
70
c56e5853 71#ifdef CONFIG_HOTPLUG_CPU
fb82b839
BH
72/* State of each CPU during hotplug phases */
73static DEFINE_PER_CPU(int, cpu_state) = { 0 };
c56e5853
BH
74#endif
75
7c19c2e5 76struct task_struct *secondary_current;
425752c6 77bool has_big_cores;
f9f130ff 78bool coregroup_enabled;
9538abee 79bool thread_group_shares_l2;
e9ef81e1 80bool thread_group_shares_l3;
f9e4ec57 81
cc1ba8ea 82DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
425752c6 83DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
2a636a56 84DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
cc1ba8ea 85DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
078277ac 86static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map);
1da177e4 87
d5a7430d 88EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
2a636a56 89EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
440a0857 90EXPORT_PER_CPU_SYMBOL(cpu_core_map);
425752c6
GS
91EXPORT_SYMBOL_GPL(has_big_cores);
92
72730bfc
SD
93enum {
94#ifdef CONFIG_SCHED_SMT
95 smt_idx,
96#endif
97 cache_idx,
98 mc_idx,
99 die_idx,
100};
101
425752c6
GS
102#define MAX_THREAD_LIST_SIZE 8
103#define THREAD_GROUP_SHARE_L1 1
e9ef81e1 104#define THREAD_GROUP_SHARE_L2_L3 2
425752c6
GS
105struct thread_groups {
106 unsigned int property;
107 unsigned int nr_groups;
108 unsigned int threads_per_group;
109 unsigned int thread_list[MAX_THREAD_LIST_SIZE];
110};
111
790a1662 112/* Maximum number of properties that groups of threads within a core can share */
9538abee 113#define MAX_THREAD_GROUP_PROPERTIES 2
790a1662
GS
114
115struct thread_groups_list {
116 unsigned int nr_properties;
117 struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES];
118};
119
120static struct thread_groups_list tgl[NR_CPUS] __initdata;
425752c6 121/*
1fdc1d66 122 * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to
425752c6
GS
123 * the set its siblings that share the L1-cache.
124 */
a4bec516 125DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map);
1da177e4 126
9538abee
GS
127/*
128 * On some big-cores system, thread_group_l2_cache_map for each CPU
129 * corresponds to the set its siblings within the core that share the
130 * L2-cache.
131 */
a4bec516 132DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map);
9538abee 133
e9ef81e1
PS
134/*
135 * On P10, thread_group_l3_cache_map for each CPU is equal to the
136 * thread_group_l2_cache_map
137 */
138DEFINE_PER_CPU(cpumask_var_t, thread_group_l3_cache_map);
139
5ad57078 140/* SMP operations for this machine */
1da177e4
LT
141struct smp_ops_t *smp_ops;
142
7ccbe504
BH
143/* Can't be static due to PowerMac hackery */
144volatile unsigned int cpu_callin_map[NR_CPUS];
1da177e4 145
1da177e4
LT
146int smt_enabled_at_boot = 1;
147
3cd85250
AF
148/*
149 * Returns 1 if the specified cpu should be brought up during boot.
150 * Used to inhibit booting threads if they've been disabled or
151 * limited on the command line
152 */
153int smp_generic_cpu_bootable(unsigned int nr)
154{
155 /* Special case - we inhibit secondary thread startup
156 * during boot if the user requests it.
157 */
a8fcfc19 158 if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
3cd85250
AF
159 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
160 return 0;
161 if (smt_enabled_at_boot
162 && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
163 return 0;
164 }
165
166 return 1;
167}
168
169
5ad57078 170#ifdef CONFIG_PPC64
cad5cef6 171int smp_generic_kick_cpu(int nr)
1da177e4 172{
c642af9c 173 if (nr < 0 || nr >= nr_cpu_ids)
f8d0d5dc 174 return -EINVAL;
1da177e4
LT
175
176 /*
177 * The processor is currently spinning, waiting for the
178 * cpu_start field to become non-zero After we set cpu_start,
179 * the processor will continue on to secondary_start
180 */
d2e60075
NP
181 if (!paca_ptrs[nr]->cpu_start) {
182 paca_ptrs[nr]->cpu_start = 1;
fb82b839
BH
183 smp_mb();
184 return 0;
185 }
186
187#ifdef CONFIG_HOTPLUG_CPU
188 /*
189 * Ok it's not there, so it might be soft-unplugged, let's
190 * try to bring it back
191 */
ae5cab47 192 generic_set_cpu_up(nr);
fb82b839
BH
193 smp_wmb();
194 smp_send_reschedule(nr);
195#endif /* CONFIG_HOTPLUG_CPU */
de300974
ME
196
197 return 0;
1da177e4 198}
fb82b839 199#endif /* CONFIG_PPC64 */
1da177e4 200
25ddd738
MM
201static irqreturn_t call_function_action(int irq, void *data)
202{
203 generic_smp_call_function_interrupt();
204 return IRQ_HANDLED;
205}
206
207static irqreturn_t reschedule_action(int irq, void *data)
208{
184748cc 209 scheduler_ipi();
25ddd738
MM
210 return IRQ_HANDLED;
211}
212
bc907113 213#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1b67bee1 214static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
25ddd738 215{
3f984620 216 timer_broadcast_interrupt();
25ddd738
MM
217 return IRQ_HANDLED;
218}
bc907113 219#endif
25ddd738 220
ddd703ca
NP
221#ifdef CONFIG_NMI_IPI
222static irqreturn_t nmi_ipi_action(int irq, void *data)
25ddd738 223{
ddd703ca 224 smp_handle_nmi_ipi(get_irq_regs());
25ddd738
MM
225 return IRQ_HANDLED;
226}
ddd703ca 227#endif
25ddd738
MM
228
229static irq_handler_t smp_ipi_action[] = {
230 [PPC_MSG_CALL_FUNCTION] = call_function_action,
231 [PPC_MSG_RESCHEDULE] = reschedule_action,
bc907113 232#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1b67bee1 233 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
bc907113 234#endif
ddd703ca
NP
235#ifdef CONFIG_NMI_IPI
236 [PPC_MSG_NMI_IPI] = nmi_ipi_action,
237#endif
25ddd738
MM
238};
239
ddd703ca
NP
240/*
241 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
242 * than going through the call function infrastructure, and strongly
243 * serialized, so it is more appropriate for debugging.
244 */
25ddd738
MM
245const char *smp_ipi_name[] = {
246 [PPC_MSG_CALL_FUNCTION] = "ipi call function",
247 [PPC_MSG_RESCHEDULE] = "ipi reschedule",
bc907113 248#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1b67bee1 249 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
bc907113 250#endif
21bfd6a8 251#ifdef CONFIG_NMI_IPI
ddd703ca 252 [PPC_MSG_NMI_IPI] = "nmi ipi",
21bfd6a8 253#endif
25ddd738
MM
254};
255
256/* optional function to request ipi, for controllers with >= 4 ipis */
257int smp_request_message_ipi(int virq, int msg)
258{
259 int err;
260
ddd703ca 261 if (msg < 0 || msg > PPC_MSG_NMI_IPI)
25ddd738 262 return -EINVAL;
ddd703ca
NP
263#ifndef CONFIG_NMI_IPI
264 if (msg == PPC_MSG_NMI_IPI)
25ddd738 265 return 1;
25ddd738 266#endif
ddd703ca 267
3b5e16d7 268 err = request_irq(virq, smp_ipi_action[msg],
e6651de9 269 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
b0d436c7 270 smp_ipi_name[msg], NULL);
25ddd738
MM
271 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
272 virq, smp_ipi_name[msg], err);
273
274 return err;
275}
276
1ece355b 277#ifdef CONFIG_PPC_SMP_MUXED_IPI
23d72bfd 278struct cpu_messages {
bd7f561f 279 long messages; /* current messages */
23d72bfd
MM
280};
281static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
282
31639c77 283void smp_muxed_ipi_set_message(int cpu, int msg)
23d72bfd
MM
284{
285 struct cpu_messages *info = &per_cpu(ipi_message, cpu);
71454272 286 char *message = (char *)&info->messages;
23d72bfd 287
9fb1b36c
PM
288 /*
289 * Order previous accesses before accesses in the IPI handler.
290 */
291 smp_mb();
71454272 292 message[msg] = 1;
31639c77
SW
293}
294
295void smp_muxed_ipi_message_pass(int cpu, int msg)
296{
31639c77 297 smp_muxed_ipi_set_message(cpu, msg);
b866cc21 298
9fb1b36c
PM
299 /*
300 * cause_ipi functions are required to include a full barrier
301 * before doing whatever causes the IPI.
302 */
b866cc21 303 smp_ops->cause_ipi(cpu);
23d72bfd
MM
304}
305
0654de1c 306#ifdef __BIG_ENDIAN__
bd7f561f 307#define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
0654de1c 308#else
bd7f561f 309#define IPI_MESSAGE(A) (1uL << (8 * (A)))
0654de1c
AB
310#endif
311
23d72bfd
MM
312irqreturn_t smp_ipi_demux(void)
313{
23d72bfd 314 mb(); /* order any irq clear */
71454272 315
b87ac021
NP
316 return smp_ipi_demux_relaxed();
317}
318
319/* sync-free variant. Callers should ensure synchronization */
320irqreturn_t smp_ipi_demux_relaxed(void)
23d72bfd 321{
b866cc21 322 struct cpu_messages *info;
bd7f561f 323 unsigned long all;
23d72bfd 324
b866cc21 325 info = this_cpu_ptr(&ipi_message);
71454272 326 do {
9fb1b36c 327 all = xchg(&info->messages, 0);
e17769eb
SW
328#if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
329 /*
330 * Must check for PPC_MSG_RM_HOST_ACTION messages
331 * before PPC_MSG_CALL_FUNCTION messages because when
332 * a VM is destroyed, we call kick_all_cpus_sync()
333 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
334 * messages have completed before we free any VCPUs.
335 */
336 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
337 kvmppc_xics_ipi_action();
338#endif
0654de1c 339 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
23d72bfd 340 generic_smp_call_function_interrupt();
0654de1c 341 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
880102e7 342 scheduler_ipi();
bc907113 343#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1b67bee1 344 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
3f984620 345 timer_broadcast_interrupt();
bc907113 346#endif
ddd703ca
NP
347#ifdef CONFIG_NMI_IPI
348 if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
349 nmi_ipi_action(0, NULL);
350#endif
71454272
MM
351 } while (info->messages);
352
23d72bfd
MM
353 return IRQ_HANDLED;
354}
1ece355b 355#endif /* CONFIG_PPC_SMP_MUXED_IPI */
23d72bfd 356
9ca980dc
PM
357static inline void do_message_pass(int cpu, int msg)
358{
359 if (smp_ops->message_pass)
360 smp_ops->message_pass(cpu, msg);
361#ifdef CONFIG_PPC_SMP_MUXED_IPI
362 else
363 smp_muxed_ipi_message_pass(cpu, msg);
364#endif
365}
366
1da177e4
LT
367void smp_send_reschedule(int cpu)
368{
8cffc6ac 369 if (likely(smp_ops))
9ca980dc 370 do_message_pass(cpu, PPC_MSG_RESCHEDULE);
1da177e4 371}
de56a948 372EXPORT_SYMBOL_GPL(smp_send_reschedule);
1da177e4 373
b7d7a240
JA
374void arch_send_call_function_single_ipi(int cpu)
375{
402d9a1e 376 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
b7d7a240
JA
377}
378
f063ea02 379void arch_send_call_function_ipi_mask(const struct cpumask *mask)
b7d7a240
JA
380{
381 unsigned int cpu;
382
f063ea02 383 for_each_cpu(cpu, mask)
9ca980dc 384 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
b7d7a240
JA
385}
386
ddd703ca
NP
387#ifdef CONFIG_NMI_IPI
388
389/*
390 * "NMI IPI" system.
391 *
392 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
393 * a running system. They can be used for crash, debug, halt/reboot, etc.
394 *
ddd703ca 395 * The IPI call waits with interrupts disabled until all targets enter the
88b9a3d1
NP
396 * NMI handler, then returns. Subsequent IPIs can be issued before targets
397 * have returned from their handlers, so there is no guarantee about
398 * concurrency or re-entrancy.
ddd703ca 399 *
88b9a3d1 400 * A new NMI can be issued before all targets exit the handler.
ddd703ca
NP
401 *
402 * The IPI call may time out without all targets entering the NMI handler.
403 * In that case, there is some logic to recover (and ignore subsequent
404 * NMI interrupts that may eventually be raised), but the platform interrupt
405 * handler may not be able to distinguish this from other exception causes,
406 * which may cause a crash.
407 */
408
409static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
410static struct cpumask nmi_ipi_pending_mask;
88b9a3d1 411static bool nmi_ipi_busy = false;
ddd703ca
NP
412static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
413
5352090a 414noinstr static void nmi_ipi_lock_start(unsigned long *flags)
ddd703ca
NP
415{
416 raw_local_irq_save(*flags);
417 hard_irq_disable();
5352090a 418 while (arch_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
ddd703ca 419 raw_local_irq_restore(*flags);
5352090a 420 spin_until_cond(arch_atomic_read(&__nmi_ipi_lock) == 0);
ddd703ca
NP
421 raw_local_irq_save(*flags);
422 hard_irq_disable();
423 }
424}
425
5352090a 426noinstr static void nmi_ipi_lock(void)
ddd703ca 427{
5352090a
DA
428 while (arch_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
429 spin_until_cond(arch_atomic_read(&__nmi_ipi_lock) == 0);
ddd703ca
NP
430}
431
5352090a 432noinstr static void nmi_ipi_unlock(void)
ddd703ca
NP
433{
434 smp_mb();
5352090a
DA
435 WARN_ON(arch_atomic_read(&__nmi_ipi_lock) != 1);
436 arch_atomic_set(&__nmi_ipi_lock, 0);
ddd703ca
NP
437}
438
5352090a 439noinstr static void nmi_ipi_unlock_end(unsigned long *flags)
ddd703ca
NP
440{
441 nmi_ipi_unlock();
442 raw_local_irq_restore(*flags);
443}
444
445/*
446 * Platform NMI handler calls this to ack
447 */
5352090a 448noinstr int smp_handle_nmi_ipi(struct pt_regs *regs)
ddd703ca 449{
88b9a3d1 450 void (*fn)(struct pt_regs *) = NULL;
ddd703ca
NP
451 unsigned long flags;
452 int me = raw_smp_processor_id();
453 int ret = 0;
454
455 /*
456 * Unexpected NMIs are possible here because the interrupt may not
457 * be able to distinguish NMI IPIs from other types of NMIs, or
458 * because the caller may have timed out.
459 */
460 nmi_ipi_lock_start(&flags);
88b9a3d1
NP
461 if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
462 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
463 fn = READ_ONCE(nmi_ipi_function);
464 WARN_ON_ONCE(!fn);
465 ret = 1;
466 }
ddd703ca
NP
467 nmi_ipi_unlock_end(&flags);
468
88b9a3d1
NP
469 if (fn)
470 fn(regs);
471
ddd703ca
NP
472 return ret;
473}
474
6ba55716 475static void do_smp_send_nmi_ipi(int cpu, bool safe)
ddd703ca 476{
6ba55716 477 if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
c64af645
NP
478 return;
479
ddd703ca
NP
480 if (cpu >= 0) {
481 do_message_pass(cpu, PPC_MSG_NMI_IPI);
482 } else {
483 int c;
484
485 for_each_online_cpu(c) {
486 if (c == raw_smp_processor_id())
487 continue;
488 do_message_pass(c, PPC_MSG_NMI_IPI);
489 }
490 }
491}
492
493/*
494 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
495 * - fn is the target callback function.
496 * - delay_us > 0 is the delay before giving up waiting for targets to
88b9a3d1 497 * begin executing the handler, == 0 specifies indefinite delay.
ddd703ca 498 */
6fe243fe
NP
499static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
500 u64 delay_us, bool safe)
ddd703ca
NP
501{
502 unsigned long flags;
503 int me = raw_smp_processor_id();
504 int ret = 1;
505
506 BUG_ON(cpu == me);
507 BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
508
509 if (unlikely(!smp_ops))
510 return 0;
511
ddd703ca 512 nmi_ipi_lock_start(&flags);
88b9a3d1 513 while (nmi_ipi_busy) {
ddd703ca 514 nmi_ipi_unlock_end(&flags);
88b9a3d1 515 spin_until_cond(!nmi_ipi_busy);
ddd703ca
NP
516 nmi_ipi_lock_start(&flags);
517 }
88b9a3d1 518 nmi_ipi_busy = true;
ddd703ca
NP
519 nmi_ipi_function = fn;
520
88b9a3d1
NP
521 WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
522
ddd703ca
NP
523 if (cpu < 0) {
524 /* ALL_OTHERS */
525 cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
526 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
527 } else {
ddd703ca
NP
528 cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
529 }
88b9a3d1 530
ddd703ca
NP
531 nmi_ipi_unlock();
532
88b9a3d1
NP
533 /* Interrupts remain hard disabled */
534
6ba55716 535 do_smp_send_nmi_ipi(cpu, safe);
ddd703ca 536
5b73151f 537 nmi_ipi_lock();
88b9a3d1 538 /* nmi_ipi_busy is set here, so unlock/lock is okay */
ddd703ca 539 while (!cpumask_empty(&nmi_ipi_pending_mask)) {
5b73151f 540 nmi_ipi_unlock();
ddd703ca 541 udelay(1);
5b73151f
NP
542 nmi_ipi_lock();
543 if (delay_us) {
544 delay_us--;
545 if (!delay_us)
88b9a3d1 546 break;
5b73151f
NP
547 }
548 }
549
ddd703ca 550 if (!cpumask_empty(&nmi_ipi_pending_mask)) {
5b73151f 551 /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
ddd703ca
NP
552 ret = 0;
553 cpumask_clear(&nmi_ipi_pending_mask);
554 }
5b73151f 555
88b9a3d1
NP
556 nmi_ipi_function = NULL;
557 nmi_ipi_busy = false;
558
ddd703ca
NP
559 nmi_ipi_unlock_end(&flags);
560
561 return ret;
562}
6ba55716
ME
563
564int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
565{
566 return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
567}
568
569int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
570{
571 return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
572}
ddd703ca
NP
573#endif /* CONFIG_NMI_IPI */
574
1b67bee1
SB
575#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
576void tick_broadcast(const struct cpumask *mask)
577{
578 unsigned int cpu;
579
580 for_each_cpu(cpu, mask)
581 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
582}
583#endif
584
ddd703ca 585#ifdef CONFIG_DEBUGGER
157c9f40 586static void debugger_ipi_callback(struct pt_regs *regs)
1da177e4 587{
ddd703ca
NP
588 debugger_ipi(regs);
589}
e0476371 590
ddd703ca
NP
591void smp_send_debugger_break(void)
592{
593 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
1da177e4
LT
594}
595#endif
596
da665885 597#ifdef CONFIG_KEXEC_CORE
cc532915
ME
598void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
599{
4145f358
BS
600 int cpu;
601
ddd703ca 602 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
4145f358
BS
603 if (kdump_in_progress() && crash_wake_offline) {
604 for_each_present_cpu(cpu) {
605 if (cpu_online(cpu))
606 continue;
607 /*
608 * crash_ipi_callback will wait for
609 * all cpus, including offline CPUs.
610 * We don't care about nmi_ipi_function.
611 * Offline cpus will jump straight into
612 * crash_ipi_callback, we can skip the
613 * entire NMI dance and waiting for
614 * cpus to clear pending mask, etc.
615 */
6ba55716 616 do_smp_send_nmi_ipi(cpu, false);
4145f358
BS
617 }
618 }
cc532915
ME
619}
620#endif
621
219572d2
HB
622void crash_smp_send_stop(void)
623{
624 static bool stopped = false;
625
06e629c2
HB
626 /*
627 * In case of fadump, register data for all CPUs is captured by f/w
628 * on ibm,os-term rtas call. Skip IPI callbacks to other CPUs before
629 * this rtas call to avoid tricky post processing of those CPUs'
630 * backtraces.
631 */
632 if (should_fadump_crash())
633 return;
634
219572d2
HB
635 if (stopped)
636 return;
637
638 stopped = true;
639
c7255058
HB
640#ifdef CONFIG_KEXEC_CORE
641 if (kexec_crash_image) {
642 crash_kexec_prepare();
643 return;
644 }
645#endif
646
647 smp_send_stop();
219572d2
HB
648}
649
ac61c115
NP
650#ifdef CONFIG_NMI_IPI
651static void nmi_stop_this_cpu(struct pt_regs *regs)
652{
653 /*
6029755e 654 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
ac61c115 655 */
bab26238
NP
656 set_cpu_online(smp_processor_id(), false);
657
6029755e
NP
658 spin_begin();
659 while (1)
660 spin_cpu_relax();
ac61c115 661}
ac61c115 662
8fd7675c
SS
663void smp_send_stop(void)
664{
ac61c115 665 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
6029755e
NP
666}
667
668#else /* CONFIG_NMI_IPI */
669
670static void stop_this_cpu(void *dummy)
671{
6029755e 672 hard_irq_disable();
bab26238
NP
673
674 /*
675 * Offlining CPUs in stop_this_cpu can result in scheduler warnings,
676 * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants
677 * to know other CPUs are offline before it breaks locks to flush
678 * printk buffers, in case we panic()ed while holding the lock.
679 */
680 set_cpu_online(smp_processor_id(), false);
681
6029755e
NP
682 spin_begin();
683 while (1)
684 spin_cpu_relax();
685}
686
687void smp_send_stop(void)
688{
689 static bool stopped = false;
690
691 /*
692 * Prevent waiting on csd lock from a previous smp_send_stop.
693 * This is racy, but in general callers try to do the right
694 * thing and only fire off one smp_send_stop (e.g., see
695 * kernel/panic.c)
696 */
697 if (stopped)
698 return;
699
700 stopped = true;
701
8691e5a8 702 smp_call_function(stop_this_cpu, NULL, 0);
1da177e4 703}
6029755e 704#endif /* CONFIG_NMI_IPI */
1da177e4 705
e15c703b 706static struct task_struct *current_set[NR_CPUS];
1da177e4 707
cad5cef6 708static void smp_store_cpu_info(int id)
1da177e4 709{
6b7487fc 710 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
3e731858 711#ifdef CONFIG_PPC_E500
3160b097
BB
712 per_cpu(next_tlbcam_idx, id)
713 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
714#endif
1da177e4
LT
715}
716
df52f671
OH
717/*
718 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
719 * rather than just passing around the cpumask we pass around a function that
720 * returns the that cpumask for the given CPU.
721 */
722static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
723{
724 cpumask_set_cpu(i, get_cpumask(j));
725 cpumask_set_cpu(j, get_cpumask(i));
726}
727
728#ifdef CONFIG_HOTPLUG_CPU
729static void set_cpus_unrelated(int i, int j,
730 struct cpumask *(*get_cpumask)(int))
731{
732 cpumask_clear_cpu(i, get_cpumask(j));
733 cpumask_clear_cpu(j, get_cpumask(i));
734}
735#endif
736
3ab33d6d
SD
737/*
738 * Extends set_cpus_related. Instead of setting one CPU at a time in
739 * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask.
740 */
741static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int),
742 struct cpumask *(*dstmask)(int))
743{
744 struct cpumask *mask;
745 int k;
746
747 mask = srcmask(j);
748 for_each_cpu(k, srcmask(i))
749 cpumask_or(dstmask(k), dstmask(k), mask);
750
751 if (i == j)
752 return;
753
754 mask = srcmask(i);
755 for_each_cpu(k, srcmask(j))
756 cpumask_or(dstmask(k), dstmask(k), mask);
757}
758
425752c6
GS
759/*
760 * parse_thread_groups: Parses the "ibm,thread-groups" device tree
761 * property for the CPU device node @dn and stores
790a1662
GS
762 * the parsed output in the thread_groups_list
763 * structure @tglp.
425752c6
GS
764 *
765 * @dn: The device node of the CPU device.
790a1662 766 * @tglp: Pointer to a thread group list structure into which the parsed
425752c6 767 * output of "ibm,thread-groups" is stored.
425752c6
GS
768 *
769 * ibm,thread-groups[0..N-1] array defines which group of threads in
770 * the CPU-device node can be grouped together based on the property.
771 *
790a1662
GS
772 * This array can represent thread groupings for multiple properties.
773 *
774 * ibm,thread-groups[i + 0] tells us the property based on which the
425752c6 775 * threads are being grouped together. If this value is 1, it implies
9538abee
GS
776 * that the threads in the same group share L1, translation cache. If
777 * the value is 2, it implies that the threads in the same group share
778 * the same L2 cache.
425752c6 779 *
790a1662
GS
780 * ibm,thread-groups[i+1] tells us how many such thread groups exist for the
781 * property ibm,thread-groups[i]
425752c6 782 *
790a1662 783 * ibm,thread-groups[i+2] tells us the number of threads in each such
425752c6 784 * group.
790a1662 785 * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then,
425752c6 786 *
790a1662 787 * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by
425752c6
GS
788 * "ibm,ppc-interrupt-server#s" arranged as per their membership in
789 * the grouping.
790 *
790a1662
GS
791 * Example:
792 * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15]
793 * This can be decomposed up into two consecutive arrays:
794 * a) [1,2,4,8,10,12,14,9,11,13,15]
795 * b) [2,2,4,8,10,12,14,9,11,13,15]
796 *
797 * where in,
798 *
799 * a) provides information of Property "1" being shared by "2" groups,
800 * each with "4" threads each. The "ibm,ppc-interrupt-server#s" of
801 * the first group is {8,10,12,14} and the
802 * "ibm,ppc-interrupt-server#s" of the second group is
803 * {9,11,13,15}. Property "1" is indicative of the thread in the
804 * group sharing L1 cache, translation cache and Instruction Data
805 * flow.
425752c6 806 *
790a1662
GS
807 * b) provides information of Property "2" being shared by "2" groups,
808 * each group with "4" threads. The "ibm,ppc-interrupt-server#s" of
809 * the first group is {8,10,12,14} and the
810 * "ibm,ppc-interrupt-server#s" of the second group is
811 * {9,11,13,15}. Property "2" indicates that the threads in each
812 * group share the L2-cache.
425752c6
GS
813 *
814 * Returns 0 on success, -EINVAL if the property does not exist,
815 * -ENODATA if property does not have a value, and -EOVERFLOW if the
816 * property data isn't large enough.
817 */
818static int parse_thread_groups(struct device_node *dn,
790a1662 819 struct thread_groups_list *tglp)
425752c6 820{
790a1662
GS
821 unsigned int property_idx = 0;
822 u32 *thread_group_array;
425752c6 823 size_t total_threads;
790a1662
GS
824 int ret = 0, count;
825 u32 *thread_list;
826 int i = 0;
425752c6 827
790a1662
GS
828 count = of_property_count_u32_elems(dn, "ibm,thread-groups");
829 thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL);
425752c6 830 ret = of_property_read_u32_array(dn, "ibm,thread-groups",
790a1662 831 thread_group_array, count);
425752c6 832 if (ret)
790a1662 833 goto out_free;
425752c6 834
790a1662
GS
835 while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) {
836 int j;
837 struct thread_groups *tg = &tglp->property_tgs[property_idx++];
425752c6 838
790a1662
GS
839 tg->property = thread_group_array[i];
840 tg->nr_groups = thread_group_array[i + 1];
841 tg->threads_per_group = thread_group_array[i + 2];
842 total_threads = tg->nr_groups * tg->threads_per_group;
425752c6 843
790a1662 844 thread_list = &thread_group_array[i + 3];
425752c6 845
790a1662
GS
846 for (j = 0; j < total_threads; j++)
847 tg->thread_list[j] = thread_list[j];
848 i = i + 3 + total_threads;
849 }
425752c6 850
790a1662
GS
851 tglp->nr_properties = property_idx;
852
853out_free:
854 kfree(thread_group_array);
855 return ret;
425752c6
GS
856}
857
858/*
859 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
860 * that @cpu belongs to.
861 *
862 * @cpu : The logical CPU whose thread group is being searched.
863 * @tg : The thread-group structure of the CPU node which @cpu belongs
864 * to.
865 *
87c78b61 866 * Returns the index to tg->thread_list that points to the start
425752c6
GS
867 * of the thread_group that @cpu belongs to.
868 *
869 * Returns -1 if cpu doesn't belong to any of the groups pointed to by
870 * tg->thread_list.
871 */
872static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
873{
874 int hw_cpu_id = get_hard_smp_processor_id(cpu);
875 int i, j;
876
877 for (i = 0; i < tg->nr_groups; i++) {
878 int group_start = i * tg->threads_per_group;
879
880 for (j = 0; j < tg->threads_per_group; j++) {
881 int idx = group_start + j;
882
883 if (tg->thread_list[idx] == hw_cpu_id)
884 return group_start;
885 }
886 }
887
888 return -1;
889}
890
790a1662
GS
891static struct thread_groups *__init get_thread_groups(int cpu,
892 int group_property,
893 int *err)
894{
895 struct device_node *dn = of_get_cpu_node(cpu, NULL);
896 struct thread_groups_list *cpu_tgl = &tgl[cpu];
897 struct thread_groups *tg = NULL;
898 int i;
899 *err = 0;
900
901 if (!dn) {
902 *err = -ENODATA;
903 return NULL;
904 }
905
906 if (!cpu_tgl->nr_properties) {
907 *err = parse_thread_groups(dn, cpu_tgl);
908 if (*err)
909 goto out;
910 }
911
912 for (i = 0; i < cpu_tgl->nr_properties; i++) {
913 if (cpu_tgl->property_tgs[i].property == group_property) {
914 tg = &cpu_tgl->property_tgs[i];
915 break;
916 }
917 }
918
919 if (!tg)
920 *err = -EINVAL;
921out:
922 of_node_put(dn);
923 return tg;
924}
925
d276960d
NC
926static int __init update_mask_from_threadgroup(cpumask_var_t *mask, struct thread_groups *tg,
927 int cpu, int cpu_group_start)
e9ef81e1
PS
928{
929 int first_thread = cpu_first_thread_sibling(cpu);
930 int i;
931
932 zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu));
933
934 for (i = first_thread; i < first_thread + threads_per_core; i++) {
935 int i_group_start = get_cpu_thread_group_start(i, tg);
936
937 if (unlikely(i_group_start == -1)) {
938 WARN_ON_ONCE(1);
939 return -ENODATA;
940 }
941
942 if (i_group_start == cpu_group_start)
943 cpumask_set_cpu(i, *mask);
944 }
945
946 return 0;
947}
948
fbd2b672 949static int __init init_thread_group_cache_map(int cpu, int cache_property)
425752c6
GS
950
951{
e9ef81e1 952 int cpu_group_start = -1, err = 0;
790a1662 953 struct thread_groups *tg = NULL;
9538abee 954 cpumask_var_t *mask = NULL;
425752c6 955
9538abee 956 if (cache_property != THREAD_GROUP_SHARE_L1 &&
e9ef81e1 957 cache_property != THREAD_GROUP_SHARE_L2_L3)
fbd2b672
GS
958 return -EINVAL;
959
960 tg = get_thread_groups(cpu, cache_property, &err);
e9ef81e1 961
790a1662
GS
962 if (!tg)
963 return err;
425752c6 964
790a1662 965 cpu_group_start = get_cpu_thread_group_start(cpu, tg);
425752c6
GS
966
967 if (unlikely(cpu_group_start == -1)) {
968 WARN_ON_ONCE(1);
790a1662 969 return -ENODATA;
425752c6
GS
970 }
971
e9ef81e1 972 if (cache_property == THREAD_GROUP_SHARE_L1) {
9538abee 973 mask = &per_cpu(thread_group_l1_cache_map, cpu);
e9ef81e1
PS
974 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
975 }
976 else if (cache_property == THREAD_GROUP_SHARE_L2_L3) {
9538abee 977 mask = &per_cpu(thread_group_l2_cache_map, cpu);
e9ef81e1
PS
978 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
979 mask = &per_cpu(thread_group_l3_cache_map, cpu);
980 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
425752c6
GS
981 }
982
e9ef81e1 983
790a1662 984 return 0;
425752c6
GS
985}
986
5e93f16a
SD
987static bool shared_caches;
988
989#ifdef CONFIG_SCHED_SMT
990/* cpumask of CPUs with asymmetric SMT dependency */
991static int powerpc_smt_flags(void)
992{
993 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
994
995 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
996 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
997 flags |= SD_ASYM_PACKING;
998 }
999 return flags;
1000}
1001#endif
1002
1003/*
1004 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1005 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1006 * since the migrated task remains cache hot. We want to take advantage of this
1007 * at the scheduler level so an extra topology level is required.
1008 */
1009static int powerpc_shared_cache_flags(void)
1010{
1011 return SD_SHARE_PKG_RESOURCES;
1012}
1013
1014/*
1015 * We can't just pass cpu_l2_cache_mask() directly because
1016 * returns a non-const pointer and the compiler barfs on that.
1017 */
1018static const struct cpumask *shared_cache_mask(int cpu)
1019{
caa8e29d 1020 return per_cpu(cpu_l2_cache_map, cpu);
5e93f16a
SD
1021}
1022
1023#ifdef CONFIG_SCHED_SMT
1024static const struct cpumask *smallcore_smt_mask(int cpu)
1025{
1026 return cpu_smallcore_mask(cpu);
1027}
1028#endif
1029
72730bfc
SD
1030static struct cpumask *cpu_coregroup_mask(int cpu)
1031{
1032 return per_cpu(cpu_coregroup_map, cpu);
1033}
1034
1035static bool has_coregroup_support(void)
1036{
1037 return coregroup_enabled;
1038}
1039
1040static const struct cpumask *cpu_mc_mask(int cpu)
1041{
1042 return cpu_coregroup_mask(cpu);
1043}
1044
5e93f16a
SD
1045static struct sched_domain_topology_level powerpc_topology[] = {
1046#ifdef CONFIG_SCHED_SMT
1047 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1048#endif
1049 { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
72730bfc 1050 { cpu_mc_mask, SD_INIT_NAME(MC) },
5e93f16a
SD
1051 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1052 { NULL, },
1053};
1054
9014eab6 1055static int __init init_big_cores(void)
425752c6
GS
1056{
1057 int cpu;
1058
1059 for_each_possible_cpu(cpu) {
fbd2b672 1060 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1);
425752c6
GS
1061
1062 if (err)
1063 return err;
1064
1065 zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
1066 GFP_KERNEL,
1067 cpu_to_node(cpu));
1068 }
1069
1070 has_big_cores = true;
9538abee
GS
1071
1072 for_each_possible_cpu(cpu) {
e9ef81e1 1073 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2_L3);
9538abee
GS
1074
1075 if (err)
1076 return err;
1077 }
1078
1079 thread_group_shares_l2 = true;
e9ef81e1
PS
1080 thread_group_shares_l3 = true;
1081 pr_debug("L2/L3 cache only shared by the threads in the small core\n");
1082
425752c6
GS
1083 return 0;
1084}
1085
1da177e4
LT
1086void __init smp_prepare_cpus(unsigned int max_cpus)
1087{
1088 unsigned int cpu;
1089
1090 DBG("smp_prepare_cpus\n");
1091
1092 /*
1fd02f66 1093 * setup_cpu may need to be called on the boot cpu. We haven't
1da177e4
LT
1094 * spun any cpus up but lets be paranoid.
1095 */
1096 BUG_ON(boot_cpuid != smp_processor_id());
1097
1098 /* Fixup boot cpu */
1099 smp_store_cpu_info(boot_cpuid);
1100 cpu_callin_map[boot_cpuid] = 1;
1101
cc1ba8ea
AB
1102 for_each_possible_cpu(cpu) {
1103 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
1104 GFP_KERNEL, cpu_to_node(cpu));
2a636a56
OH
1105 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
1106 GFP_KERNEL, cpu_to_node(cpu));
cc1ba8ea
AB
1107 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
1108 GFP_KERNEL, cpu_to_node(cpu));
72730bfc
SD
1109 if (has_coregroup_support())
1110 zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu),
1111 GFP_KERNEL, cpu_to_node(cpu));
1112
a9ee6cf5 1113#ifdef CONFIG_NUMA
2fabf084
NA
1114 /*
1115 * numa_node_id() works after this.
1116 */
bc3c4327
LZ
1117 if (cpu_present(cpu)) {
1118 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
1119 set_cpu_numa_mem(cpu,
1120 local_memory_node(numa_cpu_lookup_table[cpu]));
1121 }
d0fd24bb 1122#endif
cc1ba8ea
AB
1123 }
1124
df52f671 1125 /* Init the cpumasks so the boot CPU is related to itself */
cc1ba8ea 1126 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
2a636a56 1127 cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
c47f892d 1128 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
cc1ba8ea 1129
72730bfc
SD
1130 if (has_coregroup_support())
1131 cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid));
1132
425752c6
GS
1133 init_big_cores();
1134 if (has_big_cores) {
1135 cpumask_set_cpu(boot_cpuid,
1136 cpu_smallcore_mask(boot_cpuid));
1137 }
1138
c1e53367 1139 if (cpu_to_chip_id(boot_cpuid) != -1) {
8efd249b 1140 int idx = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
c1e53367
SD
1141
1142 /*
1143 * All threads of a core will all belong to the same core,
1144 * chip_id_lookup_table will have one entry per core.
1145 * Assumption: if boot_cpuid doesn't have a chip-id, then no
1146 * other CPUs, will also not have chip-id.
1147 */
1148 chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL);
1149 if (chip_id_lookup_table)
1150 memset(chip_id_lookup_table, -1, sizeof(int) * idx);
1151 }
1152
dfee0efe
CG
1153 if (smp_ops && smp_ops->probe)
1154 smp_ops->probe();
1da177e4
LT
1155}
1156
cad5cef6 1157void smp_prepare_boot_cpu(void)
1da177e4
LT
1158{
1159 BUG_ON(smp_processor_id() != boot_cpuid);
5ad57078 1160#ifdef CONFIG_PPC64
d2e60075 1161 paca_ptrs[boot_cpuid]->__current = current;
5ad57078 1162#endif
8c272261 1163 set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
7c19c2e5 1164 current_set[boot_cpuid] = current;
1da177e4
LT
1165}
1166
1167#ifdef CONFIG_HOTPLUG_CPU
1da177e4
LT
1168
1169int generic_cpu_disable(void)
1170{
1171 unsigned int cpu = smp_processor_id();
1172
1173 if (cpu == boot_cpuid)
1174 return -EBUSY;
1175
ea0f1cab 1176 set_cpu_online(cpu, false);
799d6046 1177#ifdef CONFIG_PPC64
a7f290da 1178 vdso_data->processorCount--;
094fe2e7 1179#endif
a978e139
BH
1180 /* Update affinity of all IRQs previously aimed at this CPU */
1181 irq_migrate_all_off_this_cpu();
1182
687b8f24
ME
1183 /*
1184 * Depending on the details of the interrupt controller, it's possible
1185 * that one of the interrupts we just migrated away from this CPU is
1186 * actually already pending on this CPU. If we leave it in that state
1187 * the interrupt will never be EOI'ed, and will never fire again. So
1188 * temporarily enable interrupts here, to allow any pending interrupt to
1189 * be received (and EOI'ed), before we take this CPU offline.
1190 */
a978e139
BH
1191 local_irq_enable();
1192 mdelay(1);
1193 local_irq_disable();
1194
1da177e4
LT
1195 return 0;
1196}
1197
1da177e4
LT
1198void generic_cpu_die(unsigned int cpu)
1199{
1200 int i;
1201
1202 for (i = 0; i < 100; i++) {
0d8d4d42 1203 smp_rmb();
2f4f1f81 1204 if (is_cpu_dead(cpu))
1da177e4
LT
1205 return;
1206 msleep(100);
1207 }
1208 printk(KERN_ERR "CPU%d didn't die...\n", cpu);
1209}
1210
105765f4
BH
1211void generic_set_cpu_dead(unsigned int cpu)
1212{
1213 per_cpu(cpu_state, cpu) = CPU_DEAD;
1214}
fb82b839 1215
ae5cab47
ZC
1216/*
1217 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
1218 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
1219 * which makes the delay in generic_cpu_die() not happen.
1220 */
1221void generic_set_cpu_up(unsigned int cpu)
1222{
1223 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1224}
1225
fb82b839
BH
1226int generic_check_cpu_restart(unsigned int cpu)
1227{
1228 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
1229}
512691d4 1230
2f4f1f81 1231int is_cpu_dead(unsigned int cpu)
1232{
1233 return per_cpu(cpu_state, cpu) == CPU_DEAD;
1234}
1235
441c19c8 1236static bool secondaries_inhibited(void)
512691d4 1237{
441c19c8 1238 return kvm_hv_mode_active();
512691d4
PM
1239}
1240
1241#else /* HOTPLUG_CPU */
1242
1243#define secondaries_inhibited() 0
1244
1da177e4
LT
1245#endif
1246
17e32eac 1247static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
c56e5853 1248{
c56e5853 1249#ifdef CONFIG_PPC64
d2e60075 1250 paca_ptrs[cpu]->__current = idle;
678c668a
CL
1251 paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
1252 THREAD_SIZE - STACK_FRAME_OVERHEAD;
c56e5853 1253#endif
bcf9033e 1254 task_thread_info(idle)->cpu = cpu;
7c19c2e5 1255 secondary_current = current_set[cpu] = idle;
c56e5853
BH
1256}
1257
061d19f2 1258int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1da177e4 1259{
b37ac189
NL
1260 const unsigned long boot_spin_ms = 5 * MSEC_PER_SEC;
1261 const bool booting = system_state < SYSTEM_RUNNING;
1262 const unsigned long hp_spin_ms = 1;
1263 unsigned long deadline;
1264 int rc;
1265 const unsigned long spin_wait_ms = booting ? boot_spin_ms : hp_spin_ms;
1da177e4 1266
512691d4
PM
1267 /*
1268 * Don't allow secondary threads to come online if inhibited
1269 */
1270 if (threads_per_core > 1 && secondaries_inhibited() &&
6f5e40a3 1271 cpu_thread_in_subcore(cpu))
512691d4
PM
1272 return -EBUSY;
1273
8cffc6ac
BH
1274 if (smp_ops == NULL ||
1275 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1da177e4
LT
1276 return -EINVAL;
1277
17e32eac 1278 cpu_idle_thread_init(cpu, tidle);
c560bbce 1279
14d4ae5c
BH
1280 /*
1281 * The platform might need to allocate resources prior to bringing
1282 * up the CPU
1283 */
1284 if (smp_ops->prepare_cpu) {
1285 rc = smp_ops->prepare_cpu(cpu);
1286 if (rc)
1287 return rc;
1288 }
1289
1da177e4
LT
1290 /* Make sure callin-map entry is 0 (can be leftover a CPU
1291 * hotplug
1292 */
1293 cpu_callin_map[cpu] = 0;
1294
1295 /* The information for processor bringup must
1296 * be written out to main store before we release
1297 * the processor.
1298 */
0d8d4d42 1299 smp_mb();
1da177e4
LT
1300
1301 /* wake up cpus */
1302 DBG("smp: kicking cpu %d\n", cpu);
de300974
ME
1303 rc = smp_ops->kick_cpu(cpu);
1304 if (rc) {
1305 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1306 return rc;
1307 }
1da177e4
LT
1308
1309 /*
b37ac189
NL
1310 * At boot time, simply spin on the callin word until the
1311 * deadline passes.
1312 *
1313 * At run time, spin for an optimistic amount of time to avoid
1314 * sleeping in the common case.
1da177e4 1315 */
b37ac189
NL
1316 deadline = jiffies + msecs_to_jiffies(spin_wait_ms);
1317 spin_until_cond(cpu_callin_map[cpu] || time_is_before_jiffies(deadline));
1318
1319 if (!cpu_callin_map[cpu] && system_state >= SYSTEM_RUNNING) {
1320 const unsigned long sleep_interval_us = 10 * USEC_PER_MSEC;
1321 const unsigned long sleep_wait_ms = 100 * MSEC_PER_SEC;
1322
1323 deadline = jiffies + msecs_to_jiffies(sleep_wait_ms);
1324 while (!cpu_callin_map[cpu] && time_is_after_jiffies(deadline))
1325 fsleep(sleep_interval_us);
1326 }
1da177e4
LT
1327
1328 if (!cpu_callin_map[cpu]) {
6685a477 1329 printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1da177e4
LT
1330 return -ENOENT;
1331 }
1332
6685a477 1333 DBG("Processor %u found.\n", cpu);
1da177e4
LT
1334
1335 if (smp_ops->give_timebase)
1336 smp_ops->give_timebase();
1337
875ebe94 1338 /* Wait until cpu puts itself in the online & active maps */
4e287e65 1339 spin_until_cond(cpu_online(cpu));
1da177e4
LT
1340
1341 return 0;
1342}
1343
e9efed3b
NL
1344/* Return the value of the reg property corresponding to the given
1345 * logical cpu.
1346 */
1347int cpu_to_core_id(int cpu)
1348{
1349 struct device_node *np;
e9efed3b
NL
1350 int id = -1;
1351
1352 np = of_get_cpu_node(cpu, NULL);
1353 if (!np)
1354 goto out;
1355
41408b22 1356 id = of_get_cpu_hwid(np, 0);
e9efed3b
NL
1357out:
1358 of_node_put(np);
1359 return id;
1360}
f8ab4810 1361EXPORT_SYMBOL_GPL(cpu_to_core_id);
e9efed3b 1362
99d86705
VS
1363/* Helper routines for cpu to core mapping */
1364int cpu_core_index_of_thread(int cpu)
1365{
1366 return cpu >> threads_shift;
1367}
1368EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1369
1370int cpu_first_thread_of_core(int core)
1371{
1372 return core << threads_shift;
1373}
1374EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1375
104699c0 1376/* Must be called when no change can occur to cpu_present_mask,
440a0857
NL
1377 * i.e. during cpu online or offline.
1378 */
1379static struct device_node *cpu_to_l2cache(int cpu)
1380{
1381 struct device_node *np;
b2ea25b9 1382 struct device_node *cache;
440a0857
NL
1383
1384 if (!cpu_present(cpu))
1385 return NULL;
1386
1387 np = of_get_cpu_node(cpu, NULL);
1388 if (np == NULL)
1389 return NULL;
1390
b2ea25b9
NL
1391 cache = of_find_next_cache_node(np);
1392
440a0857
NL
1393 of_node_put(np);
1394
b2ea25b9 1395 return cache;
440a0857 1396}
1da177e4 1397
84dbf66c 1398static bool update_mask_by_l2(int cpu, cpumask_var_t *mask)
a8a5356c 1399{
3ab33d6d 1400 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
256f2d4b 1401 struct device_node *l2_cache, *np;
e3d8b67e 1402 int i;
256f2d4b 1403
966730a6
SD
1404 if (has_big_cores)
1405 submask_fn = cpu_smallcore_mask;
1406
9538abee
GS
1407 /*
1408 * If the threads in a thread-group share L2 cache, then the
1409 * L2-mask can be obtained from thread_group_l2_cache_map.
1410 */
1411 if (thread_group_shares_l2) {
1412 cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu));
1413
1414 for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) {
1415 if (cpu_online(i))
1416 set_cpus_related(i, cpu, cpu_l2_cache_mask);
1417 }
1418
1419 /* Verify that L1-cache siblings are a subset of L2 cache-siblings */
1420 if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) &&
1421 !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) {
1422 pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n",
1423 cpu);
1424 }
1425
1426 return true;
1427 }
1428
a8a5356c 1429 l2_cache = cpu_to_l2cache(cpu);
84dbf66c
SD
1430 if (!l2_cache || !*mask) {
1431 /* Assume only core siblings share cache with this CPU */
5bf63497 1432 for_each_cpu(i, cpu_sibling_mask(cpu))
f6606cfd
SD
1433 set_cpus_related(cpu, i, cpu_l2_cache_mask);
1434
df52f671 1435 return false;
f6606cfd 1436 }
df52f671 1437
84dbf66c 1438 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
3ab33d6d 1439
3ab33d6d
SD
1440 /* Update l2-cache mask with all the CPUs that are part of submask */
1441 or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask);
1442
1443 /* Skip all CPUs already part of current CPU l2-cache mask */
84dbf66c 1444 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu));
3ab33d6d 1445
84dbf66c 1446 for_each_cpu(i, *mask) {
df52f671
OH
1447 /*
1448 * when updating the marks the current CPU has not been marked
1449 * online, but we need to update the cache masks
1450 */
256f2d4b 1451 np = cpu_to_l2cache(i);
df52f671 1452
3ab33d6d
SD
1453 /* Skip all CPUs already part of current CPU l2-cache */
1454 if (np == l2_cache) {
1455 or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask);
84dbf66c 1456 cpumask_andnot(*mask, *mask, submask_fn(i));
3ab33d6d 1457 } else {
84dbf66c 1458 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i));
3ab33d6d 1459 }
df52f671 1460
a8a5356c
PM
1461 of_node_put(np);
1462 }
1463 of_node_put(l2_cache);
df52f671
OH
1464
1465 return true;
1466}
1467
1468#ifdef CONFIG_HOTPLUG_CPU
1469static void remove_cpu_from_masks(int cpu)
1470{
70edd4a7 1471 struct cpumask *(*mask_fn)(int) = cpu_sibling_mask;
df52f671
OH
1472 int i;
1473
9a245d0e
SD
1474 unmap_cpu_from_node(cpu);
1475
70edd4a7
SD
1476 if (shared_caches)
1477 mask_fn = cpu_l2_cache_mask;
1478
1479 for_each_cpu(i, mask_fn(cpu)) {
2a636a56 1480 set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
df52f671 1481 set_cpus_unrelated(cpu, i, cpu_sibling_mask);
425752c6
GS
1482 if (has_big_cores)
1483 set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
70edd4a7
SD
1484 }
1485
c47f892d
SD
1486 for_each_cpu(i, cpu_core_mask(cpu))
1487 set_cpus_unrelated(cpu, i, cpu_core_mask);
1488
70edd4a7
SD
1489 if (has_coregroup_support()) {
1490 for_each_cpu(i, cpu_coregroup_mask(cpu))
72730bfc 1491 set_cpus_unrelated(cpu, i, cpu_coregroup_mask);
df52f671
OH
1492 }
1493}
1494#endif
1495
425752c6
GS
1496static inline void add_cpu_to_smallcore_masks(int cpu)
1497{
661e3d42 1498 int i;
425752c6
GS
1499
1500 if (!has_big_cores)
1501 return;
1502
1503 cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1504
1fdc1d66 1505 for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) {
661e3d42 1506 if (cpu_online(i))
425752c6
GS
1507 set_cpus_related(i, cpu, cpu_smallcore_mask);
1508 }
1509}
1510
84dbf66c 1511static void update_coregroup_mask(int cpu, cpumask_var_t *mask)
b8a97cb4 1512{
70a94089 1513 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
b8a97cb4
SD
1514 int coregroup_id = cpu_to_coregroup_id(cpu);
1515 int i;
1516
70a94089
SD
1517 if (shared_caches)
1518 submask_fn = cpu_l2_cache_mask;
1519
84dbf66c
SD
1520 if (!*mask) {
1521 /* Assume only siblings are part of this CPU's coregroup */
1522 for_each_cpu(i, submask_fn(cpu))
1523 set_cpus_related(cpu, i, cpu_coregroup_mask);
1524
1525 return;
1526 }
1527
1528 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1529
70a94089
SD
1530 /* Update coregroup mask with all the CPUs that are part of submask */
1531 or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask);
1532
1533 /* Skip all CPUs already part of coregroup mask */
84dbf66c 1534 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu));
b8a97cb4 1535
84dbf66c 1536 for_each_cpu(i, *mask) {
70a94089
SD
1537 /* Skip all CPUs not part of this coregroup */
1538 if (coregroup_id == cpu_to_coregroup_id(i)) {
1539 or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask);
84dbf66c 1540 cpumask_andnot(*mask, *mask, submask_fn(i));
70a94089 1541 } else {
84dbf66c 1542 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i));
70a94089 1543 }
b8a97cb4
SD
1544 }
1545}
1546
df52f671
OH
1547static void add_cpu_to_masks(int cpu)
1548{
c47f892d 1549 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
df52f671 1550 int first_thread = cpu_first_thread_sibling(cpu);
84dbf66c 1551 cpumask_var_t mask;
c1e53367 1552 int chip_id = -1;
c47f892d 1553 bool ret;
df52f671
OH
1554 int i;
1555
1556 /*
1557 * This CPU will not be in the online mask yet so we need to manually
1558 * add it to it's own thread sibling mask.
1559 */
9a245d0e 1560 map_cpu_to_node(cpu, cpu_to_node(cpu));
df52f671 1561 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
b8b92803 1562 cpumask_set_cpu(cpu, cpu_core_mask(cpu));
df52f671
OH
1563
1564 for (i = first_thread; i < first_thread + threads_per_core; i++)
1565 if (cpu_online(i))
1566 set_cpus_related(i, cpu, cpu_sibling_mask);
1567
425752c6 1568 add_cpu_to_smallcore_masks(cpu);
84dbf66c
SD
1569
1570 /* In CPU-hotplug path, hence use GFP_ATOMIC */
c47f892d 1571 ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu));
84dbf66c 1572 update_mask_by_l2(cpu, &mask);
2a636a56 1573
b8a97cb4 1574 if (has_coregroup_support())
84dbf66c
SD
1575 update_coregroup_mask(cpu, &mask);
1576
c1e53367
SD
1577 if (chip_id_lookup_table && ret)
1578 chip_id = cpu_to_chip_id(cpu);
1579
c47f892d
SD
1580 if (shared_caches)
1581 submask_fn = cpu_l2_cache_mask;
1582
1583 /* Update core_mask with all the CPUs that are part of submask */
1584 or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask);
1585
1586 /* Skip all CPUs already part of current CPU core mask */
1587 cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu));
1588
b8b92803
SD
1589 /* If chip_id is -1; limit the cpu_core_mask to within DIE*/
1590 if (chip_id == -1)
1591 cpumask_and(mask, mask, cpu_cpu_mask(cpu));
1592
c47f892d
SD
1593 for_each_cpu(i, mask) {
1594 if (chip_id == cpu_to_chip_id(i)) {
1595 or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask);
1596 cpumask_andnot(mask, mask, submask_fn(i));
1597 } else {
1598 cpumask_andnot(mask, mask, cpu_core_mask(i));
1599 }
1600 }
1601
84dbf66c 1602 free_cpumask_var(mask);
a8a5356c
PM
1603}
1604
1da177e4 1605/* Activate a secondary processor. */
061d19f2 1606void start_secondary(void *unused)
1da177e4 1607{
99f070b6 1608 unsigned int cpu = raw_smp_processor_id();
1da177e4 1609
86f46f34
CL
1610 /* PPC64 calls setup_kup() in early_setup_secondary() */
1611 if (IS_ENABLED(CONFIG_PPC32))
1612 setup_kup();
1613
f1f10076 1614 mmgrab(&init_mm);
1da177e4
LT
1615 current->active_mm = &init_mm;
1616
1617 smp_store_cpu_info(cpu);
5ad57078 1618 set_dec(tb_ticks_per_jiffy);
99f070b6 1619 rcu_cpu_starting(cpu);
1be6f10f 1620 cpu_callin_map[cpu] = 1;
1da177e4 1621
757cbd46
KG
1622 if (smp_ops->setup_cpu)
1623 smp_ops->setup_cpu(cpu);
1da177e4
LT
1624 if (smp_ops->take_timebase)
1625 smp_ops->take_timebase();
1626
d831d0b8
TB
1627 secondary_cpu_time_init();
1628
aeeafbfa
BH
1629#ifdef CONFIG_PPC64
1630 if (system_state == SYSTEM_RUNNING)
1631 vdso_data->processorCount++;
18ad51dd
AB
1632
1633 vdso_getcpu_init();
aeeafbfa 1634#endif
6980d13f
SD
1635 set_numa_node(numa_cpu_lookup_table[cpu]);
1636 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1637
df52f671
OH
1638 /* Update topology CPU masks */
1639 add_cpu_to_masks(cpu);
1da177e4 1640
96d91431
OH
1641 /*
1642 * Check for any shared caches. Note that this must be done on a
1643 * per-core basis because one core in the pair might be disabled.
1644 */
caa8e29d
SD
1645 if (!shared_caches) {
1646 struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
1647 struct cpumask *mask = cpu_l2_cache_mask(cpu);
1648
1649 if (has_big_cores)
1650 sibling_mask = cpu_smallcore_mask;
1651
1652 if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu)))
1653 shared_caches = true;
1654 }
96d91431 1655
cce606fe
LZ
1656 smp_wmb();
1657 notify_cpu_starting(cpu);
1658 set_cpu_online(cpu, true);
1659
b6aeddea
ME
1660 boot_init_stack_canary();
1661
1da177e4
LT
1662 local_irq_enable();
1663
d1039786
NR
1664 /* We can enable ftrace for secondary cpus now */
1665 this_cpu_enable_ftrace();
1666
fc6d73d6 1667 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
fa3f82c8
BH
1668
1669 BUG();
1da177e4
LT
1670}
1671
d276960d 1672static void __init fixup_topology(void)
3c6032a8 1673{
375370a1
SD
1674 int i;
1675
3c6032a8
SD
1676#ifdef CONFIG_SCHED_SMT
1677 if (has_big_cores) {
1678 pr_info("Big cores detected but using small core scheduling\n");
72730bfc 1679 powerpc_topology[smt_idx].mask = smallcore_smt_mask;
3c6032a8
SD
1680 }
1681#endif
72730bfc
SD
1682
1683 if (!has_coregroup_support())
1684 powerpc_topology[mc_idx].mask = powerpc_topology[cache_idx].mask;
375370a1
SD
1685
1686 /*
1687 * Try to consolidate topology levels here instead of
1688 * allowing scheduler to degenerate.
1689 * - Dont consolidate if masks are different.
1690 * - Dont consolidate if sd_flags exists and are different.
1691 */
1692 for (i = 1; i <= die_idx; i++) {
1693 if (powerpc_topology[i].mask != powerpc_topology[i - 1].mask)
1694 continue;
1695
1696 if (powerpc_topology[i].sd_flags && powerpc_topology[i - 1].sd_flags &&
1697 powerpc_topology[i].sd_flags != powerpc_topology[i - 1].sd_flags)
1698 continue;
1699
1700 if (!powerpc_topology[i - 1].sd_flags)
1701 powerpc_topology[i - 1].sd_flags = powerpc_topology[i].sd_flags;
1702
1703 powerpc_topology[i].mask = powerpc_topology[i + 1].mask;
1704 powerpc_topology[i].sd_flags = powerpc_topology[i + 1].sd_flags;
1705#ifdef CONFIG_SCHED_DEBUG
1706 powerpc_topology[i].name = powerpc_topology[i + 1].name;
1707#endif
1708 }
3c6032a8
SD
1709}
1710
6d11b87d
TG
1711void __init smp_cpus_done(unsigned int max_cpus)
1712{
1713 /*
7b7622bb 1714 * We are running pinned to the boot CPU, see rest_init().
1da177e4 1715 */
757cbd46 1716 if (smp_ops && smp_ops->setup_cpu)
7b7622bb 1717 smp_ops->setup_cpu(boot_cpuid);
4b703a23 1718
d7294445
BH
1719 if (smp_ops && smp_ops->bringup_done)
1720 smp_ops->bringup_done();
1721
4b703a23 1722 dump_numa_cpu_topology();
d7294445 1723
3c6032a8 1724 fixup_topology();
2ef0ca54 1725 set_sched_topology(powerpc_topology);
e1f0ece1
MN
1726}
1727
1da177e4
LT
1728#ifdef CONFIG_HOTPLUG_CPU
1729int __cpu_disable(void)
1730{
e2075f79 1731 int cpu = smp_processor_id();
e2075f79 1732 int err;
1da177e4 1733
e2075f79
NL
1734 if (!smp_ops->cpu_disable)
1735 return -ENOSYS;
1736
424ef016
NR
1737 this_cpu_disable_ftrace();
1738
e2075f79
NL
1739 err = smp_ops->cpu_disable();
1740 if (err)
1741 return err;
1742
1743 /* Update sibling maps */
df52f671 1744 remove_cpu_from_masks(cpu);
e2075f79
NL
1745
1746 return 0;
1da177e4
LT
1747}
1748
1749void __cpu_die(unsigned int cpu)
1750{
1751 if (smp_ops->cpu_die)
1752 smp_ops->cpu_die(cpu);
1753}
d0174c72 1754
1ea21ba2
ME
1755void arch_cpu_idle_dead(void)
1756{
424ef016
NR
1757 /*
1758 * Disable on the down path. This will be re-enabled by
1759 * start_secondary() via start_secondary_resume() below
1760 */
1761 this_cpu_disable_ftrace();
1762
39f87561
ME
1763 if (smp_ops->cpu_offline_self)
1764 smp_ops->cpu_offline_self();
fa3f82c8
BH
1765
1766 /* If we return, we re-enter start_secondary */
1767 start_secondary_resume();
abb17f9c 1768}
fa3f82c8 1769
1da177e4 1770#endif